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Abstract

Subsampling is commonly used to mitigate costs associated with data acquisition, such as
time or energy requirements, motivating the development of algorithms for estimating the
fully-sampled signal of interest x from partially observed measurements y. In maximum-
entropy sampling, one selects measurement locations that are expected to have the highest
entropy, so as to minimize uncertainty about x. This approach relies on an accurate model
of the posterior distribution over future measurements, given the measurements observed so
far. Recently, diffusion models have been shown to produce high-quality posterior samples
of high-dimensional signals using guided diffusion. In this work, we propose Active Diffusion
Subsampling (ADS), a method for performing active subsampling using guided diffusion in
which the model tracks a distribution of beliefs over the true state of x throughout the
reverse diffusion process, progressively decreasing its uncertainty by choosing to acquire
measurements with maximum expected entropy, and ultimately generating the posterior
distribution p(x | y). ADS can be applied using pre-trained diffusion models for any sub-
sampling rate, and does not require task-specific retraining – just the specification of a mea-
surement model. Furthermore, the maximum entropy sampling policy employed by ADS is
interpretable, enhancing transparency relative to existing methods using black-box policies.
Experimentally, we show that ADS outperforms fixed sampling strategies on the MNIST and
CelebA datasets, and performs competitively with existing supervised methods in Magnetic
Resonance Imaging acceleration, while using a more interpretable acquisition scheme design
procedure. Code is available at https://active-diffusion-subsampling.github.io/.
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Figure 1: Active Diffusion Subsampling jointly designs a subsampling mask and reconstructs the target signal
in a single reverse diffusion process.

1 Introduction

In recent years, diffusion models have defined the state of the art in inverse problem solving, particularly in
the image domain, through novel posterior sampling methods such as Diffusion Posterior Sampling (DPS)
(Chung et al., 2022) and Posterior Sampling with Latent Diffusion (PSLD) (Rout et al., 2024). These meth-
ods are often evaluated on inverse imaging problems, such as inpainting, which is akin to image subsampling.
Typical benchmarks evaluate inpainting ability using naïve subsampling masks such as randomly masked
pixels, or a box mask in the center of the image (Rout et al., 2024). In real-world applications, however, more
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sophisticated subsampling strategies are typically employed, for example, in Magnetic Resonance Imaging
(MRI) acceleration (Lustig & Pauly, 2010; Bridson, 2007). These subsampling strategies are usually designed
by domain experts, and are therefore not generalizable across tasks. Some recent literature has explored
learning subsampling masks for various tasks (Bahadir et al., 2020; Baldassarre et al., 2016; Huijben et al.,
2020; Van Gorp et al., 2021), but these methods typically depend on black-box policy functions, and require
task-specific training. In this work, we introduce Active Diffusion Subsampling (ADS), an algorithm for
automatically designing task- and sample-adaptive subsampling masks using diffusion models, without the
need for further training or fine-tuning (Figure 2). ADS uses a white-box policy function based on maxi-
mum entropy sampling (Caticha, 2021), in which the model chooses sampling locations that are expected
to maximize the information gained about the reconstruction target. In order to implement this policy,
ADS leverages quantities that are already computed during the reverse diffusion process, leading to minimal
additional inference time. Our main contributions are thus as follows:

• A novel approach to active subsampling which can be employed with existing diffusion models using
popular posterior sampling methods;

• A white-box policy function for sample selection, grounded in theory from Bayesian experimental
design;

• Experimental validation against baseline sampling strategies and via application to MRI acceleration.
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Figure 2: Schematic overview of the proposed Active Diffusion Sampling (ADS) method.

2 Related Work

Methods aiming to select maximally informative measurements appear in many domains, spanning statis-
tics, signal processing, and machine learning, but sharing foundations in information theory and Bayesian
inference. Optimal Bayesian Experimental Design (Lindley, 1956) aims to determine which experiment will
be most informative about some quantity of interest θ (Rainforth et al., 2024), typically parameters of a
statistical model. Active learning (Houlsby et al., 2011) performs an analogous task in machine learning,
aiming to identify which samples, if included in the training set, would lead to the greatest performance gain
on the true data distribution. While our method focuses on subsampling high-dimensional signals, it could
also be interpreted as a Bayesian regression solver for the forward problem y = f(x) + n, in which x is now
seen as parameters for a model f , and the active sampler seeks measurements y which minimize uncertainty
about the parameters x, relating it to the task of Bayesian experimental design.

From a signal processing perspective, ADS can be characterized as a novel approach to adaptive compressive
sensing, in which sparse signals are reconstructed from measurements with sub-Nyquist sampling rates (Rani
et al., 2018), and typically applied in imaging and communication. Measurement matrices relating observed
measurements to the signal of interest x are then designed so as to minimize reconstruction error on x. In
Bayesian compressive sensing, measurement matrices are designed so as to minimize a measure of uncertainty

