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Abstract. Consider the problem of learning undirected graphical mod-
els on trees from corrupted data. Recently [13] showed that it is possible
to recover trees from noisy binary data up to a small equivalence class
of possible trees. Their other paper on the Gaussian case follows a simi-
lar pattern. By framing this as a special phylogenetic recovery problem
we largely generalize these two settings. Using the framework of linear
latent tree models we discuss tree identifiability for binary data under a
continuous corruption model. For the Ising and the Gaussian tree model
we also provide a characterisation of when the Chow-Liu algorithm con-
sistently learns the underlying tree from the noisy data.

1. Introduction

Probabilistic graphical models form a popular family of statistical models
used to describe dependence structure in multivariate scenarios. A partic-
ularly simple instance of a graphical model is when the underlying graph
is a tree. Despite its simplicity, these models can be useful in image/video
classification, for exploratory analysis in high-dimensional settings, and as
first approximations in more complicated systems; see [2, 3, 8, 12, 13, 16]
and references therein.

Parameter estimation, inference, and structure learning is particularly
easy in the case of tree models. Given a random sample from a tree dis-
tribution, there is an efficient way of finding the maximum likelihood tree
given by Chow and Liu [7]. Chow and Liu showed that finding the maxi-
mum likelihood tree can be formulated as a maximum weight spanning tree
problem based on mutual informations — a task for which highly efficient
algorithms exist.

Following [13] we consider the case when the observed random sample is a
corrupted version of the original random sample. The aim of this paper is to
study the most general situation in which recovery of the true tree is possible.
Our first main result is a generalization of the identifiability result in [13]
to the situation of arbitrary discrete variables with an arbitrary but equal
number of states. This is Theorem 4.2, where we prove that the original tree
can be recovered from a noisy distribution, up to label swapping of certain
nodes. Then we specify (mild) conditions on the noise which guarantee

Date: February 11, 2021.
Key words and phrases. Learning tree structure, noisy data on trees, latent tree models.

1

ar
X

iv
:2

10
2.

05
47

2v
1 

 [
st

at
.M

L
] 

 1
0 

Fe
b 

20
21



2

that the complete original tree is identifiable from a noisy distribution (see
Theorem 4.8).

Our approach relies on the observation that the distribution of the cor-
rupted data lies in a latent tree model. Then standard identifiability results
for phylogenetic models can be employed [5, 19]. A similar observation has
been applied for the binary data case in [16], where high-probability sample
complexity guarantees for exact structure recovery were provided.

This insight allows to study the tree recovery problem in much detail.
For example, there is some debate on whether the Chow-Liu algorithm is
applicable in the case of noisy data. Some sufficient conditions have been
studied in [16]. Here, in Theorem 5.1, we give sufficient and necessary
conditions in the case of the binary data and with a very similar argument
in the Gaussian case.

To generalize from the standard discrete setting we discuss the linear
latent tree models [1, 22]. This allows to generalize our main result to the
(multivariate) Gaussian case and beyond; see Theorem 6.3. In particular,
in Section 6.3 we present a simple model for discrete data with a continuous
noise model and we illustrate with simulations how tree recovery performs.

The paper is organized as follows. In Section 2 we define tree model
and the noisy tree distributions. In Section 3 we define latent tree models,
we recall classical results on structure identifiability, and we show how this
problem links to the original problem of recovering the underlying tree from
noisy data. The main results related to this problem are stated in Section 4.
In Section 5 we further build upon these results by studying consistency
of the Chow-Liu algorithm and by providing numerical examples of how
standard phylogenetic recovery methods perform in recovering the true tree
T ∗. The results in Section 4 are further generalized to linear tree models in
Section 6.

There are many types trees that appear in this paper. For reader’s con-
venience we summarize our notation:

T a general tree,
T ∗ the true tree in the underlying tree distribution,
T e the tree obtained from T ∗ by adding a copy of each vertex and linking

it to its counterpart in T ∗.
T the tree obtained from T by suppressing all the degree two nodes (see

Definition 3.4); T e is a special case of this notation with T = T e.

2. Problem formulation

In this section we set-up our problem in the case of discrete data. This will
be extended later in Section 6 to linear models on trees with the Gaussian
model as a special case.

2.1. Tree distributions. Let X = (X1, . . . , Xd) be a random vector with

values in a finite product space X =
∏d
i=1Xi. Without loss of generality

we assume Xi = {0, . . . , ri − 1}, ri ∈ N, ri ≥ 2. Let T ∗ be a tree with
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vertices V = {1, . . . , d}, representing the components of the random vector
X = (X1, . . . , Xd), and with edges E∗. The distribution p of X is Markov
with respect to T ∗ if

p(x) =
∏
ij∈E∗

φij(xi, xj) for all x ∈ X ,

where φij : Xi×Xj → (0,+∞) are some functions, called potentials. By the
Hammersley-Clifford theorem we get then conditional independence charac-
terization in terms of separation in the tree, that is, Xi⊥⊥Xj |XC if C ⊂ V
separates i and j in T ∗; c.f. Theorem 3.9 in [14]. In the binary case, when
Xi = {0, 1}, we equivalently write

p(x) =
1

Z(h, β)
exp

{∑
i∈V

hixi +
∑
ij∈E∗

βijxixj

}
x ∈ {0, 1}d,

where hi, βij ∈ R and Z(h, β) is the normalizing constant. The correspond-
ing model is called the Ising model on T ∗.

