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Abstract

Evaluating the performance of causal discovery algorithms that aim to find causal relation-
ships between time-dependent processes remains a challenging topic. In this paper, we show
that certain characteristics of datasets, such as varsortability Reisach et al. (2021) and R2-
sortability Reisach et al. (2023), also occur in datasets for autocorrelated stationary time
series. We illustrate this empirically using four types of data: simulated data based on SVAR
models and Erdős-Rényi graphs, the data used in the 2019 causality-for-climate challenge
(Runge et al., 2019), real-world river stream datasets, and real-world data generated by the
Causal Chamber of Gamella et al. (2024). To do this, we adapt var- and R2-sortability to
time series data. We also investigate the extent to which the performance of continuous
score-based causal discovery methods goes hand in hand with high sortability. Arguably,
our most surprising finding is that the investigated real-world datasets exhibit high var-
sortability and low R2-sortability indicating that scales may carry a significant amount of
causal information.

1 Introduction

Inferring causal relationships between variables in a multivariate time series setting is an ongoing topic of
research in many fields, including economics/econometrics (Varian, 2016), climate science (Runge et al.,
2019; Runge, 2020), medicine (Yazdani & Boerwinkle, 2015) and neuroscience (Bergmann & Hartwigsen,
2021). The process of inferring causal structure from data is often referred to as causal discovery or causal
structure learning. Most of the literature on causal discovery is devoted to the following two types of methods:
Constraint-based causal structure learning algorithms, such as the PC-algorithm (Spirtes & Glymour, 1991)
and PCMCI (Runge, 2020) for time series data, use tests of conditional independence to iteratively learn a
causal graph. Score-based method such as GES (Chickering, 2002) fit a directed acyclic graph (DAG) to the
data by optimising a score function, but need to search a large discrete space of DAGs which is an NP-hard
problem.

More recently, Zheng et al. (2018) have proposed to embed the discrete DAG-search space into a continuous
one through a differentiable acyclicity constraint to make the problem amenable to continuous (gradient
based) optimisation. The method introduced in Zheng et al. (2018), NOTEARS, showed impressive per-
formance on data simulated with linear additive noise models (LANMs). However, as shown by Reisach
et al. (2021) the strong performance of NOTEARS and similar methods on LANM data vanished after
the data was normalized. Reisach et al. (2021) noticed that, before normalization, additive noise model
data is highly varsortable, meaning that, on average, the causal order of the system can be recovered well
by sorting the variables by the amplitude of their estimated variances. Since high varsortability and good
NOTEARS performance were highly correlated, they therefore conjectured that NOTEARS implicitly made
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use of variance sorting in its optimisation. The issue has recently been revisited by Ng et al. (2024), who
pointed out that (a) NOTEARS does not necessarily perform well in the presence of high varsortability and
that (b) normalisation of data generated by LANMs moves the data far away from the assumption of equal
noise variances that underlies the NOTEARS methodology. Thus, according to Ng et al. (2024), NOTEARS
should not have been expected to perform well on normalized LANM data in the first place as one of its
fundamental assumptions is not satisfied.

Rather than weighing in on this discussion, in this contribution we explore how much var- and R2-sortability
(the coefficient of determination which acts as a proxy for the fraction of the variance a variable that is
explained by its causal parents introduced in Reisach et al. (2023)) can be seen in data commonly used in
method validation of time series causal discovery methods. We evaluate the degree of var-/R2-sortability in
different datasets as well as the performance of different algorithms for time series causal discovery in the
presence/absence of var-/R2-sortability and before/after normalisation. One of the main questions under-
lying the discussions on sortability is this: how much var-/R2-sortability do we expect to see in real-world
data? The answer to this question is likely highly context-dependent, and the question can be notoriously
difficult to settle even for a single dataset, since one needs to know the causal ground truth to compute
sortability. We investigate sortability scores in two of the rare cases where a causal ground-truth is available,
the river flow dataset used in Tran et al. (2024) and the Causal Chamber datasets recently published by
Gamella et al. (2024). In both cases, we find sortability values quite far from 0.5 (the case where there is no
information in the sortability criterion), meaning that there is information in the variance or R2-values of
the data. In the river stream datasets, marginal variances tend to decrease along the causal order (varsorta-
bility close to zero) while in the Causal Chamber case, marginal variances increase along the causal order
(varsortability close to one). For the R2-score we find the exact opposite: values close to one for some rivers
in the river dataset, and values close to zero for some of the causal chamber datasets.

These observations illustrate that discarding scales in causal discovery as arbitrary may be premature, as
scales may encode significant causal information. We hypothesise plausible physical explanations for the
observed varsortability in the investigated datasets which also call into question the validity of an equal
noise variance assumption in these cases. For the river data we know that the the width of the rivers
decrease from the source to the mouth which has potentially an influence on the variance of extreme flows.

In more detail, our main contributions are:

1. We extend var- and R2-sortability and the simple benchmarking algorithm of Reisach et al. (2021;
2023) to the time series setting.

2. We show empirically that simulated data typically used to evaluate causal discovery algorithms for
time series data is varsortable, meaning the amplitude of the marginal variance increases the lower
the variable is in the causal ordering of the ground truth summary graph. We also show that, in
this case, varsortability is largely driven by contemporanous dependencies.

3. We demonstrate that there is a positive correlation between the performance of continuous score-
based causal discovery algorithms for time series and the varsortability of data generated by struc-
tural autoregressive processes.

4. We investigate sortability of the data used in the 2019 causal discovery challenge1 by Runge et al.
(2019) and show that some data sets are highly varsortable and simple benchmark perform well on
these.

5. We calculate var- and R2-sortability of the river flow dataset used in Tran et al. (2024), and of the
recently published datasets generated by the Causal Chamber(Gamella et al., 2024). We find that in
these real-live datasets, the scale plays an important role for potential causal discovery algorithms.

1https://causeme.uv.es/neurips2019/
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2 Preliminaries

2.1 Causal discovery for time series

A stationary time series graph (ts-graph) is a directed graph G = (V × Z, D), V = {1. . . . , d}, whose edges
(i, t − k) → (j, t) are assumed invariant under translation of the time component. In addition, it is typically
required that there is a finite maximal lag τmax = maxi,j∈V {k|((i, t − k), (j, t)) ∈ D} < ∞ and that the
contemporaneous component of G is acyclic, where k ∈ N. Any stationary ts-graph induces a directed,
potentially cyclic summary graph Gsum over V that contains a directed edge (i, j) if (i, t − k) → (j, t) ∈ D.
The adjacency matrices of G, Gsum will be denoted by W, Wsum respectively.

