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Figure 1: Spatial referring in complex 3D environments demands not only precise single-step spatial
understanding but also multi-step spatial reasoning to resolve intricate references step-by-step,
thereby enabling efficient control of diverse robots across tasks (e.g., manipulation, navigation).

Abstract

Spatial referring is a fundamental capability of embodied robots to interact with
the 3D physical world. However, even with the powerful pretrained vision lan-
guage models (VLMs), recent approaches are still not qualified to accurately
understand the complex 3D scenes and dynamically reason about the instruction-
indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware
VLM that can first achieve precise spatial understanding by integrating a disen-
tangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover,
RoboRefer advances generalized multi-step spatial reasoning via reinforcement
fine-tuning (RFT), with metric-sensitive process reward functions tailored for spa-
tial referring tasks. To support SFT and RFT training, we introduce RefSpatial,
a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations
(vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In
addition, we present RefSpatial-Bench, a challenging benchmark filling the gap
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in evaluating spatial referring with multi-step reasoning. Experiments show that
SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an
average success rate of 89.6%. RFT-trained RoboRefer further outperforms all
other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in
average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated
with various control policies to execute long-horizon, dynamic tasks across diverse
robots (e.g., URS, G1 humanoid) in cluttered real-world scenes. See the project
page at https://zhoues.github.io/RoboRefer.

1 Introduction

Open-world spatial intelligence is crucial for embodied Al, as robots must understand and reason
about 3D scenes to interact effectively in complex environments. As one vital topic in this field, spatial
referring, which bridges spatial intelligence and embodied Al by formalizing how agents interpret
and act upon spatially constrained instructions, has received increasing attention. Specifically, given
sensor observations (e.g., RGB or RGB-D) and a spatially constrained instruction, the spatial referring
task aims to predict a precise point that satisfies complex spatial relations within the instruction.
This predicted point can serve various downstream embodied functions as navigation waypoints,
manipulation targets, or placement locations, enabling wide robotic applications, as shown in Fig 1.

Spatial referring task comprises two distinct levels of complexity: (1) Single-step spatial under-
standing, which forms the foundation of spatial perception by accurately recognizing objects’ spatial
properties (e.g., position, orientation) and their spatial relations (e.g., distance, direction). This level,
where most current research [ [—7] concentrates, provides the essential perceptual basis for complex
spatial referring. (2) Multi-step spatial reasoning, which transcends basic understanding through
compositional reasoning to resolve complex spatial references sequentially. Despite its importance
for sophisticated spatial intelligence, this capability remains underexplored. Thus, this work attempts
to address this gap by integrating both levels for comprehensive spatial referring. In Fig 1, one must
first identify the plate closest to the observer and locate the desired soy sauce dish, then determine the
free space between them, which is increasingly challenging as more spatial constraints are introduced.

Specifically, existing vision-language models (VLMs) [8—11]-based methods mainly attempt to
enhance the first level, i.e., single-step spatial understanding by integrating 3D inputs. However, they
either demand costly 3D reconstruction of multi-view images [12, 13], causing modality gaps , or
treat depth as RGB-like inputs [1, 3, 14] via a shared image encoder, risking modality interference
and degrading pretrained image encoders, requiring additional co-training data for compensation. In
contrast, the second level, i.e., multi-step spatial referring with reasoning, remains underexplored
due to the scarcity of suitable datasets, limiting current models’ capability and preventing exploration
of how single-step understanding might support it. Moreover, current VLMs depend heavily on
supervised fine-tuning (SFT) for implicit reasoning, risking memorizing answers over explicit
reasoning and thereby hindering generalization and accuracy in open-world spatial referring.

In this work, we propose RoboRefer, a 3D-aware VLM that not only acquires precise spatial under-
standing via SFT but also exhibits generalized strong reasoning capabilities for spatial referring via
reinforcement fine-tuning (RFT). Specifically, for single-step spatial understanding, RoboRefer em-
ploys a dedicated depth encoder to enhance precise spatial perception without interfering RGB branch.
To enable multi-step spatial reasoning, we design an RFT stage after SFT with explicitly annotated
reasoning processes. This stage allows RoboRefer to break down complex spatial referring tasks into
sequential analytical steps. In each step, RoboRefer can leverage the spatial understanding gained
in SFT and refine the intermediate reasoning precision with our proposed metric-sensitive process
reward functions, thus making more accurate point predictions. To our best knowledge, RoboRefer is
the first 3D-aware reasoning VLM for multi-step spatial referring with explicit reasoning.

To advance spatial referring, we introduce RefSpatial, a large-scale dataset of 2.5M high-quality
examples with 20M QA pairs (2x prior [3]). Leveraging diverse data sources from 2D/3D/Simulation,
this dataset can teach a general VLM to achieve spatial referring in a bottom-up manner. Specifically,
2D web images provide fundamental spatial concepts and broad depth perception (indoor and
outdoor), 3D embodied videos refine fine-grained spatial understanding of indoor scenes for robotics,
and simulated data with ground-truth reasoning processes encourage multi-step spatial referring (up
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to 5 steps). Notably, RefSpatial includes 31 spatial relations, far exceeding 15 found in previous
datasets [2, 3], and each sample contains RGB-D data to support depth alignment in SFT stage.

We evaluate our SFT-trained model on existing single-step spatial reasoning benchmarks (e.g., CV-
Bench [15], BLINK [16]), achieving SOTA performance with an average success rate of 89.6%.
To address the lack of multi-step spatial referring benchmarks, we introduce RefSpatial-Bench,
comprising 200 real-world images with manually annotated tasks for object location and placement.
Over 70% of the samples require multi-step reasoning (up to 5 steps) and are annotated with precise
masks. Our model consistently outperforms all baselines on this benchmark, even surpassing Gemini-
2.5-Pro by an average of 17.4%. Moreover, in Fig. 1 and Sec. 4.4, RoboRefer can execute long-
horizon, dynamic tasks in cluttered real-world scenes with various control policies, exhibiting strong
generalization across robots (e.g., URS, G1 humanoid) and tasks (e.g., manipulation, navigation).

Our contributions are summarized as follows: (1) We propose RoboRefer, a 3D-aware reasoning
VLM trained using a sequential SFT-RFT strategy with metric-sensitive process reward functions to
achieve spatial referring. (2) We construct RefSpatial, a well-annotated dataset tailored for spatial
referring, facilitating both SFT and RFT training, and introduce RefSpatial-Bench, a benchmark
that fills the gap in evaluating spatial referring with multi-step reasoning. (3) Extensive experiments
show that RoboRefer generalizes well, surpasses baselines in spatial understanding and referring
with reasoning, and efficiently controls diverse robots across tasks in the real world.

2 Related work

Spatial Understanding with VLMs. Spatial understanding [16-24] focuses on object-centric
properties (e.g., position, orientation) and inter-object relations (e.g., distance, direction), while spatial
reasoning [25-36] draws higher-level inferences over such information. Recent advances in VLMs [8—
11, 37-57] enhance these two abilities via two paradigms: (1) tool-based approaches [7, 14, 58—64]
that integrate VLMs with vision foundation models [65—78] to extract and reason spatial cues and
(2) data-driven methods, which fine-tune VLMs using pseudo-3D annotations [1, 6], real-world
3D datasets [2, 3], or simulated data [4, 79]. However, existing datasets lack multi-step reasoning
annotations critical for spatial referring tasks, and a benchmark for evaluating such abilities remains
unavailable. We thus introduce a new dataset and benchmark specifically tailored for spatial referring.

Referring with VLMs for Robotics. Referring, also known as Referring Expression Comprehension
(REC) [80-87], leverages unambiguous descriptions to localize a unique region/point in an image,
and has seen great progress via VLMs [88-93]. Unlike Phrase Localization [94-96] and Generalized
Visual Grounding [97—-101], which address ambiguous or multiple referents, REC focuses on one
single target—an emphasis crucial for robotics, especially in pick-and-place tasks requiring precise
object identification and destination [102—106]. While 2D REC relies on object attributes (e.g., color)
and image-plane localization (e.g., top right of the image), real-world scenarios for robotics require
3D spatial reasoning to localize (e.g., “near” vs. “far””). Although efforts [107—109] like RoboPoint [5]
incorporate basic spatial cues via images to meet such expectations, they often struggle with complex
environments and instructions required for spatial referring. Thus, we propose RoboRefer, a 3D-aware
framework that employs multi-step reasoning to ensure precise spatial referring for robotics.

Reinforcement Fine-tuning for VLMs. Reinforcement Fine-tuning (RFT) [110-114] is a post-
training strategy that aligns models with human preferences or specific goals via feedback, comple-
menting SFT [115, 116], which adapts pre-trained models using task-oriented data. Recent advances
in LLM-based reasoning [114, 117—-120] have shifted RL in VLMs toward visual reasoning [121—
127], grounding [128-130], segmentation [131] and trajectory prediction [132]. However, most
methods rely solely on 2D perception, limiting their ability to handle spatial referring tasks that re-
quire 3D spatial reasoning. To address this, we propose a two-stage training strategy: (1) incorporate
depth information during SFT to strengthen spatial understanding; (2) RFT stage then leverages
intermediate perception outputs powered by SFT to enable multi-step spatial referring with reasoning.