The set of distributions that are Markov with respect to T ∗ can be equiv-
alently described by the following Markov process on the tree T ∗. Fix any
inner node ρ ∈ V , call it the root, and direct all edges of T ∗ away from
ρ. Denote by pρ the marginal distribution of Xρ and, for each edge u→ v,
let Muv be the matrix representing the conditional distribution pv|u of Xv

given Xu; Muv
xu,xv = pv|u(xv|xu) for xu ∈ Xu, xv ∈ Xv. Then

p(x) = pρ(xρ)
∏
u→v

pv|u(xv|xu) for all x ∈ X .

Thus, fixing a directed version of T ∗ fixes a parameterization of the set of all
distributions Markov to T ∗ making it into a parametric statistical model.

Remark 2.1. For the above argument ρ did not have to be an inner node of
T ∗. The fact that ρ is assumed to be an inner node will simplify our theory
in later sections.

Suppose that X ∈ X has distribution p that is Markov with respect to
T ∗. Given a random sample from p, the goal is to recover the underlying
tree. As we mentioned in the Introduction, this problem can be solved
very efficiently both from the computational and statistical point of view
by the Chow-Liu algorithm [7], which outputs the tree that maximizes the
likelihood function. Maximizing other functionals like AIC or BIC is also
possible [9]. As we see next, the problem of structure recovery becomes more
complicated in presence of corrupted data, which is the focus of this paper.

2.2. Noisy tree distributions. Assume now that the vector X is not ob-
served directly. Instead, we observe Xe = (Xe

1 , . . . , X
e
d), a corrupted version

of X. Here the only crucial assumption is that for every i ∈ V the distribu-
tion of Xe

i depends on X only through the value of Xi.
The simplest corruption model is a direct generalization of the one used

for the Ising models in [13]: Xi gets corrupted with some probability qi and,
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if that happens, the corrupted value takes uniformly any of the remaining
values. In other words, for every i = 1, . . . , d and k, l ∈ Xi

P(Xe
i = l|Xi = k) =

{
1− qi if l = k,
qi
ri−1 if l 6= k.

It is sensible to assume that qi is relatively small but our main results do not
rely on this assumption. In fact, we consider a much more general corruption
model given, for each i ∈ V , by any square stochastic matrix M i = [pikl] with

(1) P(Xe
i = l|Xi = k) = pikl.

Our problem can be therefore formulated as follows. Given the distribu-
tion of the corrupted version Xe of X recover (i) the underlying tree T ∗, and
(ii) the underlying distribution of X. As we argue in the next section, this
problem can be naturally formulated in the language of latent tree models.
The resulting links with phylogenetics provide new insights and a rich re-
source of relevant results that establish conditions under which T ∗ can be
recovered from the noisy data.

3. Link to phylogenetics

3.1. Latent tree models. Given a tree T = (W,E) with nodes W and
edges E, the underlying tree model for the random vector Y with values in
the discrete space Y =

∏
i∈W Yi is the set of all distributions over Y that

are Markov with respect to T as defined in Section 2.1. Suppose now that

L = {1, . . . , d} ⊂W
is the set of vertices of T corresponding to the leaves of T (vertices of degree
one). The set of marginal distributions of X := YL is called the latent
tree model over T and denoted MY(T ). For a more detailed discussion see
Section 1.1 in [22].

In general, the theory of latent tree models can be quite complicated;
see [20]. In this paper we restrict to the most tractable case where the
cardinality of each Yi is the same, |Yi| = r for every i ∈W . In this case the
corresponding latent tree model is often called the general Markov model
and we denote it by Mr(T ).

Our problem of recovering T ∗ and the underlying distribution from the
noisy observations Xe is very closely connected to the classical problem of
recovering T in a latent tree model Mr(T ). Before we explain this connection
in Section 3.4, we first recall the corresponding classical results following [5].

Definition 3.1. A class of matrices M is reconstructible from rows if for
each M ∈M and each permutation matrix P 6= I, we have PM /∈M.

A natural subset of square matrices that is reconstructible from rows is
obtained by restricting the diagonal entries to dominate the other entries in
the corresponding column. We also formulate the following assumptions on
a latent tree model Mr(T ):
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(A0) T has no nodes of degree two.
(A1) The root distribution satisfies pρ(xρ) > 0 for all xρ ∈ {0, . . . , r − 1}.
(A2) For each edge u → v the transition matrix Muv = [pv|u(xv|xu)] is

invertible and it is not a permutation matrix.
(A3) For each edge u → v the transition matrix Muv is reconstructible

from rows.

The following result follows immediately from Proposition 3.1 and Theo-
rem 4.1 in [5].

Theorem 3.2. Under the assumptions (A0)-(A2) on p ∈Mr(T ) the under-
lying tree T is uniquely identified from p. If, in addition, (A3) holds then
the underlying parameters are identifiable too.

Remark 3.3. Our formulation of this result slightly differs from the original
of Joseph T. Chang [5]. In his version of (A1) he assumes that the positivity
condition holds for some node and we require this condition specifically for
the root. Together with (A2) both versions are equivalent.

3.2. Trees with degree-two nodes. Identifiability results developed in
phylogenetics, like the one above, play a crucial role in this paper. In our
situation however it is important to consider the case where the condition
(A0) does not hold. Then, the tree can never be recovered uniquely. For a
simple illustration consider two models, one of a single edge •−• and one
on the chain •−◦−•, where the middle vertex represents a latent variable.
In case all three variables involved have r states, the family of distributions
over the solid nodes in both models is the same.

Definition 3.4. If u, v are two nodes in T of degree different than two and
such that each node on the unique path between them has degree two then by
suppressing these degree two nodes we mean removing all these intermediate
nodes together with all adjacent edges and adding a direct edge between u
and v.