2



Under review as submission to TMLR

about the value of x. Adaptive approaches, such as that of Braun et al. (2015), aim to decrease this
uncertainty iteratively, by greedily choosing measurements that maximize the mutual information between
x and y = Ux + n. These methods typically assume a Gaussian prior on x, however, limiting the degree to
which more complex prior structure can be used. More recently, a number of methods using deep learning to
design subsampling strategies have emerged. These approaches typically learn subsampling strategies from
data that minimize reconstruction error between x and y. Methods by Huijben et al. (2020) and Bahadir
et al. (2020) learn fixed sampling strategies, in which a single mask is designed a priori for a given domain,
and applied to all samples for inference. These methods can be effective, but suffer in cases where optimal
masks differ across samples. Sample-adaptive methods (Van Gorp et al., 2021; Bakker et al., 2020; Yin et al.,
2021; Stevens et al., 2022) move past this limitation by designing sampling strategies at inference time. A
popular application of such methods is MRI acceleration, spurred by the fastMRI benchmark (Zbontar et al.,
2018), in which a full MRI image must be reconstructed from sub-sampled κ-space measurements. In A-DPS
(Van Gorp et al., 2021), for example, a neural network is trained to build an acquisition mask consisting
of M κ-space lines iteratively, adaptively adding new lines based on the current reconstruction and prior
context. Bakker et al. (2020) implements the same procedure using a reinforcement learning agent. One
drawback of these methods is their reliance on black-box policies, making it difficult to detect and interpret
failure cases. Generative approaches with transparent sampling policies circumvent this issue. For example,
methods by Sanchez et al. (2020) and van de Camp et al. (2023) take a generative approach to adaptive MRI
acquisition design, using variants of generative adversarial networks (GANs) to generate posterior samples
over MRI images, and maximum-variance sampling in the κ-space as the measurement selection policy. The
performance of such generative approaches depends on how well they can model the true posterior distribution
over x given observations. This motivates our choice of diffusion models for generative modeling, as they
have shown excellent performance in diverse domains, such as computer vision (Dhariwal & Nichol, 2021),
medical imaging (Chung & Ye, 2022; Stevens et al., 2024), and natural language processing (Yu et al., 2022).
We also highlight a related concurrent work by Elata et al. (2025), which uses denoising diffusion restoration
models (DDRMs) to generate sensing matrices for adaptive compressed sensing, which differs from ADS in
that it requires full DDRM inference in order to acquire each sample, where ADS acquires all samples in a
single reverse diffusion inference using DPS.

3 Background

3.1 Bayesian Optimal Experimental Design

In Bayesian Optimal Experimental Design (Rainforth et al., 2024) and Bayesian Active Learning (Houlsby
et al., 2011), the objective is to choose the optimal design, or set of actions A = A∗, leading to new
observations of a measurement variable y that will minimize uncertainty about a related quantity of interest
x, as measured by entropy H. It was shown by Lindley (1956) that this objective is equivalent to finding
the actions A that maximize the mutual information I between x and y, i.e. selecting actions leading to
observations of y that will be most informative about x:

A∗ = arg min
A

[H(x | A, y)] = arg max
A

[I(y; x | A)] (1)

This objective is commonly optimized actively, wherein the design is created iteratively by choosing actions
that maximize mutual information, considering past observations when selecting new actions (Rainforth
et al., 2024). This active paradigm invites an agent-based framing, in which the agent’s goal is to minimize
its own uncertainty, and beliefs over x are updated as new measurements of y are taken. The active design
objective can be formulated as follows, where at is possible action at time t, At = At−1 ∪ at is the set of
actions {a0, ..., at} taken so far at time t, and yt−1 is the set of partial observations of the measurement
variable y until time t− 1:

a∗
t = arg max

at

[I(yt; x | At, yt−1)]

= arg max
at

[Ep(yt|x,At)p(x|yt−1)[log p(yt | At, yt−1)− log p(yt | x, At, yt−1)]]

= arg max
at

[H(yt | At, yt−1)−H(yt | x, At, yt−1)]

(2)
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We can interpret the agent’s behavior from Equation 2 as trying to maximize marginal uncertainty about
yt, while minimizing model uncertainty about what value yt should take on given a particular x (Houlsby
et al., 2011). Active designs are typically preferred over fixed designs, in which a set of actions is chosen
up-front, as opposed to being chosen progressively as measurements are acquired (Rainforth et al., 2024).
While fixed designs may be more computationally efficient, they are less sample-specific, which can lead
to lower information gain about x. Finally, it is worth noting that this active optimization scheme, while
greedy, has been shown to be near-optimal due to the submodularity of conditional entropy (Golovin &
Krause, 2011).

3.2 Subsampling

Generally image reconstruction tasks can be formulated as inverse problems, given by:

y = Ux + n, (3)

where y ∈ YM is a measurement, x ∈ XN the signal of interest and n ∈ NM some noise source, typically
Gaussian. For the subsampling problem, the measurement matrix U ∈ RM×N can be expressed in terms
of a binary subsampling matrix using one-hot encoded rows such that we have an element-wise mask m =
diag(U⊤U), where only the diagonal entries of U⊤U are retained, representing the subsampling pattern.
We can relate the subsampling mask m through the zero-filled measurement which can be obtained through
yzf = U⊤y = m⊙ x + U⊤n.

Since we are interested in the adaptive design of these masks, we express their generation as m =
U(At)⊤U(At), where the measurement matrix is now a function of the actions At = {a0, ..., at} taken
by the agent up to time t. The ith element of that mask is defined as follows:

m =
[
U(At)⊤U(At)

]
i

=
{

1 if i ∈ At

0 otherwise.
(4)

The measurement model in equation 3 can now be extended to an active setting via yt = U(At)x+nt. Note
too that in some applications we have an additional forward model f , mapping from the data domain to the
measurement domain, yielding yt = U(At)f(x) + nt.