3 Method

We first formulate the spatial referring task (Sec. 3.1). Then, we elaborate on RoboRefer, including its
architecture and training strategies (Sec. 3.2). Finally, we describe the construction of the RefSpatial
dataset (Sec. 3.3) and necessary training details about RoboRefer (Sec. 3.4).
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Figure 2: Overview of RoboRefer. RoboRefer can perform single-step precise spatial understanding
from RGB(D) inputs with spatially constrained instructions (enabled by the SFT stage introducing
depth modality), and multi-step spatial referring with explicit reasoning (powered by the reinforce-
ment fine-tuning stage and leveraging spatial understanding within each step learned in SFT).

3.1 Problem Formulation

We formulate spatial referring as predicting a single 2D point (x, y) in image space to specify a target
location or destination, given visual inputs O (e.g., RGB or RGB-D) from the sensor and a textual
instruction L. This instruction encodes not only single-step spatial properties such as size (e.g., large,
small), position (e.g., relative or ordinal location), orientation (e.g., front-facing), and spatial relations
(e.g., distance, direction), but also requires multi-step spatial reasoning. For example, “Place the
object between the pen holder and keyboard, lined up with the cup’s logo.” (See Fig. 2) becomes
more complex as multiple spatial constraints are combined.

Unlike region-based 2D referring methods [88, 93, 101], this point-based formulation is more suitable
and generalizable for robotics. Compared to the 2D bbox, point can naturally map to 3D coordinates
via depth, providing accurate spatial anchors. By leveraging predicted points for navigation, grasping,
or placement, this formulation enables multi-task learning and execution. Moreover, it can accurately
localize a visible object part in occlusion scenarios, while 2D bbox often includes irrelevant objects.

3.2 RoboRefer: A 3D-aware reasoning VLM for spatial referring

VLM Architecture. In Fig. 2, RoboRefer employs separate RGB and depth encoders to extract
features, which are then aligned via projectors with the LLM for VQA or point prediction. As
3D cues are vital for spatial understanding, 2D VLMs pretrained solely on RGB lack accurate 3D
perception. Recent methods [1, 3, 14] avoid explicit 3D representations by treating depth as an
image-like modality and sharing the RGB encoder, but this causes modality interference, degrading
the pretrained encoder and requiring additional RGB co-training to compensate. To address this, we
propose a simple yet effective approach: a dedicated depth encoder and projector, initialized from
their RGB counterparts. Notably, during joint RGB and RGB-D training, the image encoder remains
unaffected by depth input, while the depth encoder is updated independently. This design not only
avoids modality interference and preserves general VQA performance without extensive RGB-only
co-training, but it also improves spatial understanding through enhanced perception of depth cues
(e.g., distance, near—far relations, and perspective-based size variations). See Appx. D.1 for details.



Supervised Fine-tuning. We adopt NVILA [38] as our base VLM; however, its 2D-only pretraining
limits spatial understanding. To address this, we propose a two-step SFT. (1) Depth alignment. In
Fig. 2, we first train a depth projector to align the newly introduced depth space with the textual space,
leveraging RGB-D annotations of the RefSpatial (see Sec. 3.3). In this step, only the depth projector
is updated. (2) Spatial understanding enhancement. We fine-tune all parameters on the RefSpatial,
including single-step fine-grained annotations and multi-step reasoning data with explicit reasoning
processes, and additional instruction-following datasets [87, 133, 134]. Therefore, the model is jointly
optimized on RGB and RGB-D inputs, with separate updates for the image and depth encoders. This
process not only enhances single-step spatial understanding via the new depth modality but also
bolsters implicit multi-step reasoning through data with explicit reasoning processes, providing a
“cold start” for the subsequent RFT stage. As a result, this SFT-trained model exhibits improved
capability for multi-step spatial referring tasks. Please check Appx. D.3 for details.

Reinforcement Fine-tuning. Though SFT employs data with precise reasoning, it tends to memorize
answers rather than generalize to novel spatial constraints. We thus design a subsequent RFT
stage using Group Relative Policy Optimization (GRPO [114]) with multi-step reasoning data
from RefSpatial. To guide RFT for more accurate point predictions, we first define two outcome
reward (i.e., only care about whether the output answer is correct) functions: (1) Outcome Format
Reward (Rpp) for structured reasoning and clarity; and (2) Point .1 Reward (Rp) granting a
score of 1 if the final prediction falls within a specific range near the ground-truth point, and 0
otherwise. To enhance intermediate reasoning precision, we exploit key-step perception annotations
from RefSpatial and design specialized metric-sensitive process reward functions: (1) Process Format
Reward (Rpr), enforcing the format “[Perception Type] [Target Object]:”; (2) Accuracy Reward
(R Acc), which applies to steps included in the key-step perception annotations. For each relevant step,
we measure the prediction error using a specific metric, according to the perception type (e.g., L1
distance for positions between ground-truth points and predicted points). Notably, this design is order-
invariant and does not constrain the reasoning trajectory to a fixed sequence. We sample N responses
{ai1,...,an} from the current policy (initialized from the SFT model) to encourage exploration.
Each response receives a combined reward (r; = Rop(a;) + Rp(a;) + aRpr(a;) + aRacc(a;)).
where « is set to 0.25. Rewards are normalized within each group to compute relative advantages

(A; = %ﬁ({}?})) which are then used to update the policy, reinforcing high-quality responses and
: J

suppressing suboptimal ones. A KL-divergence regularization term stabilizes updates by constraining
them near the reference policy. Notably, the SFT initialization provides a strong prior, enabling rapid
adaptation to output formats and supporting accurate, step-wise spatial reasoning by using the spatial
understanding learned from SFT. Fig 2 shows that the RFT-trained model generalizes well to tasks
like 4-step spatial referring, progressively handling intricate spatial relations, and yielding precise
point predictions. For more details about the RFT training and reward design, please see Appx. D.4.

3.3 RefSpatial dataset
3.3.1 Overview

RefSpatial is a comprehensive dataset integrating 2D images from Openlmages [135], 3D embodied
videos from CA-1M [136], and simulated scenes from Infinigen [137] using Objaverse [138] assets
(See Fig. 3 (a)). RefSpatial’s key features are: (1) Fine-Grained Annotations. While prior spatial
datasets [2, 3] simplify object reference by limiting each category to a single instance per scene,
RefSpatial includes multiple objects of the same category. Moreover, each object is annotated with
hierarchical captions—from broad categories (e.g., “cup”) to precise spatial referents (e.g., “the
third cup from the left”, “the cup closest to the camera’)—enabling unambiguous spatial referring
in cluttered environments. (2) Multi-Dimensionality. Beyond basic spatial concepts, relations,
point coordinates, and point depth predictions, the dataset supports multi-step spatial reasoning
by annotating detailed reasoning processes (all simulated data), addressing limitations in existing
datasets. (3) High Quality. We rigorously filter data to maintain quality. Retain 466k OpenImages
containing text-referable, spatially relevant objects (down from 1.7M); sample 100k frames from
CA-1M with text-identifiable 3D bounding boxes (down from 2M); and manually check and annotate
3k Objaverse-LVIS assets with semantic orientation labels (down from 46k). (4) Large Scale.
Comprising 2.5M samples and 20M QA pairs, our dataset spans qualitative VQA, quantitative
queries on object attributes/relations, and point coordinate prediction (Fig. 3(b)). (5) Rich Diversity.
RefSpatial spans indoor and outdoor scenes, covers common embodied scenes and integrates 31
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Figure 3: RefSpatial: 2.5M data samples from 2D/3D/Simulated sources, with 31 spatial relations.

distinct spatial relations (See Fig. 3 (c)), fostering precise spatial understanding during SFT. (6) Easy
Scalability. Our pipeline seamlessly scales spatial referring data using diverse sources, including 2D
images, 3D videos with bounding boxes, and simulation assets. See Appx. B for more dataset details.

3.3.2 Data Recipe

In Fig. 3, we present the dataset recipe that progressively integrates 2D, 3D, and simulated data
to enable general VLMs to adapt to spatial referring tasks, thereby enhancing bottom-up spatial
understanding and reasoning. (1) 2D Web Images aim to endow the model with core spatial concepts
and comprehensive depth perception across both indoor and outdoor scenes. To mitigate depth scale
and category discrepancies between indoor and outdoor scenes, we leverage the large-scale, diverse
2D web image dataset, Openlmage [135]. However, directly extracting 3D-aware spatial information
is challenging. Inspired by prior work [1, 36], we transform 2D images into pseudo-3D scene graphs.
In detail, after high-quality filtering (from 1.7M to 466K images), we further enhance the data using
Qwen2.5-VL [11] and a heuristic for generating hierarchical region captions, capturing both coarse
labels and fine-grained spatial references, differentiating our approach from previous methods. We
then construct scene graphs via object detection/segmentation, depth estimation, and camera intrinsic
estimation, using object captions as nodes and spatial relations as edges. Finally, we generate QA
pairs via template-based or LLM-based approaches, augmented by object-location QA derived from
the annotated captions. (2) 3D Embodied Videos want to provide the model with a focused spatial
understanding of indoor scenes, with a finer-grained perception of spatial relations and concepts.
We therefore leverage the richly annotated CA-1M [136]. After fine-grained filtering (from 2M
to 100K frames), we construct 3D scene graphs with more diverse spatial relations, enabled by
precise 3D bounding boxes compared to 2D approaches. Moreover, we generate top-down occupancy
maps that encode the object positions, orientations, and metric distances (e.g., “10cm right of the
chair”), enabling accurate spatial referring for placement. (3) Simulation Data arms the model with
multi-step referring capabilities with spatial reasoning. While 2D and 3D data enable single-step
spatial understanding, they are less scalable for multi-step spatial referring with reasoning. Therefore,
we leverage procedurally generate scene layouts [137], using manually verified assets [138] (from 46k
to 3k) with semantic orientation annotations [7]. Tasks are purposefully designed to foster multi-step



Table 1: Performance on the single-step spatial understanding benchmarks across different model
types. Top-1 & Top-2 accuracies are represented using bold text, and underlines.

