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ABSTRACT

Recent approaches to efficiently ensemble neural networks have shown that strong
robustness and uncertainty performance can be achieved with a negligible gain in
parameters over the original network. However, these methods still require multiple
forward passes for prediction, leading to a significant computational cost. In this
work, we show a surprising result: the benefits of using multiple predictions can be
achieved ‘for free’ under a single model’s forward pass. In particular, we show that,
using a multi-input multi-output (MIMO) configuration, one can utilize a single
model’s capacity to train multiple subnetworks that independently learn the task at
hand. By ensembling the predictions made by the subnetworks, we improve model
robustness without increasing compute. We observe a significant improvement in
negative log-likelihood, accuracy, and calibration error on CIFAR10, CIFAR100,
ImageNet, and their out-of-distribution variants compared to previous methods.

1 INTRODUCTION

Uncertainty estimation and out-of-distribution robustness are critical problems in machine learning.
In medical applications, a confident misprediction may be a misdiagnosis that is not referred to a
physician as during decision-making with a “human-in-the-loop.” This can have disastrous conse-
quences, and the problem is particularly challenging as patient data deviates significantly from the
training set such as in demographics, disease types, epidemics, and hospital locations (Dusenberry
et al., 2020b; Filos et al., 2019).

Using a distribution over neural networks is a popular solution stemming from classic Bayesian
and ensemble learning literature (Hansen & Salamon, 1990; Neal, 1996), and recent advances such
as BatchEnsemble and extensions thereof achieve strong uncertainty and robustness performance
(Wen et al., 2020; Dusenberry et al., 2020a; Wenzel et al., 2020). These methods demonstrate that
significant gains can be had with negligible additional parameters compared to the original model.
However, these methods still require multiple (typically, 4-10) forward passes for prediction, leading
to a significant runtime cost. In this work, we show a surprising result: the benefits of using multiple
predictions can be achieved “for free” under a single model’s forward pass.

The insight we build on comes from sparsity. Neural networks are heavily overparameterized models.
The lottery ticket hypothesis (Frankle & Carbin, 2018) and other works on model pruning (Molchanov
et al., 2016; Zhu & Gupta, 2017) show that one can prune away 70-80% of the connections in a
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Figure 1: In the multi-input multi-output (MIMO) configuration, the network takes M = 3 inputs and gives M
outputs. The hidden layers remain unchanged. The black connections are shared by all subnetworks, while the
colored connections are for individual subnetworks. (a) During training, the inputs are independently sampled
from the training set and the outputs are trained to classify their corresponding inputs. (b) During testing, the
same input is repeated M times and the outputs are averaged in an ensemble to obtain the final prediction.

neural network without adversely affecting performance. The remaining sparse subnetwork, called
the winning ticket, retains its predictive accuracy. This suggests that a neural network has sufficient
capacity to fit 3-4 independent subnetworks simultaneously. We show that, using a multi-input multi-
output (MIMO) configuration, we can concurrently train multiple independent subnetworks within
one network. These subnetworks co-habit the network without explicit separation. The advantage of
doing this is that at test time, we can evaluate all of the subnetworks at the same time, leveraging the
benefits of ensembles in a single forward pass.

Our proposed MIMO configuration only requires two changes to a neural network architecture. First,
replace the input layer: instead of taking a single datapoint as input, take M datapoints as inputs,
where M is the desired number of ensemble members. Second, replace the output layer: instead of a
single head, use M heads that make M predictions based on the last hidden layer. During training,
the inputs are sampled independently from the training set and each of the M heads is trained to
predict its matching input (Figure 1a). Since, the features derived from the other inputs are not
useful for predicting the matching input, the heads learn to ignore the other inputs and make their
predictions independently. At test time, the same input is repeated M times. That is, the heads make
M independent predictions on the same input, forming an ensemble for a single robust prediction
that can be computed in a single forward pass (Figure 1b).

The core component of an ensemble’s robustness such as in Deep Ensembles is the diversity of its
ensemble members (Fort et al., 2019). While it is possible that a single network makes a confident
misprediction, it is less likely that multiple independently trained networks make the same mistake.
Our model operates on the same principle. By realizing multiple independent winning lottery tickets,
we are reducing the impact of one of them making a confident misprediction. For this method to be
effective, it is essential that the subnetworks make independent predictions. We empirically show that
the subnetworks use disjoint parts of the network and that the functions they represent have the same
diversity as the diversity between independently trained neural networks.

Summary of contributions.