3.3 Posterior Sampling with Diffusion Models

Denoising diffusion models learn to reverse a stochastic differential equation (SDE) that progressively noises
samples x towards a standard Normal distribution (Song et al., 2020). The SDE defining the noising process
is as follows:

dx = −β(τ)
2 xdτ +

√
β(τ)dw (5)

where x(0) ∈ Rd is an initial clean sample, τ ∈ [0, T ], β(τ) is the noise schedule, and w is a standard
Wiener process, and x(T ) ∼ N (0, I). According the following equation from Anderson (1982), this SDE can
be reversed once the score function ∇x log pτ (x) is known, where w̄ is a standard Wiener process running
backwards:

dx =
[
−β(τ)

2 x− β(τ)∇x log pτ (x)
]

dτ +
√

β(τ)dw̄ (6)

Following the notation by Ho et al. (2020) and Chung et al. (2022), the discrete setting of the SDE is
represented using xτ = x(τT/N), βτ = β(τT/N), ατ = 1 − βτ , ᾱτ =

∏τ
s=1 αs, where N is the numbers of

discretized segments. The diffusion model achieves the SDE reversal by learning the score function using a
neural network parameterized by θ, sθ(xτ , τ) ≃ ∇xτ

log pτ (xτ ).

The reverse diffusion process can be conditioned on a measurement y to produce samples from the posterior
p(x|y). This can be done with substitution of the conditional score function ∇xτ

log pτ (xτ ) in equation 6. The
intractability of the noise-perturbed likelihood ∇xτ log pτ (y|xτ ) which follows from refactoring the posterior
using Bayes’ rule has led to various approximate guidance schemes to compute these gradients with respect

4



Under review as submission to TMLR

to a partially-noised sample xτ (Chung et al., 2022; Song et al., 2023; Rout et al., 2024). Most of these rely
on Tweedie’s formula, which can be thought of as a one-step denoising process from τ → 0, denoted Dτ (.),
using our trained diffusion model to estimate the true fully-denoised sample x0 as follows:

x̂0 = E[x0|xτ ] = Dτ (xτ ) = 1√
ᾱτ

(xτ + (1− ᾱτ )sθ(xτ , τ)) (7)

Diffusion Posterior Sampling (DPS) uses equation 7 to approximate ∇xτ log p(y|xτ ) ≈ ∇xτ log p(y|x̂0). In
the case of active subsampling, this leads to guidance term ∇xτ ||yt−U(At)f(x̂0)||22 indicating the direction
in which xτ should step in order to be more consistent with yt = U(At)f(x) + n. The conditional reverse
diffusion process then alternates between standard reverse diffusion steps and guidance steps in order to
generate samples from the posterior p(x | yt). Finally, we note that a number of posterior sampling methods
for diffusion models have recently emerged, and refer the interested reader to the survey by Daras et al.
(2024).

4 Method

4.1 Active Diffusion Subsampling

ADS (Algorithm 1) operates by running a reverse diffusion process for a batch {x(i)
τ }, i ∈ 0, ..., Np guided

by an evolving set of measurements {yt}T
t=0 which are revealed to it through subsampling actions taken at

reverse diffusion steps satisfying τ ∈ S, where S is a subsampling schedule, or set of diffusion time steps at
which to acquire new measurements. We refer to the elements of this batch {x(i)

τ } as particles in the data
space, as they implicitly track a belief distribution over the true, fully-denoised x = x0 throughout reverse
diffusion. These particles are used to compute estimates of uncertainty about x, which ADS aims to minimize
by choosing actions at that maximize the mutual information between x and yt given at. Figure 3 illustrates
this action selection procedure. The remainder of the section describes how this is achieved through (i)
employing running estimates of x0 given by Dτ (xτ ), (ii) modeling assumptions on the measurement entropy,
and (iii) computational advantages afforded by the subsampling operator.

ADS follows an information-maximizing policy, selecting measurements a∗
t = arg maxat

[I(y; x | At, yt−1)].
Assuming a measurement model with additive noise yt = U(At)f(x) + nt, the posterior entropy term
H(yt | x, At, yt−1) in the mutual information is unaffected by the choice of action at: it is solely determined
by the noise component nt. This simplifies the policy function, leaving only the marginal entropy term
H(yt | At, yt−1) to maximize. This entropy term (Equation 2) can be computed as the expectation of
log p(yt | At, yt−1), or the expected distribution of measurements yt given the observations so far, and a
subsampling matrix At. We model these probability distributions in Equation 8 as mixtures of Np isotropic
Gaussians, with means set as estimates of future measurements under possible actions, and variance σ2

yI.
The means ŷ(i)

t = U(At)f(x̂(i)
0 ) are computed by applying the forward model to posterior samples x̂(i)

0 ∼
p(x | yt−1), which are estimated using the batch of partially denoised particles x(i)

τ via x̂(i)
0 = Dτ (x(i)

τ ),
yielding the GMM:

p(yt | At, yt−1) =
N∑

i=0
wiN (ŷ(i)

t , σ2
yI) (8)

Under this isotropic Gaussian Mixture Model, the marginal entropy can be approximated as follows, as given
by Hershey & Olsen (2007):

