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a b s t r a c t 

Deep learning methods for graph classification are critical for graph data mining. Recently, graph convo- 

lutional networks (GCNs) have been able to achieve state-of-the-art node classification. A typical process 

for GCNs includes two iterative steps: node feature encoding and message passing. While the former 

encodes each graph node independently via the uniform encoding function, the latter updates the fea- 

tures of each node by weighted aggregation of the features of neighboring nodes, where the weights 

are generated by predefined or learned graph Laplacian. However, their accuracy deteriorates for graph 

classification tasks because the uniform encoding function encodes all the node features involved. In this 

study, we propose a novel affinity-aware encoding for graph classification. In our model, we implement 

a separate encoding function for the neighboring nodes of each node for updating the node features, 

where the nodes are arranged in the order of affinity values, such as graph centrality, in order to de- 

termine the correspondence between an encoding function and a specific neighboring node. Our sepa- 

rate encoding function performs non-Euclidean neighboring encoding for each node by weight sharing, 

which enables message passing. We also develop two variants based on our separate encoding function: 

the graph centrality-convolutional neural network (C-CNN) and the graph centrality-graph convolutional 

network (C-GCN). The former performs the separate encoding function on graph data directly by the 

function of message passing. The latter combines the separate encoding function with the normalized 

graph Laplacian implemented on the graph data. Experiments demonstrate that the results obtained by 

our models are consistent with those obtained by classical convolutional neural networks (CNNs) on the 

MNIST dataset, and they outperform existing GCNs on the 20NEWS, Reuters8, and Reuters52 datasets. 

We also apply our two variants to online car-hailing service data for traffic congestion recognition. Our 

methods show state-of-the-art results compared with GCNs. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep learning methods such as convolutional neural networks

CNNs) [1–3] have emerged as powerful platforms for learning Eu-

lidean structured data, such as images, videos, audios, and text.

heir application has led to remarkable achievements in many

reas of machine intelligence, enabling superhuman accuracy in

hallenging tasks of computer vision [4–7] , speech recognition

8–10] , and natural language processing [11,12] . In recent years,

here has been an increasing interest in leveraging deep learning

ethods into graphs [2,13] , thus extending deep learning appli-
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ations from learning Euclidean structured data to understanding

on-Euclidean structured data. Graphs are indispensable theoret-

cal models to represent the relationship between objects in the

eal world, where each entity or object is described as a node, and

heir affiliation are abstracted as edges in the graphs. Graph mod-

ls are used to study information spreading [14,15] , to recommend

ew social relationship [16,17] or to represent molecular structures

18,19] . 

Graph convolutional networks (GCNs), one of the most signif-

cant methods that utilize deep learning to analyze undirected,

nweighted, and connected graphs, play an essential role in ad-

ressing the issue of semi-supervised node classification, including

pectral graph convolutional networks [20,21] , neighbor aggrega-

ion (message passing) algorithms [22–28] , and message passing

ia recurrent neural networks [29–31] . Several other GCNs have

een designed to improve the underlying message passing scheme
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by using attention mechanisms [22,24,32] . Furthermore, graph rep-

resentation learning using message passing algorithms [33–35] can

be contributed to develop GCNs. These GCNs have been attracting

considerable interest recently due to their excellent performance. 

A typical pipeline for GCNs includes two iterative steps: node

feature encoding and message passing. While the former en-

codes each graph node independently with the uniform encod-

ing function, the latter updates the features of each node by

weighted aggregation of the features of neighboring nodes, where

the weights are generated by predefined or learned graph Lapla-

cian [20,21,23,28] . However, an essential inadequacy with these

GCNs is that they directly perform subsequent node encoding on

the aggregated features, which means that they apply uniform en-

coding functions to all the node features involved. This inadequacy

leads to the deterioration of accuracy of graph classification, be-

cause the uniform encoding function encodes all the node features

for each node via a weight matrix, without considering separate

neighboring encoding for each node. Moreover, replacing or modi-

fying the uniform encoding function is difficult owing to the non-

Euclidean structure of graphs. 

In this study, we propose novel affinity-aware encoding for

graph classification. In our model, we implement a separate encod-

ing function to the neighboring nodes of each node for updating

node features, where the nodes are arranged in the order of affin-

ity values such as graph centrality in order to determine the cor-

respondence between an encoding function and a specific neigh-

boring node. Graph centrality includes four frequently used met-

rics, namely, degree centrality (DC), betweenness centrality (BC)

[36,37] , closeness centrality (CC) [38] , and eigenvector centrality

(EC) [39] , which will be considered in our separate encoding func-

tion. Other new metrics of graph centrality have been proposed in

the past, such as message passing centrality [40] and a new metric

of graph centrality for protein networks [41] . In the future, we will

try to use these new metrics to build our separate encoding func-

tion. The proposed separate encoding function uses non-Euclidean

neighboring encoding for each node by weight sharing, which en-

ables message passing. The number of parameters in the separate

encoding increases linearly with the number of neighbors of the

maximum degree node. There are two variants of the model based

on the separate encoding function. The first variant is to utilize the

separate encoding function directly on non-Euclidean structured

data, and it is named the graph centrality CNN (C-CNN), due to

the similarity with the structure of the CNN. The second variant

is to combine the separate encoding function and the normalized

graph Laplacian of GCNs [23] , and it is named the graph centrality

GCN (C-GCN). The difference between the two types is the intro-

duction of normalized graph Laplacian in the latter. Experiments

demonstrate that the feasibility of our models is consistent with

those of classical CNNs on the MNIST dataset, and the results of

them are better than those of GCN methods on 20NEWS, Reuters8,

and Reuters52 datasets. In addition, we apply our two variants on

the online car-hailing service data of Xi’an and Chengdu in China.

We combine the two variants with recursive neural networks

(RNNs) to predict traffic congestion in the road graph of a city.

To the best of our knowledge, our experimental results for traf-

fic congestion recognition are state-of-the-art compared with those

of GCN methods. The principal contributions of this study are

two-fold: 

Separate encoding: We design a novel separate encoding func-

tion to enhance the accuracy of graph classification tasks. It learns

by weight sharing or perceiving the non-Euclidean neighboring

features for each node. Compared to the uniform encoding func-

tion, the separate encoding function has the advantage of being

able to learn node encoding via inconsistent neighborhood. 

