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Abstract

Visual Programming has recently emerged as001
an alternative to end-to-end black-box visual002
reasoning models. This type of method lever-003
ages Large Language Models (LLMs) to gener-004
ate the source code for an executable computer005
program that solves a given problem. This006
strategy has the advantage of offering an in-007
terpretable reasoning path and does not require008
finetuning a model with task-specific data. We009
propose PropTest, a general strategy that im-010
proves visual programming by further using an011
LLM to generate code that tests for visual prop-012
erties in an initial round of proposed solutions.013
Our method generates tests for data-type consis-014
tency, output syntax, and semantic properties.015
PropTest achieves comparable results to state-016
of-the-art methods while using publicly avail-017
able LLMs. This is demonstrated across differ-018
ent benchmarks on visual question answering019
and referring expression comprehension. Par-020
ticularly, PropTest improves ViperGPT by ob-021
taining 46.1% accuracy (+6.0%) on GQA using022
Llama3-8B and 59.5% (+8.1%) on RefCOCO+023
using CodeLlama-34B.024

1 Introduction025

Visual reasoning tasks often require multi-hop rea-026

soning that goes beyond surface-level observations.027

This type or reasoning typically involves complex028

multi-step processes, external knowledge, or under-029

standing of compositional relationships between030

objects or entities. End-to-end vision and language031

models based on deep neural networks trained032

with huge amounts of data are used to tackle these033

tasks (Li et al., 2023; Alayrac et al., 2022; Yu et al.,034

2022; Driess et al., 2023; Li et al., 2022a; Wang035

et al., 2023). However, these methods often fail036

at multi-hop compositional reasoning as they aim037

to solve a wide array of reasoning tasks in a sin-038

gle forward pass. Recent work has proposed Vi-039

sual Programming as a principled way to tackle040

visual reasoning (Gao et al., 2023; Surís et al.,041

2023; Gupta and Kembhavi, 2023; Subramanian 042

et al., 2023). These techniques work by leveraging 043

a Large Language Model (LLM) to generate the 044

logic of a program in the form of its source code 045

that can be used to solve the problem. These meth- 046

ods can combine various tools in complex ways 047

and offer interpretability and the opportunity to 048

diagnose failures in their predicted logic. 049

Visual programming methods that rely on code 050

generation and program execution to solve a task 051

still rely on end-to-end pre-trained Vision Lan- 052

guage Models (VLMs) either as tools that can be 053

invoked by the program or as a fallback option 054

when the generated code contains syntax or run- 055

time errors. In other words, if the generated code 056

contains errors, then a default end-to-end VLM is 057

invoked. For these methods to be effective, the 058

generated source code should produce solutions 059

that lead to correct results on average more often 060

than their fallback VLM. However, there are still 061

many instances where a generated source code con- 062

tains no syntax or runtime errors, but the logic of 063

the program produces results that contain incorrect 064

logic to solve the problem. Some of these are easier 065

to spot, such as instances where the code returns 066

the wrong data type, or the wrong type of answer 067

for the given problem (e.g. answering with a lo- 068

cation when the question is about a quantity). We 069

posit that code testing and assertion error checking 070

which are established practices in software devel- 071

opment, should also help these types of methods in 072

guiding them toward better solutions. 073

We introduce PropTest, a visual programming 074

framework that generates automatic property test 075

cases to guide code generation and identify logic 076

that is likely to contain errors. Fig. 1 showcases 077

a motivating example for our proposed method. 078

PropTest first generates property test cases using 079

an LLM which probes for data type inconsisten- 080

cies, syntactic errors, and semantic properties of 081

the results. For instance, in the showcased question 082
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Outputs whether there is an 
appliance above the bananas 

Generated Code
Baseline

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
banana_patches = image_patch.find("banana”)
if len(banana_patches) == 0:

return image_patch.simple_query("What appliance is above the bananas?”)
banana_patch = banana_patches[0]
appliance_patches = image_patch.find("appliance”)
if len(appliance_patches) == 0:

return "no"
for appliance_patch in appliance_patches:

if appliance_patch.vertical_center > banana_patch.vertical_center:
return "yes"

return "no"

PropTest
Generated Property Test Case

Provides extra check signaling that 
the answer should be an appliance

Finds the appliance that is 
above the bananas and returns 
a name 

Baseline: yes

PropTest: microwave

Question: What appliance is 
above the bananas?

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, syntax) 
# Test case 1: 
assert isinstance(result, str), "Expected output to be string." 
# Test case 2: 
assert len(result.split()) in [1, 2], "Expected output to be one or two words" 
# Test case 3: 
assert llm_query(f"Is {result} an appliance?”, long_answer = False) == 'yes’, 

"Expected output to be an appliance" 
return result

Generated Code

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
banana_patches = image_patch.find("banana")
if len(banana_patches) == 0:

return image_patch.simple_query("What appliance is above the banana?")
for banana_patch in banana_patches:

appliance_patches = image_patch.find("appliance”)
for appliance_patch in appliance_patches:

if appliance_patch.vertical_center > banana_patch.vertical_center:
# crop would include the appliance so keep it in the query
return appliance_patch.simple_query("What is the name of the appliance?") 

# If no appliance is above the banana, pick the first appliance
return appliance_patches[0].simple_query ("What is the name of the appliance?") 

Figure 1: Visual programming methods generate code for a program to solve a vision-and-language task such as
VQA. PropTest improves on these methods by automatically generating testing code that probes for several output
properties. This is used as additional information when generating code and checking the correctness of the output
solutions. As a baseline we use ViperGPT under CodeLlama-7B for this example.