Denote by T the tree obtained from T by suppressing all the degree two
nodes. The following result can be found, for example, in Section 5.3.4 in
[21].

Proposition 3.5. For any tree T , Mr(T ) = Mr(T ). If p ∈Mr(T ) satisfies
(A1)-(A3) then the same distribution in Mr(T ) satisfies (A0)-(A3).

Remark 3.6. Although the models Mr(T ) and Mr(T ) are equal by Propo-
sition 3.5, their parametrizations are not, as generally T has more vertices
and edges than T . However, if T is rooted at any node of degree differ-
ent than two, the parameters of Mr(T ) can be easily recovered from the
parameters of Mr(T ). In both cases the root distribution pρ is the same.

For each edge u → v in T we also have the same transition matrix Muv

unless u→ v is an edge in T that has been obtained by suppressing degree
two nodes w1, . . . , wk in a path u → w1 → · · · → wk → v; in this case the
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transition matrix Muv is the product of transition matrices in that path,
Muw1 · · ·Mwkv.

3.3. Distance based methods. The tree structure recovery in Theorem 3.2
can be in fact done using only pairwise marginal distributions and this fact
has important consequences for the rest of the paper. For any edge u → v
denote by P uv the r × r matrix of the marginal distribution of (Xu, Xv),
and by P uu a diagonal matrix with the marginal distribution of Xu on the
diagonal. For any two vertices u, v let

(2) τuv :=
det(P uv)√

det(P uuP vv)
,

where the denominator is non-zero if all marginal distributions are strictly
positive. By essentially the same argument as in [19, Theorem 8.4.3] we
obtain the following path-product formula

(3) τij =
∏

(u,v)∈ij

τuv for all i, j ∈W,

where ij denotes the unique path between i and j in T .

Remark 3.7. In the case of binary variables, detP ij = cov(Xi, Xj), det(P ii) =
var(Xi) and so τij is the correlation corr(Xi, Xj).

It can be shown (c.f. Section 2.2 in [22]) that

τ2uv = detMuv detMvu.

Because both Muv and Mvu are stochastic matrices, all their eigenvalues lie
in the unit circle. In particular, τuv ∈ [−1, 1] and it is equal to ±1 precisely
when Muv is a permutation matrix, or in other words, if Xu and Xv are
functionally related. With assumptions (A1) and (A2) we have thus that
τ2uv ∈ (0, 1). Define

duv := − log(τ2uv) > 0

then (3) implies that

(4) dij =
∑
uv∈ij

duv for all i, j ∈W.

In other words duv represent lengths of edges in the tree T and dij are then
distances between vertices calculated by summing the lengths of edges on
the unique path between them in T . The collection of distances between
the leaves D = [dij ]i,j∈L is called a tree metric.

The following classical result assures that T can be recovered from the
underlying tree metric; see Theorem 1 in [4].

Theorem 3.8 (Buneman). If T (with leaves L) has no degree two nodes
and duv > 0 for every edge uv of T . Then T can be uniquely recovered from
the tree metric D = [dij ]i,j∈L.
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Figure 1. A tree T ∗ on the left and the augmented tree T e

on the right. Solid nodes represent corrupted observations.

As we mentioned above the assumptions of this theorem are automatically
satisfied for dij = − log τij in the general Markov model as long as the
assumptions (A0), (A1), and (A2) hold. We finish this section giving the
explicit link between latent tree models and tree models for corrupted data.

3.4. The noisy tree model as a latent tree model. As in Section 2,
consider a tree T ∗ representing a random vector X = (X1, . . . , Xd) and
assume that each Xi can take r states (from now on ri = r for i = 1, . . . , d).
We assume that the distribution of X is Markov with respect to T ∗, so
in particular we can fix a root at an inner node ρ and consider transition
matrices at the directed edges.

We let T e be the tree obtained from T ∗ by adding d extra vertices repre-
senting the noisy variables Xe

i and by linking each Xi with Xe
i by an edge

with the corresponding transition matrix M i; see Figure 1 for an example.
Then T e is a rooted tree with the root ρ. Note that Xe

i is independent of
{Xj , X

e
j : j 6= i} given Xi and so the vector (X,Xe) is Markov with respect

to the augmented tree T e. Consequently, the distribution of Xe lies in the
latent tree model M(T e).

Proposition 3.9. If X has a distribution that is Markov to T ∗, then Xe

has a distribution p that lies in the general Markov model Mr(T
e).

To recover T ∗ from the distribution of Xe we first try to recover T e. For
that, note that T e has a special topology with each inner vertex having one
and only one leaf-child. The degree two nodes in T e correspond precisely to
the leaves of T ∗. This special topology of T e plays a crucial role in the rest
of this paper.

4. Identifying T ∗ from corrupted data

Now that we linked noisy tree models to latent tree models, identifiability
results follow from the theory developed in mathematical phylogenetics. We
exploit in addition the special form of the topology of T e.
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4.1. The equivalence class of T ∗. In our case, the tree T e is obtained
by suppressing in T e the nodes that correspond to the leaves of T ∗; c.f.
Definition 3.4. For the tree in Figure 1, the tree T e is given on the left in
Figure 2.

Recall that in this new language, the goal is to recover T ∗ from a distri-
bution p ∈Mr(T

e).

Theorem 4.1. If p ∈Mr(T
e) satisfies (A1)-(A2) then the tree T e is uniquely

identified from p. If, in addition, p satisfies (A3) then the underlying pa-
rameters of the model Mr(T e) are uniquely identified too.