1. We propose a multi-input multi-output (MIMO) configuration to network architectures, enabling
multiple independent predictions in a single forward pass “for free.” Ensembling these predic-
tions significantly improves uncertainty estimation and robustness with minor changes to the
number of parameters and compute cost.

2. We analyze the diversity of the individual members and show that they are as diverse as
independently trained neural networks.

3. We demonstrate that when adjusting for wall-clock time, MIMO networks achieve new state-of-
the-art on CIFAR10, CIFAR100, ImageNet, and their out-of-distribution variants.

2 MULTI-INPUT MULTI-OUTPUT NETWORKS

The MIMO model is applicable in a supervised classification or regression setting. Denote the set of
training examples X = {(x(n),y(n))}Nn=1 where x(n) is the nth datapoint with the corresponding
label y(n) and N is the size of the training set. In the usual setting, for an input x, the output
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Figure 2: Illustration of MIMO applied to a synthetic regression problem. (left) Example of MIMO learning
M = 3 diverse predictors. As M increases, predicting with MIMO comes with a higher bias but a smaller
variance (two middle panels respectively). Despite the slight increase in bias, the decrease in variance translates
into an improved generalization performance (right).

of the neural network ŷ is a probability distribution pθ(ŷ|x),1 which captures the uncertainty in
the predictions of the network. The network parameters θ are trained using stochastic gradient
descent (SGD) to minimize the loss L(θ) on the training set, where the loss usually includes
the negative log-likelihood and a regularization term R (such as the L2 regularization): L(θ) =
E(x,y)∈X[− log pθ(y|x)] +R(θ).

In the MIMO configuration, the network takes M inputs and returns M outputs (Figure 1), where
each output is a prediction for the corresponding input. This requires two small changes to the
architecture. At the input layer, the M inputs {x1, . . . ,xM} are concatenated before the first
hidden layer is applied and at the output layer, the network gives M predictive distributions
{pθ(y1|x1, . . . ,xM ), . . . , pθ(yM |x1, . . . ,xM )} correspondingly. Having M input and M outputs
require additional model parameters. The additional weights used in the MIMO configuration account
for just a 0.03 % increase in the total number of parameters and 0.01 % increase in floating-point
operations (FLOPs).2

The network is trained similarly to a traditional neural network, with a few key modifications to
account for the M inputs and M outputs (Figure 1a). During training, the inputs x1, . . . ,xM are
sampled independently from the training set. The loss is the sum of the negative log-likelihoods of
the predictions and the regularization term:

LM (θ) = E
(x1,y1)∈X

...
(xM ,yM )∈X

[
M∑
m=1

− log pθ(ym|x1, . . . ,xM )

]
+R(θ) ,

which is optimized using stochastic gradient descent. Note that the sum of the log-likelihoods
is equal to the log-likelihood of the joint distribution

∑M
m=1 log pθ(ym|x1, . . . ,xM ) =

log pθ(y1, . . . ,yM |x1, . . . ,xM ) since the input-output pairs are independent. Hence a second
interpretation of MIMO is that it is simply training a traditional neural network over M -tuples of
independently sampled datapoints.

At evaluation time, the network is used to make a prediction on a previously unseen input x′. The
input x′ is tiled M times, so x1 = . . . = xM = x′ (Figure 1b). Since all of the inputs are x′, each of
the outputs independently approximate the predictive distribution pθ(ym|x′, . . . ,x′) ≈ p(y′|x′) (for
m = 1 . . .M ). As an ensemble, averaging these predictions improves the predictive performance,
leading to the combined output pθ(y′|x′) = 1

M

∑M
m=1 pθ(ym|x′, . . . ,x′).

Unlike Bayesian methods requiring multiple weight samples, or even parameter-efficient methods
like BatchEnsemble, MIMO’s advantage is that all of the ensemble members can be calculated in a
single forward pass. As a result, MIMO’s wall-clock time is almost equivalent to a standard neural
network.
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Figure 3: Accuracy landscape and function space landscape comparison of individual subnetworks for MIMO
(top row) and the naive multiheaded architecture (bottom row). (left): The test accuracy in the weight space
section containing M = 3 trained subnetworks and the origin. For the MIMO architecture, the individual
subnetworks converge to three distinct low-loss basins, while naive multihead leads to the same mode. (middle-
left to right): The blue, red and green panels show the disagreement between the three trained subnetworks for
the same section of the weight space. For the MIMO architecture, the subnetworks often disagree, while for the
naive multihead architecture they are all essentially equivalent.