Expansibility: This work draws lessons from many CNN meth-

ods for the innovation of suitability and usability in GCNs because
he separate encoding function is based on a graph convolution ex-

ended from the standard convolution in CNNs. For instance, one

ajor drawback of GCNs [22–28] is that the graph Laplacian train-

ng and evaluation involve large-scale weight matrices and incur

igh matrix multiplication cost. In future work, we plan to import

epthwise separable convolution (DSC) [42,43] into our separate

ncoding function to explicitly reduce the model costs. The use

f DSC has tailored the standard convolution in AlexNet [4] and

esNet [7] with reduced model costs to be run on mobile and em-

edded devices. 

The remainder of this paper proceeds as follows:

ection 2 presents background information on spectral and

patial methods in GCNs. Section 3 details the proposed separate

ncoding function. Section 4 presents the experimental setup.

inally, the experimental results are discussed in Section 5 , and

he findings of this study are summarized in Section 6 . 

. Related work 

Veli ̌ckovi ́c et al. [32] summarized early applications of neural

etworks on graphs, including RNNs, which can be used to pro-

ess data as directed acyclic graphs [44,45] . Gori et al. [46] and

carselli et al. [47] introduced graph neural networks (GNNs) based

n RNNs. Subsequently, Li et al. [30] proposed the use of gated

ecurrent units [48] in the propagation process of GNNs. Never-

heless, when CNNs have been acquiring much concern in recent

ears, how to generalize convolution encoding on the graph is in-

reasing interest. In this regard, two approaches have been devel-

ped: spectral and spatial methods. 

.1. Spectral methods 

Bruna et al. [20] first proposed convolution encoding on graphs,

nd they pioneered early research on GCNs. However, because

heir convolution encoding is global, so their work incurs inten-

ive computing costs. Henaff et al. [49] further improved Bruna

t al.âs method [20] to make it suitable for large-scale and semi-

upervised learning tasks. Their method applies the Spline Kernel

o decrease weights in order to make encoding functions spatially

ocalized. Defferrard et al. [21] proposed approximate filters us-

ng the means of Chebyshev encoding based on a powerful mes-

age passing algorithm, normalized graph Laplacian, which sim-

lifies calculations and reduces the number of model weights re-

uired. Furthermore, Kipf and Welling [23] utilized localized first-

rder approximation to simplify the normalized graph Laplacian of

efferrard et al. âs method [21] for aggregating node features, and

ubsequently building a uniform encoding function based on these

ggregated features. Further, Li et al. [50] designed both co-training

nd self-training approaches to overcome the limitations of GCNs

23] with shallow architectures. Finally, John et al. [51] replaced

he adjacent matrix of the normalized graph Laplacian [23] with a

otif-based matrix. Klicpera et al. [28] used personalized PageR-

nk to improve the normalized graph Laplacian and to achieve

etter accuracy. In the applications of GCNs, Yao et al. [52] pro-

osed a text-GCN model to apply to text classification. Wang et al.

53] utilized GCNs [23] for high-dimensional stream classification.

lthough these researchers have made various advancements in

pectral GCNs in terms of increased accuracy, they only focus on

ow to optimize the message passing algorithms. In our study, we

ecouple the uniform encoding function [21,23,28] to achieve sep-

rate encoding of inconsistent neighboring features of each node

nd consequently design separate encoding functions to increase

odel accuracy. 
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Algorithm 1: Establishing Convolutional Layers. 

Input : Graph G (N, E) ; The list of feature map’s sizes 

S = [ | F (1) | , | F (2) | , . . . , | F (l) | , . . . , | F (L ) | ] ; The metric of 

graph centrality I C, ∀ I C ∈ { DC, BC, CC, EC} 
Output : The list of feature maps 

F = [ F ( input ) , F (1) , . . . , F (l) , . . . , F (L ) ] 

1 F ← ∅ , F ( input ) ← N, F ← F ∪ F ( input ) ; 

2 for each | F (l) | ∈ S do 

3 subgraphs ← get connected component subgraphs in G ; 

4 for each subgraph ∈ subgraphs do 

5 if the number of nodes in subgraph > 1 then 

6 rati ← the number of nodes in subgraph / the 

number of nodes in G ; 

7 F (l) ← F (l) ∪ top int (rat i ∗ | F (l) | ) most important 

nodes N importance ⊆ N are selected by IC; 

8 if the number of nodes in subgraph = 1 then 

9 F (l) ← F (l) ∪ nodes in subgraph ; 

10 F ← F ∪ F (l) ; 

11 return F ; 
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.2. Spatial methods 

Compared with spectral methods, which use a unified message

assing algorithm (graph Laplacian), spatial methods are of var-

ous types. However, they have the same goal of defining mes-

age passing algorithms for weighted aggregation of node fea-

ures. Duvenaud et al. [54] designed an aggregation function to

earn the specific weight matrix for each node degree. Atwood

nd Towsley [55] used the powers of a transition matrix to de-

ne the neighbor aggregation algorithm. Niepert et al. [56] built a

ew message passing framework to learn arbitrary graphs. Monti

t al. [26] proposed mixture CNNs, which provide a unified struc-

ure for image and graph data. Hamilton et al. [24] introduced

raphSAGE for node representations. Chen and Zhu [57] devel-

ped a preprocessing strategy and two control variables to con-

erge the value of cost function to the local optimum regardless

f the neighbor sampling size. Hechtlinger et al. [58] use ran-

om walk algorithm to propose a new spatial message passing,

hich can be applied to many standard regressions or classifica-

ion applications. Zhou and Li [59] presented a k -th order algo-

ithm and an adaptive filtering module for a general-purpose ar-

hitecture, which fits various applications on both node-level and

raph-level tasks. Verma et al. [60] proposed a dynamic message

assing algorithm that fits neighborhoods of different sizes. Chen

t al. [61] proposed a method that can exploit a known underly-

ng graph structure of labels. Lai et al. [62] proposed the depth-

ise separable graph convolution (DSGC) based on data manifold.

u et al. [63] utilized a Gaussian mixture model to realize the

apping between the aggregation kernel and the nodes for irreg-

lar data. Recently, Veli ̌ckovi ́c et al. [32] and Shanthamallu et al.

64] presented graph attention networks (GATs) based on atten-

ion mechanisms for node-level tasks. These methods introduce or

pgrade non-Laplacian message passing algorithms, but they only

onsider node feature encoding with a uniform encoding function

ue to the inconsistent size of the neighborhood. 