What appliance is above the bananas?, the gener-083

ated test code anticipates that the answer should be084

a Python string data type, that it should be limited085

to one or two words, and that the output should be086

a type of appliance. We find that this type of tests087

consistently help the LLM generate code for the088

program that is less likely to contain errors.089

PropTest can filter out incorrect outputs result-090

ing from errors in logic or failures in dependent091

modules and redirect these cases when appropri-092

ate to the fallback VLM. Moreover, PropTest pro-093

vides additional information about failure cases094

and in characterizing the type of errors. Addi-095

tionally, previous visual programming methods096

rely on closed-source models, making it hard to097

reproduce results due to continuous version up-098

dates, deprecation of older models (e.g., Codex),099

and usage costs (Gupta and Kembhavi, 2023; Surís100

et al., 2023; Subramanian et al., 2023). Our main101

experiments rely exclusively on public models,102

such as CODELLAMA (Roziere et al., 2023) and103

LLAMA3 (AI@Meta, 2024), which we expect to104

serve as stable baselines for future work on this105

area. We evaluate PropTest on three different106

tasks: Compositional visual question answering107

(GQA (Hudson and Manning, 2019)), External108

knowledge-dependent image question answering109

(A-OKVQA (Schwenk et al., 2022)), and Visual110

grounding (RefCOCO and RefCOCO+ (Yu et al.,111

2016)). Our experiments show that property tests 112

significantly enhance performance across these 113

benchmarks. We also analyze detailed errors from 114

a software engineering perspective (assertion, run- 115

time, and syntax). 116

Our contributions can be summarized as follows: 117

• We propose PropTest, a novel framework that 118

uses automatic property test case generation 119

for detecting logic, syntax, and runtime errors, 120

which are used to guide code generation. 121

• PropTest improves interpretability when er- 122

rors occur, bridging the gap between LLMs 123

and VLMs on code generation. 124

• Our proposed method obtains superior results 125

on four benchmarks compared to a baseline 126

model conditioned on four different publicly 127

available LLMs and one proprietary LLM. 128

2 Method 129

We introduce PropTest, a framework for leveraging 130

property test code generation. A commonly rec- 131

ommended practice in software development is to 132

write tests first and then write the code for the logic 133

of the program so that it passes the tests. This is the 134

responsible programmer approach to software de- 135

velopment. We emulate this approach in PropTest 136

by first generating testing code and then generating 137

code to solve the task conditioned on the testing 138

code. Fig. 2 shows an overview of our method. 139
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Figure 2: An overview of PropTest. Given an image and a question, the goal is to generate Python code that can be
executed to get an answer. PropTest first calls an LLM to generate test cases based on the inferred properties of the
answer. Then, the generated test cases are used to improve the quality of Python code.

Let us consider a question such as What kind of140

toy is the boy playing with?, we can easily infer141

that the answer should be a type of toy. We utilize142

this insight to provide information to the code gen-143

eration model, narrowing down the search space144

rather than only relying on single-step prompt op-145

timization. Additionally, generating property test146

cases is generally simpler than generating code147

because test cases are shorter and more straight-148

forward. Creating an easier test case first sets a149

baseline to generate more complex code. Property150

test cases guide the code generation process and151

increase the likelihood of generating accurate and152

effective code solutions.153

Our framework first generates property test cases154

using an LLM by providing a problem statement155

as a prompt, e.g., a question, or a referring expres-156

sion. The source code for these generated tests157

is then added to the prompt of the LLM, along158

with the original problem statement and detailed159

API documentation of the available tools or mod-160

ules. We employ the same API and tools used in161

ViperGPT (Surís et al., 2023), which also relies on162

generic functions from the Python programming163

language. The code generation model then out-164

puts the code solution that addresses the problem165

statement and returns a plausible result.166

We concatenate the generated property test case167

and the code solution and apply an execution en-168

gine where we also provide the visual input. There169

can be a syntax or runtime error inside the gener-170

ated main code. An assertion error will occur if171

the code output does not pass any of the property172

test cases. If execution proceeds without errors,173

including syntax, runtime, or assertion errors, the174

result is returned, and the process concludes. In175

the event of an error, we default to a task-specific176

fallback VLM and return.177

3 Property Test Case Generation 178

The purpose of using a property tests is to verify 179

whether a generated code works as expected. Our 180

property tests guide an LLM to generate better code 181

that meets basic properties. The design of property 182

test cases varies based on the data type of the an- 183

swer due to the different tools (APIs) available for 184

each type. In this section, we explain in detail 185

the design process for prompts used to generate 186

property tests for visual question answering tasks, 187

where the task answer is text (section 3.1) and for 188

visual grounding tasks, where the task answer is an 189

image with bounding boxes (section 3.2). 190

3.1 Property Tests for Visual Question 191

Answering 192

Visual question answering tasks contain queries 193

that require multi-hop reasoning or external knowl- 194

edge. To solve these tasks, we propose two prop- 195

erty test case generation strategies along with cor- 196

responding in-context prompts to guide the LLM 197

toward the generation of property tests with similar 198

logic. We include our prompts in Appendix A.3. 199

Basic Property Test Case Generation. This type 200

of test only relies on basic Python functions without 201

using external APIs or tools. As shown in Fig. 3a, 202

this approach is effective when the question men- 203

tions several candidates. Furthermore, this strategy 204

can be applied to yes-or-no questions, where it 205

checks the type of the property. 206

Advanced Property Test Case Generation. For 207

this type of test cases, we also allow the use of tools 208

through an API specification, specifically the use 209

of an LLM that can check the output result through 210

various properties. Particularly, our generated test 211

code can use an llm_query() function to construct 212

more advanced assertion statements. Fig. 3b shows 213
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(c) Visual Grounding Property Test Case(b) Advanced VQA Property Test Case(a) Basic VQA Property Test Case

What kind of cuisine is this?

def execute_test(image):
result = execute_command(image)
# Test case 1
assert isinstance(result, str), 

"Expected output to be string”
# Test case 2
assert len(result.split()) in [1,2], 

"Expected output to be one or two words"
# Test case 3
assert llm_query(f"Is {result} a type of cuisine?",         

long_answer=False) == 'yes’, 
"Expected output to be a type of cuisine"

return result

Is the soccer player that is to the left 
of the ball female or male?

def execute_test(image):
result = execute_command(image)
# Test case 1
assert result in [‘female’, ‘male’],

"Expected output to be female or male”
return result

The player facing right with hand up

def execute_test(image):
result = execute_command(image)
# Test case 1
assert ‘yes’ in result. simple_query(

“Is there a player?”). lower( ),    
"Expected output to have a player”

# Test case 2
assert bool_to_yesno(result. verify_property(

“player” , “facing right”)), 
“Expected output to have a player facing right”

# Test case 3
assert bool_to_yesno(result. verify_property(

“player”, “hand up”)), 
“Expected output to have a player with hand up”

return result

Figure 3: Three different examples of property test cases generated for visual question answering and for visual
grounding. The execute_command() is the generic name of the generated program code routine and result is the
output from executing it.

