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Abstract

Entity types and textual context are essential001
properties for sentence-level relation extraction002
(RE). Existing work only encodes these prop-003
erties within individual instances, which limits004
the performance of RE given the insufficient005
features in a single sentence. In contrast, we006
model these properties from the whole dataset007
and use the dataset-level information to enrich008
the semantics of every instance. We propose the009
GRAPHCACHE (Graph Neural Network as010
Caching) module, that propagates the features011
across sentences to learn better representations012
for RE. GRAPHCACHE aggregates the features013
from sentences in the whole dataset to learn014
global representations of properties, and use015
them to augment the local features within indi-016
vidual sentences. The global property features017
act as dataset-level prior knowledge for RE, and018
a complement to the sentence-level features.019
Inspired by the classical caching technique in020
computer systems, we develop GRAPHCACHE021
to update the property representations in an on-022
line manner. Overall, GRAPHCACHE yields023
significant effectiveness gains on RE and en-024
ables efficient message passing across all sen-025
tences in the dataset.026

1 Introduction027

Sentence-level relation extraction (RE) aims at028

identifying the relationship between two entities029

mentioned in a sentence. RE is crucial to the struc-030

tural perception of human language, and also ben-031

efits many NLP applications such as automated032

knowledge base construction (Distiawan et al.,033

2019), event understanding (Wang et al., 2020a),034

discourse understanding (Yu et al., 2020), and ques-035

tion answering (Zhao et al., 2020). The modern036

tools of choice for RE are the large-scale pre-037

trained language models (PLMs) that are used to038

encode individual sentences, therefore obtaining039

the sentence-level representations (Liu et al., 2019;040

Joshi et al., 2020; Yamada et al., 2020).041

Existing work considers entity types and textual 042

context as essential properties for RE (Peng et al., 043

2020; Peters et al., 2019; Zhou and Chen, 2021). 044

Nonetheless, most existing RE models only capture 045

these properties locally within individual instances, 046

while not globally modeling them from the whole 047

dataset. Given the insufficient features of a single 048

sentence, it is beneficial to model these properties 049

from the whole dataset and use them to enrich the 050

semantics of individual instances. 051

To overcome the aforementioned limitation, we 052

propose to mine the entity and contextual informa- 053

tion beyond individual instances so as to further 054

improve the relation representations. Particularly, 055

we first construct a heterogeneous graph to con- 056

nect the instances sharing common properties for 057

RE. This graph includes the sentences and prop- 058

erty caches. Each cache represents a property of 059

entity types or contextual topics. We connect every 060

sentence to the corresponding property caches (see 061

Fig. 1), and perform message passing over edges 062

based on a graph neural network (GNN). In this 063

way, the property caches aggregate the features 064

from connected sentences, which will act as a com- 065

plement to the sentence-level features and provide 066

prior knowledge when identifying relations. 067

The constructed graph connecting sentences has 068

the same scale as the whole dataset, which leads 069

to high computational complexity of the GNN. To 070

address this issue, our idea is to view the message 071

passing of GNNs as data loading in computer sys- 072

tems, adapting the classical caching techniques to 073

efficiently mining the property information from 074

all sentences. We encapsulate this computational 075

idea in a new GNN module, called GRAPHCACHE 076

(Graph Neural Network as Caching), that uses 077

an online updating strategy to refresh the property 078

caches’ representations. In addition, we design an 079

attention-based global-local fusion module to aug- 080

ment the sentence-level representations using the 081

property caches with adaptive weights. 082
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Figure 1: We construct a heterogeneous graph to con-
nect the sentences sharing common properties for RE.
We consider two kinds of properties: contextual topics
and entity types.