. Methodology 

.1. Separate encoding function 

To establish convolutional layers of the proposed separate en-

oding function, we introduce graph centrality. The following two

teps are involved in achieving the separate encoding function. 

Establishing convolutional layers: First, we utilize the number

f convolutional layers L and the size of feature map (number

f units) | F ( l ) | per layer l to determine the model structure F =
 F (1) , F (2) , . . . , F (l) , . . . , F (L ) ] , where F ( l ) is the feature map in layer l .

ext, the | F ( l ) | most important nodes defined by an optional graph

entrality metric are chosen as units in each layer l , as shown in

ig. 1 . The pseudo-code of building convolutional layers is pre-

ented in Algorithm 1 , where G ( N, E ) is a graph G including nodes

 and edges E , S contains the size of the feature map in every

ayer, and F includes feature maps in our model. 

Constructing connections: Connections between layers are built

onsidering that each node in layer l − 1 is connected to itself and

ts neighbors in layer l (solid lines in Fig. 1 ). However, some nodes

n layer l − 1 may not have neighbors and itself in layer l , be-

ause all nodes in layer l is a subset of nodes in layer l − 1 , i.e.

 

(l) ⊆ F (l−1) , where | F (l) | ≤ | F (l−1) | . Our solution to this issue is to

onnect these isolated nodes in layer l − 1 with their closest nodes

n layer l ; these closest nodes are described by the Dijkstra algo-

ithm [65] in graph G . For example, in Fig. 1 , unit “c” in layer 3

as no neighbors in layer 4, and in layer 4 “c” itself is not present,

esulting in unit “c” in layer 3 having no connections to layer 4.

e find that the closest node to node “c” is node “a” according

o graph G (the blue graph); then, a connection between unit “c”
n layer 3 and unit “a” in layer 4 (a dotted line between layers 3

nd 4 in Fig. 1 ) is built. The pseudo-code of building connection is

iven in Algorithm 2 , where G ( N, E ) is a graph G including nodes

 and edges E , F includes feature maps in our model, and closeness

s a dictionary to store the shortest path of each node pair in G .

y contrast, one unit may have many connections. In an extreme

ase, the number of connections for a unit can be | N |, which leads

o the size of the separate encoding function being | N |. Here, we

ntroduce a hyper-parameter limit in Algorithm 2 to limit the max-

mum number of connections in a unit. CON denotes the model

onnections between layers, and it defines how each unit interacts

ith other units. 

The following three steps are involved in designing the graph

onvolution of the separate encoding function. First, we construct

he neighborhood for each node. Second, weight sharing is intro-

uced into the separate encoding function. Finally, two variants of

he separate encoding function (C-CNN and C-GCN) are proposed

ased on the previous steps. 

Constructing neighborhood: We first use the GCN [23] , which is

efined as 

 

(l+1) = σ ( ̂  D 

−1 / 2 ˆ A ̂

 D 

−1 / 2 H 

(l) W 

(l) ) (1)

here ˆ A = A + I | N| , I | N | is an identity matrix, A ∈ R 

| N |×| N | is an ad-

acency matrix, | N | is the number of nodes in G , ˆ D = 

∑ 

j 
ˆ A i j , H 

(l) ∈
 

| N|×| C (l) | is feature matrix of nodes, C ( l ) is the feature channels and

 C ( l ) | is the number of feature channels, and W 

(l) ∈ R 

| C (l) |×| C (l+1) | is

 trainable weight matrix in layer l . 

In this work, we change the form of H 

(l) ∈ R 

| N|×| C (l) | to H 

(l) ∈
 

| B |×| F (l) |×| C (l) | , where B denotes the samples for the mini-batch, | B |

s the number of samples, and | F ( l ) | is the size of the feature map in

ayer l . In particular, H 

( input ) ∈ R 

| B |×| N|×| C (l) | because | F ( input ) | = | N|
n Algorithm 1 . The difference between H 

( l ) of our study and paper

23] is that H 

(l) ∈ R 

| N|×| C (l) | is designed for node classification, its

 N | is unchanged in every layer, and it has two dimensions. By con-

rast, our H 

(l) ∈ R 

| B |×| F (l) |×| C (l) | has three dimensions for graph clas-

ification, and its | F ( l ) | can be changed by F in Algorithm 1 . Specif-

cally, we define mask function as follows 

 

(l+1) 
n = mask (H 

(l) ) n = ρ(H 

(l) 
� M 

(l+1) 
n ) (2)

here H 

(l+1) 
n is a neighborhood of unit n in layer l + 1 , � is an

lement-wise product for two matrices or tensors, and M 

(l+1) 
n is



324 W. Dong, J. Wu and Z. Bai et al. / Neurocomputing 387 (2020) 321–333 

Fig. 1. Each node in graph G is a unit in layer l to build the model structure, the | F ( l ) | most important nodes defined by an optional graph centrality metric are chosen as 

units in each layer l . Connections between layers are built considering that each node n in layer l − 1 is connected to itself, its neighbors (solid lines), and its closeness nodes 

(dotted line between layer 3 and layer 4) in layer l . 

Algorithm 2: Constructing Connections. 

Input : Graph G (N, E) ; F = [ F ( input ) , F (1) , . . . , F (l) , . . . , F (L ) ] ; 

Dictionary closeness records the Dijkstra path length of 

node pairs sorted in ascending order; limit is to limit 

the number of connections. 

Output : The list of connections 

CON = [ C ON 

(1) , . . . , C ON 

(l) , . . . , C ON 

(L ) ] , ∀ C ON 

(l) (K| V ) 
is a dictionary, where K is a node n , V is a set 

including n âs neighbors, itself n and its closeness 

nodes. 