an example where given the question What kind of214

cuisine is this?, the first test case checks the return215

data type, which should be a Python string. Then216

a second assertion checks that the output is just217

one or two words in length. The third test case218

checks the semantic property of the returned result.219

Knowing that the expected answer should be a type220

of cuisine, we use LLM queries in the test case221

to verify whether the result correctly identifies a222

cuisine type. This effectively narrows the expected223

result space for the code generation model, helping224

it produce more accurate solutions.225

3.2 Property Tests for Visual Grounding226

Visual grounding tasks require returning a bound-227

ing box in an image that corresponds to an input228

text query. To construct property test cases for such229

tasks, we utilize a set of tools that take images as230

inputs. Particularly, our test code can use functions231

such as simple_query(), verify_property(),232

and bool_to_yesno(). The simple_query()233

function is used to answer straightforward ques-234

tions about the image, verify_property()235

checks whether an object has a given attribute as a236

property, and bool_to_yesno() converts boolean237

values into "yes" or "no" responses. As shown in238

Fig. 3c, given the input referring expression the239

player facing right with hand up, our test case be-240

gins by confirming if a player is inside the result241

bounding box. It then proceeds to verify, in se-242

quence, whether the identified player is facing right243

with hand up, thus checking whether the given out-244

put is likely to reflect the given query.245

4 Experiments 246

We introduce the experimental setup (section 4.1), 247

and report the results on different LLMs (sec- 248

tion 4.2) 249

4.1 Experimental Setup 250

Tasks and Metrics. We validate PropTest on 251

the Visual Question Answering (VQA) and Vi- 252

sual Grounding tasks. For VQA, we evaluate 253

on GQA (Hudson and Manning, 2019), and A- 254

OKVQA (Schwenk et al., 2022), which contain 255

complex multi-hop questions that require compo- 256

sitional reasoning skills. We adopt exact match 257

accuracy as our evaluation metric for GQA, where 258

answers must correspond with a single ground truth 259

answer. We use soft accuracy (SAcc) (Antol et al., 260

2015) for A-OKVQA. For Visual Grounding, we 261

choose standard benchmarks, including testA split 262

on RefCOCO and RefCOCO+ (Yu et al., 2016). 263

The evaluation metric is the intersection over union 264

(IoU) score. 265

Model Comparison. Similar to prior work, for 266

VQA we use BLIP-2 (Li et al., 2023) as our fall- 267

back VLM, and GLIP (Li et al., 2022a) for Visual 268

Grounding. The tools and API specifications for 269

PropTest are consistent with those employed by 270

ViperGPT (Surís et al., 2023), ensuring a standard- 271

ized basis for comparison. Therefore, for our exper- 272

imental comparisons, we compare PropTest with 273

other code generation models - ViperGPT (Surís 274

et al., 2023), and end-to-end models including 275

BLIP-2 (Li et al., 2023) and GLIP (Li et al., 2022a). 276

The only other publicly available neuro-symbolic 277
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(a) Results on GQA using different LLMs
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(b) Results on A-OKVQA using different LLMs
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(c) Results on RefCOCO using different LLMs
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(d) Results on RefCOCO+ using different LLMs

Figure 4: Comparison of our method against visual programming methods with different LLMs across two tasks,
four benchmarks. We report Accuracy on two visual question answering benchmarks, and IoU on two visual
grounding benchmarks. GPT-4o* results are only tested on 500 subsamples.

method is the concurrent work from Wang et al.278

(2024), which uses CODELLAMA-7B.279

Implementation Details. We implement PropTest280

using the open-source LLMs including CODEL-281

LAMA (7B, 34B) (Roziere et al., 2023) and282

LLAMA3 (8B, 70B) (AI@Meta, 2024) for code283

generation. The specific implementation details are284

described in Appendix A.285

4.2 Results286

Quantitative Results. One common concern with287

previous work is that evaluations performed with288

API-based black-box models (e.g. GPT-3.5, GPT-289

4) are hard to reproduce and track as there are many290

different upgrades on these models. They can also291

be discontinued (e.g. Codex), making past work292

non-reproducible. Our main experiments are con-293

ducted using CODELLAMA and LLAMA3, which294

are publicly available and free to use for research295

purposes. As part of our work, we will also release296

an API-free implementation of ViperGPT. Addi-297

tionally, we evaluate PropTest using GPT-4o to298

contextualize our work. We limit our evaluation to299

500 randomly sampled subsets for each data split,300

specifically for GPT-4o.301

Our main results are shown in Fig. 4. Over-302

all, PropTest shows improvements over ViperGPT 303

in all settings. The model that provides the most 304

gain varies by dataset, smaller models such as 305

CodeLlama-7B and Llama3-8B tend to benefit 306

more with PropTest (e.g., +6.0% on GQA with 307

Llama3-8B, +4.9% on A-OKVQA with both LLMs 308

and +7.1% on RefCOCO+ with Llama3-8B) but 309

even larger models also show gains, including 310

GPT-4o. Notably, CodeLlama-34B outperforms or 311

shows greater improvement over ViperGPT com- 312

pared to Llama3-70B across all datasets. This is 313

due to CodeLlama-34B’s training with code, mak- 314

ing it superior in code generation despite its smaller 315

size relative to Llama3-70B. We also noticed that 316

GPT-4o shows the best results on all datasets. 317

Moreover, PropTest outperforms the fallback 318

VLMs we rely on, while also providing enhanced 319

interpretability in all settings. The fallback VLM 320

results are 42.4%1 on GQA, 45.1% on A-OKVQA, 321

55.0% on RefCOCO, and 52.2% on RefCOCO+. 322

While ViperGPT sometimes underperforms com- 323

pared to VLMs depending on the LLMs, PropTest 324

remains robust, performing well on all models, in- 325

cluding smaller ones. 326

1Result under the same setting as ViperGPT, differing from
the original work (Li et al., 2023)
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def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
guy_patches = image_patch.find(”guy")
guy_in_suit_patches = [g for g in guy_patches if g.verify_property(”guy”, ”suit”)]
if len(guy_in_suit_patches) == 0:

guy_in_suit_patches = guy_patches
guy_in_suit_patches.sort(key=lambda guy:guy.horizontal_center)
guy_patch = guy_in_suit_patches[0]
return guy_patch

PropTest: tokyo

Question: What is the largest 
city in the nation where this 
plane is headquartered?

Baseline: new york

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert isinstance(result, str), "Expected output to be string." 
# Test case 2: 
assert len(result.split()) in [1, 2], 

"Expected output to be one or two words" 
# Test case 3: 
assert llm_query(f"Is {result} a city?”, long_answer = False) == 'yes’, 

"Expected output to be a city" 
return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
guesses = []
plane_location= image_patch.simple_query(" Where is this plane headquartered?")
external_knowledge_query = "What is the largest city in the nation where {} is 

headquartered?".format(plane_location)
step_by_step_guess = llm_query(external_knowledge_query)
guesses.append("where is this plane headquartered is{}".format(plane_location) + 

", so " + step_by_step_guess)

direct_guess = image.simple_query("What is the largest city in the nation where       
this plane is headquartered?")

guess.append(direct_guess)
return process_guesses ("What is the largest city in the nation where this plane is 

headquartered?", guesses)

PropTest: yes

Question: Are there either 
any chairs or televisions that 
are black?