GRAPHCACHE can be incorporated into popular083

RE models to improve their effectiveness without084

increasing their time complexity, as analyzed in the-085

ory (§3.2). As far as we know, ours is the first work086

to propagate the features across instances to enrich087

the semantics for sentence-level RE. We evaluate088

GRAPHCACHE on three public RE benchmarks089

including TACRED (Zhang et al., 2017), SemEval-090

2010 task 8 (Hendrickx et al., 2019), and TACREV091

(Alt et al., 2020a). Empirical results show that092

GRAPHCACHE consistently improves the effective-093

ness of popular RE models by a significant margin094

and propagates features between all sentences in095

an efficient manner.096

2 Related Work097

Sentence-Level Relation Extraction. Early re-098

search efforts (Zeng et al., 2014; Wang et al., 2016;099

Zhang et al., 2017) train RE models from scratch100

based on lexicon-level features. Recent work has101

shifted to fine-tuning pretrained language models102

(PLMs; Devlin et al. 2019; Liu et al. 2019) result-103

ing in better performance. For example, BERT-104

MTB (Baldini Soares et al., 2019) continually fine-105

tunes the PLM with a matching-the-blanks objec-106

tive that decides whether two sentences share the107

same entity. SpanBERT (Joshi et al., 2020) pre-108

trains a masked language model on random con-109

tiguous spans to learn span-boundaries and predict110

the entire masked span. LUKE (Yamada et al.,111

2020) extends the PLM’s vocabulary with enti-112

ties from Wikipedia and proposes an entity-aware113

self-attention mechanism. K-Adapter (Wang et al.,114

2020b) fixes the parameters of the PLM and uses115

feature adapters to infuse factual and linguistic116

knowledge. Despite their effectiveness, most exist-117

ing work on sentence-level RE exploits the entity 118

information and context within only an individual 119

instance, while we propose to globally capture the 120

semantic information from the whole dataset to 121

augment the relation representations. Our model 122

can be flexibly plugged into existing RE models 123

and improve their effectiveness without increasing 124

the time complexity. 125

Graph Neural Networks for Natural Language 126

Processing. Due to the large body of work on 127

applying GNNs to NLP, we refer readers to a re- 128

cent survey (Wu et al., 2021) for a general review. 129

GNNs have been explored in several NLP tasks 130

such as semantic role labeling (Marcheggiani and 131

Titov, 2017), machine translation (Bastings et al., 132

2017), and text classification (Henaff et al., 2015; 133

Defferrard et al., 2016; Kipf and Welling, 2016; 134

Peng et al., 2018; Yao et al., 2019). GNNs have 135

also been widely adopted in various variants of 136

relation extraction on the sentence level, (Zhang 137

et al., 2018; Zhu et al., 2019; Guo et al., 2019a), the 138

document level (Sahu et al., 2019; Christopoulou 139

et al., 2019; Nan et al., 2020; Zeng et al., 2020), 140

and the dialogue level (Xue et al., 2021). However, 141

on the sentence-level relation extraction, most ex- 142

isting work (Zhang et al., 2018; Guo et al., 2019b; 143

Wu et al., 2019) uses the graph neural networks to 144

encode the relation representations from individual 145

instances instead of operating the message passing 146

between instances. In contrast, we build a heteroge- 147

neous graph to connect the instances that share the 148

properties for RE, and design the caching updater 149

to efficiently perform the message passing between 150

instances. 151

3 Methodology 152

Task Definition. Sentence-level relation extrac- 153

tion (RE) aims to identify the relation between a 154

pair of entities in a sentence. In this task, each 155

instance is composed of a sentence, the subject and 156

object entities, and entity types. For example, in 157

the sentence ‘
::::
Mary gave birth to Jerry at the age of 158

21.’1, ‘Mary’ and ‘Jerry’ are the entities, the entity 159

types are both person, and the ground-truth relation 160

between ‘Jerry’ and ‘Mary’ is parent. 161

We propose GRAPHCACHE (Graph Neural Net- 162

works as Caching) as a message passing method- 163

ology to model the dataset-level property repre- 164

1We use underline and
::::
wavy

:::
line to denote subject and

object respectively by default.