1 CON ← ∅ ; 

2 for each l ∈ [1 , . . . , L ] do 

3 CON 

(l) ← ∅ ; 

4 set T ← ∅ ; 

5 for each n ∈ F (l) do 

6 CON 

(l) [ n ] ← ∅ ; 

7 for each k ∈ keys in closeness [ n ] do 

8 if the length of CON 

(l) [ n ] > limit then 

9 break; 

10 if k ∈ F (l−1) then 

11 CON 

(l) [ n ] ← CON 

(l) [ n ] ∪ k ; 

12 T ← T ∪ k ; 

13 for each n ∈ (F (l−1) − T ) do 

14 for each k ∈ keys in closeness [ n ] do 

15 if k ∈ F (l) then 

16 CON 

(l) [ k ] ← CON 

(l) [ k ] ∪ n ; 

17 if the length of CON 

(l) [ k ] > limit then 

18 break; 

19 C ON ← C ON ∪ CON 

(l) ; 

20 return CON; 
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he mask matrix or tensor of unit n in l + 1 layer, with its elements

eing 0 or 1 and shape being the same as that of H 

( l ) . If unit n and

nit k have a connection defined in CON ( Algorithm 2 ), elements in

 ∈ F ( l ) of M 

(l+1) 
n will be set to 1. Otherwise, they will be set to 0.

he compression function ρ deletes 0 elements to show in Fig. 2 .

n addition, H 

(l+1) 
n ∈ R 

| B |×| D (l+1) 
n |×| C (l) | , where D 

(l+1) 
n is the connec-

ions of unit n in CON and | D 

(l+1) 
n | is the number of connections.

urthermore, Eq. (2) can be extended as 

 

(l+1) 
mask 

= mask (H 

(l) ) = ρ(H 

(l) 
� [ M 

(l+1) 
1 

, . . . M 

(l+1) 
n , . . . M 

(l+1) 

| F (l+1) | ]) 

(3)

here H 

(l+1) 
mask 

is a list of length | F (l+1) | , and it contains each H 

(l+1) 
n .

Introducing weight sharing: One problem in our structure is that

ach unit n has inconsistent neighborhood, i.e., each H 

(l+1) 
n in

ist H 

(l+1) 
mask 

has different | D 

(l+1) 
n | . Therefore, we find the maximum

 D 

(l+1) 
n | , denoted as | D 

(l+1) 
max | , for normalizing inconsistent neigh-

orhood. Because | D 

(l+1) 
n | ≤ | D 

(l+1) 
max | , element 0 can be padded into

 

(l+1) 
n along dimension D 

(l+1) 
n until | D 

(l+1) 
n | = | D 

(l+1) 
max | . Now in list

 

(l+1) 
mask 

, the shape of every H 

(l+1) 
n is (| B | , | D 

(l+1) 
max | , | C (l) | ) , and they

ave consistent neighborhood for each node, which allows weight

haring to be performed on it. In the padding process shown in

ig. 3 , we create some dummy zero nodes in order to make every

olored node have the same degree | D 

(l+1) 
max | . 

Designing models: Finally, two variants, the C-CNN and C-GCN,

f our separate encoding function are established by previous

teps. The C-CNN is defined as 

 

(l+1) = σ (transpose (pad d ing(H 

(l+1) 
mask 

) W 

(l) )) (4)

 

(l+1) = σ (transpose (pad d ing(mask (H 

(l) )) W 

(l) )) (5)

 

(l+1) = σ ( transpose (pad d ing(ρ(H 

(l) 
� [ M 

(l+1) 
1 

, . . . M 

(l+1) 
n , 

. . . M 

(l+1) 

| F (l+1) | ])) W 

(l) ) ) (6)

here W 

(l) ∈ R 

| D (l+1) 
max |×| C (l) |×| C (l+1) | is the trainable weight tensor,

 

(l+1) ∈ R 

| B |×| F (l+1) |×| C (l+1) | is the output in layer l + 1 , and σ is an
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Fig. 2. Process of the mask function in Eq. (2) . It is used to construct the neighborhood of unit n from layer l to layer l + 1 . 

Fig. 3. Creating some dummy zero nodes so that every colored node has the same degree D (l+1) 
max in layer l + 1 . 
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ctivation function. The padding function is the process of padding

 

(l+1) 
n as shown in Fig. (3 ). Each H 

(l+1) 
n in list H 

(l+1) 
mask 

is multiplied

y tensor W 

( l ) . However, H 

(l+1) 
n and W 

( l ) must be, respectively, re-

haped as (| B | , | D 

(l+1) 
max | × | C (l) | ) and (| D 

(l+1) 
max | × | C (l) | , | C (l+1) | ) , and

onsequently matrix multiplication of H 

(l+1) 
n W 

(l) in Eq. (6) can be

erformed. The transpose function transforms the shape of H 

(l+1) 

rom (| F (l+1) | , | B | , | C (l+1) | ) to (| B | , | F (l+1) | , | C (l+1) | ) , making it con-

istent with (| B |, | F ( l ) |, | C ( l ) |) of H 

( l ) . Furthermore, the C-GCN is de-

ned as 

 

(l+1) = σ (transpose (pad d ing(mask (mat(H 

(l) , 

( ̂  D 

−1 / 2 ˆ A ̂

 D 

−1 / 2 ) (l) ))) W 

(l) )) (7) 

here ( ̂  D 

−1 / 2 ˆ A ̂

 D 

−1 / 2 ) (l) is the normalized graph Laplacian in

q. (1) , and 

ˆ A 

(l) = A | F (l) | + I | F (l) | as well as ( ̂  D 

−1 / 2 ) (l) correspond to

 graph including | F ( l ) | nodes. Unlike Eq. (5) in which H 

( l ) is directly

erformed by the mask function, in Eq. (7) each H 

( l ) is first multi-

lied by the normalized graph Laplacian ( ̂  D 

−1 / 2 ˆ A ̂

 D 

−1 / 2 ) (l) . Because

he shape (| F ( l ) |, | F ( l ) |) of the normalized graph Laplacian is differ-

nt from (| B |, | F ( l ) |, | C ( l ) |) of H 

( l ) , we define mat function to multi-

ly the normalized graph Laplacian with each matrix in tensor H 

( l ) ,

here the shape of each matrix is (| F ( l ) |, | C ( l ) |) and the number of

atrices is | B | in H 

( l ) . 