Baseline: no

def execute_test(image): 
result = execute_command(image, my_fig,  time_wait_between_lines,

syntax) 
# Test case 1: 
assert result in [ “yes”, “no”], "Expected output to be yes or no" 
return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
chairs_patches = image_patch.find("chairs”)
televisions_patches = image_patch.find("televisions”)
black_chairs = []
black_televisions = []
for chair_patch in chairs_patches:

if chair_patch.verify_property("chair”, "black”):
black_chairs.append(chair_patch)

for television_patch in televisions_patches:
if television_patch.verify_property("television”,"black”):

black_televisions.append(television_patch)
return bool_to_yesno(len(black_chairs) > 0 or len(black_televisions) > 0)

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert ”yes” in simple_query(“Is there a guy?”).lower(), 

"Expected output to be a guy" 
# Test case 2: 
assert bool_to_yesno(result.verify_property (“guy”, “suit”)), 

"Expected output to be a guy in a suit" 
return result

Referring expression: 
guy in suit

Generated Test Generated Code

Generated Test Generated Code

Generated Test Generated Code

PropTest:

Baseline:

Figure 5: Example results on GQA, A-OKVQA and RefCOCO. We show cases where PropTest succeeds but the
baseline ViperGPT fails. Input questions and answers are shown on the left, generated property test cases in the
middle, and code on the right.

We did not compare our models to previous vi-327

sual programming methods that use closed API-328

based LLMs (Yuan et al., 2024; Subramanian et al.,329

2023; Chen et al., 2023b), as it would be unfair or330

unfeasible due to the different or deprecated LLMs331

used in those models.332

Qualitative Results. Fig. 5 shows representative333

examples of the types of property tests that get gen-334

erated and output programs. By leveraging prop-335

erty test cases, PropTest generates a code with cor-336

rect logic and results on cases that fail to return a337

correct answer due to logical errors on ViperGPT.338

In addition, we illustrate cases with logical errors339

that produce assertion errors in Appendix C. By340

checking on logical errors, PropTest provides ex-341

tra interpretability on the reason for failure. More342

qualitative results are shown in Appendix B.343

5 Error Analysis & Discussion344

In this section, we first focus on the question: What345

types of errors does the code generation model346

produce? We analyze the errors in the generated347

code from ViperGPT and PropTest across datasets,348

categorizing them into three basic Python errors:349

Dataset Method # Errors Assert. Runt. Syntax

GQA ViperGPT 411 (3.3%) - 322 89
PropTest 1264 (10.0%) 1001 227 36

A-OKVQA ViperGPT 11 (1.0%) - 9 2
PropTest 174 (15.2%) 169 3 2

RefCOCO ViperGPT 281 (5.0%) - 240 41
PropTest 871 (15.4%) 617 241 13

RefCOCO+ ViperGPT 435 (7.6%) - 386 49
PropTest 1132 (19.8%) 875 250 7

Table 1: Error Analysis on ViperGPT (Surís et al., 2023)
and PropTest across benchmarks using Llama3-8B in-
cluding runtime and syntax errors.

Assertion, Runtime, and Syntax errors. We report 350

results using Llama3-8B in Table 1. 351

We first note that code generation models pro- 352

duce more errors in visual grounding tasks than 353

in VQA tasks. This is because visual ground- 354

ing involves stricter assertions in test cases, lead- 355

ing to a higher frequency of assertion errors. In 356

visual grounding, all test cases check the result 357

image_patch for specific properties, and errors 358

occur when objects or properties are missing. In 359

contrast, VQA often involves simpler yes-or-no 360
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w/o VLMs as fallback w/ VLMs as fallback

Dataset ViperGPT PropTest
PropTest

w/o running tests
PropTest

GQA 39.1 43.8 45.8 46.1
A-OKVQA 42.8 42.8 47.3 48.1
RefCOCO 60.1 61.6 63.8 64.4
RefCOCO+ 50.2 55.8 58.1 58.5

Table 2: Ablation study on the reliance on Visual Lan-
guage Models (VLMs) for error handling in generated
code and the impact of executing test cases.

checks, where incorrect results might still pass the361

test. Furthermore, RefCOCO+ has a higher overall362

error rate compared to RefCOCO due to its com-363

plex queries. The simpler queries in RefCOCO364

make PropTest generate test cases that accurately365

identify the target object, resulting in fewer errors.366

Detailed analysis with examples is in Appendix C.367

We also find that due to additional assertion er-368

rors, PropTest has higher overall errors compared to369

ViperGPT. Nevertheless, PropTest notably reduces370

runtime and syntax errors on three datasets (e.g.,371

322 → 227 runtime, 89 → 39 syntax errors in372

GQA). This reduction indicates that the inclusion373

of property test cases enhances code generation374

quality in the aspects of runtime and syntax errors.375

However, the increase in assertion errors, leading376

to a rise in total errors, implies that PropTest relies377

more on the fallback model. This raises the ques-378

tion: Does the performance gain of PropTest come379

from an increased dependence on VLMs?380

To address this, we compare the performance381

of ViperGPT and PropTest without using the fall-382

back model for error handling, as shown in Table 2.383

Across all datasets, PropTest either outperforms384

or performs on par with ViperGPT, demonstrating385

that the performance gain is from improved code386

quality rather than increased reliance on VLMs.387

Now, we move on to another question: How388

does running a test case during execution help389

when there is an error? To address this, we com-390

pare PropTest with an approach that does not run391

test cases when errors occur. Our findings show392

that running test cases in the presence of errors393

increases accuracy, indicating that our generated394

property test cases are effective at detecting incor-395

rect code (e.g., +0.8 in A-OKVQA).396

6 Property Test Analysis397

In this section, we investigate generated property398

tests in depth by comparing two types of VQA399

Method Acc. # Errors Assert. Runt. Syntax

Basic VQA 45.6 732 (5.8%) 469 232 31
Advanced VQA 46.1 1264 (10%) 1001 227 36

Table 3: Error analysis on GQA dataset using basic
and advanced property tests using Llama3-8B, includ-
ing runtime and syntax errors. APIs are used for the
Advanced VQA property test cases, where only basic
Python functions are used in Basic VQA.

property test cases (section 6.1) and evaluating the 400

generated property test cases (section 6.2). 401

6.1 Basic vs Advanced Property Tests 402

Table 3 shows the accuracy and error analysis 403

of two types of VQA property test cases using 404

Llama3-8B. Advanced property test cases have 405

higher accuracy compared to basic tests. Using 406

advanced property test case generation produces 407

almost twice as many errors as basic property test 408

case generation. This is due to an extra seman- 409

tic property test, which leads to more assertion 410

errors. Advanced property test cases will be longer 411

and more complicated than basic test cases, which 412

causes more syntax errors (e.g., 31 → 36). 413

6.2 Generated Property Test Evaluation 414

We first evaluate our generated property tests on 415

correctness by using the answers. If an answer 416

passes the generated test, we count it as correct. 417

We report this as accuracy in Table 4. We also 418

examine the quality of our property test cases by 419

using toxicity rate (Chen et al., 2022). If the pro- 420

duced results pass the test while the answer fails 421

the test, we assume the test case is toxic. Advanced 422

VQA property test cases have lower accuracy and 423

higher toxic rates compared to basic VQA tests be- 424

cause they generate complicated property test cases 425

that check semantic properties using tools. 426

Moreover, we present a 2× 2 confusion matrix 427

for the advanced property test cases generated on 428

GQA using Llama3-8B in Fig. 6. The matrix shows 429

a high number of false positives, primarily due to 430

the flexibility of VQA property test cases. For ex- 431

ample, these tests often check for binary answers 432

(yes or no), which can pass even if the result is 433

incorrect. The confusion matrix for the basic prop- 434

erty test case and for the visual grounding test case 435

are provided in Appendix D. 436
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Method Dataset Acc. Toxic rate