2



sentations and use them to enrich every instance’s165

semantics. GRAPHCACHE creates a graph repre-166

sentation where sentences with shared property167

information are connected with property caches.168

GRAPHCACHE first models the global semantic169

information by aggregating the features from the170

whole dataset, and then fuses the global and local171

features to augment the relational representations172

for every sentence.173

We analogize the message passing in GNNs to174

caching in computer systems. Caching is about175

loading data from high volume disks to low vol-176

ume caches, so as to accelerate data loading. Anal-177

ogously, when GNNs perform the message passing178

between sentences through a smaller number of179

bridge nodes, we can think of the massive sentences180

in the dataset as the disk data, and the properties,181

which aggregates the features from sentences, as182

caches. GRAPHCACHE can be flexibly plugged183

into existing RE models. As far as we know, ours184

is the first work to propagate the features between185

instances to enrich the semantics for RE. GRAPH-186

CACHE takes an existing RE model as the back-187

bone, e.g., BERT, and takes the sentence-level rep-188

resentations given by the backbone as the inputs of189

message passing.190

A GRAPHCACHE module consists of three key191

components: (i) A graph construction technique192

builds a few property caches. Each cache repre-193

sents a property for RE: entity type or contextual194

topic. We connect each sentence to its correspond-195

ing properties, so that every property aggregates the196

features from its neighbor sentences. (ii) Caching197

message passing aggregates the sentence-level rep-198

resentations to model the properties’ representa-199

tions in an online manner. (iii) Global-local fusion200

fuses the global property representations and local201

sentence-level ones to augment the relation repre-202

sentations. Next, we will discuss the three main203

components in more detail.204

3.1 Graph Construction for Sentence-level205

Relation Extraction206

We build a large and heterogeneous graph to con-207

nect the sentences sharing the properties: entity208

types and textual context, which are essential for209

RE (Peng et al., 2020; Peters et al., 2019; Zhou and210

Chen, 2021). The heterogeneous graph is defined211

as G = (V, E), where V is the set of nodes, and E212

is the set of edges. V = VS ∪ VP , where VS is the213

set of sentences, and VP = VC ∪VE is the property214

caches. Here VC is the set of latent topics (Zeng 215

et al., 2018) mined from the latent topics from the 216

text corpus using LDA (Blei et al., 2003), which 217

has been found effective in modeling useful con- 218

textual patterns (Jelodar et al., 2019). Each topic is 219

represented by a probability distribution over the 220

words, and we assign each sentence to the top P 221

topics with the largest probabilities. VE is the set 222

of entity types, where every cache represents the 223

types of an entity pair. The entity types are also 224

crucial for predicting relations (Peng et al., 2020; 225

Zhou and Chen, 2021). An edge (p, s) ∈ E exists 226

if the sentence s ∈ VS has the property p ∈ VP . 227

We will implement a GNN on this graph. Specif- 228

ically, to incorporate the global property informa- 229

tion into relation extraction, the property caches 230

aggregates the features from the connected neigh- 231

boring sentences. This step enables property caches 232

to globally model the properties from the whole 233

dataset. We then use the global property represen- 234

tations from the caches to enrich every sentence’s 235

semantics. In this way, the property caches act 236

as prior knowledge when identifying relations and 237

provide each sentence with more representative 238

features. 239

3.2 Caching Message Passing 240

We take an existing RE model as the backbone, e.g., 241

BERT (Devlin et al., 2019), which produces the 242

sentence-level representation as hs. Next, we de- 243

ploy a two-layer GNN on our heterogeneous graph 244

for message passing across sentences. Specifically, 245

the first GNN layer aggregates the sentence-level 246

representations to property caches at the tth train- 247

ing step: 248

h̄p(t) = MEAN({hs(t), s ∈ N (p)}) , 249

hp(t) = FFN
(
h̄p(t)

)
, (1) 250

where p ∈ VP is a property, s ∈ N (p) is a sen- 251

tence having property p, MEAN(·) is the mean 252

aggregator (Hamilton et al., 2017), and FFN(·) is 253

the feed-forward network. FFN(·) can be a linear 254

layer in SGC (Wu et al., 2019), a linear layer fol- 255

lowed by a nonlinear activation function in Graph- 256

SAGE (Hamilton et al., 2017), or a multi-layer 257

perception in GIN (Xu et al., 2018), etc. We fol- 258

low SGC (Wu et al., 2019) to implement FFN(·) 259

by default. For each property p, this layer aggre- 260

gates the sentence-level representations hs(t) from 261

s ∈ N (p) to obtain a global property embedding 262

hp(t). In this way, the generalized context of each 263
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Figure 2: (left) Existing models encode individual instances for RE. (middle) In standard GNNs (Kipf and Welling,
2016), we predict for an instance by aggregating the features from many other sentences in the dataset, leading to
high time complexity. (right) Our GRAPHCACHE implements a caching updater (see Eq. 2) to update the properties’
representations in an online manner, which significantly reduces the time complexity.

Algorithm 1 GRAPHCACHE for Relation Extrac-
tion

Input: The number of training steps T , the dataset
D = {ses, rs|s = 1, 2, . . . , N}, where ses, rs are
the sentence and relation of the sth instance, our
graph G defined in §3.1, and the batch size B.
Output: The model’s trained parameters.

1: Initialize the model’s parameters as random
values, and initialize the values of memoryM
and property caches ĥp(t) as zero.