.2. Model cost 

The cost of the separate encoding function is

(| D 

(l) 
max || C (l−1) || C (l) | ) , which is less than O(| E|| C (l−1) || C (l) | )

23] and O(| N|| C (l−1) || C (l) | ) [58,61] since | D 

(l) 
max | ≤ | N| 	 | E| + 1 . 

heorem 1. Given a connected graph G ( N, E ) introduced into the

odel, the cost of the separate encoding function in layer l is less

han the number of nodes and edges of G, i.e., | D 

(l) 
max | ≤ | N| ≤ | E| + 1 .

roof. According to the separate encoding function, | D 

(l) 
max | is

he maximum number of connections for one unit in layer

 . It is possible to show that (a) if the size of feature map

 F ( l ) | is properly defined without unconnected units, steps 13–

8 in Algorithm 2 can be skipped. Thus, | D 

(l) 
max | is the maxi-

um degree in G and | D 

(l) 
max | ≤ | N| ≤ | E| + 1 ; (b) if | F ( l ) | is im-

roperly defined, steps 13–18 in Algorithm 2 must be carried

ut. Here, we consider the worst case—a unit n in layer l con-

ects all units in layer l − 1 , then | F (l−1) | = | N| and | D 

(l) | =
max 
 N| . Because the number of edges | E| ≥ | N| − 1 in any connected

raph G , | D 

(l) 
max | ≤ | N| ≤ | E| + 1 . Therefore, O(| D 

(l) 
max || C (l−1) || C (l) | ) ≤

(| N|| C (l−1) || C (l) | ) ≤ O(| E|| C (l−1) || C (l) | ) . �

.3. Dimensionality reduction without pooling operation 

How to use pooling layers in GCNs is still a matter of de-

ate. Some authors [20,21,49] point out that using heuristic ap-

roaches [66,67] to redesign pooling operation for GCNs has a

ositive effect on improving performances. Other authors propose

heir GCNs without pooling operation [23,58,61] . In this study,

e omit heuristic pooling operations [20,21,49] because when

hey are used in our model, the performance is low and the

utput results of these heuristic methods are unstable [68,69] .

oreover, the size of the feature map | F ( l ) | in our model is a

yper-parameter, which can be used to reduce the size of fea-

ure maps, such as the capacity of pooling operation on the CNN.

herefore, our separate encoding function has partly the func-

ion of pooling operation, which allows for dimensionality re-

uction. Nevertheless, whether to utilize pooling operation for

raph data is an open issue and needs further study in the

uture. 

. Experimental setup 

.1. Datasets 

To verify the feasibility of the two variants (C-CNN and C-GCN)

f our separate encoding function, we selected the MNIST dataset

70] as a benchmark, which is used to recognize handwritten dig-

ts and to verify the feasibility of other GCNs [20,21,26,58,60,63] .

 total of 70,0 0 0 handwritten digital 28 × 28 images, divided

nto 10 categories, were used, of which 60,0 0 0 were used as

 training set and 10,0 0 0 as a test set. Furthermore, we used

0NEWS [71] , Reuters8 [52] , and Reuters52 [52] datasets to

emonstrate the availability of our models in text classification

asks. 20NEWS contains 11,314 training documents and 7532 test-

ng documents, which are composed of 93,953 words and divided

nto 20 categories. Reuters8 and Reuters52 are two subsets of

he Reuters 21,578 dataset. Reuters8 has 5,485 training and 2,189

est documents, which are divided into 8 categories. Reuters52

as 6532 training and 2568 test documents, which are divided
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Table 1 

Statistics of datasets for text classification. 

Dataset Docs Training Test Words Nodes Classes 

20NEWS 18,846 11,314 7532 93,953 10,000 20 

Reuters8 7674 5485 2189 7688 7688 8 

Reuters52 9100 6532 2568 8892 8892 52 

Table 2 

Settings of hyper-parameters. 

Hyper-Parameter Setting 

Learning rate 0.03 

Mini-batch size 128 

Epochs 20 

Dropout probability 0.5 

Learning rate decay 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

t  

a  

u  

t  

p  

d  

a  

p  

T

 

r  

d  

t  

t  

n  

i  

n  

f  

t

i  

p  

n  

e  

m  

a  

e  

c  

w

5

5

 

M  

a  

a  

t  

b  

a  

o  

a  

C  

t

 

d  

c  

t  

I  
into 52 categories. We selected top 10,0 0 0 high-frequency words

from 20NEWS, 7688 words from Reuters8, and 8892 words from

Reuters52 as nodes. Table 1 shows the statistics of datasets for text

classification. 

4.2. Baseline models 

We compare our model with ten state-of-the-art GCN models

for the MNIST dataset: the classical CNN, a Generalization of CNN

[58] , LRF [20] , ChebyNet [21] , MoNet [26] , dynamic filters [60] ,

GCN [23] , motif-GCN [51] , GAT [32] , and PageRank-GCNs (PPNP

and APPNP) [28] . For text classification, we compare our model

with traditional models (i.e., linear SVM, multi-Naïve Bayes, soft-

max, and fully connected networks) and GCNs (i.e., ChebyNet [21] ,

MoNet [26] , GCN [23] , DCNN [55] , DSGC [62] , text-GCN [52] , motif-

GCN [51] , GAT [32] , and PageRank-GCNs (PPNP and APPNP) [28] ). 

4.3. Hyper-Parameters 

In the experiments, the k nearest neighbor ( k -NN) method was

used to construct graphs. For MNIST, each pixel was connected to

its k -NN pixels to build the regular graph. The input was a vec-

tor composed of 784 pixels. For 20NEWS, Reuters8, and Reuters52,

the following three steps were involved. First, words were embed-

ded in a word-vector space through the Word2Vec algorithm [72] .

Second, stop words were removed. Finally, according to the cosine

distance of two word-vectors in the word-vector space, every word

was connected as a node to its closest k words to construct the ir-

regular graph. Table 1 shows the number of nodes for the three

datasets. The input vector represented by Bag-of-Words is a | N |-

dimensional vector in which elements are arranged in the order of

nodesâ ID, where | N | is the number of nodes in the irregular graph.

We use the following notations to describe the frameworks: GC c:s
Table 3 

Comparison of our models, C-CNN and C-GCN, with other mod

Model Framework 

Classical CNN C32-P4-C64-P4-F

A Generalization of CNN [58] C20-FC512 

LRF [20] 400-LRF3200-MP

ChebyNet [21] GC32-P4-GC64-P

MoNet [26] No details 

Dynamic Filters [60] C32-C64-FC1024 

GCN [23] GC32-GC64-FC51

Motif-GCN [51] GC32-GC64-FC51

GAT [32] No details 

PPNP [28] GC32-GC64-FC51

APPNP [28] GC32-GC64-FC51

Our C-CNN GC32:676-GC64:5

Our C-GCN GC32:676-GC64:
enotes a convolutional layer in which c feature maps are con-

ained, and each feature map consists of s units, and FC s denotes

 fully connected layer with s units. All models are designed to

se ReLU as the activation function in the graph centrality convolu-

ion. Our experimental program is based on TensorFlow. The hyper-

arameter settings are shown in Table 2 , where the learning rate

ecay is based on exponential decay, and the weights of models

re learned using the Adam algorithm [73] . We chose these hyper-

arameters according to paper [21] , which are borrowed from the

ensorFlow tutorial and experience. 