Proof. By Proposition 3.9, Xe has distribution in Mr(T
e). By Proposi-

tion 3.5, Mr(T
e) = Mr(T e). Moreover, if p ∈ Mr(T

e) satisfies (A1)-(A2)
then p ∈ Mr(T e) satisfies (A0)-(A2). By Theorem 3.2, the underlying tree
T e can be uniquely identified. The same conclusion holds for identifying the
parameters of Mr(T e) if (A3) holds too. �

Denote by [T ∗] the set of all trees S over the vertex set V = {1, . . . , d}
such that Se = T e. Here we mean equality as semi-labelled trees, that is,
Se and T e must have the same topology and labelling of the leaf nodes
but the labelling of the inner nodes is irrelevant. Directly by construction,
T ∗ ∈ [T ∗]. For another example, let T ∗ be the tree on the left in Figure 1,
where the corresponding tree T e is given on the right. The tree T e is given
on the left in Figure 2. Now let S be a tree like T ∗ but 3 swapped with 1
and 2 swapped with 4. The corresponding tree Se is depicted on the right
in Figure 2 and Se = T e.

By Proposition 3.5, if S ∈ [T ∗] then

Mr(T
e) = Mr(T e) = Mr(S

e)

and so we cannot distinguish from the corrupted data between the trees
in [T ∗] because each S ∈ [T ∗] leads to the same model Mr(T e) for Xe.
Theorem 4.1 implies the following result.

Theorem 4.2. If p ∈Mr(T
e) satisfies (A1)-(A2), then T ∗ can be recovered

from p up to the equivalence class [T ∗].

The tree T e is one natural way of representing the equivalence class [T ∗].
To have a concrete description of this equivalence class directly in terms of
T ∗ call an inner node of T ∗ a mother if it is adjacent to at least one leaf
of T ∗. For example, the root and the node 2 in the tree T ∗ in Figure 1 are
mothers.

Proposition 4.3. Let A be the set of mothers in T ∗. Then S ∈ [T ∗] if and
only if S is obtained from T ∗ by label swapping of each node in A and its
adjacent leaves. In particular, the equivalence class [T ∗] is the same as the
one defined in [13].

Proof. All inner nodes of T e have exactly one adjacent leaf. Passing to T e

this changes only for the mother nodes, whose leaves represent the noisy
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1e 2e3e 4e 5e 1e 2e3e 4e 5e

Figure 2. The tree T
e

for T ∗ in Figure 1 and one of the
trees Se for in S ∈ [T ∗].

version of the mother node and the noisy versions of all its leaves (in T ∗).
The same occurs for any tree S in [T ∗], as Se = T e. By shrinking exactly
one leaf edge for each inner node of T e (by shrinking we mean removing the
leaf edge and putting the leaf label as the label of the corresponding inner
node), we recover all inner nodes of T ∗ (resp. S) except for the mother
nodes. Thus, we can identify the node labels in T ∗ up to label swapping of
each mother in A and its adjacent leaves. The last part of the statement
follows from the fact that the set of mother nodes is precisely the set A
defined in Section 3 in [13]. �

As a byproduct of Theorem 4.2 and this characterization of the class of
[T ∗] we obtain:

Corollary 4.4. The unlabelled version of T ∗ can be always correctly iden-
tified from a distribution p ∈Mr(T

e) satisfying (A1)− (A2).

We next discuss two somewhat extreme examples that show that [T ∗] can
be large or small depending on T ∗.

Example 4.5. If T ∗ forms a chain 1− 2− · · · − d with d ≥ 4 then T ∗ has
two mothers: 2 and d − 1. By Proposition 4.3, the equivalence class [T ∗]
contains four trees where the pairs of labels 1, 2 and d− 1, d are potentially
swapped.

Example 4.6. If T ∗ is a star tree with 1 in the center and d − 1 leaves
2, . . . , d then T ∗ has a single mother 1. Since each vertex is a adjacent to 1,
it follows by Proposition 4.3 that [T ∗] contains d star trees with any of the
d vertices of T ∗ being a potential center.

Corollary 4.7. If A is the set of mothers of T ∗ and each mother u in A has
ku adjacent leaves, then the number of trees in [T ∗] equals

∏
u∈A (ku + 1).

Proof. By Proposition 4.3, the trees in [T ∗] are obtained by label swapping
of the nodes u ∈ A with their adjacent leaves. For each node u ∈ A, we
have ku + 1 labels to swap (counting the label of u and its adjacent leaves).
Thus, there are

∏
u∈A (ku + 1) trees in [T ∗]. �



10

This shows that the equivalence class [T ∗] can be still potentially quite
large. We now discuss extra assumptions that allow us to identify T ∗

uniquely.

4.2. Identifying T ∗ exactly. It is possible to completely identify the tree
T ∗ under a mild assumption on the noise of the mother nodes. We formulate
this condition in terms of the distances dij = − log τ2ij defined in Section 3.3.

Theorem 4.8. Let X be a distribution that is Markov with respect to T ∗

and let Xe be a corrupted version of X with a distribution p ∈ Mr(T
e).

Assume that p satisfies (A1), (A2) and
(A4) for each mother u in T ∗, du,ie > du,ue for each leaf i adjacent to u.

Then, the tree T ∗ is uniquely identifiable. If, in addition, p satisfies (A3),
then the underlying parameters corresponding to internal edges of T ∗ can
also be uniquely identified.