H(yt | At, yt−1) ≈ constant +
Np∑
i

wi log
Np∑
j

wj exp
{
||ŷ(i)

t − ŷ(j)
t ||22

2σ2
y

}
(9)

Finally, we leverage the fact that U(At) is a subsampling matrix to derive an efficient final formulation of
our policy. Because U(At) is a subsampling matrix, the optimal choice for the next action at will be at
the region of the measurement space with the largest disagreement among the particles, as measured by
Gaussian error in Equation 9. Therefore, rather than computing a separate set of subsampled particles
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Figure 3: Illustration of a single action selection based on a set of partially-denoised particles {x(i)
τ }.

for each possible next subsampling mask, we instead compute a single set of fully-sampled measurement
particles ŷ(i) = f(x̂(i)

0 ), and simply choose the optimal action as the region with largest error. For example,
when pixel-subsampling an image, the particles ŷ(i) become predicted estimates of the full image, given the
pixels observed so far, and the next sample is chosen as whichever pixel has the largest total error across the
particles. Similarly, in accelerated MRI, the next κ-space line selected is the one in which there is the largest
error across estimates of the full κ-space. Denoting as l ∈ at the set of indices sampled by each possible
action at, and assuming equal weights for all particles, wi = wj ,∀i, j, the final form of the policy function is
given as follows (see Appendix A.1 for derivation):

a∗
t = arg max

at

 Np∑
i

log
Np∑
j

exp


∑

l∈at

(ŷ(i)
l − ŷ(j)

l )2

2σ2
y


 (10)

This can be further simplified for element-wise subsampling, in which at represents just a single index, and
the squared L2 norm simplifies to a squared error. In this case, denoting as Ei,j the element-wise Gaussian
error matrix between particles ŷ(i) and ŷ(j), we can compute the policy as follows:

Ei,j = exp
{

(ŷ(i) − ŷ(j))2

2σ2
y

}
(11)

E =
Np∑
i

log
Np∑
j

Ei,j (12)

a∗
t = arg max

at

E [at] (13)

Where the [at] operator selects elements indexed by at from matrix E . This leads to an efficient action
selection function, which can be summarized as computing the Gaussian error between each pair of simulated
measurements.

5 Experiments

We evaluate our method with three sets of experiments, covering a variety of data distributions and applica-
tion domains. The first two experiments, in Sections 5.1 and 5.2, evaluate the proposed Maximum-Entropy
subsampling strategy employed by ADS against baseline strategies, keeping the generative model fixed to
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Algorithm 1: Active Diffusion Subsampling
Require: T, Np, S, ζ, {σ̃τ}T

τ=0, {ατ}T
τ=0, Ainit

1 t = 0; A0 = Ainit; y0 = U(A0)f(x) + n0; {x(i)
T ∼ N (0, I)}Np−1

i=0
2 for τ = T to 1 do

// Batch process in parallel for efficient inference

3 for i = 0 to Np − 1 do
4 ŝ← sθ(x(i)

τ , τ) x̂(i)
0 ← Dτ (x(i)

τ ) = 1√
ᾱτ

(x(i)
τ + (1− ᾱτ )ŝ)

5 ŷ(i) ← f(x̂(i)
0 ) // Estimate full measurement

6 z ∼ N (0, I)

7 x(i)′

τ−1 ←
√

ατ (1−ᾱτ−1)
1−ᾱτ

x(i)
τ +

√
ᾱτ−1βτ

1−ᾱτ
x̂(i)

0 + σ̃τ z
8 x(i)

τ−1 ← x(i)′

τ−1 − ζ∇x(i)
τ
||yt −U(At)ŷ(i)||22

9 if τ ∈ S then
10 t← t + 1

11 a∗
t = arg maxat

Np∑
i

log
Np∑
j

exp


∑

l∈at

(ŷ(i)
l

−ŷ(j)
l

)2

2σ2
y




12 At = At−1 ∪ a∗
t

13 yt = U(At)f(x) + nt // Acquire new measurements

14 end
return: {x̂(i)

0 }
Np−1
i=0 // Return posterior samples

avoid confounding. Next, in Section 5.3, we evaluate the model end-to-end on both sampling and recon-
struction by applying it in the real-world task of MRI acceleration with the fastMRI dataset, and comparing
it to existing supervised approaches.

5.1 MNIST

In order to evaluate the effectiveness of the Maximum Entropy subsampling strategy employed by ADS, we
compare it to two baseline subsampling strategies on the task of reconstructing images of digits from the
MNIST dataset (LeCun et al., 1998). To this end, a diffusion model was trained on the MNIST training
dataset, resized to 32 × 32 pixels. See Appendix A.2.1 for further details on training and architecture.
Using this trained diffusion model, each subsampling strategy was used to reconstruct 500 unseen samples
from the MNIST test set for various subsampling rates. Both pixel-based and line-based subsampling were
evaluated, where line-based subsampling selects single-pixel-wide columns. The measurement model is thus
yt = U(At)x, as there is no measurement noise or measurement transformation, i.e. f(x) = x. The baseline
subsampling strategies used for comparison were as follows:

• Random subsampling selects measurement locations from a uniform categorical distribution with-
out replacement.

• Data Variance subsampling selects measurement locations without replacement from a categorical
distribution in which the probability of a given location is proportional to the variance across that
location in the training set. This can therefore be seen as a data-driven but fixed design strategy.