The aim of most causal discovery methods for time series is to recover either G or Gsum from observa-
tional or interventional data. Often the data is assumed to be generated by a discrete multivariate process
(Xt)t∈Z, Xt = (X1

t , ..., X
(d)
t ) compatible with G. The process (Xt)t∈Z is typically modelled as a structural

vector autoregressive (SVAR) process(Hyvärinen et al., 2010), in which case, compatibility with G means
that (Xt)t∈Z follows the evolution rule

Xj
t =

∑
i∈paGsum (j)

τmax∑
k=0

aj
i,t−kXi

t−k + ηj
t (1)

for j ∈ {1, ..., d}, where ηj are Gaussian white noise processes, paGsum(j) denotes the parents of node j in the
summary graph, and aj

i,t−k is only allowed to be non-zero if (i, t−k) → (j, t) is an edge in G. SVAR-processes
can be considered the time series analogue of additive linear noise models for which sortability was discussed
by Reisach et al. (2021; 2023). When generating data from such a model, coefficients are typically randomly
drawn, sometimes with a pre-specified proportion of contemporaneous links, and the process is being run
until it has converged to a stationary distribution (or is discarded if the distribution is non-stationary).

2.2 NOTEARS and Derivatives

Zheng et al. (2018) propose the continuous score-based causal discovery method NOTEARS, which em-
beds the discrete search space of DAGs into a continuous one by using the differentiable function h(W) =
tr eW◦W − d. This function is 0 if and only if W is the adjacency matrix of an acyclic graph and hence
measures the DAGness of W (Zheng et al., 2018). By combining this function with a score evaluating how
well the estimated weight matrix W fits the data, Zheng et al. (2018) formulate the constrained optimisation
problem to find

min
W

1
n

||X − XW||22 (2)

s.t. W is acyclic, which is modelled by h. || · ||22 is the Frobenius norm.

The DYNOTEARS algorithm Pamfil et al. (2020) modifies the NOTEARS algorithm to work
with time-lagged and auto-correlated dependencies by redefining the optimisation problem to
minW1 ℓ(Wc, Wl) s.t. Wc is acyclic, where Wl ∈ Rd×d×τmax is the lagged adjacency matrix and Wc is
the contemporaneous adjacency of the underlying time series process. As the underlying time series graph
to estimate is acyclic if and only if Wc is acyclic, it suffices to enforce the acyclicity constraint only on Wc

(Pamfil et al., 2020). To ensure sparsity of W, Pamfil et al. (2020) also add an ℓ1 penalty term, leading to
the constraint optimisation problem

min
W

1
2n

||X − XWc − XlWl||22 + λ1||Wc||1 + λ2||Wl||1 (3)

s.t. Wc is acyclic. Here λ1 and λ2 are two regularisation parameters and Wl is the lagged adjacency matrix.

The continuous optimisation problems of NOTEARS and DYNOTEARS can be solved efficiently by rewrit-
ing the problem using the augmented Lagrangian method and using a numerical solver such as L-BFGS
(Zheng et al., 2018; Pamfil et al., 2020). After applying the numerical optimisation algorithm in both of the
algorithms, a threshold t is applied to remove weights close to zero (Zheng et al., 2018; Pamfil et al., 2020).
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2.3 Sortability Criteria

In the following, we briefly reiterate the two sorting criteria varsortability and R2-sortability introduced by
Reisach et al. (2021) and Reisach et al. (2023) respectively. In essence, both of these approaches calculate a
score s of sortability in a comparable manner; s is the measurement of the degree of agreement between the
true causal order and the increasing order of a sortability criterion cri.

For any causal model containing the variables {X(1), . . . , X(d)} with a (non-degenerate) adjacency matrix W,
the sortability score is the fraction of directed paths that start from a node with a strictly lower sortability
criterion than the node they end in. Thus the sortability for one selected criterion cri can be calculated as

s :=
∑d−1

k=1

∑
i→j∈Wk increasing(cri(Xi), cri(Xj))∑d−1

k=1

∑
i→j∈Wk 1

∈ [0, 1], (4)

where

increasing(a, b) =


1 a < b

1/2 a = b

0 a > b.

(5)

The matrix W in Equation 4 is set to the power k, since the (i, j) entry of the k-th power of an adjacency matrix of
a DAG exactly counts the number of directed paths from i to j. In the case of varsortability Reisach et al. (2021),
the criterion cri(Xi) = Var(Xi) is the marginal variance, whereas in the case of R2-sortability, it is the coefficient
of determination cri(Xi) = R2(Xi) which acts as a proxy for the fraction of the variance of Xi that is explained by
its causal parents, (see Reisach et al. (2023) for details). Varsortalility v is defined by using the marginal variance as
cri. R2-sortability r is defined by using the obtained R2-coefficients as the sorting criterion cri (Reisach et al., 2021;
2023).

Reisach et al. (2021) showed that varsortability is usually high in data generated by LANMs (see the analytical
and empirical proof in their paper). Based on their sortability criteria, Reisach et al. (2021) and Reisach et al.
(2023) introduced the baseline methods varsortnregress and R2-sortnregress respectively. These algorithms sort the
system variables based on their variances or R2-scores which are estimated by fitting a regression model; these simple
benchmark methods are then shown to have similar performance to some state of the art causal discovery algorithms
(Reisach et al., 2021; 2023) on LANM data.

3 Modified Sortability Criteria for Summary Graphs

In a time series causal discovery setting, the summary graph Gsum describing the relationship between the different
time-evolving processes may contain cycles. Since the marginal variances Var(Xi

t) do not depend on the time index
t due to the assumed stationarity of the processes, to compute varsortability in this situation, in principle, one could
still use Equation 4 as is.

However, any pair of processes Xi and Xj that belong to the same strongly connected component of the summary
graph (i.e. that are connected by a cycle) would always contribute a 1 to the numerator and a 2 to the denominator
of Equation 4.

Therefore the presence of cycles would dilute the sortability signal and would naturally push it closer to 1/2. In
other words, R2-, and varsorting of cyclicly connected processes is meaningless, and we are only interested in whether
nodes that are not cyclicly connected can be sorted. Our sortability criterion thus becomes

s :=

∑
(i,j)∈AP(Gsum) increasing(cri(Xi), cri(Xj))∑

(i,j)∈AP(Gsum) 1
∈ [0, 1], (6)

where AP(G′) = {(i, j) ∈ V ′ × V ′ | i =⇒ j, j ≠⇒ i} is the set of admissible node pairs (the long double arrow
indicates the existence of a directed path).

For the example in Figure 1, the sortability score s is 1+1+1+0
1+1+1+1 = 0.75. The contribution of the pairs (B, C) and (C, B)

is ignored since the two nodes belong to the black cycle. Cycle-free directed paths that connect admissible node pairs
are depicted in colour. If we would calculate it including cyclicly connected pairs, it would result in 4

6 ≈ 0.67.
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C

B

D

ACri(C) = 3

Cri(B) = 2

Cri(D) = 2.5

Cri(A) = 1

Figure 1: Example of the calculation of s with cycles.