Proof. By Theorem 4.1 we can recover the underlying tree T e from the
distances implied by p ∈Mr(T e). Then it is also straightforward to identify
the underlying edge lengths duv for the edges uv of T e. To recover T ∗ we
need to shrink exactly one terminal edge for each inner node of T e; c.f.
the proof of Proposition 4.3. The only ambiguity in recovering T ∗ from T e

comes from the nodes that have more than one leaf (corresponding to the
mother nodes in T ∗). If u is a given mother node then the lengths of the
corresponding terminal edges are du,ue and du,ie for all leaves i adjacent to u
(in T ∗). With our constraints, the node ue is the one of minimum distance
to u. Thus, the tree T ∗ can be completely identified. The last statement
follows directly from Theorem 4.2. �

In terms of the parameters of the distribution, condition (A4) translates
to

detMuue detMue u > detM ieu detMu ie

= (detM iu detMu i)(detM iei detM i ie),

where Muv denotes the conditional distribution of the variable represented
by the node v given the variable represented by the node u. In particular,
for the Ising model on T ∗, this is equivalent to saying that

|corr(Xu, X
e
u)| ≥ |corr(Xu, Xi)corr(Xi, X

e
i )|

for each mother u and each of its adjacent leaves i. In other words, the
correlation between Xu and its noisy version is greater than the correlation
between Xu and the noisy version of any other variable; hardly a controver-
sial assumption to make.

5. Learning T ∗ and its parameters

In this section we briefly review some of the methods that can be used to
learn the tree T e that represents the equivalence class [T ∗] from data. We
also show how this can be extended to learn the parameters of Mr(T e) and
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how it affects the problem of learning T ∗ and the corresponding parameters.
We demonstrate the performance of some of these methods on simulated
data.

5.1. Consistency of the Chow-Liu algorithm. Recall that the Chow-
Liu algorithm [7] relies on computing mutual informations and building the
maximum cost spanning tree of the resulting weighted graph. Following the
debate in [13] on whether the Chow-Liu method is a good method to recover
the tree structure for noisy data, we study the conditions under which noisy
data still allow for consistent estimation of the correct tree in some specific
cases. We focus on the situation when for every i, j the mutual information
I(Xi, Xj) between Xi and Xj is a strictly decreasing function of the distance
dij = − log τ2ij . This includes the binary Ising model with no external field
and more generally the fully symmetric tree models on r states; see Lemma 6
in [6]. The fully symmetric model on r states is a tree model such that each
variable has r states and uniform marginal distribution. Moreover, each
transition matrix is of the form

Muv
ij =

{
1− (r − 1)θij if i = j,

θij otherwise.

In the special case when the mutual informations I(Xi, Xj) are strictly
decreasing function the distances dij = − log τ2ij , we can equivalently build

the minimum cost spanning tree based on the distances D = [dij ]. For
consistency argument, we can replace the sample correlations ρ̂ij with the
actual correlations of the data generating distribution. In this case D = [dij ]
forms a tree metric on T ∗ and T ∗ is the (unique) minimum cost spanning tree
of the complete graph weighted with D; we write T ∗ = MWST(D). This
implies that the Chow-Liu algorithm is a consistent tree recovery method.

To consider consistency of the Chow-Liu algorithm for noisy data note
that now the corresponding distances are d̄ij = − log τ̄2ij where τ̄ij are defined

for (Xe
i , X

e
j ). We have

d̄ij = dij + diie + djje

and so D = [d̄ij ] does not form a tree metric on T ∗. In the next theorem we
provide conditions on the noise distribution that assure that the Chow-Liu
method remains a consistent method for the unique recovery of the true
underlying tree T ∗. In other words, we study the conditions under which
T ∗ = MWST(D). We will use the notation `i := diie = − log(τ2iie).

Proposition 5.1. Suppose that for every i, j the mutual information I(Xi, Xj)
is a decreasing function of dij = − log τ2ij. Then for the Chow-Liu method
to be a consistent tree recovery method with noisy data it must hold that
duv ≥ `u − `v for all edges uv of T ∗ such that u is not a leaf of T ∗. On the
other hand, if all these inequalities are strict, this condition is also sufficient
for unique recovery of T ∗.
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Proof. We first show that the condition in the theorem is necessary. Let uv
in T ∗ be an edge such that u is not a leaf. In this case there exists a node
w such that w 6= v and uw is an edge of T ∗. Consider the cycle (w, u, v).
By the cycle property of the minimum weight spanning tree the condition
T ∗ = MWST(D) implies that d̄uv ≤ d̄vw and d̄uw ≤ d̄vw, which translates
to duw ≥ `u − `w and duv ≥ `u − `v, proving necessity.

Suppose now that the condition of the theorem holds with strict inequali-
ties, that is, duv > `u−`v for all edges uv of T ∗ such that u is not a leaf of T ∗.
Let i, j be any two non-adjacent vertices of T ∗ and let k be any other node
on the path between them. We have d̄ik = dik + `i + `k, d̄jk = djk + `j + `k,
and

d̄ij = dik + dkj + `i + `j .

Similarly, as above we show that d̄ij > max{d̄ik, d̄jk} as long as djk >
`k − `j and dik > `k − `j . This would then imply that ij cannot be an edge

in MWST(D). We show that djk > `k − `j and the proof of the second
inequality is similar. If jk is an edge of T ∗ then djk > `k − `j because k is
not a leaf. If jk is not an edge then there exists a path k− i1− · · · − im− j.
Since k, i1, . . . , im are non-leaves we conclude

djk = dki1 + · · ·+ dimj > (`k − `i1) + · · ·+ (`im − `j) = `k − `j
�

Corollary 5.2. For any symmetric discrete tree model, if `i = ` ≥ 0 for all
1 ≤ i ≤ d then Chow-Liu gives a consistent way of uniquely recovering T ∗

from the noisy data.