Inference was performed using Diffusion Posterior Sampling for measurement guidance, with guidance weight
ζ = 1 and T = 1000 reverse diffusion steps. For ADS, measurements were taken at regular intervals in the
window [0, 800], with 16 particles. For the fixed sampling strategies, the subsampling masks were set a
priori, such that all diffusion steps are guided by the measurements, as is typical in inverse problem solving
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Figure 4: Comparison of ADS (ours) with two non-adaptive baselines. Evaluated based on reconstruction
Mean Absolute Error (MAE) on N = 500 unseen samples from the MNIST test set. Note that MAE is
plotted on a log scale.

with diffusion models. The results to this comparison are given in Table 1, and illustrated by Figure 5. We
use Mean Absolute Error as an evaluation metric since MNIST consists of single channel brightness values.
It is clear from these results that ADS outperforms fixed mask baselines, most notably in comparison with
data-variance sampling: for pixel-based sampling, we find that maximum entropy sampling with a budget
of 100 pixels outperforms data variance sampling with a budget of 250 pixels, i.e. actively sampling the
measurements is as good as having 2.5× the number of measurements with the data-variance strategy. We
also find that the standard deviation of the reconstruction errors over the test set is significantly lower for
25% and 50% subsampling rates (typically ∼ 2-3× than baselines, leading to more reliable reconstructions).

# Pixels (%) Random Data Variance ADS (Ours)
10 (.97%) 0.231 (.002) 0.197 (.002) 0.207 (.002)
25 (2.44%) 0.190 (.002) 0.125 (.002) 0.124 (.002)
50 (4.88%) 0.140 (.002) 0.067 (.001) 0.042 (.001)
100 (9.76%) 0.074 (.001) 0.034 (.001) 0.011 (.000)
250 (24.41%) 0.024 (.000) 0.015 (.000) 0.007 (.000)
500 (48.82%) 0.011 (.000) 0.008 (.000) 0.007 (.000)
# Lines (%) Random Data Variance ADS (Ours)

2 (6.25%) 0.197 (.003) 0.152 (.002) 0.148 (.002)
4 (12.5%) 0.143 (.002) 0.086 (.002) 0.071 (.001)
8 (25%) 0.073 (.001) 0.037 (.001) 0.001 (.000)
16 (50%) 0.022 (.001) 0.013 (.000) 0.000 (.000)
24 (75%) 0.010 (.000) 0.0076 (.000) 0.0074 (.000)

Table 1: Mean and (standard error) for the Mean Absolute Error (↓) in reconstruction of MNIST samples,
using pixel- and line-based subsampling.

5.2 CelebA

In order to evaluate ADS on a natural image dataset, a diffusion model was trained on the CelebA (Liu
et al., 2015) training dataset at 128 × 128 resolution (see Appendix A.2.2 for training details). ADS was then
benchmarked on N=100 samples from the CelebA test set against DPS with baseline sampling strategies.
This evaluation was carried out for a number sampling rates |S| ∈ {50, 100, 200, 300, 500}. The measurement
scheme employed here samples ‘boxes’ of size 4×4 pixels from the image. The number of diffusion steps taken
during inference was chosen based on sampling rate, with 400 steps for |S| < 300, 600 steps for |S| = 500.

8



Under review as submission to TMLR

50 100 200 300 500
Number of boxes sampled

15

20

25

30

35

40

PS
N

R

Random DPS
Data Variance DPS
ADS

(a)

ADS DPS + Random Mask

Mask Measurements Posterior Mean Mask Measurements Posterior MeanTarget

(b)

Figure 5: In (a), PSNR (↑) scores for ADS vs DPS with random and data variance sampling on N=100 unseen
samples from the CelebA dataset are plotted, for increasing numbers of measurements. A measurement here
is a 4× 4 box of pixels. (b) shows some examples of ADS inference versus DPS with random measurements
on the CelebA dataset from the evaluation with 200 boxes sampled.

# Samples (Max %) Random DPS Data Variance DPS ADS
50 (4.88%) 18.099 (0.019) 17.747 (0.018) 18.932 (0.024)
100 (9.76%) 20.580 (0.019) 19.892 (0.017) 22.725 (0.024)
200 (19.53%) 23.555 (0.020) 22.895 (0.018) 27.954 (0.026)
300 (29.29%) 25.919 (0.019) 24.779 (0.019) 31.483 (0.027)
500 (48.82%) 29.123 (0.018) 27.512 (0.018) 35.630 (0.027)

Table 2: PSNR (↑) on test samples from the CelebA dataset. Next to each # Samples |S| is a ’Max %’
indicating the maximum % of a 128×128 image that |S| 4×4 boxes could cover, indicating the approximate
sampling rate.

In each case, for sampling rate |S| the sampling window [10, |S| + 10] was used. These sampling windows
were chosen empirically, finding that some initial unguided reverse diffusion steps help create a better initial
estimate of the posterior. As with the previous experiments, Np = 16 particles were used to model the
posterior distribution. The peak signal-to-noise ratio (PSNR) values between the posterior mean and test
samples are provided in Figure 5a (a) and Table 2, with further metrics, including metrics across individual
posterior samples, are provided in Appendix A.3. It is clear in these results that ADS outperforms baseline
sampling strategies with DPS across a number of sampling rates. Note, for example, that ADS with 200
measurements achieves a higher PSNR than random-mask DPS with 300 measurements. In Figure 5b a
selection of samples are provided to exemplify the mask designs produced by ADS. Note here that the masks
focus on important features such as facial features in order to minimize the posterior entropy, leading to
higher information gain about the target, and ultimately better recovery.