2: for t← 1 to T do
3: Sample a batch B(t) from D.
4: for s in B(t) do
5: hs(t)← Backbone(ses)
6: end for
7: for p in Vp do
8: Update ĥp(t) as Eq. 2.
9: hp(t)← FFN(ĥp(t)) as Eq. 1.

10: end for
11: for s in B(t) do
12: Update r̂s(t) as Eq. 3.
13: M[s]← hs(t).
14: end for
15: Back-propagate to update the parameters

by minimizing the cross entropy loss between
r̂s(t) and ri of instances in B.

16: end for

property is captured from the whole dataset, which264

is further used to enhance the relation representa-265

tions for each sentence in the second GNN layer.266

We describe the details of the second GNN layer in267

§3.3.268

Recall our heterogeneous graph for RE defined269

in §3.1. At each training step, classical GNNs270

perform message passing across edges between the 271

sentences and properties. In this case, the time 272

complexity of the first GNN layer at each training 273

step is |E|. Note that |E| is larger than |Vs|, which is 274

the number of sentences in the dataset. This leads 275

to poor scalability of GNN, since |Vs| is large in 276

practice. 277

To address this efficiency issue, we propose 278

Caching GNN for RE in Alg. 1. Our GRAPH- 279

CACHE implements a memory dictionary M to 280

store the sentence-level representations from the 281

backbone. To keep consistency with the updating 282

parameters during training, we deploy a caching 283

updater to refresh the properties’ representations at 284

each training step: 285

ĥp(t) 286

=Updater(ĥp(t− 1), {hs(t), s ∈ B(t)}) 287

=ĥp(t− 1) +
∑

s∈N (p)∩B(t)

hs(t)−M[s]

|N (p)|
, (2) 288

where B(t) denotes the batch at the tth training 289

step. By doing so, GRAPHCACHE greatly reduces 290

the time complexity from |E| to |B(t)| at each train- 291

ing step by using Updater to obtain the property 292

caches’ representations ĥp(t). 293

Our caching updater is much more efficient 294

than the classical message passing of GNNs, since 295

|B(t)| ≪ |Vs| < |E| generally holds in practice. 296

When we aggregate the sentence-level representa- 297

tions fromM, we provide the following proposi- 298

tion to show that our cache updater is as effective 299

as the first GNN layer in Eq. 1. 300

Proposition 1. At the tth training step, denote the 301

property caches’ representations in the first GNN 302

layer (see Eq. 1) as h̄p(t), and those returned by 303
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our updater in Eq. 2 as ĥp(t). There is ĥp(t) =304

h̄p(t) for ∀p ∈ VP , t > 0.305

We provide the proof of this proposition in the306

appendix.307

3.3 Global-Local Fusion308

In the second GNN layer, we propagate the prop-309

erties’ representations from the property cache to310

their neighboring sentences in the batch. Since a311

sentence s may have more than one latent topic312

|VC ∩ N (i)| > 1, we utilize the attention mech-313

anism to enable the target sentence to attend to314

different topics with adaptive weights.315

htopic
s (t) = Attention(hs(t), {hp(t), p ∈ VC}),316

where we follow (Vaswani et al., 2017) to imple-317

ment Attention. The output htopic
s (t) is the topic318

embedding fused for sentence s. In this way, a319

sentence can be trained to attend to more relevant320

topics with higher weights.321

Next, we have the entity type embedding of sen-322

tence s as hentity
s (t) = hp(t), p ∈ VE ∩ N (s),323

where p ∈ VE ∩N (s) is the entity type node con-324

nected to sentence s. htopic
s (t) and hentity

s (t) are325

the global representations of the properties related326

to sentence s, while hs is the local representation327

of sentence s. We fuse the global and local rep-328

resentations to enrich the semantics of sentence s329

through a sentence-wise head:330

r̂i(t) = Head
(
hs(t)∥htopic

s (t)∥hentity
s (t)