Note that the condition duv > `u − `v is equivalent to duve > duue , which
is a natural assumption in many applications. In case this condition does
not hold, Theorem 4.8 assures that T ∗ can be still uniquely identified as
long as the condition duv > `u − `v holds for all cases when u is a mother
node and v is one of its leaves. It is just that this identifiability cannot be
in general obtained using the Chow-Liu algorithm.

There is a handful of algorithms that can be used to learn T e (or equiva-
lently [T ∗]); see, for example, [6, 15]. In case unique recovery conditions in
Theorem 4.8 hold, we can recover T ∗ from T e by shrinking for each inner
node the shortest of its terminal edges.

5.2. Learning T∗ from distances by Neighbor-Joining. One of the
most widely used methods to recover a phylogenetic tree from evolutionary
pairwise distances is Neighbor-Joining (briefly NJ) [17]. In order to test the
performance of this method in the recovery of T e or T ∗ from noisy data, we
have simulated corrupted data on each of the trees T ∗ of Figure 3. We have
restricted ourselves to the fully symmetric model on r states for r = 2 and
r = 4 (also known as the Jukes-Cantor model, [11]) both for the stochastic
matrices Muv and M i. For each edge u → v of T ∗, we have set the off-
diagonal entries of Muv equal to 0.20 for r = 2 and to 0.07 for r = 4 so that
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Figure 3. A chain tree on the left, a binary tree with ten
nodes on the middle and a star tree on the right.

the distance du,v equals 1 for r = 2 and 2 for r = 4. In order to see how
the performance of the method varies when the noise increases, we have set
all distances di,ie equal to ` and let ` vary from 0.01 up to 3 for r = 2 and
up to 4 for r = 4 in intervals of 0.1. Note that in practice we do not expect
` to be larger than 1 (Xi should be correlated more with its noisy version
than with other variables). Finally, for each set of parameters we considered
1000 experiments, each with sample size 5000 from the corresponding tree
distribution.

Using the normalized Robinson-Foulds distance (as implemented in [18]),
we measure how far is the recovered tree from the original tree class [T ∗]
(that is, from T e). Note that NJ always outputs binary trees while the
trees T e we are considering are not binary trees. Thus, we set a tolerance ε
such that if the estimated length of an internal edge is smaller than ε, we
shrink that edge. In Figure 4 we show the results for different values of ε.
We observe that the best results are obtained when ε is about half of the
length of the branches of T ∗. As expected, as the noise ` (the length of the
corrupted branches) increases, it becomes more difficult to recover T e. For
example,when ` is smaller than the length of the original edges of the tree
(i.e. ` ≤ 1 for r = 2 or ` ≤ 2 for r = 4), then we obtain highly successful
results for almost all values of ε. It is worth noting that for ` = 2 we have
transition matrices with condition number 2.72 for r = 2 and 1.4 for r = 4;
similarly, for ` = 3 transition matrices have condition number 4.48 for r = 2
and 1.65 for r = 4. This has to be taken into account in relation to the
hypothesis (A2) about the invertibility of transition matrices (see Theorem
4.1) and gives an insight to the different performance we obtain for r = 2
and r = 4.

In practice, the choice of the threshold ε from data could be done in a data-
driven manner. However, any such procedure would be better implemented
if there were some previous knowledge on the noise level or on underlying
tree. Indeed, the case of a chain tree is dramatically different than a star
tree with the former being the one that gives best results and the star tree
the worst.
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Figure 4. Performance of NJ on corrupted data on r = 2
states (top) and r = 4 states (bottom) simulated on the
trees of Fig 3. The lengths of the edges of T ∗ have been
set to 1 for r = 2 and 2 for r = 4 and the length ` of the
corrupted branches varies in the x-axis. The figures show the
normalized Robinson-Foulds distance between the recovered
tree and T e for different thresholds ε for which the internal
branches are shrunk. On the bottom left figure, the distance
is zero for all values of ε and all lengths of corrupted branches.

For the binary tree, we have also implemented a slightly different pro-
cedure for tree recovery that uses the prior knowledge that the underlying
tree is binary: we shrink the shortest internal edges of the tree output by
NJ until the internal structure (i.e. removing external edges) gives a binary
tree. We present these results in Figure 5. In this case, we obtain excellent
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Figure 5. Performance of NJ on corrupted data on r = 2
states (left) and r = 4 states (right) simulated on the binary
tree of Fig 3. The lengths of the edges of T ∗ have been
set to 1 for r = 2 and 2 for r = 2 and the length l of the
corrupted branches varies in the x-axis. The figures show the
normalized Robinson-Foulds distance between the recovered
tree with its shortest edges shrunk until the internal structure
is a binary tree and T e.

results for r = 4 (in both cases, for r = 2 and r = 4, the results are similar
to the ones obtained with ε = 0.5 and 1, respectively).

We also implemented the recovery of T ∗ based on Theorem 4.8 for the
same simulated data. If T e is correctly obtained, then T ∗ is successfully
reconstructed most of the times (so we do not include figures with this
information) for all the trees. Actually, for the binary and the star tree, T ∗

is correctly recovered 100% of the times (both for r = 2 and r = 4, and
for any ε). For the chain tree the performance drops slightly for r = 2 and
` > 0.5. In this case 94% of the times when T ∗ is not correctly identified,
the recovered tree differs from T ∗ by one leaf.