CV-Bench [15] BLINK 4 [16] Y . 5
Method Input |15 Relation 3D-Depth 3D-Distance|2D-Relation 3D-Depth| R0POSPatial [2] SAT [4] EmbSpatial [22]
Proprietary Models
GPT-4o [8] RGB 84.62 86.50 83.33 82.52 78.23 77.20 68.67 63.38
Gemini-2.5-Pro [9] RGB 93.54 91.00 90.67 91.61 87.90 77.24 70.59 76.67
Claude-3.7-Sonnet [37] RGB 74.15 85.83 84.17 74.83 67.74 60.73 40.67 33.33
Open-Source Vison-Language Models
NVILA-2B [38] RGB 70.15 79.67 60.00 67.83 62.10 51.79 31.33 47.34
NVILA-8B [38] RGB 91.54 91.83 90.67 76.92 76.61 59.35 63.33 67.72
Qwen-2.5-VL-7B [11] RGB 82.15 60.17 69.00 64.34 60.98 49.59 30.00 40.20
Qwen-2.5-VL-72B [11] RGB 84.15 86.17 84.15 78.32 73.55 70.73 65.33 57.69
Spatial Specialist Models
SpatialBot-3B [14] RGB-D| 69.38 77.33 60.83 67.83 67.74 72.36 63.33 50.66
SpatialRGPT-8B [I]  RGB-D| 91.00 89.8 88.50 81.12 89.51 66.67 64.00 59.62
SpaceLLaVA-13B [6] RGB 63.69 66.83 70.17 72.73 62.90 61.00 62.67 49.40
RoboPoint-13B [5] RGB 75.85 77.83 44.50 60.84 61.29 69.90 46.60 49.31
RoboRefer Variants
RoboRefer-2B-SFT RGB 96.15 95.83 90.67 83.92 88.71 82.93 71.33 70.66
RoboRefer-2B-SFT RGB-D| 96.31 97.17 90.83 87.41 91.13 82.93 82.00 71.10
RoboRefer-8B-SFT RGB-D| 96.90 98.33 93.50 91.61 92.74 84.55 86.67 72.53

Table 2: Performance on current referring and multi-step spatial referring benchmarks. L. and P.
denote our benchmark’s Location and Placement parts; U. indicates unseen compositional spatial
relations during SFT/RFT. Top-1 & Top-2 accuracies are represented using bold text, and underlines.

Proprietary Models Referring Specialist Models RoboRefer Variants
Benchmark Gemini-2.5-Pro [9] SpaceLLaVA [6] RoboPoint [S] Molmo-7B [15] Molmo-72B [15] 2B-SFT 8B-SFT 2B-RFT
RoboRefTt - 21.3 49.8 - - 72.8 75.9 74.2
Where2Place 61.9 11.8 46.8 45.0 63.8 66.0 70.0 71.0
RoboSpatial 40.2 16.0 413 38.0 40.9 66.4 70.8 71.3
RefSpatial-Bench-L. 46.96 5.82 22.87 21.91 45.77 47.00 52.00 52.00
RefSpatial-Bench-P. 24.21 4.31 9.27 12.85 14.74 48.00 53.00 54.00
RefSpatial-Bench-U. 27.14 4.02 8.40 12.23 21.24 3377 37.66 41.56

spatial referring and generate corresponding data. We assume that the generated code reflects optimal
reasoning, with each line translated into textual form and intermediate results filled into structured
formats (e.g., coordinates, distances), as shown in Fig. 2, Fig. 3, and Appx. D.4.2, yielding QA pairs
with reasoning annotations. For more demonstrations about RefSpatial, please refer to Appx. F.

3.4 Training Details

We adopt NVILA [38] (2B/8B) as the base model and apply SFT to obtain RoboRefer-SFT. Due to
computational limits, RFT is applied only to the 2B model, yielding RoboRefer-RFT. SFT has two
steps: the first uses only the RefSpatial; the second trains on a mixture of RefSpatial, instruction
tuning (1/20 the size of RefSpatial QA)[133, 134], and referring datasets[87]. Notably, RefSpatial is
reused with both RGB and RGB-D inputs in the second step to enforce the image encoder to learn
spatial understanding beyond depth cues. Thus, the model supports both RGB-only and RGB-D
inference, with depth optionally inferred via a relative depth estimation model [139]. Finally, RFT
stage uses the multi-step reasoning data from RefSpatial to train. See Appx. D for details.

4 Experiments

4.1 Single-step Spatial Understanding

We evaluate on public single-step spatial understanding benchmarks, including CV-Bench [15],
the BLINK [16] validation split, RoboSpatial [2] configuration part, SAT [4], and EmbSpatial [22].
Check Appx. E.2 for more evaluation details. The following parts present our analyses.



Table 3: Performance on general referring benchmarks. Table 4:  Performance on general VLM
B. and P. denote Bounding Box and Point. Top-1/2 benchmarks. We also show the advantage
accuracies are indicated by bold/underlined text. of dedicated depth encoder (E. = Encoder).
We use the same evaluation protocol of CV-

RefCOCO RefCOCO+ RefCOCOg Bench/BLINK in Sec. 4.1.
val / testA / testB val / testA / testB  val / test

Method Output

Grounding Specialist Models
GroundingDINO BBox [90.6/93.2/88.2 88.2/89.0/75.9 86.1/87.0

RoboRefer-2B-SFT
Shared E.‘Dedicated E. (Ours)

Benchmark ‘NVILA—ZB [38]‘

Open-Source Vision-Language Models Public Vision-Language Benchmarks
Qwen2.5-VL-72B  BBox [92.7/94.6/89.7 88.9/92.2/83.7 89.9/90.3 MME;.: 1547 1541 1553
Qwen2.5-VL-72B  Point |95.2/96.5/93.8 90.4/93.5/86.7 91.5/92.0 MMBenchg, 78.63 76.23 77.73
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Figure 4: RefSpatial-Bench results. G.P., M.M., and R.P. donate Gemini-2.5-Pro [9], Molmo-
72B [15], and RoboPoint [5]. RoboRefer-RFT excels in unseen and multi-step cases.

SFT stage enables strong spatial understanding. In Tab 1, trained solely on RefSpatial, RoboRefer-
SFT surpasses all spatial specialist models on these benchmarks, even surpassing Gemini-2.5-Pro by
5% (absolute) on average. Moreover, our 2B variant outperforms NVILA-2B by 21.7% (absolute).

Depth input improve 3D spatial understanding during inference. In Tab. 1, we find that incorpo-
rating depth information during inference leads to relative improvements in 3D benchmarks compared
to 2D ones by 1.5%, although our model exhibits strong spatial understanding with RGB input alone
by reusing the RefSpatial dataset with both RGB and RGB-D inputs during SFT’s second step.

4.2 Multi-step Spatial Referring

We first evaluate current robotic referring benchmarks, namely RoboReflIt [140] (location) and
Where2Place [5]/RoboSpatial [2] (placement), all limited to 2 reasoning steps. To evaluate more
complex multi-step spatial referring, we propose RefSpatial-Bench, a challenging benchmark based
on real-world cluttered scenes. It contains two subsets, Location and Placement, each with 100
images. Notably, 77 images involve spatial relation combinations unseen in RefSpatial. Over 70%
requires multi-step reasoning (up to 5 steps), including precise ground-truth masks. More details
about RefSpatial can be found in Appx. C. For metrics, we report the average success rate of predicted
points within the mask. We evaluate RoboRefer using RGB-D inputs by default, with depth maps
generated from RGB images via DepthAnything V2 [139]. See Appx. E.3 for more details.

RFT stage fosters better reasoning ability. As shown in Tab. 2, the 2B-RFT variant outperforms all
baselines, exceeding the prior SOTA (Gemini-2.5-Pro [9]) by 17.4% (absolute) on RefSpatial-Bench.
We find that although Gemini-2.5-Pro excels in 2D referring (e.g., color, image-space localization), it
struggles with 3D spatial relations involving distance (e.g., identifying the second-farthest object),



Table 5: Simulation Results ~ Table 6: Real-world robot evaluation requiring spatial referring.
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Figure 5: Real-World Evaluation. The purple point denotes the current target predicted by our model.

is moved, target changed

reducing overall performance when multiple spatial constraints are combined. Fig. 4 shows complex
multi-step spatial reasoning cases from RefSpatial-Bench with model comparisons.