High varsortability and the performance of DYNOTEARS Based on heuristics and empirical find-
ings, Reisach et al. (2021) argue that high variability causes gradient-based optimisation algorithms such as
NOTEARS(Zheng et al., 2018) to favour graphs whose edges point in the direction of increasing marginal variances
during their first optimisation step. Since DYNOTEARS is a time-series adaptation of NOTEARS, that essentially
coincides with NOTEARS on the contemporaneous components of a ts-graph, Reisach et al. (2021)’s arguments might
be applicable to (the contemporaneous part of) DYNOTEARS as well.

However, in the recent work Ng et al. (2024) provide examples in which continuous optimization-based methods can
not perform well in the presence of high varsortability. Ng et al. (2024) also give an alternative explanation for why
continuous structure learning performs significantly worse after standardisation of LANM data. Continuous structure
learning assumes equal noise variances for all variables in the system, which is violated in the standardised model
leading to poor performance.

4 Sortnregress for Time Series Graphs

In order to have simple algorithms that exploit high R2- and varsortability, we present our time series adapted sort-
nregress algorithm based on sortnregress from Reisach et al. (2021; 2023). To estimate contemporaneous dependencies,
we use the standard sortnregress algorithm, which consists of two steps:

1. Sort nodes by increasing marginal variance or R2-score.
2. Each node is regressed on its predecessor, determined by order, using a penalised regression technique. As

described in Reisach et al. (2021), LASSO regression is used, using the Bayesian Information Criterion (BIC)
for hyperparameter selection.

This gives us an estimated contemporaneous adjacency matrix Ŵc. A random sortnregress algorithm is also used,
where we determine the order of the variables randomly using i.i.d. Bernoulli trials. To estimate lagged dependencies
between variables, we use the same first step and change the second step: We now regress each node on each of its
predecessors pi,t, where t ∈ [1, τmax] indicates the time lag. After this step we have an estimated lagged adjacency
matrix Ŵl.

5 Numerical Experiments & Results

In the following section, we first give an overview of the evaluation metrics which are used for all the considered
datasets. After that we outline the setup and the results for each dataset. We conduct our experiments in Python,
using the TIGRAMITE library2 for simulating data with SVAR models. When assessing the performance of different
algorithms across a range of sortability values, the hyperparameters of the DYNOTEARS algorithm are set to
λ1 = λ2 = 0.05. The weight threshold is set to 0.1. As a constraint-based comparison algorithm, PCMCI+(Runge,
2020) is run with α = 0.01 and the ParCorr conditional independence test. We further use the varsortnregress,
R2-sortnregress and random regress algorithms as described in Section 4.

We assess the F 1-score using the formula:

F 1 = T P

T P + 0.5(F P + F N)

2https://github.com/jakobrunge/tigramite
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to gauge the performance of the selected algorithms concerning the comparison between the estimated binary time
series adjacency matrices Ŵ and the ground truth W.

Here, T P represents the number of true positives, F P represents the number of false positives, and F N represents
the number of false negatives for edge detection.

We refer to this metric as the overall F 1-score. Additionally, we calculate the F 1-scores comparing the estimated
contemporaneous adjacency matrix Ŵc with the true contemporaneous adjacency matrix Wc, and the F 1-scores
comparing the estimated lagged adjacency matrix Ŵl with Wl. These metrics are denoted as F 1-contemp and
F 1-lagged, respectively. In cases where only information about the summary graph is available, we calculate the
F 1-score between Wsum and the estimated summary adjacency matrix Ŵsum.

5.1 NEURIPS Competition Data

Setup We also assess var- and R2-sortability on the 2019 Causality-for-Climate-competition(Runge et al., 2019)
data. This dataset is relevant not only because it was used in the competition, but also because it follows the same
structure as the CauseMe platform (Munoz-Marí et al., 2020), which is widely used to evaluate causal discovery
algorithms (Bussmann et al., 2021; Runge, 2020). The dataset includes simulated and partially simulated datasets
of varying complexity, including high-dimensional datasets and non-linear dependencies, with 100, 150, 600 or 1000
realisations for each dataset specification. We excluded the datasets with missing values.

We set the maximal time-lag in our methods τmax following the description of the respective dataset (ranging from
3 to 5).

Results As illustrated in Table 1, we observe a varsortability above 0.5 for all data except the logistic model, which
has a varsortability of 0, meaning that each causal child has a lower marginal variance than its parent. In particular,
the realistic climate and weather models have a high varsortability, with a mean of over 0.86 for all of them. For
R2-sortability, we observe a value around 0.5 for most of the realistic models, with the exception of the FinalCLIM
models with values of 0.25 and 0.16 for the 5 and 40 variable datasets respectively. The linear and logistic models
have scores between 0.5 and 0.6. For the data sets with high varsortability (var > 0.8 varsortnregress outperforms or
is en par with PCMCI+.

Table 1: Mean Sortability criteria and F1-scores for different benchmark algorithms over different realisations
on the NeurIps competition data. We set τmax = 3.

Dataset var R2 PCMCI+ varsortnregress R2-sortnregress random
Testlinear-VAR_N-10_T-150 0.59 ± 0.17 0.61 ± 0.19 - - - -
Testlinear-VAR_N-100_T-150 0.65 ± 0.11 0.64 ± 0.12 - - - -
Testnonlinear-VAR_N-20_T-600 0.56 ± 0.13 0.57 ± 0.14 0.25 ± 0.07 0.10 ± 0.07 0.10 ± 0.06 0.15 ± 0.06
Finallinear-VAR_N-10_T-150 0.62 ± 0.18 0.62 ± 0.18 0.15 ± 0.10 0.17 ± 0.09 0.16 ± 0.09 0.20 ± 0.09
Finallinear-VAR_N-100_T-150 0.66 ± 0.11 0.63 ± 0.11 - - - -
FinalCLIM_N-5_T-100 0.91 ± 0.13 0.29 ± 0.25 0.40 ± 0.13 0.51 ± 0.23 0.23 ± 0.18 0.31 ± 0.19
FinalCLIM_N-40_T-100 0.9 ± 0.09 0.19 ± 0.11 - - - -
FinalCLIMnoise_N-5_T-100 0.91 ± 0.13 0.3 ± 0.25 0.32 ± 0.16 0.43 ± 0.22 0.21 ± 0.18 0.28 ± 0.21
FinalCLIMnoise_N-40_T-100 0.9 ± 0.09 0.23 ± 0.13 - - - -
Finallogistic-largenoise_N-5_T-150_medium 0.21 ± 0.32 0.58 ± 0.35 0.42 ± 0.23 0.02 ± 0.10 0.04 ± 0.13 0.04 ± 0.13
FinalWEATHnoise_N-5_T-1000 0.77 ± 0.21 0.5 ± 0.3 0.32 ± 0.15 0.25 ± 0.20 0.20 ± 0.20 0.26 ± 0.18
FinalWEATHnoise_N-10_T-1000 0.27 ± 0.11 0.23 ± 0.15 0.17 ± 0.12 0.21 ± 0.13
FinalWEATH_N-10_T-1000 0.84 ± 0.16 0.52 ± 0.22 0.34 ± 0.10 0.32 ± 0.14 0.22 ± 0.12 0.27 ± 0.12
FinalWEATH_N-5_T-1000 0.81 ± 0.2 0.47 ± 0.31 0.36 ± 0.14 0.34 ± 0.18 0.22 ± 0.17 0.31 ± 0.17

5.2 Data Generation with Erdős–Rényi Graphs and SVAR Models

Setup In order to investigate var- and R2-sortability for datasets used to evaluate continuous score-based causal
discovery methods, we replicate one of the two data generation methods used by Pamfil et al. (2020).