The other crucial hyper-parameter is the graph centrality met-

ic. In our experiments, four metrics of graph centrality (namely,

egree centrality (DC), betweenness centrality (BC), closeness cen-

rality (CC), and eigenvector centrality (EC)) describe the impor-

ance of nodes from different perspectives. DC only evaluates the

umber of neighbors of each node to define its importance, which

s the simplest way to measure graph centrality. However, DC is

ot sufficient to fully describe the nodesâ importance. Some other

actors play an essential role in graph centrality. BC emphasizes

he path control of nodes like hubs of communication in cities—

f a node in the shortest paths between two nodes has the higher

roportion of all shortest paths between these two nodes, its sig-

ificance is more notable [36,37] . CC estimates the closeness of

ach node to other nodes through the shortest path length [38] . EC

athematically deduces the convergence of the Markov chain to

pproximate the maximum eigenvector of the adjacency matrix to

stimate graph centrality [39] . In short, every metric defines graph

entrality from a different perspective. Only DC is locality in graph,

hereas BC, CC, and EC are global metrics. 

. Results and discussion 

.1. Overall accuracies 

Table 3 presents the results of the experiment conducted on the

NIST dataset; it shows that the C-CNN with DC has the highest

ccuracy compared with the classical CNN and other GCN models,

nd the C-GCN with BC shows state-of-the-art results. However,

he regular graphs obtained using MNIST only verifies the feasi-

ility of our models, because the accuracies of both our models

nd other GCNs are close. Hence, to demonstrate the availability of

ur models, we obtained irregular graphs using 20NEWS, Reuters8,

nd Reuters52 datasets, and the results are listed in Table 4 . Our C-

NN and C-GCN models show impressive performances compared

o the traditional models and GCN models in the same settings. 

The regular graph designed by MNIST is similar to the image

ata obtained by CNNs; hence, the two variants of the separate en-

oding function aggregate the neighboring features to encode fea-

ure maps similar to the standard convolution of CNNs on images.

n this experiment, the C-CNN is like a CNN without pooling layers;
els using the MNIST dataset. 

Accuracy 

C512 0.9933 ± 0.0015 

0.9855 ± 0.0021 

800-LRF800-MP400-10 0.9870 ± 0.0036 

4-FC512 0.9913 ± 0.0008 

0.9920 ± 0.0011 

0.9840 ± 0.0029 

2 0.9921 ± 0.0017 

2 0.9925 ± 0.0008 

0.9931 ± 0.0004 

2 0.9924 ± 0.0010 

2 0.9929 ± 0.0012 

76-FC512 0.9934 ± 0.0006 

576-FC512 0.9928 ± 0.0010 
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Table 4 

Comparison of our models with traditional models and GCNs using 20NEWS, 

Reuters8, and Reuters52 datasets. 

Model 20NEWS Reuters8 Reuters52 

Linear SVM 0.6590 ± 0.0013 0.8121 ± 0.0002 0.7580 ± 0.0004 

Multi-Naïve Bayes 0.6851 ± 0.0021 0.8356 ± 0.0005 0.7720 ± 0.0008 

Softmax 0.6628 ± 0.0019 0.8026 ± 0.0007 0.7700 ± 0.0004 

FC2500 0.6464 ± 0.0008 0.7990 ± 0.0012 0.7412 ± 0.0015 

FC2500-FC500 0.6576 ± 0.0010 0.8041 ± 0.0010 0.7620 ± 0.0012 

ChebyNet [21] 0.6826 ± 0.0015 0.8423 ± 0.0006 0.7812 ± 0.0008 

MoNet [26] 0.7060 ± 0.0006 0.8687 ± 0.0003 0.8018 ± 0.0011 

GCN [23] 0.7101 ± 0.0012 0.8821 ± 0.0005 0.8125 ± 0.0007 

DCNN [55] 0.7035 ± 0.0022 0.8746 ± 0.0015 0.8242 ± 0.0012 

DSGC [62] 0.7188 ± 0.0032 0.9032 ± 0.0010 0.8619 ± 0.0009 

Text-GCN [52] 0.8012 ± 0.0015 0.9604 ± 0.0012 0.9302 ± 0.0012 

Motif-GCN [51] 0.7314 ± 0.0027 0.9350 ± 0.0003 0.8810 ± 0.0005 

GAT [32] 0.7383 ± 0.0016 0.9426 ± 0.0006 0.9143 ± 0.0008 

PPNP [28] 0.7510 ± 0.0036 0.9556 ± 0.0010 0.9203 ± 0.0014 

APPNP [28] 0.7462 ± 0.0031 0.9316 ± 0.0012 0.9080 ± 0.0010 

Our C-CNN 0.8259 ± 0.0017 0.9686 ± 0.0014 0.9342 ± 0.0008 

Our C-GCN 0.7946 ± 0.0028 0.9538 ± 0.0006 0.9224 ± 0.0005 

Fig. 4. Comparison of our C-CNN and C-GCN with other popular text classification models using 20NEWS. The input features of all models are based on 60 0 0 0 high-frequency 

words. 
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hat is, it is more like a generalization of a CNN on graphs. Further-

ore, in the C-GCN, not only the separate encoding of the C-CNN

s present but also the normalized graph Laplacian is integrated.

n the experiments using 20NEWS, Reuters8, and Reuters52, the

-CNN yields state-of-the-art results. We deduce that the weight

haring in the separate encoding function plays a particular role

n promoting performance because it reduces weights and learns

ocal correlation like the standard convolution on images. These

xperiments not only further illustrates that the separate encod-

ng function is a general extension of the standard convolution

n a CNN but also demonstrates that their frameworks are the

imilarity. 

To show the usability of our models, we compare the C-CNN

nd C-GCN with other popular text classification models, which are

aselines such as TF-IDF+LR, CNN-rand [74] , CNN-non-static [74] ,

 STM [75] , Bi-L STM, PV-DBOW [76] , PV-DM [76] , PTE [77] , fast-

ext [78] , SWEM [79] , LEAM [80] , Text-CNN [52] . Fig. 4 presents

he results for the same experimental settings with 20NEWS; it is

bserved that the proposed C-CNN has the highest accuracy. 