5.3 MRI Acceleration

To assess the real-world practicability of ADS, it was evaluated on the popular fastMRI (Zbontar et al., 2018)
4× acceleration benchmark for knee MRIs. In this task, one must reconstruct a fully-sampled knee MRI
image given a budget of only 25% of the κ-space measurements, where each κ-space measurement is a vertical
line of width 1 pixel. We compare with existing MRI acceleration methods focused specifically on learning
sampling strategies, namely PG-MRI (Bakker et al., 2020), LOUPE (Bahadir et al., 2020), and SeqMRI
(Yin et al., 2021), each of which are detailed in Appendix A.4. We use the same data train / validation
/ test split and data preprocessing as Yin et al. (2021) for comparability. In particular, the data samples
are κ-space slices cropped and centered at 128 × 128, with 34, 732 train samples, 1, 785 validation samples,
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and 1, 851 test samples. We train a diffusion model on complex-valued image space samples x ∈ C128×128

obtained by computing the inverse Fourier transform of the κ-space training samples (see Appendix A.2.3
for further training details). The data space is therefore the complex image space, with κ-space acting as
the measurement space. This yields the measurement model yt = U(At)F(x) + nt, where F is the Discrete
Fourier Transform, nt ∼ NC(0, σ2

y) is complex Gaussian measurement noise, and U(At) is the subsampling
matrix selecting samples at indices ∈ At. ADS proceeds by running Diffusion Posterior Sampling in the
complex image domain with guidance from κ-space measurements through the measurement model, selecting
maximum entropy lines in the κ-space. We observed on data from the validation set that ADS reconstruction
performance increases with the number of reverse diffusion steps, although with diminishing returns as steps
increased. This indicates that in applying ADS, one can choose to increase sample quality at the cost of
inference time and compute. To showcase the potential for ADS, we chose a large number of steps, T = 10k.
Further, we choose guidance weight ζ = 0.85, and sampling schedule S evenly partitioning [50, 2500], and
an initial action set Ainit = {63}, starting with a single central κ-space line. Reconstructions are evaluated
using the structural similarity index measure (SSIM) (Wang et al., 2004) to compare the absolute values
of the fully-sampled target image and reconstructed image. The SSIM uses a window size of 4 × 4 with
k1 = 0.01 and k2 = 0.03 as set be the fastMRI challenge. Table 3 shows the SSIM results on the test
set, comparing ADS to recent supervised methods, along with a fixed-mask Diffusion Posterior Sampling
using the same inference parameters to serve as a strong unsupervised baseline. The fixed-mask used with
DPS measures the 8% of lines at the center of the κ-space, and random lines elsewhere, as used by Zbontar
et al. (2018). It is clear from the results that ADS using performs competitively with supervised baselines,
and outperforms the fixed-mask diffusion-based approach. Figure 6 shows two reconstructions created by
ADS. See Appendix A.6 for a histogram of all SSIMs over the test set for the diffusion-based approaches.
Finally, we note the inference time for this model, which is an important factor in making active sampling
worthwhile. Our model for fastMRI (Table 3) uses 4̃0ms / step with 76 steps per acquisition, leading to
3040ms per acquisition on our NVIDIA GeForce RTX 2080 Ti GPU. A typical acquisition time for a k-space
line in MRI is 500ms-2500ms, or higher, depending on the desired quality (Jung & Weigel, 2013). Given
modern hardware with increased FLOPs, we believe that this method is already near real-time, even without
employing additional tricks to accelerate inference, such as quantization (Shang et al., 2023) or distillation
(Salimans & Ho, 2022).

Unsupervised Method SSIM (↑)
✗ PG-MRI (Bakker et al., 2020) 87.97
✗ LOUPE (Bahadir et al., 2020) 89.52
✓ Fixed-mask DPS 90.13
✗ SeqMRI (Yin et al., 2021) 91.08
✓ ADS (Ours) 91.26

Table 3: SSIM scores for fastMRI knee test set with 4x acceleration. See Appendix A.6 for SSIM histograms
for diffusion-based methods.

6 Discussion

While ADS appears to outperform fixed-mask baselines on MNIST, CelebA, and fastMRI, it is interesting to
note that the relative improvement offered by ADS is less pronounced in the case of fastMRI. For line-based
image subsampling on MNIST with 25% samples, ADS achieves a 50% reduction in reconstruction error
versus a fixed-mask approach (MAE = 0.019 vs 0.037), whereas with line-based κ-space subsampling for
fastMRI with 25% samples, ADS achieves only a 12% relative improvement (SSIM = 91.26 vs 90.13). We
find that the size of this performance gap between fixed and active mask design strategies can be explained by
examining the distribution of masks designed by ADS on each task (See Appendix A.5). Indeed, the masks
designed for fastMRI are very similar, whereas those designed for MNIST typically differ depending on the
sample. When mask designs are similar, then fixed masks will perform similarly to actively designed masks.