Following Pamfil et al. (2020); Zheng et al. (2018), when generating random time series graphs, we use Erdős–Rényi
Graphs (ER Graphs) (Newman, 2018) to draw the contemporaneous edges with i.i.d Bernoulli trials. Sampling only
lower triangle entries of the contemporaneous adjacency matrix and then permuting the node order ensures that the
contemporaneous adjacency matrix Wc is acyclic. Pamfil et al. (2020) sample the graph to ensure a pre-specified
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mean degree dc for the contemporaneous dimension and dl for the lagged dependencies for a total number of variables
d.

In order to ensure that the expected mean degree is dc the probability of each Bernoulli trial is set to dc/(d−1), where d.
The edge coefficients are sampled uniformly at random from [−2, −0.5]∪[0.5, 2.0] (Pamfil et al., 2020). Again following
Pamfil et al. (2020), the edge weights for lagged variables are sampled depending on t from [−0.5α, −0.3α]∪[0.3α, 0.5α],
where α = 1/δt−1. The weight decay δ > 1 reduces the influence (weights) of variables further back in time. We
randomly sample Erdős-Rényi graphs with degree dc = 4 for the contemporaneous dimension, and for each lag we
set dl = 1; δ is set to 1.1.

We examine sortability values for different numbers of nodes d ∈ {10, 20, 50, 100}. For each number of nodes we
randomly generate 500 different graphs and generate n = 500 samples per graph. The samples are taken after a
burn-in period to ensure stationarity. We then calculate the overall varsortability, the varsortability of only the
contemporanous dependencies and the varsortability of all all the lagged dependencies.

We also want to investigate whether varsortability is driven by contemporaneous or lagged dependencies. This is why
we compute var- and R2-sortability over a grid of dc, dl ∈ [0, 0.5, 1, 2, 3, 4, 6, 8]. We do this for d = 10 and d = 20
nodes.

We further investigate the influence of the two sortability criteria on the performance of score and constraint-based
algorithms. In order to do so, we generate data for d = 10 variables, which has varying sortability values. We then
randomly draw m = 30 samples per sortability interval, which we set to [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1]. We
report the performance of the following algorithms for varying var- and R2-sortability: DYNOTEARS, DYNOTEARS
standardised (run after standardising the data), PCMCI+, varsortnregress/R2-sortnregress and randomregress. This
means that for DYNOTEARS, the data has a varsortability as defined by the respective bin before standardising
(after standardisation the varsortability is always 0.5).

Results We observe that the overall mean varsortability for the ER-SVAR data used by Pamfil et al. (2020)
ranges from 0.58 for ten nodes to 0.54 for 100 nodes. We do not see a trend in varsortability for different numbers
of nodes. The varsortability of the contemporaneous dimension is around 0.7 for all numbers of nodes. The lagged
varsortability is around 0.54 for all numbers of nodes except 10 nodes where it is 0.56. The R2 sortability is around
0.5 for all numbers of nodes. Varsortability of the contemporaneous component of G is always above 0.7 and higher
than the overall varsortability. Consequently, lagged varsortability is always lower than contemporanous and overall
varsortability. The detailed results can be found in Appendix A.

0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
Varsortability

0.0

0.1
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0.5

0.6

0.7

0.8

F1
 S
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Dynotears (continuous score based)
DYNOTEARS after standardising
PCMCI+ (constraint based)
Var-sortnregress
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(a) Performance of different algorithms for varying var-
sortability.

0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
R2-sortability

0.0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

F1
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Dynotears
DYNOTEARS Standardised
PCMCI+
R2-sortnregress
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(b) Performance of different algorithms for varying R2-
sortability.

Figure 2: Comparison of algorithm performance under different sortability conditions: (a) Varying varsorta-
bility, (b) Varying R2-sortability.

Figure 2a shows that the higher the varsortability, the higher the F1-score of DYNOTEARS. The varsortnregress
benchmark model also improves with higher varsortability and seems to outperform the DYNOTEARS algorithm
for varsortability values higher than 0.6. The constraint-based PCMI+ algorithm does not seem to be as affected by
varsortability as the randomregress algorithm. The DYNOTEARS algorithms perform better on standardised data
for low varsortability values before standardisation.
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For high R2-sortability values, we observe a different behaviour: Both DYNOTEARS and PCMCI+ seem unaffected
by varying values. Again the R2-sortnregress algorithm seems to outperform DYNOTEARS for R2-sortability values
of 0.6 or higher (see Figure 2b).

We also investigate whether high varsortability leads to a higher F1-score of DYNOTEARS due to better identifica-
tion of contemporaneous edges or lagged dependencies. As we can see in Figure 3, the effect of increasing F1-scores
with increasing varsortability is even higher for contemporaneous dependencies. The F1-score for lagged dependen-
cies seems to be unaffected. Moreover, we observe in our experiments that the contemporaneous F1-score has a
Pearson correlation of more than 0.6 with the varsortability score. Furthermore, higher weighting thresholds of the
DYNOTEARS algorithm seem to increase the influence of varsortability on the performance of DYNOTEARS as
measured by the F1-score.

0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
Varsortability

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Dynotears
Dynotears Contemp
Dynotears Lagged

Figure 3: F1-score of Contemporaneous and lagged Dependencies DYNOTEARS for different varsortability
values.

We also want to determine if different degrees of contemporaneous and lagged dependencies influence the overall
varsortability of the generated data. In general we observed that a higher value for dc increases the varsortability
and higher values of dl seem to decrease it. If there are more nodes the varsortability seems to be higher. If there
are no contemporaneous edges we observe varsortability values of around 0.5. For R2-sortability, the mean score is
not affected by the degree or number of nodes. The detailed results can be found in Appendix B.