RFT stage provides powerful generalization ability. In the RefSpatial-Bench-Unseen row of Tab. 2,
we evaluate novel spatial relation combinations omitted during our SFT/RFT training. The 2B-RFT
model exceeds 2B-SFT by 9.1% (absolute), indicating that SFT overfits the training distribution,
whereas the RFT model better generalizes by leveraging learned spatial knowledge, consistent with
prior findings [141]. Fig. 4 shows results on these unseen combinations across different models.

4.3 Public vision-language benchmarks

RefSpatial enhance 2D general referring ability. We also evaluate 2D referring capability on the
ReCOCO/+/g [87]. Since our model predicts a single point, we deem a prediction correct if the point
lies within the ground-truth bounding box. As this evaluation differs from standard visual grounding
protocols, we additionally assess Qwen-2.5VL-72B [11] by using either its predicted point or the
center of its predicted box as baselines. In Tab. 3, our method surpasses baselines, indicating that our
dataset not only supports 3D spatial referring but also enhances 2D referring performance.

Joint RGB and RGB-D training preserves commonsense knowledge. In Tab. 4, we assess how
spatial and depth information influences overall VQA performance by comparing RoboRefer-2B-SFT
with the baseline NVILA-2B [38], trained on standard VQA datasets. Our model achieves comparable
or slightly superior results, corroborating insights from Spatial VLM [6] and SpatialRGPT [1]. These
findings indicate that although VLMs often struggle with spatial reasoning, targeted spatial VQA
training, especially with combined RGB and RGB-D data enriched by general visual instruction
datasets, can enhance spatial understanding without compromising overall VQA performance.

4.4 Simulator and Real-world Evaluation for Robotics

RoboRefer can be integrated into the system as a useful tool. We evaluate our model on the
Open6DOR [59] V2 position track, comparing against VLA-based baselines (pretrained Octo [142],
LIBERO-finetuned OpenVLA [143]) and SoFar [7], which integrates Florence-2 [93], SAM [78],
GPT-40, and GSNet. RoboRefer serves as a lightweight alternative to Florence-2 and GPT-4o0 for
object localization and placement. By using a single target point predicted by RoboRefer, the system
can generate more accurate masks and corresponding grasp poses than those from 2D boxes under
occlusion in cluttered scenes, yielding a 6.8% absolute improvement in success rate (Tab. 5). Its
compact size also reduces execution time by 27.5% relative to GPT-40. See Appx. E.4 for details.

Spatial referring from RoboRefer is crucial for real-world robots. In Tab. 6, only our method can
handle long-horizon tasks requiring complex multi-step spatial referring in cluttered and dynamic
environments. These tasks are challenging, as the robot must precisely identify objects and their
placement to satisfy spatial constraints that may change over time. In Fig. 5, integrating RoboRefer
with an open-loop policy enables rapid updates at 2.5 Hz. Thus, when the mug nearest the camera



is moved, the robot adapts by grasping the hamburger closest to the mug’s new position and also
readjusts placement after the teddy bear’s 90° rotation, preserving correct spatial alignment. Notably,
spatial referring unifies both manipulation and navigation under a single formulation. This allows
the G1 humanoid to navigate while performing spatially constrained pick-and-place actions (Fig. 1),
thereby enabling more complex, long-horizon tasks. Check Appx. E.5 for more details.

4.5 Ablation Study

Data recipe is critical for SFT training. Ablation results in Tab. 7 Table 7: Ablation Studies. S.D.
reveal that combining 2D, 3D, and simulated data yields optimal means simulated data. P.R. de-
performance. As noted in Sec. 3.3, 2D data spans indoor/outdoor notes process reward. We use
scenes, enabling depth learning across scales; its removal severely the same evaluation protocol in
degrades performance on outdoor-centric BLINK [16]. Mean- Sec. 4.1 and Sec. 4.2.

while, 3D data captures embodied indoor environments and miti- py Recipe Depth [Spatial Understanding
gates the Sim2Real gap, benefiting indoor-focused CV-Bench [15]. ——
Finally, simulated data broadens spatial diversity. This tripartite

2D 3D S.D. Encoder‘CV—Bench BLINK,, 4;

data composition is thus key to effective SFT training. SFT Varianis (2B)

. . . X v v v | 8417 7448
Dedicated depth encoder preserves image understanding. We o+ x v 81.83  74.61
compare dedicated and shared image-depth encoders during SFT. ¥ v X v | 89 7510

. SR VAR 9124 8527
.In Tab. 4, the Qedlcated encoder better maintains image under.stand- A 9477 8927
ing under limited RGB-only data (1/20 RefSpatial QA), while the -~ Depth | Spatial Referring

shared encoder harms general performance. Though prior work[1]
adopts a shared encoder, it (1) requires over twice as much RGB-
only data compared to spatial-related data for co-training; (2) tar- RET Variants (2B)

PR. Encoder ‘ RefSpatial-Bench

gets region-level depths, differing from our full-image approach. v X 40.00
x v 48.00
Depth encoder improves both spatial understanding and rea- v v 53.00

soning. Recent VLMs [3, 107] show that large-scale spatial train-
ing enables implicit 3D understanding (e.g., depth, distance, 3D boxes) from images alone. To
assess this, we fine-tune NVILA-2B [38] on RefSpatial without the depth encoder, followed by
continued RFT. Results indicate that depth improves single-step spatial understanding, consistent
with MM-Spatial [3], and yields greater gains in multi-step spatial referring. We attribute this to:
(1) the need for precise coordinate prediction in spatial referring, unlike VQA’s multiple-choice; (2)
cumulative reasoning across steps, amplifying the utility of depth cues.

Process reward advances the accuracy of intermediate perception. Tab 7 shows a 5-point
improvement with process reward, which leverages key step annotations from RefSpatial to refine
step-wise perception, thereby predicting more accurate points with complex spatial relations.

5 Conclusion and Future work

In this paper, we introduce RoboRefer, a novel 3D-aware VLM that addresses spatial referring
through the combination of both single-step accurate understanding and multi-step spatial reasoning.
In detail, we enhance 3D perception with a separate depth encoder via SFT, and enable generalized
multi-step spatial referring via RFT with our proposed metric-sensitive process reward functions.
We also present RefSpatial, a large-scale, well-designed dataset for SFT and RFT training, with
RefSpatial-Bench, a benchmark tailored to evaluate spatial referring. Extensive experiments show
the effectiveness of RoboRefer and highlight its potential for a broad range of robotic applications.

Our future work will focus on two main directions. (1) Enhancing the model’s understanding of
human priors and intent. As discussed in Appx. G, human instructions are often brief and ambiguous,
even when the correct location is unique. Potential solutions include exploring procedural synthesis
of intent-aware data or improving model performance through co-training with intent-rich datasets.
(2) Improving the model’s 3D perception capabilities. Our current models predominantly rely on
qualitative spatial relations (e.g., left, right) and predict 2D image-plane coordinates, necessitating
depth-based conversion to 3D, as discussed in Appx. A. Future directions include directly modeling
quantitative geometry to enable precise 3D reasoning or direct prediction of 3D points and visual
traces, which are more challenging if combined with spatially constrained instructions.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please check Sec .1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Please check Appx. F.
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please see Sec. 3.4 and Appx. A/B/C/D for details.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Since we are still organizing the dataset and related code, we will open source
them as soon as possible. In Appx. A/B/C/D, we try to explain how to access the raw data,
preprocessed data, generated data, and details about all experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see Sec. 4 and Appx. D
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All our experiments involve VLMs. With the temperature set to 0, the output
becomes deterministic, eliminating variability and thus making error bars unnecessary.
Meanwhile, measuring the inference cost of various VLMs is computationally expensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please check Appx. D.1.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Please check Appx. C and Appx. D.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please check Appx. G.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please see Appx. L.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Please see Appx. C and Appx. L.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer:

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We declare the LLM usage in Appx .A.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussion

Distinction from SpatialRGPT. Our approach differs from SpatialRGPT in 4 key aspects: (1) Task
Setting: Our model addresses a more challenging spatial referring task, where takes a spatially
constrained textual instruction as input. It requires multi-step spatial reasoning with learned spatial
knowledge to precisely localize the referred object as a 2D point step-by-step. In contrast, Spatial-
RGPT addresses a simpler VQA task and relies on externally provided region information as input
for specific object referring. (2) Model Usage: Unlike SpatialRGPT, which needs additional masks
or detection tools to generate masks or 2D boxes as inputs for object reference and simplify referring
tasks, our model can use textual descriptions for object referencing (see L283), which better aligns
with real-world robotic applications. (3) Data Pipeline: Our data pipeline adopts a more structured,
progressive design than SpatialRGPT. It first uses 2D image data to teach core spatial concepts and
general depth perception across diverse indoor and outdoor scenes. Next, accurate 3D data enhances
fine-grained spatial understanding in indoor settings for robotics. Finally, simulation data introduces
multi-step spatial referring with reasoning. This staged approach yields stronger spatial understanding
and reasoning than SpatialRGPT, which relies solely on data generated from 2D images and lacks
precise spatial perception for more complex spatial referring tasks. (4) Training Pipeline: Our
training pipeline includes process-based RFT after SFT, further to improve multi-step reasoning and
generalization for spatial referring tasks, whereas SpatialRGPT is trained with SFT only.