)
, (3)331

where ∥ denotes concatenation. GRAPHCACHE332

makes sentence-wise relation predictions r̂i(t) us-333

ing a sentence-wise Head, implemented as a multi-334

layer perception (MLP), analogous to a PointNet335

(Qi et al., 2017). Since GRAPHCACHE predicts a336

relation label for each sentence, it can be trained337

by standard task-specific classification losses, e.g.,338

cross-entropy (Mannor et al., 2005). During infer-339

ence, we take r̂i(t) after convergence as the output340

for RE.341

4 Experiments342

In this section, we evaluate the effectiveness of our343

GRAPHCACHE method when incorporated into var-344

ious RE models. We compare our methods against345

a variety of strong baselines on the task of sentence-346

level RE. We closely follow the experimental set-347

ting of the previous work (Zhang et al., 2017; Zhou348

and Chen, 2021; Zhang et al., 2018) to ensure a fair349

comparison, as detailed below.350

Dataset #Train #Dev #Test #Classes

TACRED 68,124 22,631 15,509 42
SemEval 6,507 1,493 2,717 19
TACREV 68,124 22,631 15,509 42

Table 1: Statistics of datasets.

Method TACRED SemEval TACREV

PA-LSTM (Zhang et al., 2017) 65.1 82.1 73.3
GCN (Zhang et al., 2018) 64.0 80.7 71.9
C-GCN (Zhang et al., 2018) 66.4 84.2 74.6
C-SGC (Wu et al., 2019) 67.0 84.8 75.1
SpanBERT (Joshi et al., 2020) 70.8 86.1 78.0
RECENT (Lyu and Chen, 2021) 75.2 85.8 83.0
IREBERT (Zhou and Chen, 2021) 72.9 86.4 81.3

LUKE (Yamada et al., 2020) 72.7 87.8 80.6
LUKE + GRAPHCACHE (ours) 74.8 89.1 81.5

IRERoBERTa (Zhou and Chen, 2021) 74.6 87.5 83.2
IRERoBERTa + GRAPHCACHE (ours) 75.5 88.2 84.2

Table 2: F1 scores (%) of Relation Extraction on the
test set of TACRED, SemEval, and TACREV. The best
results in each column are highlighted in bold font.

4.1 Experimental Settings 351

Datasets. We use the standard sentence-level RE 352

datasets: TACRED (Zhang et al., 2017), SemEval- 353

2010 Task 8 (Hendrickx et al., 2019), and TACREV 354

(Alt et al., 2020b) for evaluation. TACRED con- 355

tains over 106k mention pairs drawn from the 356

yearly TAC KBP challenge. SemEval does not 357

provide entity type annotations, for which we only 358

construct the topic caches for message passing. Alt 359

et al. (2020b) relabeled the development and test 360

sets of TACRED to build TACREV. The statistics 361

of these datasets are shown in Tab. 1. We follow 362

(Zhang et al., 2017) to use F1-micro as the evalua- 363

tion metric. 364

Compared Methods. We compare GRAPHCACHE 365

with the following state-of-the-art RE models: 366

(1) PA-LSTM (Zhang et al., 2017) extends the 367

bi-directional LSTM by incorporating positional 368

information to the attention mechanism. (2) 369

GCN (Zhang et al., 2018) uses a graph convo- 370

lutional network to gather relevant contextual in- 371

formation along syntactic dependency paths. (3) 372

C-GCN (Zhang et al., 2018) combines GCN and 373

LSTM, leading to improved performance than 374

each method alone. (4) C-SGC (Wu et al., 2019) 375

simplifies GCN by removing the nonlinear lay- 376

ers and achieves higher effectiveness. (5) Span- 377

BERT (Joshi et al., 2020) extends BERT by intro- 378
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ducing a new pretraining objective of continuous379