5.3 Extremal River Flow Problem

Setup Next, we investigate the two sortability criteria on four real-world datasets modelling extremal river flow
previously used in (Tran et al., 2024). The aim of the problem is to recover the direction and connections of a river
network with only extreme flow measurements at certain stations, without knowing the location of these stations.
This is a time-dependent process, as an extreme measurement recorded at one station at time t − 1 may lead to an
extreme measurement at another station at time t (Tran et al., 2024). Having the ground truth river network allows
us to report R2 and varsortability on this real-world dataset and investigate whether high values can also occur on
real time series data. We also include the F 1-scores of selected benchmark algorithms for a τmax value of 3 as this
gave the best results. Following Tran et al. (2024), we treat the downstream river direction as the causal ground truth
Gsum, which perhaps may be controversial due to the fact that downstream extreme events might have damming
effects further upstream. Nevertheless, even if one is not comfortable calling the flow direction causal, the results
below show that varsorting is able to cover the ’flow graph’.

As we only know the ground truth/flow graph on the summary level, i.e. we know Gsum, we calculate the F 1-score
between the ground truth for Wsum and the estimated adjacency matrix Ŵsum for the following algorithms: varsort-
nregress, R2-sortnregress, randomregress, PCMCI+ and reversed varsortnregress. We use reversed varsortnregress
as we observed very low varsortability values and wanted to investigate if an algorithm that orders by decreasing
variance could exploit this fact.

Results As illustrated in Table 2, varsortability for the entire river network is below 0.5, with a varsortability
value for the Danube close to 0. This indicates that as the river network follows a tree structure, the variance of the
extremal river velocities for nodes decreases with increasing distance from the river source. In other words, the real-life
dynamics of the river flow systems entail sortable marginal variances. It can be observed that for high R2-sortability,
the R2-sortnregress algorithm performs as well as PCMCI+. Conversely, for low varsortability values, the reversed
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varsortability algorithm, while being superior to random, is unable to match the performance of PCMCI+. Notably,
the varsortnregress algorithm outperforms the reverse varsortnregress algorithm on the upper Colorado dataset even
though the varsortability is below 0.5. We also tried to run DYNOTEARS on this dataset. However, the algorithm

Table 2: Varsortability(var) and R2-sortability (R2)and F1-scores of different algorithm reported on the
extremal river flow datasets. We set τmax = 3 as this leads to the best results.

Dataset var R2 PCMCI+ varsortnregr. varsortnregr. rev. R2-sortnregr. randomregr.
danube 0.07 0.82 0.56 0.08 0.20 0.18 0.11
lower-colorado 0.34 0.61 0.36 0.08 0.08 0.08 0.10
middle-colorado 0.29 0.94 0.26 0.09 0.23 0.26 0.22
upper-colorado 0.43 0.95 0.41 0.26 0.11 0.30 0.22

did not converge after a couple of hours run time as it did not manage to satisfy the acyclity constraint, at least for
our choices of hyperparameters.

5.4 Causal Chamber Data

Setup We now investigate the values of the two sortability criteria for data generated by the recently introduced
Causal Chamber (Gamella et al., 2024), which provides a toolbox consisting of real physical systems that can be used
to evaluate causal discovery or other AI algorithms on real data.

We use each dataset contained in their PYTHON library and calculate the var- and R2-sortability for each dataset and
each experiment in the dataset3. We then calculate the mean and standard deviation of the different datasets, where
one value is one experiment performed on the dataset. We again run benchmarks on varsortnregress, R2-sortnregress,
randomregress, PCMCI+ and evaluate the F 1-score between Wsum and Ŵsum.

Table 3: Mean and standard deviation of var- and R2-sortability as well as F1-score of benchmark algorithms
obtained on each dataset with different experiments. The standard deviation is given after ±. We set
τmax = 2.

Dataset var R2 PCMCI+ varsortnregress R2-sortnregress random
lt_camera_test_v1 0.94 ± 0.01 0.25 ± 0.24 0.05 0.30 0.17 0.14
lt_camera_validate_v1 0.99 ± 0.02 0.01 ± 0.03 0.08 0.37 0.05 0.25
lt_camera_walks_v1 0.95 ± 0.0 0.23 ± 0.07 0.31 0.34 0.13 0.22
lt_color_regression_v1 0.94 ± 0.02 0.15 ± 0.06 0.19 0.25 0.18 0.19
lt_interventions_standard_v1 0.94 ± 0.03 0.46 ± 0.04 0.26 0.18 0.12 0.08
lt_malus_v1 0.98 ± 0.02 0.02 ± 0.01 0.20 0.24 0.25 0.19
lt_test_v1 0.96 ± 0.03 0.01 ± 0.02 - - - -
lt_validate_v1 0.99 ± 0.02 0.02 ± 0.02 0.34 0.30 0.29 0.13
lt_walks_v1 0.9 ± 0.08 0.24 ± 0.04 0.16 0.38 0.22 0.33
wt_bernoulli_v1 0.97 ± 0.06 0.06 ± 0.05 - - - -
wt_changepoints_v1 0.94 ± 0.01 0.14 ± 0.02 0.12 0.14 0.09 0.06
wt_intake_impulse_v1 1.00 ± 0.00 0.32 ± 0.08 - - - -
wt_pc_validate_v1 0.78 ± 0.00 0.14 ± 0.0 - - - -
wt_pressure_control_v1 0.92 ± 0.0 0.36 ± 0.0 0.21 0.29 0.26 0.25
wt_test_v1 0.94 ± 0.08 0.14 ± 0.13 - - - -
wt_validate_v1 0.97 ± 0.05 0.03 ± 0.04 - - - -
wt_walks_v1 0.92 ± 0.03 0.28 ± 0.06 - - - -

Results We observe very high varsortability values for all datasets; almost all datasets have values over 0.9 with
the wt_pc_validate_v1 dataset beeing the only exception at 0.78 as shown in Table 3. All R2-sortability values
are below 0.25. Most of them are between 0.2 and 0.32. The lt_camera_validate_v1, lt_malus_v1, lt_test_v1,
wt_bernoulli_v1 and wt_validate_v1 have values very close to 0. The values for each individual experiment con-
tained in one dataset can be found in Appendix C. As shown in Table Table 3 varsortnregress outperforms other

3https://github.com/juangamella/causal-chamber
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causal discovery algorithms on 9 out of 10 of the selected Causal Chamber datasets. We only report F1-scores for
10 of the data sets since for For wt_pc_validate_v1 there are not enough samples to select the hyperparameter for
sortnregress and the other 6 data sets have over 50, 000 samples resulting in very long execution times.

6 Discussion and Conclusion

In general, both varsortability and R2-sortability are present in both simulated and real datasets for benchmarking
causal discovery algorithms. In line with Reisach et al. (2021), we observe that DYNOTEARS, which is a NOTEARS
based algorithm, seems to perform better when varsortability is higher, which is in line with our hypothesis in
section 3.