Justification for RFT. RFT brings two main benefits: (1) Generalization to Unseen Cases: In Tab. 2
in the main paper (RefSpatial-Bench Unseen raw), which features novel combinations of spatial
relations absent from RefSpatial dataset, our 2B-RFT model surpasses 2B-SFT by 9.1% in accuracy,
showing the strong generalization enabled by the RFT stage. (2) Enhance Multi-Step Reasoning
Ability: In the Tab. 8, the RFT-based model consistently outperforms the SFT-based model across
varying reasoning steps, especially at larger steps, showing the RFT stage’s effectiveness in enhancing
multi-step reasoning.

Why is NVILA chosen as the backbone? In Tab 1 in the main paper, NVILA outperforms other
open-source VLMs under comparable model scales, such as Qwen 2.5-VL (even 72B), in spatial
understanding. Enhancing a strong baseline with our dataset and training strategy further validates
their effectiveness. Notably, our dataset is model-agnostic and transferable to other backbones.
Despite partial training on the RefSpatial dataset, Qwen2.5-VL-7B still shows notable improvements
on spatial understanding benchmarks in the Tab. 9 below.

Depth-to-3D mapping assumption. The depth-to-3D mapping assumption is essential in our
real-world evaluation, as our model predicts only 2D image-plane points, while real-world tasks
typically require 3D coordinates for grasping, placement, or navigation. While depth noise and
partial observations are important real-world challenges, our setting follows prior work [5, 45],
which assumes that accurate depth-to-3D mapping is feasible given known camera intrinsics and
extrinsics—sufficient for common manipulation and navigation tasks. Moreover, these challenges
can be effectively mitigated via the following strategies: (1) Depth noise can be mitigated by recent
advances in monocular depth estimation [68], monocular geometry prediction [144], and stereo
methods [145]. In cases of severe noise, we employ FoundationStereo [145] in real-world settings
to mitigate this issue. (2) Partial views are mitigated in our method by leveraging pixel-level target
points. Further improvement is possible by incorporating RoboRefer as a spatially-aware planner for
active perception.
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The effect of depth noise on the model’s accuracy and robustness. In real-world experiments, we
utilize a relative depth estimation model, DepthAnything v2, to obtain relative depth as the model’s
depth input, thereby effectively reducing depth noise from a real camera. We also evaluate success
rates under depth noise in real-world settings (see Tab below). Depth maps generated from the strong
monocular relative depth estimation model (i.e., DepthAnything V2) offer the highest robustness
and success. Despite depth noise from a real camera, RoboRefer maintains great performance by
leveraging RGB priors due to mixed RGB and RGB-D training during the SFT stage.

Table 8: We report the success rates (%) of 2B-SFT and 2B-RFT model at each reasoning step on
RefSpatial-Bench.

Benchmark Reasoning Step Num. 2B-SFT 2B-RFT  Gain

Step 1 63.33 66.67 +3.34
. . Step 2 39.58 43.75 +4.17

RefSpatial-Bench-Location Step 3 2797 3636 +9.09
Total 47.00 52.00 +5.00
Step 2 55.56 55.56 +0.00
Step 3 41.67 41.67 +0.00

RefSpatial-Bench-Placement Step 4 41.67 45.83 +4.16
Step 5 0.00 25.00 +25.00
Total 48.00 54.00 +6.00

B Implementation Details and Samples of RefSpatial Dataset

In this section, we present a comprehensive exposition of the implementation details and representative
data samples underpinning the construction of the RefSpatial dataset. As this dataset is intended to
equip general VLMs with the ability to adapt to spatial referring tasks, thereby enhancing spatial
understanding and reasoning in a bottom-up manner, we meticulously design a multi-data-source
generation pipeline. We elaborate on the three core components of this pipeline as follows:

* 2D Web Image (Appx. B.1): We present a 2D data pipeline comprising image filtering, pseudo-3D
scene graph construction, hierarchical referential description generation—from coarse categories to
fine-grained spatial referents—and diverse QA pair creation.

* 3D Embodied Video (Appx. B.2): This section outlines the 3D data selection process from CA-
IM [136], discusses its limitations and mitigation strategies, and presents methods for enriched scene
graph construction compared to the 2D data source. We further describe a QA generation framework
that leverages detailed 3D annotations (e.g., depth maps, oriented 3D bounding boxes) to capture
richer spatial relations. Finally, we detail how to generate QA pairs for the problem of “feasibility
assessment for object placement in free space”.

* Synthetic Data from Simulator (Appx. B.3): We describe how to synthesize 3D scenes, select
and annotate digital assets, efficient scene assembly and rendering, and the generation of QA pairs
grounded in these simulated scenes.

In the following subsections of each section, we detail the employed models, prompt design rationale,
data processing steps, filtering criteria, and illustrative examples, providing a clear and thorough
overview of the construction pipeline and core technical details of the RefSpatial dataset.

B.1 2D Web Image
B.1.1 Multi-Stage Image Filtering

2D Web Images aim to endow the model with basic spatial concepts and comprehensive depth
perception across both indoor and outdoor scenes. Here we use Openlmage [135] as 2D data source.

Overall Motivation and Goals for Filtering. The Openlmages dataset offers a vast collection
of 2D internet images (1.7 M images in training split) with extensive visual diversity, but many
images, such as text-only graphics, QR codes, medical scans, or abstract art, lack relevance for spatial

https://storage.googleapis.com/openimages/web/index.html
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Table 9: Performance on the single-step spatial understanding benchmarks across different model
types. Top-1 & Top-2 accuracies are represented using bold text, and underlines.

CV-Bench [15] BLINK 7 [16] - , o
Method ‘2D—Relation 3D-Depth 3D-Distance |2D-Relation 3D-Depth|R0PoSPatial [2] SAT [4] EmbSpatial [22]
Qwen-2.5-VL-TB (basc) 8215  60.17  69.00 6434 60.98 49.59 30.00 40.20
Qwen-2.5-VL-7B (finetuned) | 9585 9500  90.83 8322 84.68 69.92 85.75 7632
NVILA-8B (base) 9154 9183 9067 7692 76.61 59.35 63.33 67.72
RoboRefer-8B-SFT (finetuned)| 9690 9833 93.50 oL6l 9274 84.55 86.67 7253

Table 10: We report the success rates (%) of real-world evaluation performance when using depth
from DepthAnything V2 and Real Camera.

Real-world Task Depth from DepthAnything V2 Depth from a Real Camera
Pick the specific hamburger closest to the mug nearest to the camera. 80 70
Place the hamburger in front of the teddy bear. 90 90
Pick the apple in front of the leftmost cup’s logo side. 80 80
Place the apple aligned with the existing apple row. 60 40

understanding and referring with reasoning. To curate a dataset tailored for these tasks, we employ
a two-stage filtering pipeline: a coarse pre-filtering using SigL.IP2 [74], followed by fine-grained
selection via Qwen2.5-VL [11], to retain images rich in spatial semantics.

Stage 1: Initial Coarse Filtering. We employ the siglip2-giant-opt-patch16-384 model for
initial filtering to efficiently discard low-quality or off-theme images (e.g., irrelevant scenes or
content lacking multiple everyday objects). This step greatly reduces data volume, streamlining
subsequent processing. Specifically, the Sigl.IP2 model is guided by predefined positive and negative
textual labels. Positive labels represent desired image characteristics, while negative labels describe
undesired content. For each image, the model computes cosine similarity between its embedding and
all label embeddings. The label with the highest similarity is selected; if it belongs to the positive
set, the image is retained, otherwise discarded. Label sets are manually refined iteratively to balance
recall and precision, ensuring relevance while excluding noise. These labels act as semantic anchors
for visual-text alignment. In this stage, only 934k images are qualified to be retained. Positive and
negative label lists are provided in Listings | and 2. For more details about the compute resources
needed in this stage, please see Appx. E.1.

Listing 1: Positive Labels used during SigLIP2 filtering.

Positive Labels = [
"Mid-distance observation of some objects on a table",
"Some objects on the desktop",
"Distant view of some animals",
"Mid-distance observation of some animals",
"Distant view of omne object",
"Mid-distance observation of one object",
"Distant view of some objects",
"Mid-distance observation of some objects",
"Distant view of a person",
"Mid-distance observation of a person",
"Distant view of some people",
"Mid-distance observation of some people",
"Distant view of indoor scene",
"Distant view of outdoor scene",
"Distant view of traffic",
"Distant view of Urban architecture"

Listing 2: Negative Labels used during SigLIP2 filtering.

Negative Labels = [
"Macro shot of an animal",
"Macro shot of omne object",
"Macro shot of a person",
"Macro shot of flowers",
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"A piece of text",

"A person displayed in front of a white background",
"A product displayed in front of a white background",
"A screenshot of the graphics user interface",

"A dimly 1lit environment"

]

SigLIP2 preserves images rich in object diversity, depth cues, and scene context (indoor/outdoor)
through the above labeling process, but its performance declines on certain image types, including:

1. Paintings/Artworks: Especially those with visible brushstrokes or canvas textures.
Low-Light Scenes: Images with minimal illumination and strong shadows.