span prediction. (6) RECENT (Lyu and Chen,380

2021) restricts the candidate relations based on381

the entity types. (7) LUKE (Yamada et al., 2020)382

pretrains the language model on both large text383

corpora and knowledge graphs and further pro-384

poses an entity-aware self-attention mechanism.385

(8) IRE (Zhou and Chen, 2021) proposes an im-386

proved entity representation technique in data pre-387

processing, which enables RoBERTa to achieve388

state-of-the-art performance on RE.389

Model Configuration. For the hyper-parameters390

of the considered baseline methods, e.g., the batch391

size, the number of hidden units, the optimizer, and392

the learning rate, we set them as those in the origi-393

nal papers. For LDA used in GRAPHCACHE, we394

set the number of topics K as 50, and the number395

of top relevant topics for every sentence P as 2. For396

all experiments, we report the median F-1 scores of397

five runs of training using different random seeds.398

4.2 Overall Performance399

We incorporate the GRAPHCACHE framework400

with LUKE and IRERoBERTa, and report the re-401

sults in Tab. 2. Our GRAPHCACHE method im-402

proves LUKE by 2.9% on TACREV, 1.5% on Se-403

mEval, and 1.1% on TACREV in the F1 score.404

For IRERoBERTa, GRAPHCACHE leads to the im-405

provement of 1.2% on TACRED, 0.8% on Se-406

mEval, 1.2% on Re-TACRED. As a result, our407

GRAPHCACHE achieves substantial improvements408

for LUKE and IRERoBERTa and enables them to409

outperform the baseline methods.410

Note that LUKE and IRERoBERTa are both based411

on large pre-trained models, which have suffi-412

ciently large learning capacity to encode the in-413

dividual instances. In this case, our GRAPHCACHE414

still improves their effectiveness by a large margin,415

which validates the benefits of modeling the prop-416

erties: entity types and contextual topics, globally417

from the whole dataset. This is due to the use of418

the global property representations that enrich the419

semantics of each instance, which effectively act420

as prior knowledge that helps identify the relations421

and complements the sentence-level features.422

4.3 Efficiency and Effectiveness of423

GRAPHCACHE424

As analyzed in §3.2, GRAPHCACHE enhances the425

backbone RE models without increasing their time426

complexity. In the experiments, we analyze the427

Method Complexity Time F1 (%)

IRERoBERTa (Zhou and Chen, 2021) O(B) 7492s 74.6

IRERoBERTa + GNN O(N) N.A. N.A.
IRERoBERTa + GRAPHCACHE (ours) O(B) 7681s 75.5

Table 3: Training time, the time complexity per training
step, and F1 scores of IRERoBERTa with our proposed
message passing implemented as GNN and GRAPH-
CACHE on TACRED. The training time of IRERoBERTa

with the classical GNN is unavailable due to the our-of-
memory error. B and N are the batch and dataset sizes
respectively.

Method TACRED TACREV

LUKE (Yamada et al., 2020) 76.5 82.9
LUKE + GRAPHCACHE (ours) 78.9 85.6

IRERoBERTa (Zhou and Chen, 2021) 78.7 86.9
IRERoBERTa + GRAPHCACHE (ours) 80.1 88.2

Table 4: Test F1 scores (%) of Relation Extraction on the
filtered test sets (see §4.4), i.e., the instances containing
unseen entities.

efficiency and effectiveness of GRAPHCACHE on 428

the TACRED dataset, following the experimental 429

setting of RE in §4.2. 430

The methods we evaluate include IRERoBERTa, 431

IRERoBERTa implemented with classical GNN 432

for message passing, and IRERoBERTa with our 433

GRAPHCACHE. Tab. 3 reports the performance, 434

where ‘Time’ is the training time until convergence 435

using a Linux Server with an Intel(R) Xeon(R) E5- 436

1650 v4 @ 3.60GHz CPU and a GeForce GTX 437

2080 GPU. 438

We notice that, compared with the classical mes- 439

sage passing of GNN, our GRAPHCACHE method 440

significantly reduces the time complexity per train- 441

ing step. As a result, our GRAPHCACHE method 442

takes significantly less training time than the clas- 443

sical GNN method, and exhibits similar efficiency 444

to the original IRERoBERTa without message pass- 445

ing between sentences. The running time and F1 446

of IRERoBERTa with GNN is unavailable due to 447

the out-of-memory error. This agrees with the 448

theoretical analysis in §3.2. N and B denote the 449

data and batch sizes respectively. IRERoBERTa’s 450

time complexity is O(B), which is the same as the 451

original RoBERTa, while the time complexity of 452

RoBERTa with GNN is O(N), being significantly 453

higher than our GRAPHCACHE. In practice, N is 454

generally large, and N ≫ B, e.g., |E| > 1 × 105 455

and B < 100 holds for TACRED and state-of-the- 456

art models. 457
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Technique F1 (%) ∆ Cumu ∆

LUKE (Yamada et al., 2020) 72.7 0 0
+ Entity Types 73.4 +0.7 +0.7
+ Contextual Topics 74.8 +1.4 +2.1

Table 5: Effects of different properties in our heteroge-
neous graph on the RE of TACRED.