6. Generalizations to linear models

We now briefly mention a generalization to linear models on trees; see
Section 2.3 in [22] for more details. This generalizes the discrete case dis-
cussed in the previous sections, the Gaussian case, and some other cases of
interest. In particular, it allows us to discuss continuous corruption models
for discrete data as the one in Section 6.3.

6.1. Linear models on trees. In this section the vector X takes values
in any product space X =

∏d
i=1Xi, where Xi do not have to be discrete.

We consider that X follows a linear model on the tree T ∗. This means that
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X is Markov with respect to T ∗ and for every edge u → v on the rooted
version of T ∗ the conditional expectation E(Xv|Xu) is an affine function of
Xu. Models of this type were first discussed in [1]. A canonical example
of such a situation is the Gaussian model on T ∗. However, it also includes
the discrete case discussed earlier. We explain this last connection in the
following example.

Example 6.1. If X = (X1, . . . , Xd) is a discrete random vector with each
component having r values {0, 1, . . . , r − 1} we encode these states with

{0, e1, . . . , er−1} ⊂ Rr−1,

where ei is the i-th canonical unit vector in Rr−1 and 0 ∈ Rr−1 is the zero
vector. A ternary variable, for example, will take values (0, 0), (1, 0), (0, 1)
in R2 instead of the typical 0, 1, 2 in R. The conditional expectation

T (xw) := E[Xu|Xw = xw]

is an affine function of xw. The value of T (ei) is simply the vector in Rr−1
whose entries are the conditional probabilities of Xu being 1, 2, . . . , r − 1
given Xw = ei. Indeed, the conditional mean of this vector valued variable
satisfies

E[Xu|Xw = ei] = 0 · P(Xu = 0|Xw = ei) +

r−1∑
j=1

ej · P(Xu = ej |Xw = ei).

Similarly, T (0) is the vector whose entries are the conditional probabilities
of Xu being 1, 2, . . . , r − 1 given Xw = 0. We have T (xw) = Axw + b where
b = T (0) and the columns of A are the vectors T (ei)− T (0).

The fact that Gaussian undirected tree models fall into this category
follows because the undirected graphical model over T ∗ can be represented
by a system of linear equations on the rooted version of T ∗, where for each
edge u→ v we have Xv = λuvXu + εv with λuv ∈ R and εv being zero-mean
Gaussian and independent of each other. Then E[Xv|Xu] = λuvXu is linear.

In general, let each variable Xu for u ∈ V be modelled as a random vector
in Rr−1 for a fixed r. Each variable can be either discrete or continuous but
we add a requirement that:

(AL1) The matrix Σvv = EXvX
T
v − EXv(EXv)

T is positive definite for ev-
ery v ∈ V .

This assumption has an analogous role as assumption (A1) for general
Markov models.

To complete the model description we also assume that the corrupted
version Xe of X depends in a linear way on X in the sense that E(Xe

u|Xu)
is an affine function of Xu for every u ∈ V . As always, we assume that Xe

i
depends on X only through the value of Xi. If X follows a linear model on
the tree T ∗ then (X,Xe) follows a linear model on the corresponding tree
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T e. Our goal is to show that in this case we can recover the equivalence
class [T ∗] from the distribution of Xe.

6.2. The induced tree metric. The distribution of Xe gives a tree metric
on T e. Define the normalized version X̄v of Xv as

X̄v := (Σvv)
−1/2(Xv − EXv).

Denoting Σuv = EXuX
T
v − EXu(EXv)

T we obtain

(5) E[X̄u|Xv] = Σ−1/2uu ΣuvΣ
−1/2
vv X̄v,

where we used that E[Xu|Xv] is affine, or equivalently, that E[Xu|Xv] =
EXu + ΣuvΣ

−1
vv (Xv − EXv). In analogy to (A2) we assume:

(AL2) For each edge u→ v the matrix Σuv is invertible and Σvv 6= ΣvuΣ−1uuΣuv.

To see that Condition (AL2) is analogous to (A2) note that if Σvv =
ΣvuΣ−1uuΣuv then

A := Σ−1/2uu ΣuvΣ
−1/2
vv = (Σ−1/2vv ΣvuΣ−1/2uu )−1.

By (5) it follows that E[X̄u|X̄v] = AX̄v and E[X̄v|X̄u] = A−1X̄u. But this
implies that E[E(X̄u|X̄v)|X̄u] = X̄u and so Xv contains all the information to
fully recover Xu and the other way around; meaning that these two variables
are functionally related.

Define
τuv := det(Σ−1/2uu ΣuvΣ

−1/2
vv ) = det(E[X̄uX̄

T
v ]).

Proposition 6.2. Under assumptions (AL1) and (AL2), τ2ij ∈ (0, 1) and

dij = − log τ2ij defines a tree metric.

Proof. We first show that τ2uv ∈ (0, 1) for all edges u→ v. The fact that τuv
cannot be zero follows immediately from (AL1) and (AL2). To show τ2uv < 1,
equivalently we need to show that det Σ2

uv < det Σuu det Σvv. By applying
Everitt’s inequality [10, Theorem 1] to the 2(r − 1) × 2(r − 1) covariance
matrix

Σ =

[
Σuu Σuv

Σvu Σvv

]
we conclude that det Σ2

uv ≤ det Σuv det Σvv with equality if and only if Σvv =
ΣvuΣ−1uuΣuv. By (AL2) this last condition cannot hold, proving that τ2uv < 1
for all edges u→ v.