Grayscale Photographs: Black-and-white imagery lacking color cues.
Distorted Images: Those exhibiting warping, mirroring, or other geometric anomalies.

A

Multi-Scene Collages: Images containing three or more distinct scenes with hard borders.

SigLIP2 struggles to detect and interpret these categories reliably, highlighting the need for a
secondary, fine-grained filtering stage.

Stage 2: Fine-grained Filtering Due to Sigl.IP2’s limitations in handling certain visual content
mentioned above, we introduce a fine-grained filtering stage using the Qwen2.5-VL-7B model to
further improve dataset quality. This step ensured the final images are clear, authentic, and
well-suited for spatial understanding and reasoning required for spatial referring tasks. Qwen2.5-
VL processed 934k images filtered by SigLIP2, retaining 846k. Although Qwen2.5-VL offers
higher filtering precision, its slower speed necessitated the use of SigLIP2 for initial fast filtering,
significantly improving overall efficiency. To ensure accurate and consistent fine-grained filtering, we
adopt a structured prompt engineering strategy for the Qwen2.5-VL model. The process begins with
a system prompt (See Listing 3) that defines the model’s role as an image analysis expert, specifying
key visual attributes to assess and negative categories to detect, and enforcing a strict workflow. For
each image, a corresponding user prompt (See Listing 4) instructs the model to determine whether
the image belongs to any predefined negative categories. The model’s response follows a structured
format: if the segment after the pipe symbol (I) is “Yes”, the image is classified as negative and
discarded; otherwise, it is retained. This prompting scheme ensures that the model adheres to a
consistent output, enhancing the reliability of filtering outcomes. Please refer to Appx. E.1 for details
on the computational requirements of this stage.

Listing 3: System Prompt for Qwen2.5-VL-7B filtering.

system_prompt = """
You are an image analysis expert. Follow this workflow rigidly:

1. **xContent Analysis**:
- Inspect: Main subjects, artistic style, visual characteristics
- Check: Lighting intensity, color channels, geometric integrity,
composition structure

2. **xCategory Verification** (YES if matches ANY):
a) Painting/Artwork - Visible brushstrokes/canvas texture
b) Dim Lighting - Very low brightness, heavy shadows
c) B&W Photo - Grayscale only (0 color channels)
d) Distorted Image - Warping/mirroring anomalies
e) Multi-image Collage - >=3 distinct scenes with hard borders

3. **Structured Response*x*:
Output EXACTLY in this format:
"[Analysis sentence]. | Yes/No"
- Analysis must contain observable evidence
- Final answer MUST use pipe separator

Examples of VALID responses:
"This image is a composite created by stitching together multiple
smaller images, with distinct white borders visible between
the individual components. | Yes"
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"This image features vibrant colors, is neither an artistic
painting nor a composite of multiple images, and does not

conform to any of the specified categories. | No"
nmnn

Listing 4: User Prompt for Qwen2.5-VL-7B filtering.

user_prompt = """

Analyze if this image belongs to ANY of these categories:
1. Painting/artwork

Dim lighting

Black-and-white

Geometric distortion

Multi-image collage

o WN

Respond EXACTLY FORMATTED as:

"[Your evidence-based analysis]. | Yes/No"
nmunn

Visualizing Overall Filtering Results. Fig. 6 presents a visual overview, showing the effectiveness
of our multi-stage filtering pipeline. The first row shows the output of Sigl.IP2, which effectively
removes images lacking spatial semantics, such as macro shots of animals, people, or flowers, textual
content, and GUI screenshots. The second row demonstrates how Qwen2.5-VL-7B further eliminates
unsuitable categories, including artworks, dimly lit scenes, black-and-white images, geometrically
distorted content, and image collages. The third row displays the retained images after both stages,
which exhibit rich spatial relationships, confirming their suitability for spatial understanding and
reasoning and the overall quality of our dataset.

creators
SigLIP2
filtering
A piece of text Macro shot of flower Macro shot of a person A screenshot of graphics Macro shot of an
user interface animal
Qwen-VL
filtering
Painting/Artwork B&W Photo Multi-image Collage Dim Lighting Distorted Image
Remain
Distant view of traffic Some objects on the Distant view of Distant view of some Distant view of some
desktop outdoor scene people animals

Figure 6: Visual overview of the multi-stage filtering results. Row 1: Images discarded by SigL.IP2
due to insufficient spatial context (e.g., close-ups, text). Row 2: Additional filtering by Qwen2.5-VL
removes non-natural content (e.g., artwork, collages). Row 3: Remaining high-quality images suitable
for spatial understanding and referring.

B.1.2 Pseudo-3D Scene Graphs Construction

Although filtered 2D images contain some spatial cues, QA pairs containing sufficient 3D spatial
information (e.g., “near” vs. “far”, distances) derived directly from these 2D images are challenging.
Inspired by prior work [1, 6], we construct pseudo-3D scene graphs from 2D images to enhance
the generation of QA pairs with rich 3D spatial semantics. In these graphs, nodes represent object
attributes, while edges encode inter-object spatial relations. We detail the process of converting 2D
images into pseudo-3D scene graphs below.

Object Detection and Annotation. Although the Openlmages dataset provides annotations, its
limited vocabulary and coarse labeling are insufficient for open-world scenarios. To address this, we
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leverage state-of-the-art foundation models for enhanced object detection and annotation. Specifically,
our scene graph construction pipeline integrates the Recognize Anything Model (RAM) [66] and
GroundingDINO [101] to assign semantic labels and bounding boxes to key objects in filtered raw
2D images. The workflow is broadly as follows:

1. Semantic Labeling via RAM: RAM analyzes each image to generate category labels for
all recognized objects. Its broad recognition capability ensures comprehensive semantic
coverage, guiding subsequent localization.

2. Bounding Box Localization via GroundingDINO: The labels from RAM are used as text
prompts for GroundingDINO, an open-vocabulary detector that localizes the corresponding
objects and outputs precise bounding boxes.

Although recent VLM, i.e., Florence-2-Large supports instruction-based recognition and detec-
tion simultaneously, we find that combining RAM with GroundingDINO yields superior results.
In Fig. 7, Florence-2 (top) often produces ambiguous or redundant detections (e.g., vague labels,
multiple boxes for a single object, or single boxes covering multiple objects), which are unsuitable
for precise object referring. In contrast, GroundingDINO+RAM (bottom) generates concise labels
and one-to-one object-bounding-box mappings, better satisfying the requirements of referring tasks.
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Figure 7: Object detection comparison: Florence-2 (above), GroundingDINO+RAM (below)

3D-aware information Extraction. To further extract 3D-aware information from 2D images, we
adopt UniDepth V2 [68] for metric depth estimation due to its recent state-of-the-art performance,
surpassing models such as DepthPro and Metric3Dv2 across multiple benchmarks. For camera
intrinsic prediction, we employ WildeCamera [76]. Together, these models enable robust 3D point
cloud reconstruction of the scene. Based on previously annotated object bounding boxes, we
apply SAM 2.1 [78] to generate instance masks. Each resulting Pseudo-3D scene graph comprises
object labels (via RAM), 2D bounding boxes (via GroundingDINO), instance masks (via SAM 2.1),
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and object-level point clouds (via UniDepth v2 with WildeCamera), resulting in axis-aligned 3D
bounding boxes. A visualization is provided in Fig. 8.

& ‘g

Figure 8: Scene graph visualization with image, detected objects, and corresponding point clouds.

B.1.3 Hierarchical Object Description Generation

While 3D scene graphs encode basic object categories, real-world scenes often contain multiple
instances per category. Prior datasets [2, 3] simplify reference by assuming a single object per
category, limiting their utility in spatial referring tasks. To overcome this, we augment object
descriptions with attributes and spatial relations, enabling finer-grained disambiguation among
similar instances of the same category. We present our two-stage generation pipeline below.

Stage 1: Generating Object and Image Dense Descriptions in image space. We first generate
detailed descriptions for each detected object and the entire image, employing the Qwen2.5-VL-7B
model. This stage involves both object-level captioning and comprehensive image-level captioning.
The global captions are essential for providing contextual grounding to downstream large language
models (QwQ-32B) during LLM QA generation (detailed in Appx. B.1.4), enhancing the relevance
and accuracy of the outputs. Prompt templates are detailed in Listings 5 and 6. In particular, the
object_caption_user_text_prompt uses a dynamic placeholder [class_name], which is filled
with the object category predicted by the RAM model (See Appx. B.1.2).

Listing 5: Prompts for Image Caption Generation with Qwen-VL.

image_caption_system_text_prompt = """
You are an expert image analysis assistant. Your task is to
generate a detailed and comprehensive description of the image

Please focus on accurately capturing all visual elements present
in the image, including objects, scenery, colors, shapes,
textures, and lighting.