Basic VQA GQA 95.7% 0.03%
Advanced VQA GQA 91.7% 0.04%

Table 4: Accuracy and toxic rate of generated property
test cases on GQA with Llama3-8B. APIs are utilized
in Advanced VQA property test cases, while only basic
Python functions are used in Basic VQA.
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Property Test Case (Advanced)

Co
rre

ct
 R

es
ul

t
W

ro
ng

 R
es

ul
tRe

su
lt

5419
(43.08%)

382
(3.04%)

5895
(46.87%)

882
(7.01%)

Confusion Matrix

1000

2000

3000

4000

5000

Sc
al

e

Figure 6: Confusion Matrix of the generated advanced
property test cases on GQA using Llama3-8B. We show
the counts of correct and incorrect results, further di-
vided by whether they passed or did not pass the gener-
ated property test case.

7 Related Work437

End-to-end vision language models (VLMs) are438

generally trained on large datasets containing439

images paired with text descriptions or instruc-440

tions (Li et al., 2023; Alayrac et al., 2022; Yu et al.,441

2022; Driess et al., 2023; Li et al., 2022a; Liu et al.,442

2023; Guo et al., 2023; Wang et al., 2023). By443

learning correlations between visual features and444

linguistic patterns, VLMs can understand sophis-445

ticated relations between images and text using a446

single forward pass through a deep neural network.447

These models, however large, are still bounded by448

what functions can be learned and encoded in their449

model weights.450

On the other hand, with the rise of LLMs for451

code generation in recent years (Chen et al., 2021;452

Roziere et al., 2023; Guo et al., 2024; Nijkamp453

et al., 2023; Luo et al., 2023), a recent set of meth-454

ods in visual recognition have adopted the use of455

these models to solve visual tasks using a hybrid456

approach where VLMs and other computer vision457

models are used as tools by one of these code gen-458

eration LLMs to generate a program that can solve459

a given task (Surís et al., 2023; Gupta and Kemb-460

havi, 2023; Subramanian et al., 2023). This type461

of neuro-symbolic reasoning model was referred462

to as Visual Programming by Gupta and Kemb-463

havi (2023). These methods lead to an executable464

program that decomposes complex visual reason-465

ing queries into interpretable steps, which are then466

executed to produce results. These methods de- 467

fine APIs (tools) they use during the execution, 468

with functions mapped to off-the-shelf vision mod- 469

ules such as object detectors (He et al., 2017; Li 470

et al., 2022a), depth estimators (Ranftl et al., 2022), 471

among many others. These methods benefit from 472

not needing extra training while enhancing reason- 473

ing capabilities and interpretability. The perfor- 474

mance of these methods depends on the tools or 475

APIs the model leverages and the quality of the gen- 476

erated code. One line of work focuses on creating 477

better and more diverse toolsets to improve accu- 478

racy (Yuan et al., 2024; Chen et al., 2023b; Wang 479

et al., 2024). Efforts to enhance code quality have 480

been made by code refinement techniques, incor- 481

porating various types of feedback, such as visual, 482

textual, error-related, and human feedback (Gao 483

et al., 2023). Self-tuning mechanisms have also 484

been explored to optimize model hyperparameters 485

automatically (Stanić et al., 2024). Our proposed 486

method builds upon these findings, aiming to maxi- 487

mize the efficacy of VLMs (Li et al., 2023, 2022a) 488

through property testing that is more specific to the 489

visual domain. 490

Meanwhile, writing test cases is a common tech- 491

nique used by software developers to avoid writing 492

code that contains programming errors. Similarly, 493

it has enhanced code generation in code contest 494

tasks. Test cases are used to detect errors and give 495

feedback for self-refinement (Le et al., 2023; Chen 496

et al., 2023a; Olausson et al., 2023). Another line of 497

work generates test cases by mutating existing test 498

inputs (Li et al., 2022b) or by using LLMs (Chen 499

et al., 2022). Our research, however, differs from 500

these methods by generating property test cases that 501

check different properties of the output, and utiliz- 502

ing these test cases as an additional input when 503

generating code. 504

8 Conclusion 505

This paper presents PropTest, a novel framework 506

for leveraging property test case generation to 507

improve the quality of generated program code 508

in visual programming. PropTest shows consis- 509

tent improvements on VQA and Visual Ground- 510

ing datasets with four open-source code generation 511

LLMs. Interestingly, we find that common soft- 512

ware development advice which dictates that we 513

should first write testing code before implementing 514

new functionality, also applies to LLM-based code 515

generation. 516
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9 Limitations517

PropTest is an initial work that applies property test518

case generation for visual reasoning. Although the519

PropTest is a very promising framework for visual520

reasoning, there are several limitations that can be521

mentioned. First, PropTest requires an extra LLM522

inference to generate property test code, which will523

require extra time and resources, but we expect that524

as faster LLMs are supported in the future, this525

becomes less of an issue. Additionally, PropTest526

needs to design a specific property test case prompt527

depending on the type of the result (image or text).528

This can be resolved by adding an LLM that can529

design an automatic prompt depending on the task.530

Although less common, the code generated for531

the property tests themselves could also contain532

logical errors which limits their usefulness, and533

additionally, the tools they rely upon could also534

introduce errors. These limitations can be resolved535

by integrating visual programming works focused536

on tool generation (Yuan et al., 2024; Wang et al.,537

2024) or self-refining (Gao et al., 2023; Stanić et al.,538

2024) to enhance the code generation skills. Fi-539

nally, although the discussed datasets show strong540

performance, numerous visual reasoning tasks,541

such as video causal/temporal reasoning, remain to542

be explored in future research.543
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A Experimental Details722