10



Under review as submission to TMLR

Target Reconstruction -space maskTarget Reconstruction -space mask

Figure 6: Sample fastMRI reconstructions produced by ADS, including the generated κ-space masks. The
SSIMs are 95.8 for the left, and 94.4 for the right.

This is in part a feature of the data distribution – for example, most information in κ-space is contained
in the center, at lower frequencies. Tasks in which one might expect significantly better performance from
ADS are therefore those in which optimal masks will be highly sample-dependent.

Another interesting trend appears in the results when observing the relative improvement of ADS over fixed-
mask strategies as a function of the number of samples taken. One might expect that the relative improvement
is highest when the subsampling rate is lowest, monotonically decreasing as more samples are taken. In fact,
however, we observe that the largest relative improvement appears not at the lowest subsampling rates, but
rather at medium rates, e.g. 10% - 50%. One possible explanation for this is the under-performance of
diffusion posterior sampling in scenarios with very few measurements, leading to inaccurate estimates of the
posterior distribution and therefore sub-optimal sampling strategies. Further study of the performance of
posterior sampling methods in cases with very few measurements could provide an interesting direction for
future work.

Finally, we observe that data variance sampling outperforms random sampling on MNIST, but not on CelebA.
This somewhat surprising result can be explained by noting that the variance in MNIST appears in a highly
informative region, namely around the center of the images where the digits are contained. In contrast, the
variance in CelebA appears mostly in the background, where backgrounds may exhibit large deviations in
brightness and color. Despite the large variance in the backgrounds, they are typically homogeneous blocks
of color that can be inpainted well from sparse samples. Hence, taking most samples in this high-variance
background region leading to suboptimal sampling strategies and reconstructions.

In conclusion, we have proposed a method for using diffusion models as active subsampling agents without
the need for additional training, using a simple, interpretable action selection policy. We show that this
method significantly outperforms fixed-mask baselines on MNIST and CelebA, and competes with existing
supervised approaches in MRI acceleration without tasks-specific training. This method therefore takes a
step towards transparent active sensing with automatically generated adaptive strategies, decreasing cost
factors such as exposure time, and energy usage.

7 Limitations & Future Work

While experiments in Section 5 evidence some strengths of ADS against baseline sampling strategies, it is
not without limitations. For example, the duration of inference in ADS is dependent on that of the diffusion
posterior sampling method. Since low latency is essential in active subsampling, future work could aim
to accelerate posterior sampling with diffusion models, leading to accelerated ADS. Another limitation is
that the number of measurements taken is upper-bounded by the number of reverse diffusion steps T ; this
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limitation could be overcome by extending ADS to generate batch designs (Azimi et al., 2010), containing
multiple measurements, from a single posterior estimate. Future work applying ADS in diverse domains
would also help to further assess the robustness of the method. Finally, as mentioned in Section 6, we note
that ADS does not show significant improvements over baseline sampling strategies under very low sampling
rates, e.g. < 5%. We hypothesize that this may be due to inaccurate posterior sampling with very few
measurements, and believe that this presents an interesting direction for future study.
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A Appendix

A.1 Derivation of Equation (10)

Here we show that maximising the policy function does not require computing a set of particles for each
possible action in the case where the action is a subsampling mask. Because the subsampling mask At =
At−1 ∪ at only varies in at in the arg max, the elements of each particle ŷ(i) will remain the same for each
possible At except for at those indices selected by at. We therefore decompose the squared L2 norm into
two squared L2 norms, one for the indices in at and the other for those in At−1. The latter then becomes
a constant in the argmax, and can be ignored. This results in a formulation in which we only need to
compute the squared L2 norms for the set of elements corresponding with at. We use U(At) to indicate the
subsampling matrix containing 1s on the diagonal at indices in At.
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(ŷ(i)
l − ŷ(j)
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(14)

A.2 Training Details

The methods and models are implemented in the Keras 3.1 (Chollet et al., 2015) library using the Jax
backend (Bradbury et al., 2018). The DDIM architecture is provided by Keras3 at the following URL:
https://keras.io/examples/generative/ddim/. Each model was trained using one GeForce RTX 2080
Ti (NVIDIA, Santa Clara, CA, USA) with 11 GB of VRAM.

A.2.1 MNIST

The model was trained for 500 epochs with the following parameters: widths=[32, 64, 128], block_depth=2,
diffusion_steps=30, ema_0.999, learning_rate=0.0001, weight_decay=0.0001, loss="mae".

15

https://keras.io/examples/generative/ddim/


Under review as submission to TMLR

A.2.2 CelebA

The model was trained for 200 epochs with the following parameters: widths=[32, 64, 96, 128],
block_depth=2, diffusion_steps=30, ema_0.999, learning_rate=0.0001, weight_decay=0.0001, loss="mae".

A.2.3 FastMRI

The training run of 305 epochs with the following parameters: widths=[32, 64, 96, 128], block_depth=2,
diffusion_steps=30, ema_0.999, learning_rate=0.0001, weight_decay=0.0001, loss="mae".