Your description should be clear, precise, and professional.
Additionally, ensure that your description begins with either
‘this image’ or ‘the image’.

nnn

image_caption_user_text_prompt = """
Please carefully examine the provided image and generate a
detailed description.
Include all visible elements such as objects, scenery, colors,
shapes, textures, and lighting.
Ensure that your description is thorough, accurate, and complete,

and that it starts with either ‘this image’ or ‘the image’.
nmunn
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Listing 6: Prompts for Object Caption Generation with Qwen-VL.
object_caption_system_text_prompt = """

You are a visual localization analyzer working with TWO distinct
images:

1. [POSITION-REFERENCE] (First Image):

- Contains ONLY location clues with background

- Strictly use ONLY for determining spatial position (left/right/
upper/lower/center)

- Ignore all visual features except object placement

2. [DETAIL-SOURCE] (Second Image):

- Shows the object’s TRUE APPEARANCE without background

- Extract EXCLUSIVELY from this: color, texture, material, shape
- Never infer details from the first image

Generate phrase in pattern: [Color][Material][Object] at [Position

]
Example: "Matte black laptop on the left" NOT "Red-boxed laptop"

nnn

object_caption_user_text_prompt = """

For the [class_name] marked by red box in FIRST image and fully
shown in SECOND image:

-> COLOR/MATERIAL: Must come from SECOND image

-> POSITION: Only from FIRST image’s placement

Forbidden actions:

x Mention ’red box’ or background elements

x Use location terms in second image

x Combine features across images

Describe the [class_name] marked by red box in FIRST image and
fully shown in SECOND image with this format:
[Color] [Material/Texture] [Object] at [Position]
Samples:
- "Brushed metal water at bottle left"
"Glossy ceramic mug at upper center"

- "Faded denim jacket at lower right"
nmnn

Stage 2: Generating Object Description with Spatial Cues. To enhance referential specificity
in object captions, particularly when multiple instances of the same category coexist, we adopt a
heuristic strategy that appends spatially indicated relative information, such as “the third chair from
the front”. This method leverages 3D object positions from the scene graph (See Appx. B.1.2). By
comparing same-category objects along the three principal axes (front-back, left-right, top—bottom),
we identify the axis with the largest spatial variation as the primary arrangement direction to guide
relative spatial reference generation. Once the main sorting axis is identified, we retrieve appropriate
templates from a predefined library (see Listing 7) to augment the initial object descriptions. These
templates are designed to capture diverse natural language patterns. For instance, for a row of chairs
arranged left to right, templates may include: “{dense_caption}, which is the {ordinal} {class_name}
from left to right,” or “{dense_caption}, the {ordinal} {class_name} in the left-to-right sequence”.
Here, dense_caption denotes the initial description generated by the Qwen2.5-VL model, ordinal
indicates the object’s position in the sorted sequence, and class_name is the category label predicted
by RAM. This spatially-aware enhancement is applied only when multiple instances of the same
category are detected to avoid redundancy. If an object appears only once, its original dense caption
is used directly. To ensure spatial diversity, we set a variance threshold across the three principal axes;
images with multiple same-category objects but low variance on all axes are discarded, resulting in
a final set of 466k images. By integrating spatial ordering with visual descriptions, this heuristic
enables the generation of precise and discriminative referential expressions, essential for producing
high-quality, unambiguous question-answer pairs.

Listing 7: Templates for Spatial Order Description Enhancement.
TEMPLATES = {
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"left_to_right": [
"{dense_caption}, which is the {ordinal} {class_namel} from
left to right",
"{dense_caption}, marked as the {ordinal} {class_namel} in a
left-to-right arrangement",
],
"right_to_left": [
"{dense_caption}, the {ordinall} {class_name} viewed from the
right",
"{dense_caption}, the {ordinal} {class_namel} from the right",

],
"front_to_back": [
"{dense_caption}, which appears as the {ordinal} {class_name}
when viewed from the front",
"{dense_caption}, positioned as the {ordinall} {class_name} in
front-to-back order",
]5
"back_to_front": [
"{dense_caption}, which is counted as the {ordinal} {
class_name}, starting from the back",
"{dense_caption}, the {ordinall} {class_name} in the back-to-
front sequence",
],
"top_to_bottom": [
"{dense_caption}, the {ordinall} {class_name} viewed from the
tOP",
"{dense_caption}, placed as the {ordinal} {class_namel} when
sorted from top to bottom",
]3
"bottom_to_top": [
"{dense_caption}, which ranks as the {ordinall} {class_name} in
bottom-to-top order",
"{dense_caption}, arranged as the {ordinal} {class_namel} when
ordered from the bottom",
]

Examples of Object and Image Descriptions This part qualitatively shows the representative
examples with the generated descriptions. As shown in Fig. 9, we present two types of object captions.
The top row shows simple captions produced by Qwen2.5-VL for single-instance object categories,
where spatial ordering is unnecessary. The bottom row includes captions augmented with spatial order
information to distinguish multiple instances of the same category. Additionally, Fig. 10 demonstrates
Qwen2.5-VL’s ability to generate detailed global descriptions of entire images used in the following.

B.1.4 Generating Diverse QA Pairs via Pseudo-3D Scene Graphs

After constructing scene graphs and generating hierarchical object descriptions, we can leverage this
information to generate diverse QA pairs from pseudo-3D scene graphs to support SFT training for
improved single-step spatial understanding.

Template, Choice and Fact QA Generation. We first adopt a template-based method to generate
structured preliminary QA pairs, multiple-choice questions, and factual statements. The templates
are derived from scene graph information (e.g., object attributes, positions) and refined hierarchical
object descriptions. When designing QA templates using pseudo-3D scene graphs from 2D images,
we explicitly account for the spatial ambiguity inherent in single-view pseudo-3D representations
(e.g., inaccuracies in monocular depth, lack of object orientation, absence of 3D oriented bounding
boxes). Consequently, our QA templates from 2D data source focus mainly on qualitative spatial
understanding and reasoning, while incorporating quantitative cues only when they can be inferred
reliably from 2D or pseudo-3D signals. The spatial concepts covered in the QA templates fall into
the following categories:

1. Relative position relations: capture spatial layouts (left/right, above/below, front/behind).
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black frying pan at left yellow cup at upper left white book at lower left black chair at left

u 0

black motorcycle at left, woman at left, which is black goose at right, placed red barrel,which is the
the second motorcycle the first person from the as the first goose when first barrel in back-to-
from the left left sorted from right to left front order

Figure 9: Generated object descriptions. Top: Unique-category captions. Bottom: Spatially-aware
captions for the same categories. Red boxes indicate referenced objects.

This image captures a bustling urban street scene, likely taken during the daytime as indicated
by the bright lighting and clear skies. The street is lined with a mix of historic and modern
buildings, showcasing a variety of architectural styles. On the left side of the street, there are
older, multi-story buildings with brick facades and classic designs, featuring large windows and
decorative cornices. A prominent sign reading "TENNESSEE" is visible, suggesting the location
could be in Tennessee. The right side of the street features a taller, contemporary glass building,
refl the sur ding envir which indi a blend of old and new architecture
typical of many cities. The street itself is well-maintained, with a few vehicles parked along the
sides and others moving, as suggested by some visible headlights and taillights. The vehicles are
a mix of sedans and SUVs, reflecting a typical urban car hip. The sid Iks are

with lampposts lining the street, providing a warm glow that enhances the urban ambiance. In
the background, a lush green hillside rises, offering a natural contrast to the urban setting. The
hill is densely covered with green foliage, suggesting a park or a natural reserve, which may be a
significant feature in this area. The overall scene conveys a lively yet harmonious blend of urban
activity and nature. The lighting in the image is soft and natural, indicative of a sunny day, and
the shadows are not harsh, suggesting it might be taken either in the morning or late afternoon.

Figure 10: Visualization of generated image detailed descriptions.

2. Relative size comparisons: describe object attributes (e.g., bigger/smaller, taller/shorter,
wider/thinner) often inferred from image-plane projections.

3. Quantitative information from 2D or pseudo-3D label: include spatial reasoning based on
estimated depth maps, 2D object coordinates, and coarse monocular depth approximations.

Accordingly, we design diverse QA templates in these types for spatial understanding:

1. Templates assess spatial and size relations:
* Position relation: “‘Is [A] to the left of [B]?”’
 Size comparison: ‘‘Which object is larger, [A] or [B]?”’
2. Templates query 2D point of a uniquely identified object ‘[A]” (defined in Appx. B.1.3):

* “Where is [A] located? Provide its 2D coordinates.’’ (e.g., “Where is
the red apple at left, which is the second apple from left to right, located? Provide its
2D coordinates.”)

3. Templates query attributes at a specific 2D point ‘[X]” (formatted as ‘(x, y)’):

* Depth retrieval: ‘“What is the depth at point [X17’(e.g., “What is the depth
at (0.528, 0.317)”)

* Object identification: ‘‘Which object is at point [X]?’(e.g., “Which object is
at (0.753, 0.839)?”)

We further design fact templates to generate declarative statements, forming a structured basis for
prompting Reasoning LLM to produce richer and more natural QA pairs. Example templates include:
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1. Approximate depth: “Point [A] and the camera are [X] apart.’’ (based on depth
estimation).

2. Precise 2D object location: ‘‘[A] is located at point [X].”’, “[A] is to the
right of [B].”

Reasoning QA Generation. To generate more natural, complex, and diverse QA pairs beyond
templated formats, we leverage a powerful reasoning LLM, QwQ-32B [146]. It takes the factual
statements, initial QA pairs, and multiple-choice questions (if available) as input, along with global
image captions and precise object descriptions. QwQ-32B then produces more challenging and
conversational spatial reasoning QA. The prompt design is shown in Listing 8.