.2. Graph centrality metrics 

Table 5 shows the comparison of the accuracies of our mod-

ls by using different graph centrality metrics on the regular graph

MNIST) and the irregular graph (20NEWS). To build the words

raph, 50 0 0 high-frequency words from 20NEWS corpus were

aken. The following can be observed: (a) In the MNIST experi-
ent, accuracies of the C-CNN and C-GCN are not greatly different,

ith the C-CNN performing only slightly better than the C-GCN. (b)

n the 20NEWS experiment, the accuracy of the C-CNN is consid-

rably higher than that of the C-GCN. (c) From the perspective of

raph centrality metrics, both variants show higher performances

n DC and BC than in CC and EC. 

We observe that different graph centrality metrics influence

he performance of the models differently. From Table 5 , the two

ariants perform better in DC. This is because the definition of

C represents local correlation more compared with other graph

entrality metrics. Specifically, the importance of a node in DC is

nly affected by the node’s neighbors (local correlation), but the

mportance of a node in other metrics are based on the entire

raph structure (global correlation). The separate encoding func-

ion based on DC is more in line with the standard convolution of

NNs from the perspective of interpretability, because both meth-

ds use weight sharing to learn the local correlation. 

.3. Effect of graph structure and scale 

The hyper-parameter k -NN was chosen on the basis of paper

21] , in which 8-NN was used to construct the regular graph with

he MNIST dataset, and 16-NN was used to build the irregular

raph with the 20NEWS dataset. Fig. 5 shows the effect of increas-

ng doubly k on the accuracy of our models. Note that the accura-

ies of the two variants in DC increase with increasing k -NN, but

heir growth rate gradually decreases with further increase in k .
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Table 5 

Accuracies of C-CNN and C-GCN for different graph centrality metrics tested using MNIST and 20NEWS datasets. 

Dataset Model k -NN DC BC CC EC 

MNIST C-CNN 24 0.9934 ± 0.0006 0.9925 ± 0.0009 0.9928 ± 0.0013 0.9929 ± 0.0011 

C-GCN 24 0.9927 ± 0.0007 0.9928 ± 0.0010 0.9927 ± 0.0012 0.9924 ± 0.0013 

20NEWS C-CNN 16 0.7965 ± 0.0010 0.7945 ± 0.0015 0.7713 ± 0.0013 0.7737 ± 0.0009 

C-GCN 16 0.7625 ± 0.0026 0.7671 ± 0.0021 0.7439 ± 0.0019 0.7262 ± 0.0032 

Fig. 5. Accuracies of both C-CNN and C-GCN in DC with increasing k -NN using MNIST (left) and 20NEWS (right). 

Fig. 6. Growth trends of accuracy and distribution details from Table 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Accuracies of the C-CNN and C-GCN using 20NEWS with increasing number of top 

high-frequency words and size of the feature map. 

Model ID Framework Words C-CNN C-GCN 

Model 1 GC32:1024-FC512 5000 0.7965 ± 0.0010 0.7625 ± 0.0026 

Model 2 GC32:2048-FC512 5000 0.8023 ± 0.0017 0.7697 ± 0.0029 

Model 3 GC32:2048-FC512 10000 0.8158 ± 0.0016 0.7840 ± 0.0025 

Model 4 GC32:4096-FC512 10000 0.8259 ± 0.0022 0.7946 ± 0.0020 

Model 5 GC32:10240-FC512 20000 0.8457 ± 0.0018 0.8085 ± 0.0019 

Model 6 GC32:10240-FC512 30000 0.8543 ± 0.0020 0.8151 ± 0.0029 

Model 7 GC32:20480-FC512 40000 0.8596 ± 0.0021 0.8204 ± 0.0031 

Model 8 GC32:20480-FC512 50000 0.8631 ± 0.0019 0.8268 ± 0.0037 

Model 9 GC32:25600-FC512 60000 0.8679 ± 0.0011 0.8306 ± 0.0033 

5

 

This result implies that a larger k can promote the separate encod-

ing of a broader range of neighborhood features, but an excessively

large k limits this effect. 

The effect of the graph scale on 20NEWS is presented in

Table 6 . As the number of high-frequency words and the size | F ( l ) |

of feature map increase, the accuracies of our models improve

gradually. However, the performance of the C-GCN is still consid-

erably lower than the accuracy of the C-CNN. Fig. 6 shows the

growth trends of accuracy and distribution details from Table 6 ;

we observe that the performance of the C-CNN is consistently bet-

ter than that of the C-GCN. The growth of the graph structure

and scale nonlinearly increase the performance of our models. As

Table 6 shows, the performances of the two variants gradually in-

crease nonlinearly with increasing number of nodes (words) and

changing structure of the word graph. Changes in the graph struc-

ture and scale significantly impact the performance of the two

variants, and this relationship deserves further study in the future.
c  
.4. Resource consumption 

In addition to the accuracy experiments, we performed resource

onsumption experiments. We compared our two variants with
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Fig. 7. Two variants combined with the RNN to predict the city-wide traffic congestion—Rush traffic (traffic jam), low traffic (little traffic, usually at night), and normal traffic 

(regular traffic with no congestion). 

Table 7 

Comparison of resource consumption performances of 

our model with other models based on Tensorflow us- 

ing the MNIST dataset. 

Model Time(sec) GPU Memory(GB) 

Classical CNN 22 0.8 

ChebyNet [21] 82 1.0 

MoNet [26] 116 0.9 

GCN [23] 35 1.2 

DCNN [55] 81 1.2 

DSGC [62] 104 1.1 

Motif-GCN [51] 37 1.3 

GAT [32] 130 0.9 

PPNP [28] 36 1.1 

APPNP [28] 31 1.0 

Our C-CNN 78 1.1 

Our C-GCN 96 1.2 
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Table 8 

Fields of trajectory data. 