2.1 ILLUSTRATION OF MIMO ON A SYNTHETIC REGRESSION EXAMPLE

Before applying MIMO to large-scale vision models, we first illustrate its behavior on a simple
one-dimensional regression problem. We consider the noisy function from Blundell et al. (2015) (see
Figure 2, left), with a training and test set of N = 64 and 3000 observations respectively. We train a
multilayer perceptron with two hidden-layers, composed of (32, 128) units and ReLU activations. 3

For different ensemble sizes M ∈ {1, . . . , 5}, we evaluate the resulting models in terms of expected
mean squared error EM . If we denote by f̂M the regressor with M ensemble members learned over X,
we recall that EM = E(x′,y′)∈Xtest [EX[(f̂M (x′, . . . ,x′)− y′)2]], where EX[·] denotes the expectation
over training sets of size N . We make two main observations.

First, in the example of M = 3 in Figure 2 (left), we can see that MIMO can learn a diverse set of
predictors. Second, the diverse predictors obtained by MIMO translate into improved performance, as
seen in Figure 2 (right). Moreover, in the regression setting, we can decompose EM into its (squared)
bias and variance components (Sec. 2.5 in Hastie et al. (2009)). More formally, we have

EM = E
(x′,y′)∈Xtest

[
(f̄M (x′, . . . ,x′)− y′)2

]
︸ ︷︷ ︸

(squared) bias

+ E
(x′,y′)∈Xtest

[E
X

[
(f̄M (x′, . . . ,x′)− f̂M (x′, . . . ,x′))2]

]
︸ ︷︷ ︸

variance

,

where f̄M = EX[f̂M ]. The bias-variance decomposition nicely captures the strength of MIMO.
While learning a neural network over M -tuples induces a slight bias compared to a standard model
with M = 1, i.e. the individual members perform slightly worse (Figure 2, middle-left), this is
compensated by the diverse predictions of the ensemble members that lead to lower variance (Figure 2,
middle-right). MIMO yields an improvement when the model has sufficient capacity to fit M > 1
diverse, well-performing ensemble members.

1We use bold font to denote random variables and italic to denote their instantiations, for example, random
variable z and its instantiation z.

2A standard ResNet28-10 has 36.479M parameters and it takes 10.559G FLOPs to evaluate, while in the
MIMO configuration, it has 36.492M parameters and takes 10.561G FLOPs to evaluate.

3We provide an interactive notebook that reproduces these experiments.
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Figure 4: Analyzing the subnetworks on the CIFAR10 dataset. (left): Histogram of the conditional variances
of the pre-activations w.r.t. each input (M = 2, ResNet28-10). (middle-left): Scatter plot of the conditional
variances of the pre-activations w.r.t. each input. Almost all the pre-activations only have variance with respect
to one of the inputs: the subnetwork they that are part of (M = 3, ResNet28-10). (middle-right): Training
trajectories of the subnetworks. The subnetworks converge to different local optima (M = 3, SmallCNN).
(right): Diversity of the members (DD) in different efficient ensemble models (ResNet 28-10).

3 UNDERSTANDING THE SUBNETWORKS

The mapping of each input-output pair in a MIMO configuration is referred to as a subnetwork. In
this section, we show that the subnetworks converge to distinct local optima and they functionally
behave as independently trained neural networks.

3.1 LOSS-LANDSCAPE ANALYSIS

Using multiple inputs is the key to training diverse subnetworks. The subnetworks learn independently,
since features derived from each input are only useful for the corresponding output. In contrast, in a
naive multiheaded architecture, where the input is shared, but the model has separate M outputs, the
outputs rely on the same features for prediction, which leads to very low diversity.

To showcase this, we replicate a study from Fort et al. (2019). We look at the SmallCNN model (3
convolutional layers with 16, 32, 32 filters respectively) trained on CIFAR-10, and linearly interpolate
between the three subnetworks in weight space. In the case of MIMO, we interpolate the input and
output layers, since the body of the network is shared, and for the naive multiheaded model, we only
interpolate the output layers, since the input and the body of the network is shared. Analogously to
Deep Ensembles, the subnetworks trained using MIMO converge to disconnected modes in weight
space due to differences in initialization, while in the case of the naive multiheaded model, the
subnetworks end up in the same mode (Figure 3, left). Figure 3 (right) shows the disagreement i.e.
the probability that the subnetworks disagree on the predicted class. MIMO’s disconnected modes
yield diverse predictions, while the predictions of the naive multiheaded model are highly correlated.