In terms of effectiveness, our GRAPHCACHE458

leads to substantial improvements for RoBERTa.459

Our GRAPHCACHE enriches the input features460

for RE on every sentence by utilizing the dataset-461

level information beyond the individual sentences.462

GRAPHCACHE implements the attention module463

to incorporate the global property features from464

different topic caches with adaptive weights, which465

capture the most relevant information for the tar-466

get relation. The improvements in effectiveness467

are rooted in the message passing mechanism be-468

tween sentences, which mines the property infor-469

mation beyond individual instances and acts as470

a complementary to the sentence-level semantics.471

Our GRAPHCACHE method resolves the efficiency472

issues of message passing based on the caching473

mechanism, which updates the properties’ repre-474

sentations in an online manner.475

4.4 Analysis on Unseen Entities476

Some previous work (Zhang et al., 2018; Joshi477

et al., 2020) suggests that RE models may not gen-478

eralize well to unseen entities. To evaluate whether479

the RE models can generalize to unseen entities,480

existing work designs a filtered evaluation setting481

(Zhou and Chen, 2021). This setting removes all482

testing instances containing entities from the train-483

ing set of TACRED and TACREV, which results484

in filtered test sets of 4,599 instances on TACRED485

and TACREV. These filtered test sets only contain486

instances with unseen entities during training.487

We present the experimental results on the fil-488

tered test sets in Tab. 4. Our GRAPHCACHE489

still achieves consistently substantial improve-490

ments for LUKE and IRERoBERTa on the TA-491

CRED and TACREV datasets. Specifically, our492

GRAPHCACHE improves the F1 scores of LUKE493

by 3.1% on TACRED, 3.3% on TACREV, and im-494

proves IRERoBERTa by 1.8% on TACRED, 1.5%495

on TACREV. Taking a closer look, we observe496

that the improvements given by GRAPHCACHE on497

the filtered test sets are generally larger than those498

on the original test sets. The reason is that our499

Figure 3: The F1 scores (% in z-axis) of IRERoBERTa

with GRAPHCACHE on relation extraction on TACRED
with different hyper-parameters P and K.

GRAPHCACHE mines global information from the 500

whole dataset and uses it as the prior knowledge 501

for RE, which is not influenced by the entity names 502

in individual sentences. When the entity names are 503

new to the RE models, the semantic information 504

is relatively scarce and our mined global informa- 505

tion plays a more important role to augment the 506

sentence-level representations. 507

4.5 Ablation Study 508

We investigate the contributions of properties that 509

we consider for constructing the heterogeneous 510

graph. We apply different kinds of properties se- 511

quentially with our GRAPHCACHE on the LUKE 512

model. The results are presented in Tab. 5. Our en- 513

tity type nodes improve the effectiveness of LUKE 514

by modeling the entity information globally on the 515

dataset level to enrich the semantics of every sen- 516

tence. This finding is consistent with Peng et al. 517

(2020), suggesting that the entity information can 518

provide richer information to improve RE. Further- 519

more, the contextual topics lead to more significant 520

improvements than the entity types, since the con- 521

textual information is fundamental for identifying 522

the relations. 523

Finally, we analyze the sensitivity of GRAPH- 524

CACHE to the hyper-parameters K,P , where 525

K is the number of topics and P is the num- 526

ber of relevant topics assigned to an instance. 527

The result is visualized in Fig. 3. We vary 528

K among {10, 20, 30, 40, 50, 60} and P among 529

{1, 2, 3, 4, 5, 6}. The performance of IRERoBERTa 530

with GRAPHCACHE is relatively smooth when pa- 531

rameters are within certain ranges. However, ex- 532

tremely small values of K and large P result in 533

poor performances. Too small K cannot effec- 534

tively model the complex contextual topics in the 535

large text corpus, while too large P induces irrele- 536
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Input sentence Method Prediction Entity type Topic keyword

Founded in
:::::
1947 by two brothers,

Eugene and Quentin Fabris, New
Fabris started out making sewing
machine parts in the 1990s.

LUKE founded ✗ subject: Person
object: Date

[brother, found, sister, parent,
establish, machine, business,
organize, instrument, make]

+ GRAPHCACHE no relation ✓

According to the suspect, Gonzalez
was strangled and buried

:::
the

::::
day after

the video was made, Rosas said.

LUKE no relation ✗ subject: Person
object: Date

[strangle, die, after, when, injury,
day, hospital, police, murder,
later]

+ GRAPHCACHE date of death ✓

He was forced to close his bar and now
works occasionally at the

:::::::::
University

::
of

:::::::::
Foreigners, which Knox and Kercher
attended.