We provide a detailed description of APIs (tools)723

used in PropTest in Section A.1, LLMs in Sec-724

tion A.2 and prompts in Section A.3.725

A.1 APIs (Pretrained Model) Details726

Here, we specify the APIs (tools) we used:727

⋄ llm_query(), process_guess(): We use728

Llama3-8B-Instruct (AI@Meta, 2024) and set the729

model to generate at most 256 tokens, temperature730

as 0.6 and top_p as 0.9.731

⋄ verify_property(): We use open vocabu-732

lary object detector, GLIP (Li et al., 2022a) is used.733

We used the same version used in ViperGPT (Surís734

et al., 2023).735

⋄ best_text_match(): Image-text embedding736

model, X-VLM (Zeng et al., 2022) fine-tuned ver-737

sion for retrieval on MSCOCO is used, which is738

also used in ViperGPT.739

⋄ simple_query(): We use BLIP2 (Li et al.,740

2023) with Flan-T5 XXL from its official reposi-741

tory.742

⋄ compute_depth(): The “DPT_Large” version743

from the PyTorch hub4 of MiDaS (Ranftl et al.,744

2022) was used.745

⋄ find(): We use MaskRCNN (He et al., 2017)746

for detecting objects and GLIP for detecting peo-747

ple.748

A.2 LLM Details749

LLM Specific Model

Llama3-8B meta-llama/Meta-Llama-3-8B-Instruct
Llama3-70B meta-llama/Meta-Llama-3-70B-Instruct
CodeLlama-7B meta-llama/CodeLlama-7b-Instruct-hf
CodeLlama-34B meta-llama/CodeLlama-34b-Instruct-hf
Gpt-4o gpt-4o-2024-05-13

Table 5: Specific details of the LLMs we use in PropTest.
We used Huggingface versions for public LLMs.

Table 5 shows the specific models used for prop-750

erty test case and code generation. We set the tem-751

perature as 0 and top_p as 1 to avoid randomness752

for all LLMs.753

A.3 Prompt Details754

In this section, we provide prompts of PropTest.755

First, the system prompt we used for property test756

case generation is as follows:757
758

You are an expert programming assistant. Only answer with a759
function starting with def execute_test.760761

For the code generation, we used the following 762

system prompt: 763
764

Only answer with a function starting def execute_command. 765766

We used two different prompt templates for test 767

case generation and two different prompt templates 768

for code generation. Fig. 7 shows the first prompt 769

template for property test case generation, used for 770

GQA. Fig. 8 illustrates the second prompt template, 771

which was used for property test case generation 772

in A-OKVQA, RefCOCO, and RefCOCO+. For 773

RefCOCO and RefCOCO+, we only used the first 774

line of the guideline. 775

The first prompt template for code genera- 776

tion, as depicted in Fig. 9, is applied to both 777

GQA and A-OKVQA datasets. The API descrip- 778

tions and in-context examples are derived from 779

ViperGPT (Surís et al., 2023) but have been short- 780

ened for brevity. We also employed the same set of 781

8 in-context examples. For A-OKVQA, only the 782

first two guideline points were used. 783

# CONTEXT #
The 'solve_query' function is a Python function that takes an

image as input and returns an answer to a <<QUERY>> in a
string format.

# OBJECTIVE #
Create a Python function named `execute_test` that checks the

correctness of the `solve_query` function using the
given <<QUERY>>.

<<EXAMPLES>> are the in-context examples.
Include up to four test cases, each with the comment `# Test

case n:` above the assert statement, starting from 1.
Consider these guidelines when creating the test cases:
1. Keep in mind that the return values do not contain numbers.
2. If the Query is True or False questions, the return values

will be yes or no.
3. If the Query gives options using "or", the return values

will be one of the options.
4. Use the llm_query function to answer informational

questions not concerning the image.

# STYLE #
technical, in a correct Python format

# TONE #
clear, precise, professional

# AUDIENCE #
Developers and engineers who will use the test functions to

verify the correctness of the solve_query function

# RESPONSE #
Provide the function that start with 'def execute_test(image)'

without any explanation.
Each test case should be commented with `#Test case n:` where

`n` represents the test case number.

###
Here are some <<EXAMPLES>>:
{{{{{{ TEN IN-CONTEXT EXAMPLES GOES HERE }}}}}}
###
# Instruction #
Generate the the function execute_test for the following query:

<<Query>>: INSERT_QUERY_HERE

Figure 7: First prompt template used to generate a
property test case. In-context examples are omitted
for brevity.
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Q: Your task is to write a function using Python containing
tests up to four to check the correctness of a
solve_query function that solves a provided answer to
the query.

You must write the comment "#Test case n:" on a separate line
directly above each assert statement,

where n represents the test case number, starting from 1 and
increasing by one for each subsequent test case.

Here are some examples:

<<<<< TEN IN-CONTEXT EXAMPLES >>>>>

Consider the following guidelines:
- Only answer with a function starting with def execute_test.
- Return value of the solve_query function is a string with

one or two words.
- Use the llm_query function to answer informational questions

not concerning the image.

Query: INSERT_QUERY_HERE

Figure 8: Second prompt template used to generate
a property test case. This template was used for A-
OKVQA, RefCOCO, and RefCOCO+. In-context ex-
amples are omitted for brevity.

from PIL import Image
from vision_functions import find_in_image, simple_qa,

verify_property, best_text_match

<<<<< API DESCRIPTIONS >>>>>

# Examples of using ImagePatch

<<<<< 8 IN-CONTEXT EXAMPLES >>>>>

Write a function using Python and the ImagePatch class (above)
that could be executed to provide an answer to the

query.

Consider the following guidelines:
- Use base Python (comparison, sorting) for basic logical

operations, left/right/up/down, math, etc.
- Assertion tests (below) is used to verify the expected

output. Consider these when writing the function.
- Do not return None or "Unknown". If the answer is not found,

return image_patch.simple_query("INSERT_QUERY_HERE") to
ask a question about the image.

Query: INSERT_QUERY_HERE
Assertion tests:
INSERT_ASSERTION_TESTS_HERE

Figure 9: First prompt template used to generate a code.
This template is used for GQA and A-OKVQA. API
descriptions and in-context examples are omitted for
brevity.

Fig. 10 depicts the second template for code784

generation, used for RefCOCO and RefCOCO+.785

The API descriptions are from ViperGPT, and in-786

context examples differ by dataset. Also, for Ref-787

COCO+, we used the following guidelines:788
789

Consider these guidelines when creating the function:790
- Use base Python (comparison, sorting) for basic logical791

operations, left/right/up/down, math, etc.792
- Consider the properties of the expected returned `793

ImagePatch` object from the << ASSERTION_TESTS >> to794
write the function.795

- The function must only return an `ImagePatch` object. Do796
not return None.797

- If the object in the query is not found directly, attempt798
to find a person and check if the person possesses or is799
associated with the specified object (e.g., wearing800

specific clothing).801
802803

# Context #
We are working on a visual grounding task, which involves

identifying and returning the specific area of an image
that corresponds to a given << QUERY >>. Using the <<
IMAGE_PATCH_CLASS >>, we aim to generate a Python
function named `execute_command` to solve this task.