3.2 FUNCTION SPACE ANALYSIS

We visualize the training trajectories of the subnetworks in MIMO in function space (similarly to Fort
et al. (2019)). As we train the SmallCNN architecture (M = 3), we periodically save the predictions
on the test set. Once training is finished, we plot the t-SNE projection (Maaten & Hinton, 2008) of
the predictions. We observe that the trajectories converge to distinct local optima (Figure 4).

For a quantitative measurement of diversity in large scale networks, we look at the average pairwise
similarity of the subnetwork’s predictions at test time, and compare against other efficient ensemble
methods. The average pairwise similarity is

DD = E [D (pθ(y1|x,x . . .x), pθ(y2|x,x . . . . . .x))] ,

where D is a distance metric between predictive distributions and (x,y) ∈ X. We consider two
distance metrics. Disagreement: whether the predicted classes agree, Ddisagreement(P1, P2) =
I(arg maxŷ P1(ŷ) = arg maxŷ P2(ŷ)) and Kullback–Leibler divergence: DKL(P1, P2) =

EP1 [logP1(y)− logP2(y)]. When the ensemble members give the same prediction at all test
points, both their disagreement and KL divergence are 0.

The first efficient ensemble approach we compare against is the aforementioned naive multiheaded
model, where the input and the body of the neural network is shared by the ensemble members, but
each member has its own output layer. Next, TreeNet (Lee et al., 2015), where the input and the first
two residual groups are shared, but the final residual group and the output layer are trained separately
for each member. Finally, BatchEnsemble (Wen et al., 2020), where the members share network
parameters up to a rank-1 perturbation, which changes information flow through the full network.
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Figure 5: The performance of the subnetworks and the ensemble of the subnetworks as the number of subnetworks
(M ) varies. M = 1 is equivalent to a standard neural network (ResNet-28-10).

We find that the naive multiheaded model fails to induce diversity: the predictions of its subnetworks
are nearly identical on all test points as shown in Figure 4 (right). TreeNet and BatchEnsemble have
more diversity, although there is still significant correlation in the predictions. MIMO has better
diversity than prior efficient ensemble approaches and it matches the diversity of independently
trained neural networks.

These results allow us to pinpoint the source of robustness: The robustness of MIMO comes from
ensembling the diverse predictions made by the subnetworks, thus MIMO faithfully replicates the
behaviour of a Deep Ensemble within one network.

3.3 SEPARATION OF THE SUBNETWORKS

To show that the subnetworks utilize separate parts of the network, we look at the activations and
measure how they react to changes in each of the M inputs. Namely, we calculate the conditional
variance of each pre-activation in the network with respect to each individual input. For input x1:

Var(ai|x2) = E
x2

[Var
x1

(ai(x1,x2)] (M = 2), and Var(ai|x2,x3) = E
x2,x3

[Var
x1

(ai(x1,x2,x3)] (M = 3)

where ai is the value of i-th pre-activation in the function of the M inputs. For reference, there
are 8190 pre-activations in a ResNet28-10. We can estimate the conditional variance by fixing x1

and calculating the variance of ai w.r.t. x2 ∈ X (when M = 2, x2,x3 ∈ X when M = 3) and
finally averaging over the possible values x1 ∈ X. The conditional variance is analogously defined
for x2, . . . ,xM . If the conditional variance of an activation is non-zero w.r.t. an input, that means
that the activation changes as the input changes and therefore we consider it part of the subnetwork
corresponding to the input. If the subnetworks are independent within the network, we expect that the
conditional variance of each activation is non-zero w.r.t. one of the inputs, the subnetwork to which it
belongs, and close-to zero w.r.t. all the other inputs.

When we plot the conditional variances, this is exactly what we see. In Figure 4 (left), we see
the histogram of the pre-activations in the network. Each point has two corresponding values: the
conditional variance w.r.t. the two inputs. As we can see, all activations have non-zero conditional
variance w.r.t. one of the inputs and close-to zero w.r.t. the other. Figure 4 (middle-left) shows the
scatterplot of the activations for M = 3. We see that, similarly to M = 2, almost all activations have
non-zero conditional variance w.r.t. one of the inputs and close-to zero conditional variance w.r.t.
the others. Since almost all activations are part of exactly one of the subnetworks, which we can
identify by calculating the conditional variances, we conclude that the subnetworks separate within
the network. This implies an extension to Frankle & Carbin (2018): the subnetworks realize separate
winning lottery tickets within a single network instance.