Field Type Sample Comment 

Driver ID String glox.jrr Anonymous 

Order ID String jkkt8kxn Anonymous 

Time Stamp String 1,501,584,540 Unix timestamp, per 3 s 

Longitude of GPS String 104.04392 GCJ-02 Coordinate System 

Latitude of GPS String 104.04392 GCJ-02 Coordinate System 
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nly baseline models based on Tensorflow, which helps in manag-

ng and scheduling CPU, GPU, and memory in a unified way. Other

aseline models discussed in Section 4 that are not currently based

n Tensorflow were not used in the comparison with our models.

ased on Table 7 , we can conclude the following: (a) The classical

NN performs the best because its framework is optimized by Ten-

orflow. (b) The GCN [23] , motif-GCN [51] , PPNP [28] , and APPNP

28] show similar performance in terms of resource consump-

ion, because their frameworks are similar, all derived from the

CN [23] . (c) Because the MoNet [26] and GAT [32] have homol-

gous architecture, their resource consumption is very close. (d)

ur two variants show average-level performance. This is due to

he resource-intensive function “tf.nn.embedding_lookup” of Ten- 

orflow, which is used in the code for the separate encoding func-

ion. Although the classical CNN also uses this function, Tensorflow

as encapsulated it at the lowest code-level, therefore imparting

ore efficiency. Other models do not use this function, so they are

ore efficient than our two variants. 

.5. Traffic congestion recognition 

To further verify the practicability of our models, the C-CNN

nd C-GCN combined with the RNN were applied to predict
ity-wide traffic congestion. The many-to-many RNN was intro-

uced because it can adequately handle trajectory data that have

emporality-sequence correlation. Fig. 7 shows the combination of

ur models and many-to-many RNN, which has the same length

f input and output sequences, and the time intervals correspond

o each other. In our work, a road network of a city is abstracted

o a road graph, with each node being a road and each edge be-

ng an intersection of two roads. The node feature is the number

f GPS points that appear in this node (road) within a time in-

erval; here the time interval was three seconds. The GPS points

ere collected per three seconds in the trajectory data of Xi’an and

hengdu, which have been opened to public by the Didi Chuxing

AIA Initiative. Fig. 8 shows trajectory data, and Table 8 shows the

ata fields of trajectory data. The input of our model was a road

raph containing node features; our dataset comprised 1,756,800

hronological road graph data in a city within a span of two con-

ecutive months. The road graph data generated in the first week

ere selected as the training set (approximately 10% of the total

rajectory data), whereas the remaining were used as the test set.

he road graph shows three states, which are the output of our

odel: rush traffic (traffic jam), low traffic (with little traffic, usu-

lly at night), and normal traffic (regular traffic with no conges-

ion). These outputs are used as labels in the road graph classifica-

ion task. Table 9 presents the results of the experiment conducted

ith the neural network (NN) and the GCN [23] as the baseline

ethods for comparison with our two variants combined with the

NN. Note that the C-CNN shows the best performance. The exper-

mental settings were follows: the learning rate was 0.001, decay of

earning rate was 0.95 per epoch, mini-batch size was 300, num-

er of epochs was 30, framework was GC32:8096-FC:512, graph
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Table 9 

The test accuracies of neural network (NN), GCN [23] , and our two variants with RNN structure. 

City Items Labeled Rate NN GCN [23] C-CNN C-GCN 

Xi’an 1756800 10.36% 0.8432 ± 0.0014 0.9296 ± 0.0031 0.9557 ± 0.0022 0.9521 ± 0.0031 

Chengdu 1756800 10.42% 0.8369 ± 0.0023 0.9265 ± 0.0027 0.9521 ± 0.0024 0.9479 ± 0.0026 

Fig. 8. Left: Trajectory data for Xi’an. Right: Trajectory data for Chengdu. 

Fig. 9. Accuracies of the GCN [23] , C-CNN, and C-GCN with increasing proportion of the training set for Xiâ an (top) and Chengdu (bottom). 
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centrality was DC, dropout for FC was 0.5, and RNN sequence

length was 50. Fig. 9 shows that the accuracies of the GCN [23] ,

C-CNN, and C-GCN increase when the proportion of the training

set increases, and our C-CNN has the highest accuracy. 

GCNs can replace other models for traffic congestion recogni-

tion because GCNs, as well as the two variants, have two advan-

tages over traditional models: (a) GCNs integrate prior spatial in-

formation from a road graph, which is not possible in traditional

models. The road graph is designed to structure the spatial in-

formation that is embedded in the uniform encoding function as
ell as our separate encoding function. Moreover, the RNN com-

ines with GCNs to process this spatiotemporal information of

he GPS. (b) GCNs can compress a large number of GPS points

nto the road graph data to reduce the structure size of the net-

ork, whereas classical CNNs cannot. Moreover, our two variants

ased on the separate encoding function further reduces model

ost compared with GCN [23] for traffic congestion recognition.

ence, they are more advantageous to process massive road graphs

uch as those of Beijing and Shanghai than GCN [23] in future

ork. 
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. Conclusion and future works 

We presented two variants, C-CNN, and C-GCN, of our pro-

osed separate encoding function, in which graph centrality is in-

roduced for weight sharing and enhancing performance. The pro-

osed models exhibited impressive performances on regular and

rregular graphs in comparison with previous GCN methods. We

lso applied the two variants on online car-hailing service trajec-

ory data, and the performance of the C-CNN was the state-of-the-

rt compared to that of the GCN [23] . In future studies, we will ex-

lore several potential improvements and extensions to our sepa-

ate encoding function. The following states the scope for improve-

ent of our model. 

Directed graph: Our model is limited to undirected graphs. Al-

hough directed graphs can be transformed to undirected graphs

o fit our separate encoding function, the directed information

ay be lost in this process, which will result in building of

he model on incomplete prior information. Application of our

eparate encoding function for directed graphs is a focus of

mprovement. 

Limited memory: The GCN [23] and the two variants are fed to

he entire graph and built as a vast framework unlike traditional

NNs. The GPU memory cannot store the framework and graph

ata, while the CPU memory is not limited by this problem. How-

ver, the CPU performance is far less than the GPU in large-scale

oating-point operations. Fortunately, our separate encoding func-

ion is an extension of a standard convolution of CNNs; therefore,

o tailor the framework of the separate encoding function and to

ake the two variants less memory-intensive, we can import the

epthwise separable convolution (DSC) of MobileNet [42] and Mo-

ileNetV2 [43] in our future work. 

Separate encoding visualization: For the application of the C-CNN

nd C-GCN in graph classification tasks, in future, we will consider

 visualization method for the separate encoding function based

n the visualization method for CNNs proposed by MD Zeiler and

 Fergus [81] . 
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