<< IMAGE_PATCH_CLASS >>

{{{{{ API DESCRIPTIONS }}}}}

#####################

# Objective #
Write a function named `execute_command` using Python and <<

IMAGE_PATCH_CLASS >> to answer the given << QUERY >>.
Use the provided << ASSERTION_TESTS >> to understand the
expected properties of the `ImagePatch` object that the
function should return.

Consider these guidelines when creating the function:
- Use base Python (comparison, sorting) for basic logical

operations, left/right/up/down, math, etc.
- Consider the properties of the expected returned `ImagePatch

` object from the << ASSERTION_TESTS >> to write the
function.

- The function must only return an `ImagePatch` object. Do not
return None.

Here are some <<EXAMPLES>>:

{{{{{ 11 IN-CONTEXT EXAMPLES }}}}}

#####################

# RESPONSE #
Provide the function that starts with 'def execute_command(

image)' without any explanation.

#####################
# START GENERATING CODE #
Generate the the function 'execute_command' for the following

<< QUERY >> and << ASSERTION_TESTS >>.
<< QUERY >>: INSERT_QUERY_HERE
<< ASSERTION_TESTS >>:
INSERT_ASSERTION_TESTS_HERE

Figure 10: Second prompt template used to generate
a code. This template is used for RefCOCO and Ref-
COCO+. API descriptions and in-context examples are
omitted for brevity.

B Qualitative Results 804

We provide additional examples across datasets. 805

Fig.11 plots the results on GQA and A-OKVQA 806

and Fig.12 shows results on RefCOCO and Ref- 807

COCO+. 808

C Error Analysis 809

We conduct a deeper analysis of the errors gener- 810

ated when using Llama3-8B. Fig. 15 shows a case 811

where a property test case detects a logical error by 812

raising an assertion error. By checking the prop- 813

erties of the result, PropTest identifies codes with 814

incorrect logic and offers additional explanations 815

for the failure. 816

A number of runtime errors were detected across 817

datasets. In GQA, the most common runtime er- 818

ror was due to incorrect usage of the attributes of 819

Class ImagePatch, as shown in Fig. 16 (top). Re- 820

fCOCO frequently encountered List index out 821
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PropTest: meat

Question: From which item 
can you get the most protein?

Baseline: eggs

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert isinstance(result, str), "Expected output to be string." 
# Test case 2: 
assert len(result.split()) in [1, 2], 

"Expected output to be one or two words" 
# Test case 3: 
assert llm_query(f"Is {result} a food item?”, long_answer = False) == 'yes’, 

"Expected output to be a food item" 
return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
guesses  = []
food_items = image_patch.simple_query(" What are these food items?")
if food_items:

protein_info = {}
for food_item in food_items.split(‘,’):

protein_info[food_item] = llm_query(f "What is the protein content of {food_item}?”)
max_protein = max(protein_info.values(), key=lambda x: int(x.split()[0]))
result = [food_item for food_item, protein in protein_info.items() 

if protein = max_protein][0]
return result

else:
return ”No food items found”

PropTest: cabinets

Question: Which kind of 
furniture is white?

Baseline: kitchen

def execute_test(image): 
result = execute_command(image, my_fig,  time_wait_between_lines,

syntax) 
# Test case 1: 
assert isinstance(result, str), "Expected output to be string." 
# Test case 2: 
assert len(result.split()) in [1, 2], 

"Expected output to be one or two words" 
# Test case 3: 
assert llm_query(f”Is {result} a kind of furniture?”,

long_answer = False) == 'yes’, 
"Expected output to be a kind of furniture" 

return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
furniture_patches = image_patch.find(”furniture”)
if len(furniture_patches) == 0:

return image_patch.simple_query(”Which kind of furniture is white?")
for furniture_patch in furniture_patches:

if furniture_patch simple_query(”Is the furniture white?") == ”yes”:
return image_patch.simple

_query(”What kind of furniture is white?") 
return image_patch.simple_query(”Which kind of furniture is white?")

Generated Test Generated Code

Generated Test Generated Code

Figure 11: Example results on GQA and A-OKVQA. We present instances where PropTest is successful, whereas
the baseline does not achieve the desired outcome. Input question and answer is shown on the left, generated
property test case in the middle, code on the right and result on the left bottom.

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert ”yes” in simple_query(“Is there a person?”).lower(), 

"Expected output to be a person" 
# Test case 2: 
assert bool_to_yesno(result.verify_property (“person”, “beige hat”)), 

"Expected output to be a person with a beige hat" 
# Test case 3: 
assert bool_to_yesno(result.verify_property (“man”, “waving”)), 

"Expected output to be a person waving" 
return result

Referring expression: 
person with beige hat waving

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert ”yes” in simple_query(“Is there a guy?”).lower(), 

"Expected output to be a guy” 
# Test case 2: 
assert bool_to_yesno(result.verify_property (“guy”, “hat”)), 

"Expected output to be a guy with hat" 
return result

Referring expression: 
guy on the left with hat def execute_command(image, my_fig, time_wait_between_lines, syntax):

image_patch = ImagePatch(image)
person_patches = image_patch.find(”guy")
guy_patches = [g for g in guy_patches if g.verify_property(”guy”, "hat”)]
if len(guy_patches) == 0:

guy_patches = [image_patch]
guy_patches.sort(key=lambda g: g.horizontal_center)    
guy_patch = guy_patches[0]
return guy_patch

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert ”yes” in simple_query(“Is there a man?”).lower(), 

"Expected output to be a man" 
# Test case 2: 
assert bool_to_yesno(result.verify_property (“man”, “blue outfit”)), 

"Expected output to be a man with blue outfit" 
# Test case 3: 
assert bool_to_yesno(result.verify_property (“man”, “side cut off”)), 

"Expected output to be a man with side cut off" 
# Test case 4: 
assert bool_to_yesno(result.verify_property (“man”, “black”)), 

"Expected output to be a man with black" 
return result

PropTest:

Referring expression: 
man with blue outfit on 
side cut off with black

Baseline:

None

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
man_patches = image_patch.find(”man")
man_patch = best_image_match(man_patches,

[“blue outfit”, “side cut off”, “black”])
return man_patch

Generated Test Generated Code

Generated Test Generated Code

Generated Test Generated Code

Baseline:

PropTest:

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
person_patches = image_patch.find(”person")
person_patch = best_image_match(person_patches,

[“beige hat”, “waving”])
return person_patch

PropTest:Baseline:

None

Figure 12: Example results on RefCOCO and RefCOCO+. We present instances where PropTest is successful,
whereas the baseline does not achieve the desired outcome. Input question and answer is shown on the left, generated
property test case in the middle, code on the right and result on the right bottom.
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Method Dataset Acc. Toxic rate