3.4 THE OPTIMAL NUMBER OF SUBNETWORKS

A natural question that arises is the ideal number of subnetworks M to fit in a network. Too few
subnetworks do not fully leverage the benefits of ensembling, while having too many quickly reaches
the network capacity, hurting their individual performances. Ideally, we are looking to fit as many
subnetworks as possible without significantly impacting their individual performances.

Figure 5 shows the performance of both the individual subnetworks and the ensemble as M varies.
M = 1 is equivalent to a traditionally trained network i.e. the performance of the subnetwork matches
the performance of the ensemble since there is only one subnetwork. As M grows, we can see that
the performance of the subnetworks slowly declines as they utilize more and more of the network
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Figure 6: (a) Performance of MIMO (M = 2) as a function of ρ on ImageNet. At ρ = 0, the subnetworks
are independent and they are limited by the network capacity. With ρ > 0, the subnetworks are able to share
features and better utilize the network capacity. Wide ResNet has 2× more filters. (b) Repeating examples in the
same batch improves convergence and yields a slight boost in performance.

capacity. The performance of the ensemble, however, peaks between M = 2 and M = 4, where the
benefits of ensembling outweigh the slight decrease in performance of the individual subnetworks.
Interestingly, the accuracy peaks earlier than the log-likelihood, which suggests that ensembling is
more beneficial for the latter.

In Appendix C, we further illustrate how MIMO exploits the capacity of the network. In particular,
we study the performance of MIMO when the regularization increases (both in terms of L1 and L2
regularization), i.e. when the capacity of the network is increasingly constrained. In agreement with
our hypothesis that MIMO better utilizes capacity, we observe that its performance degrades more
quickly as the regularization intensifies. Moreover, the larger M , the stronger the effect. Interestingly,
for the L1 regularization, we can relate the performance of MIMO with the sparsity of the network,
strengthening the connection to Frankle & Carbin (2018).

3.5 INPUT AND BATCH REPETITION

MIMO works well by simply adding the multi-input and multi-output configuration to an existing
baseline, and varying only one additional hyperparameter (Section 3.4’s number of subnetworks
M ). We found two additional hyperparameters can further improve performance, and they can be
important when the network capacity is limited.

Input repetition Selecting independent examples for the multi-input configuration during training
forces the subnetworks not to share any features. This is beneficial when the network has sufficient
capacity, but when the network has limited excess capacity, we found that relaxing independence is
beneficial. For example, ResNet50 on ImageNet (He et al., 2016) does not have sufficient capacity to
support two independent subnetworks (M = 2) in MIMO configuration.

Our proposed solution is to relax independence between the inputs. Instead of independently sampling
x1 and x2 from the training set during training, they share the same value with probability ρ. That is,
x1 is sampled from the training set and x2 is set to be equal to x1 with probability ρ or sampled from
the training set with probability 1− ρ. Note that this does not affect the marginal distributions of x1

and x2, it merely introduces a correlation in their joint distribution.

Figure 6a shows the performance as ρ varies. At ρ = 0, the subnetworks are independent but their
performance is limited by the network capacity. As ρ grows, the subnetworks share increasingly more
features, which improves their performance. However, as ρ approaches 1, the subnetworks become
highly correlated and the benefit of ensembling is lost. Unlike ResNet50, Wide ResNet50 has more
capacity and benefits less from input repetition (roughly 78-79% vs 74-77%).

Batch repetition For stochastic models, most notably MC dropout and variational Bayesian neural
nets, drawing multiple approximate posterior samples for each example during training can improve
performance as it reduces gradient noise w.r.t. the network’s model uncertainty, e.g., Dusenberry
et al. (2020a). We achieve a similar effect by repeating examples in the minibatch: this forms a new
minibatch size of, e.g., 512 · 5 (batch size and number of batch repetitions respectively). Like the
choice of batch size which determines the number of unique examples in the SGD step (Shallue
et al., 2018), varying the number of repetitions has an implicit regularization effect. Figure 6b shows
performance over the number of batch repetitions, where each batch repetition setting indicates a box
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plot over a sweep of 12 settings of batch size, learning rate, and ensemble size. Higher repetitions
typically yield a slight boost.