Furthermore, we observe that the data used in the NEURIPS competition(Runge et al., 2019) are highly varsortable,
especially the realistic datasets, by our defined time series varsortability metric. This is also reflected by the good
performance of sortnregress, which should be too simple to perform as good as the more sophisticated PCMCI+

algorithm.

The low varsortability in the simulated var models could potentially be due to the fact that these datasets do not
have contemporaneous dependencies, and as we showed earlier, contemporaneous dependencies seem to be the driver
for high varsortability in simulated time series data. This is hardly surprising given that a team exploiting this
effect won the competition(Weichwald et al., 2020). As for R2-sortability, we see that high values can lead to better
performance of simple benchmark algorithms. However, R2-sortability values observed on the NEURIPS and ER
Datasets seem to be too low to be exploited by the sorting algorithm.

The low varsortability value observed for the river data, particularly for the Danube, may be attributed to the fact
that the width and catchment area of a river increase from the source to the mouth, resulting in a reduction in the
impact of extreme flows on river velocity closer to the river’s mouth. Consequently, the marginal variance decreases.
This serves to illustrate the importance of scales in real dataset. The data for the other rivers only covers parts of
the river, which probably results in a less intense effect and higher values for varsortability.

In addition, we can see that the Causal Chamber data is highly varsortable overall while having low R2-values. This
could be due to the fact that the variables controlled by the user are high in the causal order. We conjecture that
deeper in the system and further from the user-controlled variables, dynamic turbulence and other sources of noise
start having a larger and larger influence. Thus, unexplained noise is higher the lower we are in the causal order.
This is in line with the low R2-sortability values as the causal parents explain less and less down the causal order.
The increase in noise variance also drives the increase in total marginal variance and affects varsortability in this way.

Limitations This paper is an empirical study and we do not determine analytically why high varsortability leads
to better performance of score based causal discovery algorithms for time series data. While we believe that our
explanations for varsortability in the considered real-world datasets are plausible, they should be treated cautiously
as hypotheses only. The only thing that we can say with certainty that sortability is highly context-dependent and
therefore discarding scales as arbitrary for causal discovery seems premature.

Conclusion In conclusion, our paper represents an empirical extension of the work of Reisach et al. (2021; 2023).
We demonstrate that high var-sortability occurs in SVAR-simulated time series data, resulting in enhanced per-
formance of continuous score-based causal discovery algorithms assuming equal noise variance. Moreover, in some
settings our simple benchmark algorithms outperformed or were en par with more sophisticated algorithms in the
presence of high sortability. Consequently, we advise caution when assuming equal noise variance for time series
causal discovery algorithms. Furthermore, it may be advisable to examine simulated data for high varsortability
before using them as benchmark data, as was done in the 2019 NEURIPS competition(Runge et al., 2019). Finally,
we observe high and low varsortability, as well as R2-sortability, in two different types of real-life datasets: the Causal
Chamber data is generated in a controlled environment while the river flow dataset is measured in an uncontrolled
environment. This indicates that var- and R2-sortability in auto-correlated time series data is not solely a phe-
nomenon observed in simulated data. For this reason, we believe that marginal variances may contain relevant causal
information and exploiting variance or inverse variance sorting may be justified in some situations, if one can combine
it with physical reasons for one or the other (even though these physical reasons might already eliminate the need
for causal discovery in the first place). Furthermore, the observed R2-sortability scores indicate that the assumption
of equal noise variance is equally tricky as the relative fraction of unexplained variance may change throughout the
graph and unequal noise variances are one possible reason for this.
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A Var and R2-sortability for different sizes of ER Graphs

Table 4: Mean of and standard deviation denoted by ± of varsortability(var) and R2-sortability (R2) for ER
Graphs with a different number of nodes. For each number of nodes 500 random graphs have been created
and 500 samples have been generated.

10 Nodes 20 Nodes 50 Nodes 100 Nodes
var R2 var R2 var R2 var R2

Contemp 0.71 ± 0.16 0.54 ± 0.22 0.72 ± 0.12 0.52 ± 0.15 0.71 ± 0.08 0.50 ± 0.12 0.72 ± 0.06 0.50 ± 0.08
Lagged 0.56 ± 0.18 0.49 ± 0.18 0.54 ± 0.13 0.49 ± 0.13 0.54 ± 0.11 0.50 ± 0.11 0.54 ± 0.10 0.49 ± 0.09
Overall 0.58 ± 0.09 0.51 ± 0.10 0.56 ± 0.06 0.51 ± 0.06 0.54 ± 0.03 0.50 ± 0.03 0.54 ± 0.02 0.50 ± 0.02
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B Investigation on Influence of Different Degrees

B.1 On Varsortability

Figure 4: Varsortability for d = 10 nodes for different contemporaneous degrees dc and lagged degrees dl
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Figure 5: Varsortability for d = 20 nodes for different contemporaneous degrees dc and lagged degrees dl
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B.2 On R2-sortability

Figure 6: R2-sortability for d = 10 nodes for different contemporaneous degrees dc and lagged degrees dl
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Figure 7: R2-sortability for d = 20 nodes for different contemporaneous degrees dc and lagged degrees dl
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C Results Causalchamber Data