Visual Grounding RefCOCO 89.0% 0.02%
Visual Grounding RefCOCO+ 84.8% 0.03%

Table 6: Accuracy and toxic rate of generated property
test cases on visual grounding tasks with Llama3-8B.
APIs are utilized in visual grounding property test cases.
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Figure 13: Confusion Matrix of the basic generated
property test cases on GQA using Llama3-8B. We show
the counts of correct and incorrect results, further di-
vided by whether they passed or did not pass the gener-
ated property test case.

of range errors, caused by the failure of the tool822

find() to detect an object (Fig. 16 (bottom)).823

Moreover, we identified a behavior unique to824

Llama3-70B, which tends to generate code with825

high time complexity. As illustrated in Fig. 17,826

Llama3-70B often employs an exhaustive search827

to locate an object, even when a more efficient828

method like find() could be used. To handle these829

cases, we implemented a timer to raise an error if830

the execution exceeds 3 minutes, categorizing such831

instances as errors.832

D Generated Property Test Case Analysis833

First, Table 6 shows the evaluation of our gener-834

ated visual grounding property test cases using the835

same two metrics as in Table 4. RefCOCO+ has836

lower accuracy and a higher toxic rate compared to837

RefCOCO, which can be due to the more complex838

queries within the RefCOCO+ dataset.839

Additionally, we depict a confusion matrix of ba-840

sic VQA property test cases on GQA using Llama3-841

8B in Fig. 13. The matrix depicts a high number842

of false positives because most basic VQA prop-843

erty tests check for data type, word length, and844

binary answers (yes or no), which can pass despite845

incorrect results.846

Fig. 14 plots the confusion matrix for visual847

grounding property test cases on RefCOCO and848
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(b) RefCOCO+

Figure 14: Confusion Matrix for visual grounding prop-
erty test cases on RefCOCO and RefCOCO+ using
Llama3-8B. We consider the result to be correct if the
IoU exceeds a threshold of 0.7.

RefCOCO+. Half of the dataset falls under true 849

positives (57.5% on RefCOCO and 50.0% on Ref- 850

COCO+), with a low true negative rate (0.04% on 851

RefCOCO and RefCOCO+), indicating the high 852

quality of our generated property test cases. We 853

observe a high number of false positives, similar to 854

other datasets. This may be due to instances where, 855

even if the IoU is below the threshold of 0.7, there 856

is still an object or property that matches the query. 857
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def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert isinstance(result, str), "Expected output to be string." 
# Test case 2: 
assert len(result.split()) in [1, 2], 

"Expected output to be one or two words" 
# Test case 3: 
assert llm_query(f"Is {result} a kind of furniture?”,

long_answer = False) == 'yes’,
"Expected output to be a kind of furniture" 

return result

Question: Which kind of
furniture is wooden?

Generated Test Generated Code

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
furniture_patches = image_patch.find(”furniture”)
if len(furniture_patches) == 0:

return image_patch.simple_query(”Which kind of furniture is wooden?")
for furniture_patch in furniture_patches:

is_wooden= furniture_patch.simple_query(”Which kind of furniture is wooden?") 
if is_wooden == “yes”:

return is_wooden
return image_patch.simple_query(”Which kind of furniture is wooden?")

Assertion Error: Expected output to be a kind of furniture

PropTest Final Result: desk
execute_command result: yes

Answer: desk

Figure 15: Example of failure case on GQA dataset using Llama3-8B where PropTest raises an assertion error. The
final result is produced by BLIP-2 (Li et al., 2023). PropTest provides extra interpretability on the reason for failure
by producing assertion errors.

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
bottle_patches = image_patch.find(”bottle")
green_patches = [b for b in bottle_patches if b.verify_property(”bottle”, ”green”)]
if len(green_patches) == 0:

return bottle_patches[0]
return green_patches[0]

Referring expression: 
green bottle

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert ”yes” in simple_query(“Is this green?”).lower(), 

"Expected output to be green”
return result

Generated Test Generated Code

Error: List index out of range - Failed at detecting “bottle”

Question: Are the cabinets 
below the stove wooden 
and open? def execute_test(image): 

result = execute_command(image, my_fig, time_wait_between_lines,
syntax) 

# Test case 1: 
assert result in [ “yes”, “no”], "Expected output to be yes or no" 
return result

Generated Test Generated Code

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
stove_patches = image_patch.find("stove”)
# Question assumes only one stove patch
if len(stove_patches) == 0:

# If no stove is found, query the image directly
return image_patch.simple_query("Are the cabinets below 

the stove wooden and open?")
for stove_patch in stove_patches:

cabinets_patches = image_patch.find("cabinets”)
for cabinets_patch in cabinets_patches:

if cabinets_patch.lower()< stove_patch.lower():
return bool_to_yesno(image_patch.verify_property("cabinets", "wooden”)

and image_patch.verify_property("cabinets", "open"))
# If no cabinets are found below the stove, query the image directly
return image_patch.simple_query("Are the cabinets below the stove 

wooden and open?")

Error: 'int' object is not callable 
correct usage is cabinet_patch.lower

Figure 16: Examples of failure cases on GQA and RefCOCO dataset using Llama3-8B where PropTest raises a
runtime error. PropTest provides extra interpretability on the reason for failure by producing assertion errors.

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
building_patches = image_patch.find(”building")
# Question assumes only one building patch
if len( building_patches) == 0:

# If no building is found, query the image directly 
return image_patch.simple_query("What is in front of the building?”)     

building_patch = building_patches[0]
objects_in_front = []
for x in range(image_patch.width):

for y in range(image_patch.height):
if x > building_patch.left and y > building_patch.lower and x <   

building_patch.right and y < building_patch.upper:
object_patch = image_patch.crop(x, y, x+1, y+1)
object_name = object_patch. simple_query("What is this?”) 
if object_name!= "building":

objects_in_front.append(object_name)
if len(objects_in_front) == 0:

return image_patch. simple_query("What is in front of the building?”) 
return objects_in_front[0]

def execute_test(image): 
result = execute_command(image, my_fig, time_wait_between_lines, 

syntax) 
# Test case 1: 
assert isinstance(result, str), "Expected output to be string." 
# Test case 2: 
assert len(result.split()) in [1, 2], 

"Expected output to be one or two words" 
# Test case 3: 
assert llm_query(f”Can you find {result} in front of a building?”,

long_answer = False) == 'yes’, 
"Expected output to be something you can find in front of a building" 
return result

Question: What is in 
front of the building?

Generated Test Generated Code

Answer: trees

Use exhaustive search to find an object in front of the building

Figure 17: Example of inefficient code generated by Llama3-70b.
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