4 BENCHMARKS

We described and analyzed MIMO. In this section, we compare MIMO on benchmarks building on
Uncertainty Baselines.4 This framework allows us to benchmark the performance and to compare
against high-quality, well-optimized implementations of baseline methods (see framework for further
baselines than ones highlighted here). We looked at three model/dataset combinations: ResNet28-
10/CIFAR10, ResNet28-10/CIFAR100, and ResNet50/ImageNet. MIMO’s code is open-sourced.
5

Baselines Our baselines include the reference implementations of a deterministic deep neural network
(trained with SGD), MC-Dropout, BatchEnsemble, and ensemble models, as well as two related
models, Naive multihead and TreeNet. Thin networks use half the number of convolutional filters
while wide models use double. See Appendix B for the details on the hyperparameters.

Metrics To measure robustness, we look at accuracy, negative log-likelihood (NLL), and expected
calibration error (ECE) on the IID test set as well as a corrupted test set where the test images are
perturbed (e.g. added blur, compression artifacts, frost effects) (Hendrycks & Dietterich, 2019).
Appendix D includes ImageNet results for 5 additional out-of-distribution datasets. To measure
computational cost, we look at how long it takes to evaluate the model on a TPUv2 core, measured in
ms per example.

Name Accuracy (↑) NLL (↓) ECE (↓) cAcc (↑) cNLL (↓) cECE (↓) Prediction
time (↓)

# Forward
passes (↓)

Deterministic 96 0.159 0.023 76.1 1.050 0.153 0.632 1
Dropout 95.9 0.160 0.024 68.8 1.270 0.166 0.656 1
Naive mutlihead (M = 3) 95.9 0.161 0.022 76.6 0.969 0.144 0.636 1
MIMO (M = 3) (This work) 96.4 0.123 0.010 76.6 0.927 0.112 0.639 1
TreeNet (M = 3) 95.9 0.158 0.018 75.5 0.969 0.137 0.961 1.5
BatchEnsemble (M = 4) 96.2 0.143 0.021 77.5 1.020 0.129 2.552 4
Thin Ensemble (M = 4) 96.3 0.115 0.008 77.2 0.840 0.089 0.823 4
Ensemble (M = 4) 96.6 0.114 0.010 77.9 0.810 0.087 2.536 4

Table 1: ResNet28-10/CIFAR10: The best single forward pass results are highlighted in bold.

Name Accuracy (↑) NLL (↓) ECE (↓) cAcc (↑) cNLL (↓) cECE (↓) Prediction
time (↓)

# Forward
passes (↓)

Deterministic 79.8 0.875 0.086 51.4 2.700 0.239 0.632 1
Monte Carlo Dropout 79.6 0.830 0.050 42.6 2.900 0.202 0.656 1
Naive mutlihead (M = 3) 79.5 0.834 0.048 52.1 2.339 0.156 0.636 1
MIMO (M = 3) (This work) 82.0 0.690 0.022 53.7 2.284 0.129 0.639 1
TreeNet (M = 3) 80.8 0.777 0.047 53.5 2.295 0.176 0.961 1.5
BatchEnsemble (M = 4) 81.5 0.740 0.056 54.1 2.490 0.191 2.552 4
Thin Ensemble (M = 4) 81.5 0.694 0.017 53.7 2.190 0.111 0.823 4
Ensemble (M = 4) 82.7 0.666 0.021 54.1 2.270 0.138 2.536 4

Table 2: ResNet28-10/CIFAR100: The best single forward pass results are highlighted in bold.

Name Accuracy (↑) NLL (↓) ECE (↓) cAcc (↑) cNLL (↓) cECE (↓) Prediction
time (↓)

# Forward
passes (↓)

Deterministic 76.100 0.943 0.039 40.500 3.200 0.105 0.640 1
Naive mutlihead (M = 3) 76.611 0.929 0.043 40.616 3.250 0.122 0.638 1
MIMO (M = 2) (ρ = 0.6) (This work) 77.500 0.887 0.037 43.300 3.030 0.106 0.635 1
TreeNet (M = 2) 78.139 0.852 0.017 42.420 3.052 0.073 0.848 1.5
BatchEnsemble (M = 4) 76.700 0.944 0.049 41.800 3.180 0.110 2.592 4
Ensemble (M = 4) 77.500 0.877 0.031 42.100 2.990 0.051 2.624 4
Wide Deterministic 77.885 0.938 0.072 45.000 3.100 0.150 1.674 1
Wide MIMO (M = 2) (ρ = 0.6) (This work) 79.300 0.843 0.061 45.791 3.048 0.147 1.706 1

Table 3: ResNet50/ImageNet: The best single forward pass results are highlighted in bold.