LUKE no relation ✗ subject: Person
object:
Organization

[university, student, attend,
opening, work, school, job,
professor, exchange, education]

+ GRAPHCACHE schools attended ✓

Margaret Garritsen graduated from the

:::::::::
University

:::
of

::::::::
Michigan as an

American Association of University
scholar.

LUKE schools attended ✗
subject:
Organization
object:
Organization

[graduate, government,
association, degree, university,
technology, science, scholar,
receive, research]+ GRAPHCACHE no relation ✓

Table 6: A case study for LUKE and our GRAPHCACHE on the relation extraction dataset TACRED. We report the
predicted relations of different methods, the entity types, and the top 10 words with the highest probabilities of the
topic that the sentence attends with the highest attention weight.

vant or noisy features for every instance. Moreover,537

only a poorly set hyper-parameter does not lead to538

significant performance degradation, which demon-539

strates that our GRAPHCACHE framework is able540

to effectively mine the beneficial properties at the541

dataset level and use them to enhance the relation542

representations for RE.543

4.6 Case Study544

We conduct a case study to investigate the effects545

of our GRAPHCACHE. Tab. 6 gives a qualita-546

tive comparison example between LUKE and the547

LUKE with our GRAPHCACHE on the relation ex-548

traction dataset TACRED. The result shows that549

the global property information that we mine from550

the whole dataset can guide the RE systems to551

make correct predictions. For example, in the first552

row, we model the global entity type information553

of the subject as the person and the object as the554

date from the whole dataset. This type informa-555

tion acts as the prior knowledge that prevents the556

model from making the wrong relation prediction557

of ‘founded’ between the entities ‘Quentin Fab-558

ris’ and ‘1947’ (date). Similarly, in the final row,559

our GRAPHCACHE filters out the incorrect relation560

‘schools attend’, since we model the entity type561

information from the whole dataset and thus enable562

the model to be aware that this relation cannot hold563

for the subject type as ‘organization’.564

In addition, in the second row, the sentence ‘Ac- 565

cording to the suspect, Gonzalez was strangled and 566

buried
::
the

::::
day after the video was made, Rosas 567

said.’ attends to the topic of keywords ‘[stran- 568

gle, die, after, when, injury, day, hospital, police, 569

murder, later]’ in our heterogeneous graph, which 570

enriches the semantics of the sentence with the 571

context related to the death and time. This helps 572

the model to make the correct relation prediction 573

’date of death’. 574

5 Conclusion 575

In this paper, we study the efficient message pass- 576

ing to enhance the relation extraction models. We 577

propose a novel method named GRAPHCACHE, 578

which provides efficient message passing between 579

instances in the whole dataset. GRAPHCACHE is 580

a model-agnostic technique that can be incorpo- 581

rated into popular relation extraction models to 582

enhance their effectiveness without increasing their 583

time complexity. In our work, we present a sim- 584

ple yet effective implementation of GRAPHCACHE, 585

which models two universal and essential proper- 586

ties for relation extraction: entity information and 587

textual context. Our experimental results show 588

that GRAPHCACHE, with our heterogeneous graph, 589

yields significant gains for the sentence-level rela- 590

tion extraction in an efficient manner. 591
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A Proof of the Proposition 847

Proposition 2. At the tth training step, denote the 848

property caches’ representations in the first GNN 849

layer (see Eq. 1) as h̄p(t), and those returned by 850

our updater in Eq. 2 as ĥp(t). There is ĥp(t) = 851

h̄p(t) for ∀p ∈ VP , t > 0. 852

Proof. When t > 1, if ĥp(t− 1) = h̄p(t− 1), we 853

have: 854

ĥp(t) 855

=Updater(ĥp(t− 1), {hs(t), s ∈ B(t)}) (4) 856

=ĥp(t− 1) +
∑

s∈N (p)∩B(t)

hs(t)−M[s]

|N (p)|
857

=
∑

s∈N (p)

M[s]

|N (p)|
+

∑
s∈N (p)∩B(t)

hs(t)−M[s]

|N (p)|

(5)

858

=
∑

s∈N (p)\B(t)

M[s]

|N (p)|
+

∑
s∈N (p)∩B(t)

hs(t)

|N (p)|
(6) 859

=h̄p(t). (7) 860

Besides, because ĥp(0) = h̄p(0) for ∀p ∈ VP 861

holds as initialized in Alg. Alg. 1, we have ĥp(t) = 862

h̄p(t) for ∀p ∈ VP , t > 0. 863
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