Dataset Experiment varsortability R2-sortability

lt_camera_walks_v1 color_mix 0.95 0.28
lt_camera_walks_v1 actuator_mix 0.95 0.18
lt_color_regression_v1 pol_1_90 0.89 0.21
lt_color_regression_v1 aperture_11.0 0.95 0.16
lt_color_regression_v1 iso_1000.0 0.95 0.18
lt_color_regression_v1 bright_colors 0.95 0.00
lt_color_regression_v1 shutter_speed_0.002 0.95 0.19
lt_color_regression_v1 aperture_5.0 0.95 0.16
lt_color_regression_v1 pol_1_45 0.95 0.16
lt_color_regression_v1 reference 0.95 0.18
lt_color_regression_v1 iso_500.0 0.95 0.16
lt_color_regression_v1 shutter_speed_0.001 0.95 0.14
lt_interventions_standard_v1 uniform_t_ir_1_mid 0.95 0.44
lt_interventions_standard_v1 uniform_diode_vis_1_mid 0.95 0.47
lt_interventions_standard_v1 uniform_osr_angle_2_mid 0.95 0.51
lt_interventions_standard_v1 uniform_l_12_mid 0.95 0.49
lt_interventions_standard_v1 uniform_diode_ir_3_mid 0.95 0.49
lt_interventions_standard_v1 uniform_t_ir_1_strong 0.95 0.40
lt_interventions_standard_v1 uniform_diode_ir_3_strong 0.95 0.47
lt_interventions_standard_v1 uniform_red_mid 0.95 0.47
lt_interventions_standard_v1 uniform_diode_ir_2_mid 0.95 0.46
lt_interventions_standard_v1 uniform_osr_angle_2_strong 0.95 0.47
lt_interventions_standard_v1 uniform_t_vis_3_strong 0.82 0.46
lt_interventions_standard_v1 uniform_pol_1_strong 0.86 0.46
lt_interventions_standard_v1 uniform_osr_angle_2_weak 0.95 0.46
lt_interventions_standard_v1 uniform_pol_2_mid 0.95 0.46
lt_interventions_standard_v1 uniform_t_ir_3_weak 0.95 0.49
lt_interventions_standard_v1 uniform_t_ir_2_weak 0.95 0.47
lt_interventions_standard_v1 uniform_diode_vis_2_mid 0.95 0.47
lt_interventions_standard_v1 uniform_t_vis_1_weak 0.95 0.46
lt_interventions_standard_v1 uniform_l_11_mid 0.95 0.53
lt_interventions_standard_v1 uniform_osr_angle_1_mid 0.95 0.44
lt_interventions_standard_v1 uniform_v_angle_1_strong 0.91 0.53
lt_interventions_standard_v1 uniform_osr_c_weak 0.95 0.47
lt_interventions_standard_v1 uniform_t_ir_2_mid 0.95 0.44
lt_interventions_standard_v1 uniform_osr_c_strong 0.95 0.42
lt_interventions_standard_v1 uniform_diode_ir_1_strong 0.95 0.47
lt_interventions_standard_v1 uniform_t_ir_3_mid 0.95 0.47
lt_interventions_standard_v1 uniform_t_ir_3_strong 0.91 0.42
lt_interventions_standard_v1 uniform_pol_1_mid 0.91 0.47
lt_interventions_standard_v1 uniform_diode_vis_3_mid 0.86 0.44
lt_interventions_standard_v1 uniform_diode_ir_1_mid 0.95 0.46
lt_interventions_standard_v1 uniform_blue_mid 0.95 0.37
lt_interventions_standard_v1 uniform_osr_c_mid 0.95 0.47
lt_interventions_standard_v1 uniform_t_vis_1_strong 0.95 0.47
lt_interventions_standard_v1 uniform_green_mid 0.95 0.49
lt_interventions_standard_v1 uniform_diode_ir_2_strong 0.95 0.47
lt_interventions_standard_v1 uniform_osr_angle_1_weak 0.95 0.46
lt_interventions_standard_v1 uniform_v_angle_2_mid 0.95 0.53
lt_interventions_standard_v1 uniform_t_ir_1_weak 0.95 0.46
lt_interventions_standard_v1 uniform_t_vis_2_strong 0.91 0.46
lt_interventions_standard_v1 uniform_blue_strong 0.95 0.32
lt_interventions_standard_v1 uniform_t_vis_1_mid 0.95 0.49
lt_interventions_standard_v1 uniform_l_32_mid 0.95 0.47
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lt_interventions_standard_v1 uniform_l_22_mid 0.95 0.49
lt_interventions_standard_v1 uniform_v_c_mid 0.95 0.47
lt_interventions_standard_v1 uniform_green_strong 0.95 0.42
lt_interventions_standard_v1 uniform_v_angle_2_strong 0.91 0.51
lt_interventions_standard_v1 uniform_t_vis_3_mid 0.86 0.46
lt_interventions_standard_v1 uniform_osr_angle_1_strong 0.95 0.47
lt_interventions_standard_v1 uniform_t_ir_2_strong 0.95 0.42
lt_interventions_standard_v1 uniform_v_angle_1_mid 0.95 0.46
lt_interventions_standard_v1 uniform_pol_2_strong 0.86 0.49
lt_interventions_standard_v1 uniform_red_strong 0.95 0.51
lt_interventions_standard_v1 uniform_v_c_strong 1.00 0.46
lt_interventions_standard_v1 uniform_t_vis_2_mid 0.95 0.42
lt_interventions_standard_v1 uniform_t_vis_2_weak 0.95 0.42
lt_interventions_standard_v1 uniform_t_vis_3_weak 0.91 0.47
lt_interventions_standard_v1 uniform_l_31_mid 0.95 0.47
lt_interventions_standard_v1 uniform_l_21_mid 0.95 0.49
lt_interventions_standard_v1 uniform_reference 0.95 0.49
lt_walks_v1 actuators_white 0.96 0.26
lt_walks_v1 color_mix 0.84 0.21
wt_walks_v1 actuators_random_walk_9 0.93 0.26
wt_walks_v1 actuators_random_walk_8 0.93 0.19
wt_walks_v1 loads_hatch_mix_slow_run_2 0.93 0.24
wt_walks_v1 actuators_random_walk_6 0.93 0.36
wt_walks_v1 actuators_random_walk_7 0.88 0.24
wt_walks_v1 loads_hatch_mix_slow_run_3 1.00 0.36
wt_walks_v1 loads_hatch_mix_slow_run_1 0.93 0.29
wt_walks_v1 actuators_random_walk_5 0.95 0.29
wt_walks_v1 actuators_random_walk_4 0.90 0.21
wt_walks_v1 loads_hatch_mix_slow_run_4 0.93 0.29
wt_walks_v1 actuators_random_walk_1 0.86 0.14
wt_walks_v1 loads_hatch_mix_slow_run_5 0.93 0.26
wt_walks_v1 actuators_random_walk_3 0.95 0.24
wt_walks_v1 actuators_random_walk_2 0.88 0.24
wt_walks_v1 actuators_random_walk_11 0.93 0.31
wt_walks_v1 actuators_random_walk_10 0.86 0.21
wt_walks_v1 actuators_random_walk_12 0.93 0.31
wt_walks_v1 loads_hatch_mix_fast_run_5 0.93 0.33
wt_walks_v1 loads_hatch_mix_fast_run_4 0.93 0.33
wt_walks_v1 actuators_random_walk_13 0.90 0.29
wt_walks_v1 loads_hatch_mix_fast_run_1 0.93 0.33