A.3 CelebA Further Metrics

Table 4: MAE (↓) of the posterior mean on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 19.768 (0.043) 20.625 (0.044) 19.569 (0.060)
100 13.623 (0.028) 14.809 (0.028) 11.731 (0.034)
200 8.909 (0.020) 9.786 (0.020) 6.356 (0.018)
300 6.538 (0.014) 7.507 (0.016) 4.426 (0.012)
500 4.320 (0.009) 5.185 (0.010) 2.825 (0.007)

Table 5: SSIM (↑) of the posterior mean on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 0.577 (0.001) 0.557 (0.001) 0.567 (0.001)
100 0.687 (0.001) 0.652 (0.001) 0.697 (0.001)
200 0.791 (0.001) 0.759 (0.000) 0.831 (0.001)
300 0.851 (0.000) 0.820 (0.000) 0.889 (0.000)
500 0.911 (0.000) 0.881 (0.000) 0.941 (0.000)

Table 6: LPIPS (↓) (Zhang et al., 2018) of the posterior mean on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 0.306 (0.001) 0.320 (0.000) 0.287 (0.001)
100 0.230 (0.000) 0.248 (0.000) 0.190 (0.001)
200 0.152 (0.000) 0.174 (0.000) 0.103 (0.000)
300 0.111 (0.000) 0.131 (0.000) 0.071 (0.000)
500 0.069 (0.000) 0.086 (0.000) 0.043 (0.000)

Table 7: Mean MAE (↓) across posterior samples on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 24.486 (0.048) 25.321 (0.050) 23.895 (0.067)
100 17.436 (0.035) 18.493 (0.034) 14.463 (0.040)
200 11.255 (0.025) 12.337 (0.024) 7.704 (0.021)
300 8.230 (0.018) 9.372 (0.020) 5.225 (0.014)
500 5.389 (0.011) 6.477 (0.013) 3.268 (0.008)
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Table 8: Mean PSNR (↑) across posterior samples on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 15.988 (0.016) 15.752 (0.015) 16.971 (0.022)
100 18.169 (0.017) 17.791 (0.016) 20.828 (0.023)
200 21.237 (0.019) 20.621 (0.016) 26.314 (0.025)
300 23.617 (0.018) 22.604 (0.018) 30.160 (0.026)
500 26.795 (0.018) 25.274 (0.018) 34.546 (0.026)

Table 9: Mean SSIM (↑) across posterior samples on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 0.486 (0.001) 0.471 (0.001) 0.481 (0.001)
100 0.599 (0.001) 0.569 (0.001) 0.623 (0.001)
200 0.725 (0.001) 0.691 (0.001) 0.783 (0.001)
300 0.799 (0.000) 0.764 (0.000) 0.859 (0.001)
500 0.877 (0.000) 0.841 (0.000) 0.925 (0.000)

Table 10: Mean LPIPS (↓) (Zhang et al., 2018) across posterior samples on targets from the CelebA test set.

Num Samples Random DPS Data Variance DPS ADS
50 0.321 (0.001) 0.329 (0.001) 0.305 (0.001)
100 0.250 (0.000) 0.260 (0.000) 0.208 (0.001)
200 0.172 (0.000) 0.184 (0.000) 0.112 (0.000)
300 0.127 (0.000) 0.141 (0.000) 0.073 (0.000)
500 0.079 (0.000) 0.095 (0.000) 0.041 (0.000)

A.4 FastMRI Comparison Methods

A.4.1 PG-MRI

Bakker et al. (2020) use policy-gradient methods from Reinforcement Learning to learn a policy function
πϕ(at | x̂t) that outputs new measurement locations given the current reconstruction. Reconstructions are
then generated using a pre-existing U-Net based reconstruction model provided by the fastMRI repository.

A.4.2 LOUPE

LOUPE (Bahadir et al., 2020) introduces a end-to-end learning framework that trains a neural network to
output under-sampling masks in combination with an anti-aliasing (reconstuction) model on undersampled
full-resolution MRI scans. Their loss function consists of a reconstruction term and a trick to enable sampling
a mask.

A.4.3 SeqMRI

With SeqMRI, Yin et al. (2021) propose an end-to-end differentiable sequential sampling framework. They
therefore jointly learn the sampling policy and reconstruction, such that the sampling policy can best fit
with the strengths and weaknesses of the reconstruction model, and vice versa.

17



Under review as submission to TMLR

A.5 ADS Mask Distributions for MNIST and fastMRI
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(a) ADS mask distribution for 500 samples from the
MNIST test set.
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(b) ADS mask distribution for 1851 samples from the
fastMRI test set.

Figure 7: The distribution of masks chosen by ADS varies according to the task. We observe that the
masks chosen for MNIST are less predictable a priori than those chosen for fastMRI, leading to a stronger
performance by ADS relative to fixed-mask approaches. We plot at the bottom of each plot estimates of
the probability that each line will appear in a mask generated by ADS as Bernoulli variables (either the
line is present in the mask, or not). To quantify the predictability of these masks, we compute the average
entropy over each of these variables, finding that MNIST masks are signficantly less predictable than those
for fastMRI.
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A.6 FastMRI SSIM Distributions
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(a) 200-bin histogram showing distribution of SSIM scores
across the FastMRI knee test set for 4x acceleration using
ADS.

20 40 60 80 100
SSIM

0

20

40

60

80

100

Nu
m

be
r o

f o
cc

ur
re

nc
es

mean=90.13
std=11.04

(b) 200-bin histogram showing distribution of SSIM scores
across the FastMRI knee test set for 4x acceleration using
diffusion posterior sampling with fixed κ-space masks.

Figure 8: Histograms comparing the distribution of SSIM scores using ADS and diffusion posterior sampling.
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