We now show that τ2ij ∈ (0, 1) for all i, j and that the distances dij =

− log τ2ij form a tree matrix. Let Xu, Xv, Xw be three random variables with

values in Rr−1 such that Xu⊥⊥Xw|Xv. By the law of total expectation

E[X̄uX̄
T
w ] = E

[
E[X̄u|Xv](E[X̄T

w |Xv])
T
]

= Σ−1/2uu ΣuvΣ
−1
vv ΣvwΣ−1/2ww ,

which implies that τuw = det(E[X̄uX̄
T
w ]) = τuvτvw. Applying this argument

recursively we conclude that the path-product decomposition of τij given
in (3) holds for any linear latent tree model; c.f. [22] for more details. This
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implies that τ2ij ∈ (0, 1) and that the collection of distances dij = − log τ2ij
for all i, j ∈ L gives a tree metric. �

Proposition 6.2 and Theorem 3.8 give immediatelly the following result.

Theorem 6.3. If (X,Xe) follows a linear model on T e and (AL1), (AL2)
hold then T ∗ can be recovered from the distribution of Xe up to the equiva-
lence class [T ∗].

A special case of this set-up is given by the Gaussian model on T ∗. We
note that in the Gaussian case the Chow-Liu algorithm also boils down to
computing the minimum weight spanning tree of the complete graph with
weights d̂ij = − log ρ̂2ij . This shows that Theorem 5.1 extends to this case.

Proposition 6.4. Theorem 5.1 holds also for the Gaussian model on T ∗.

6.3. Continuous corruption Ising model. The linear model framework
not only generalizes the discrete results but also it greatly extends possible
models of corruption for which identifiability can be assured. In this section
we briefly discuss a simple model of continuous corruption for binary data.
So suppose X = {0, 1}d but Xe is a continuous random variable with values
in [0, 1]d. For example, in image analysis applications, X could have values
black/white with Xe taking values on the grayscale.

Since every function of a binary variable Xi is affine, Xe
i could be an

arbitrary random variable whose definition depends on X only through Xi.
We call this a continuous corruption Ising model. Theorem 6.3 immediately
gives the following result.

Theorem 6.5. In the continuous corruption Ising model satisfying assump-
tions (AL1) and (AL2) we can identify [T ∗] from the correlation matrix of
Xe. If the noise satisfies condition (A4), T ∗ can be identified uniquely.

To conclude we provide some simulations where the conditional distribu-
tion of Xe

i given Xi = k is Beta(αik, β
i
k), which is a natural and tractable

choice for a distribution on [0, 1]. This means that the density of Xe
i given

Xi = k ∈ {0, 1} is

pi(y|k) =
Γ(αik + βik)

Γ(αik)Γ(βik)
yα

i
k(1− y)β

i
k y ∈ [0, 1],

where Γ denotes the Gamma function. For identifiability purposes we as-
sume

(6)
αi0
βi0

< 1 <
αi1
βi1
.

For any edge u→ v in T ∗ the conditional expectation E[Xv|Xu] is a linear
function of Xu. Similarly,

E[Xe
i |Xi = k] = (1− k)

αi0
αi0 + βi0

+ k
αi1

αi1 + βi1
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Figure 6. Performance of NJ on corrupted data on r = 2
states simulated on the trees of Fig 3. The lengths of the
edges of T ∗ have been set to 1. Parameters αi0 and βi1 are
equal to 1 while αi1 = βi0 vary in the x-axis. The figures
show the normalized Robinson-Foulds distance between the
recovered tree and T e for different thresholds ε for which the
internal branches are shrunk.

and so we obtain a version of a linear tree model. Assumption (6) assures
that E[Xe

i |Xi = 0] < 1
2 and E[Xe

i |Xi = 1] > 1
2 .

Given a distribution X on a tree T ∗, we have computed the corrupted
distribution Xe assuming αi0 = βi1 = 1 and αi1 = βi0 = a, where the param-
eter a varies from 2 (that corresponds to the length of the corrupted edge
` = 1.2) to 5 (` = 0.16) satisfying the condition 6. For each possible value
of αi1 = βi0 = a we have generated 1000 samples of size 1000 of the vector
Xe.

The NJ algorithm has been used to recover the tree T e from the sample
correlation matrix of Xe. We measure how far is the recovered tree from
T e using the normalized Robinson-Foulds distance introduced in Section
5.2. In Figure 6 we present the mean of the normalized Robinson-Foulds
distance for the samples on the three trees of Figure 3. As in Section 5.2
we present the results for different tolerances ε. This tolerance ε is set such
that we shrink the internal edges of the tree produced by NJ if the estimated
length of the edge is smaller than ε. We can observe that in this case, the
performance is higher than for the discrete case.

Similarly as in Section 4, we have also studies the problem of recovering
a binary tree using the prior knowledge that T ∗ is binary. In this case we
get almost 100% recovery rate as soon as a ≥ 3.

We also implemented the recovery of T ∗ based on Theorem 4.8 for the
same simulated data. In the case of the binary and the star tree, T ∗ is
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Figure 7. Percentage of times that the chain tree T ∗ is
successfully reconstructed if T e is correctly produced by NJ.
Parameters αi0 and βi1 are equal to 1 while αi1 = βi0 vary in
the x-axis. The percentage of correct reconstructed trees T ∗

are presented for different thresholds ε.

successfully reconstructed 100% of the times if αi1 = βi0 > 2 and more than
97% of the times for αi1, β

i
0 = 2, independently of the chosen tolerance ε.

The percentage of times that the correct tree T ∗ is recovered for the case of
the chain tree is presented in Figure 7.
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Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat
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