wt_walks_v1 actuators_random_walk_16 0.88 0.24
wt_walks_v1 actuators_random_walk_14 0.93 0.24
wt_walks_v1 loads_hatch_mix_fast_run_3 0.93 0.31
wt_walks_v1 loads_hatch_mix_fast_run_2 1.00 0.36
wt_walks_v1 actuators_random_walk_15 0.93 0.31
lt_malus_v1 red_255 1.00 0.04
lt_malus_v1 white_128 1.00 0.02
lt_malus_v1 green_64 0.96 0.02
lt_malus_v1 blue_255 1.00 0.02
lt_malus_v1 green_128 0.96 0.00
lt_malus_v1 white_64 1.00 0.02
lt_malus_v1 blue_64 0.96 0.02
lt_malus_v1 green_255 1.00 0.00
lt_malus_v1 blue_128 1.00 0.04
lt_malus_v1 white_255 1.00 0.02
lt_malus_v1 red_64 0.96 0.02
lt_malus_v1 red_128 0.96 0.04
wt_bernoulli_v1 random_loads_both 1.00 0.00
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wt_bernoulli_v1 fans_off 0.90 0.10
wt_bernoulli_v1 random_loads_intake 1.00 0.07
wt_changepoints_v1 load_in_seed_8 0.94 0.13
wt_changepoints_v1 load_in_seed_9 0.98 0.10
wt_changepoints_v1 load_in_seed_4 0.94 0.13
wt_changepoints_v1 load_in_seed_5 0.94 0.15
wt_changepoints_v1 load_in_seed_7 0.94 0.13
wt_changepoints_v1 load_in_seed_6 0.94 0.15
wt_changepoints_v1 load_in_seed_2 0.94 0.15
wt_changepoints_v1 load_in_seed_3 0.94 0.15
wt_changepoints_v1 load_in_seed_1 0.94 0.15
wt_changepoints_v1 load_in_seed_0 0.94 0.15
wt_intake_impulse_v1 load_out_0.5_osr_downwind_4 1.00 0.29
wt_intake_impulse_v1 load_out_0.5_osr_downwind_2 1.00 0.29
wt_intake_impulse_v1 load_out_1_osr_downwind_4 1.00 0.26
wt_intake_impulse_v1 load_out_0.5_osr_downwind_8 1.00 0.29
wt_intake_impulse_v1 load_out_0.01_osr_downwind_4 1.00 0.45
wt_pressure_control_v1 hatch_0 0.92 0.36
lt_test_v1 current_sensor 1.00 0.04
lt_test_v1 angle_sensors 0.96 0.00
lt_test_v1 analog_calibration 0.93 0.00
lt_test_v1 ir_sensors 0.96 0.00
wt_test_v1 zero_load 1.00 0.21
wt_test_v1 mic_effects 0.93 0.24
wt_test_v1 potis_coarse 0.83 0.12
wt_test_v1 tach_resolution 1.00 0.12
wt_test_v1 osr_mic 1.00 0.00
wt_test_v1 no_load 1.00 0.10
wt_test_v1 potis_fine 0.86 0.12
wt_test_v1 osr_barometers 0.81 0.10
wt_test_v1 analog_calibration 1.00 0.00
wt_test_v1 steps 0.93 0.43
lt_camera_test_v1 polarizer_effect_bright 0.95 0.00
lt_camera_test_v1 pure_colors_bright 0.92 0.50
lt_camera_test_v1 polarizer_effect_dark 0.95 0.07
lt_camera_test_v1 pure_colors_dark 0.95 0.50
lt_camera_test_v1 palette 0.95 0.18
wt_validate_v1 validate_v_2 1.00 0.00
wt_validate_v1 validate_v_in 1.00 0.02
wt_validate_v1 validate_load_out_pressure_intake 1.00 0.00
wt_validate_v1 validate_v_out 1.00 0.00
wt_validate_v1 validate_load_out_current_in 1.00 0.02
wt_validate_v1 validate_v_1 1.00 0.00
wt_validate_v1 validate_osr_1 1.00 0.00
wt_validate_v1 validate_pot_1 1.00 0.00
wt_validate_v1 validate_osr_downwind 0.88 0.12
wt_validate_v1 validate_res_out 1.00 0.00
wt_validate_v1 validate_osr_2 1.00 0.02
wt_validate_v1 validate_pot_2 1.00 0.00
wt_validate_v1 validate_load_out_mic 1.00 0.00
wt_validate_v1 validate_load_in_mic 1.00 0.02
wt_validate_v1 validate_load_in_current_out 1.00 0.02
wt_validate_v1 validate_hatch_rpms 0.90 0.02
wt_validate_v1 validate_osr_out 1.00 0.02
wt_validate_v1 validate_osr_upwind 0.88 0.12
wt_validate_v1 validate_res_in 1.00 0.02
wt_validate_v1 validate_load_in 1.00 0.00
wt_validate_v1 validate_v_mic 1.00 0.00
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wt_validate_v1 validate_osr_intake 0.88 0.12
wt_validate_v1 validate_load_out 1.00 0.02
wt_validate_v1 validate_osr_ambient 0.90 0.12
wt_validate_v1 validate_osr_in 1.00 0.00
wt_validate_v1 validate_osr_mic 1.00 0.00
wt_validate_v1 validate_hatch_mic 0.93 0.07
wt_validate_v1 validate_hatch_pressures 0.90 0.02
wt_pc_validate_v1 validate_pressure_downwind_loads 0.78 0.14
lt_validate_v1 validate_l_11 0.96 0.00
lt_validate_v1 validate_osr_c 0.98 0.02
lt_validate_v1 validate_l_12 0.96 0.02
lt_validate_v1 validate_v_c 1.00 0.00
lt_validate_v1 validate_osr_angle_2 0.98 0.02
lt_validate_v1 validate_red 0.96 0.09
lt_validate_v1 validate_osr_angle_1 0.98 0.02
lt_validate_v1 validate_pol_1 0.94 0.06
lt_validate_v1 validate_diode_vis_2 1.00 0.02
lt_validate_v1 validate_diode_vis_3 1.00 0.02
lt_validate_v1 validate_pol_2 1.00 0.02
lt_validate_v1 validate_diode_vis_1 1.00 0.02
lt_validate_v1 validate_diode_ir_1 1.00 0.02
lt_validate_v1 validate_v_angle_1 1.00 0.02
lt_validate_v1 validate_diode_ir_2 1.00 0.02
lt_validate_v1 validate_diode_ir_3 1.00 0.02
lt_validate_v1 validate_v_angle_2 1.00 0.03
lt_validate_v1 validate_green 0.98 0.00
lt_validate_v1 validate_blue 0.98 0.00
lt_validate_v1 validate_l_31 0.96 0.02
lt_validate_v1 validate_l_32 0.96 0.00
lt_validate_v1 validate_t_ir_1 1.00 0.00
lt_validate_v1 validate_t_vis_3 1.00 0.00
lt_validate_v1 validate_t_vis_2 1.00 0.00
lt_validate_v1 validate_l_22 0.96 0.02
lt_validate_v1 validate_t_ir_2 1.00 0.02
lt_validate_v1 validate_t_vis_1 1.00 0.02
lt_validate_v1 validate_t_ir_3 1.00 0.02
lt_validate_v1 validate_l_21 0.98 0.02
lt_camera_validate_v1 validate_shutter_speed 1.00 0.00
lt_camera_validate_v1 validate_iso 1.00 0.00
lt_camera_validate_v1 validate_green 0.98 0.00
lt_camera_validate_v1 validate_pol_2 1.00 0.00
lt_camera_validate_v1 validate_blue 0.98 0.00
lt_camera_validate_v1 validate_aperture 1.00 0.00
lt_camera_validate_v1 validate_red 0.96 0.09
lt_camera_validate_v1 validate_pol_1 1.00 0.00
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