The metrics show that MIMO significantly outperforms other single forward pass methods on all three
benchmarks. It approaches the robustness of a Deep Ensemble, without increasing the computational
costs.

4https://github.com/google/uncertainty-baselines
5https://github.com/google/edward2/tree/master/experimental/mimo
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5 RELATED WORK

Multi-headed networks have been previously studied by Lee et al. (2015); Osband et al. (2016);
Tran et al. (2020). In this approach to efficient ensembles, the input and part of the network are
shared by the members while the final few layers and the outputs are separate. The advantage of
the approach is that the computational cost is reduced compared to typical ensembles, since many
layers are shared, but the ensemble diversity (and resulting performance) is quite lacking. MIMO’s
multi-input configuration makes a significant impact as each ensemble member may take different
paths throughout the full network. Further, MIMO has lower computational cost than multi-headed
approaches, since all of the layers except the first and last are shared.

Related efficient ensemble approaches include BatchEnsemble, Rank-1 BNNs, and hyper batch
ensembles (Wen et al., 2020; Dusenberry et al., 2020a; Wenzel et al., 2020). In these methods, most
of the model parameters are shared among the members, which reduces the memory requirement of
the model, but the evaluation cost still requires multiple forward passes. Interestingly, like MIMO,
these methods also apply a multi-input multi-output configuration, treating an ensemble of networks
as a single bigger network; however, MIMO still outperforms BatchEnsemble. We believe important
insights such as Section 3.5’s input independence may also improve these methods.

Finally, there are simple heuristics which also retain efficient compute such as data augmentation,
temperature scaling, label smoothing, contrastive training. These methods are orthogonal to MIMO
and they can provide a performance boost, without increasing the computational cost.

6 CONCLUSIONS

We propose MIMO, a novel approach for training multiple independent subnetworks within a network.
We show that the subnetworks separate within the model and that they behave as independently
trained neural networks. The key benefits of MIMO are its simplicity, since it does not require
significant modifications to the network architecture and it has few hyperparameters, and also its
computational efficiency, since it can be evaluated in a single forward pass. Our empirical results
confirm that MIMO improves performance and robustness with minor changes to the number of
parameters and the compute cost.
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A PSEUDOCODE

Algorithm 1 Train(X)

1: for t = 1 . . . Niter do
2: (x1:M ,y1:M ) ∼ U(X)
3: pθ(y1|x1:M ) . . . pθ(yM |x1:M )← MIMO(x1:M )

4: LM (θ)←
∑M
m=1− log pθ(ym|x1:M ) +R(θ)

5: θ ← θ − ε∇LM (θ) . ε is the learning rate.
6: end for

Algorithm 2 Evaluate(x′)

1: pθ(y1|x1:M = x′) . . . pθ(yM |x1:M = x′)← MIMO(x1:M = x′)

2: return 1
M

∑M
m=1 pθ(ym|x1:M = x′)

B HYPERPARAMETERS

For the ResNet28-10/CIFAR models, we use a batch-size of 512, a decaying learning rate of 0.1
(decay rate 0.1) and L2 regularization 2e-4. The Deterministic, Dropout and Ensemble models are
trained for 200 epochs while BatchEnsemble, Naive multihead and TreeNet are trained for 250
epochs.

For the ResNet50/ImageNet models, we use a batch-size of 4096 and a decaying learning rate of 0.1
(decay rate 0.1) and L2 regularization 1e-4. The Deterministic, Dropout and Ensemble models are
trained for 90 epochs, the BatchEnsemble model is trained for 135 epochs and Naive multihead and
TreeNet are trained for 150 epochs.

Regarding model specific hyperparameters, Dropout uses a 10% dropout rate and a single forward
pass at evaluation time. Both Ensemble and BatchEnsemble models use M = 4 members, since this
provides most of the benefits of ensembling without significantly increasing the computational costs.
The TreeNet architecture

MIMO For MIMO, we use the hyperparameters of the baseline implementations wherever possible.
For the ResNet28-10/CIFAR models, we use a batch-size of 512 with decaying learning rate of
0.1 (decay rate 0.1), L2 regularization 3e-4, 250 training epochs, and a batch repetition of 4. For
the ResNet50/ImageNet models, we use a batch-size of 4096 with decaying learning rate of 0.1
(decay rate 0.1), L2 regularization 1e-4, 150 training epochs, and batch repetition of 2. This makes
the training cost of MIMO comparable to that of BatchEnsemble and Ensemble models. For the
ResNet28-10/CIFAR experiments, we use M = 3 subnetworks because it performs well in both
accuracy and log-likelihood. For ResNet50/ImageNet the model has lower capacity so we used
M = 2 with ρ = 0.6.

C MIMO BETTER EXPLOITS THE NETWORK CAPACITY: PERFORMANCE
VERSUS REGULARIZATION STRENGTH

In this section, we further illustrate how MIMO better exploits the capacity of the network, through
the lens of its sensitivity to regularization.

Our experimental protocol is guided by the following rationale

• Regularization controls the capacity of the network: the higher the regularization, the more
constrained the capacity.
• MIMO makes better use of the capacity of the network: the more ensemble members, the

more capacity is exploited.
• As a result, MIMO should be more sensitive to the constraining of the capacity of the

network. And the more ensemble members (i.e., the largerM ), the stronger the effect should
be.

We consider the ResNet28-10/CIFAR10 and ResNet28-10/CIFAR100 settings used in the main
paper where we additionally vary the L1 (respectively L2) regularization while keeping the other L2
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Figure 7: Accuracy and log-likelihood versus varying L1 regularization for ResNet28-10 on CIFAR10 (top row)
and CIFAR100 (bottom row). Since MIMO better exploits the capacity of the network, its performance is more
sensitive to the constraining of the capacity as the regularization increases. The larger the ensemble size, the
stronger the effect.

(respectively L1) term equal to zero. We display in Figures 7-8 the accuracy and log-likelihood over
those regularization paths (averaged over three repetitions of the experiments).

As previously hypothesised, we observe that MIMO is indeed more sensitive to the constraining
of the capacity of the network as the regularization increases. Moreover, the larger the ensemble
size, the stronger the effect. In the case of the L1 regularization, we can show how the accuracy and
log-likelihood evolve with respect to the sparsity of the network6. We report those results in Figure 9
where we can observe the same phenomenon.

D ADDITIONAL IMAGENET OOD RESULTS

In the following table, we evaluate trained ResNet-50 models on 7 datasets. ImageNet, ImageNet-C,
ImageNet-A, and ImageNetV2 each display three metrics: negative log-likelihood, accuracy, and
expected calibration error respectively. ImageNet-C further includes mCE (mean corruption error) in
parentheses. ImageNet-Vid-Robust, YTTB-Robust, and ObjectNet use their own pre-defined stability
metrics.

These experiments were expensive to run, so we were only able to obtain them for a smaller set
of methods. We find these results are consistent with the main text’s benchmarks, showing MIMO
consistently outperforms methods not only on corrupted images, but also across distribution shifts.

Name ImageNet ImageNet-C ImageNet-A
Deterministic 0.939 / 76.2% / 0.032 3.21 / 40.5% / 0.103 (75.4%) 8.09 / 0.7% / 0.425

MIMO (M = 2, ρ = 0.6) 0.887 / 77.5% / 0.037 3.03 / 43.3% / 0.106 (71.7%) 7.76 / 1.4% / 0.432
Wide MIMO (M = 2, ρ = 0.6) 0.843 / 79.3% / 0.061 3.1 / 45.0% / 0.150 (69.6%) 7.52 / 3.3% / 0.46

Name ImageNetV2 ImageNet-Vid-Robust YTTB-Robust ObjectNet
Deterministic 1.58 / 64.4% / 0.074 29.9% 21.7% 25.9%

MIMO (M = 2, ρ = 0.6) 1.51 / 65.7% / 0.084 31.8% 22.2% 28.1%
Wide MIMO (M = 2, ρ = 0.6) 1.49 / 67.9% / 0.109 35.3% 22.9% 29.5%

Table 4: ResNet50/ImageNet & ImageNet OOD: The best single forward pass results are highlighted in bold.

6A weight is considered to be non zero if its absolute value is larger than 10−4.
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Figure 8: Accuracy and log-likelihood versus varying L2 regularization for ResNet28-10 on CIFAR10 (top row)
and CIFAR100 (bottom row). Since MIMO better exploits the capacity of the network, its performance is more
sensitive to the constraining of the capacity as the regularization increases. The larger the ensemble size, the
stronger the effect.
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Figure 9: Accuracy and log-likelihood versus varying sparsity of a ResNet28-10 on CIFAR10 (top row) and
CIFAR100 (bottom row). Since MIMO better exploits the capacity of the network, its performance is more
sensitive to the sparsification of the network (as induced by an increasing L1 regularization). The larger the
ensemble size, the stronger the effect.
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