Listing 8: Prompt for QwQ-32B QA Diversification and reasoning QA Generation.

You are a helpful assistant tasked with generating spatial reasoning-
based questions and answers from provided descriptions of scenes.

Rules:

1. **xWe have three types of input information**:

- x*[Scene]**: A general description of the entire image, which
provides context for the objects and their surroundings.
**xExample :**

[Scene]: The image shows a tranquil lakeside with a small wooden
dock on the right and calm, reflective water in the center.
The sky is overcast.

- *x[0Objects]**: A list containing one or more object labels separated

by lllll'
**Example : **
[Objects]: teal glossy water at lower center | green bamboo dock

at lower right.

- *x[0Objects Description]**: Provides spatial or comparative details
between those objects.
**Example : **
[Objects Description]: teal glossy water at lower center is taller
than green bamboo dock at lower right.

2. **When crafting a Question*x*:

- **xAlways use the provided [Scene] description as context** to ensure
the question aligns with the overall image.

- **Mention all object labels from [Objects]** in the question.

- **Do not modify or paraphrase the object labels**; they must appear
**exactly**x as given in ‘[Objects]’.

- **Do not assume or invent additional scene details** beyond what is
provided in ‘[Scene]’.

- **xDo not reveal the specific details in [Objects Descriptionl]#*x* (
like which object is taller, shorter, wider, etc.).

- Always generate questions related to the description using the
object labels from [Objects].

- Each object label in ‘[Objects]’ #**must appear exactly oncex** in the

Question.

- The question should read from **an observer’s perspective*xx*.

- The description should always be used to answer and not leak into
the question.

3. **When crafting an Answer**:

- **Mention at least one object label from [Objects]#** in the answer.

- *xUse the ‘[0Objects Description]’ to provide a correct answer**.

- **Ensure the answer is concise, factual, and directly related to the
provided ‘[Scene]’ and ‘[Objects]’**.

- *xYou may restate or summarize the relevant details from ‘[Objects
Description]’, but do not introduce new assumptions*x*.
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Here’s several examples:

[Scene]: The image depicts a modern living room with a large window
allowing warm sunlight to enter. The room has a wooden floor, a
patterned rug in the center, and a coffee table with a few
magazines neatly stacked on it. A yellow leather sofa is
positioned centrally, facing the television mounted on the
opposite wall. To the left of the sofa, a black metal chair with a

cushioned seat is placed beside a tall bookshelf filled with an
assortment of books and decorative items. The furniture
arrangement leaves an open pathway between the sofa and the chair.

[Objects]: yellow leather sofa at lower center, black metal chair on
the left.

[Objects Description]: The path between yellow leather sofa at lower
center and black metal chair on the left is 1.5 meters.

"Question": You are a cleaning robot that is 1 meter wide. Now you are

standing in a living room and see the image; you want to move
from here to the door that leads to the backyard. Do you think you
can go through the path between the yellow leather sofa at lower
center and the black metal chair on the left?

"Answer": The path between the yellow leather sofa at lower center and

the black metal chair on the left is 1.5 meters, so yes, the
robot can go through the path between the yellow leather sofa at
lower center and the black metal chair on the left since it is
wider than the robot’s width.

[Scene]l: The image showcases a modern kitchen with a wooden countertop
that extends across the space, separating the cooking area from
the dining area. On the left side of the countertop, a fruit bowl
holds a variety of fresh produce. A red fresh apple is placed on
the left side of the bowl, while a bright fresh orange sits neatly
on the right side. Behind the fruit bowl, a glass pitcher filled
with orange juice and a stack of white ceramic plates are visible.
Natural light streams in from a large window above the sink,
reflecting off the stainless steel appliances and giving the space
a bright, clean feel.
[Objects]: red fresh apple on the left, fresh orange on the right.
[Objects Description]: red fresh apple on the left is positioned on
the left side of fresh orange on the right.
"Question": You see two fruits, a red fresh apple on the left and a
fresh orange on the right. Which one is more on the left side?
"Answer": The red fresh apple on the left is more on the left.

Now its your turn!
nnn

Training data visualization. For specific examples of training data generated from 2D web images
and their visualizations, please refer to Appx. F, which contains detailed sample presentations.

B.2 3D Embodied Video
B.2.1 Why Use CA-1M and How to Pre-process It

Rationale for Selecting CA-1M as the 3D Data Source. To enable fine-grained spatial reasoning in
indoor environments, we adopt Apple’s open-source CA-1M [136] dataset as our primary 3D data
source. CA-1M aligns closely with our objectives due to the following key attributes:

1. Dense 2D/3D Annotations: CA-1M provides per-frame 2D/3D oriented bounding boxes,
enabling spatial localization (e.g., 3D spatial occupancy) and accurate interaction modeling.

2. Comprehensive Camera and Depth Data: The inclusion of camera intrinsics, extrinsics, and
depth maps supports accurate 3D reconstruction and geometric reasoning.

https://github.com/apple/ml-cubifyanything
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3. Large-Scale Coverage: Its extensive volume enables training/evaluation of VLMs at scale.

These features offer a strong foundation for constructing 3D scene graphs and generating spatial
reasoning data involving 3D geometry, object interactions, and egocentric understanding.

Comparative Analysis with Alternative 3D Datasets. While several high-quality 3D datasets exist,
they fall short of meeting the specific requirements of our project, motivating our selection of CA-1M:

1. ARKitScenes [147]: As a predecessor to CA-1M, it provides only global 3D bounding boxes
without per-frame 3D or 2D annotations. Projecting these 3D boxes to 2D yields oversized
and contain irrelevant objects. Additionally, its annotations are less comprehensive, and
image resolution is also much lower compared to CA-1M.

2. ScanNet V2 [148]: Lacks 3D bounding boxes, making object orientation estimation infea-
sible. Although EmbodiedScan introduces per-frame 3D bounding boxes, it still lacks 2D
annotations, and projected 2D boxes remain imprecise and contain irrelevant objects.

3. 3RScan [149]: Suffers from low image quality, hindering spatial information extraction and
limiting its usability.

In summary, despite some limitations (See Appx. B.2.2), CA-1M provides large-scale egocentric
video, per-frame 2D/3D annotations, depth, and camera parameters, making CA-1M the most
suitable choice for generating rich and complex 3D spatial data from an embodied perspective.

Pre-processing. Video datasets capturing continuous activities, such as CA-1M, exhibit high tem-
poral redundancy, as consecutive frames often contain near-identical visual content with minor
variations. Processing all frames is computationally intensive and yields redundant samples with
limited informational gain for model training. To mitigate this, we adopt a frame sampling strategy,
selecting one frame every 20 frames. This reduces redundancy while preserving meaningful scene
and viewpoint transitions. The resulting subset maintains scene diversity and supports efficient
downstream processing, including 3D scene graph construction and question-answer generation. In
Fig. 11, the top row shows four consecutive frames before sampling, revealing minimal variation; the
bottom row, sampled at 20-frame intervals, demonstrates significantly greater scene variation.

— Before sampling time step +

— After sampling time step +

Figure 11: Comparison of frame sequences before and after sampling. Top: Four consecutive
frames from the original video. Bottom: Corresponding frames sampled every 20 frames, exhibiting
increased temporal variation between adjacent frames.

B.2.2 Inherent Challenges and Limitations in CA-1M

Although the CA-1M dataset is chosen for its large scale, egocentric perspective, and rich annotations,
it presents inherent limitations that undermine scene graph construction if unaddressed.

Ambiguous or Meaningless Object Annotations. A major issue is the prevalence of ambiguous
or semantically insignificant object annotations. Many instances are difficult to interpret, even for

40



humans, due to unclear boundaries or a lack of identifiable semantics. For example, some bounding
boxes enclose small, indiscernible regions such as a patch of wall or vague background elements
(see Fig. 12). Incorporating such annotations into model training introduces noise, hampers spatial
understanding, and may mislead the model’s perception of object relationships.

Widespread Absence of Semantic Labels. Another major limitation of CA-1M is the lack of
semantic labels for most annotated objects. Unlike datasets (e.g., ARKitScenes and ScanNet V2),
which provide object category annotations, CA-1M includes only a few structural categories (e.g.,
floors, walls, doors), leaving the majority of object instances unlabeled. Although bounding boxes
indicate the presence of objects (i.e., labeled as “object”), their categories (e.g., “chair”, “table”)
remain unknown. This absence of semantic information hinders spatial understanding, making it
impossible to generate category-dependent queries such as “Is the red chair to the left of the table?”

[

Figure 12: Example of some meaningless annotations in CA-1M.

B.2.3 Addressing Limitations: Object Annotation and Bounding Box Filtering

To address the limitations of the CA-1M dataset, particularly the lack of semantic labels and the
prevalence of noisy bounding boxes (See Appx. B.2.2 above), we develop a dedicated annotation and
filtering pipeline. This enhances the dataset’s usability for downstream tasks such as 3D scene graph
construction and spatial reasoning. We detail the two-stage pipeline below.

Stage 1: Initial Annotation and 2D Bounding Box Prediction. We employ a multi-model combi-
nation strategy to annotate unlabelled objects and refine bounding boxes in CA-1M video frames.
Specifically, we integrated GroundingDINO, RAM, and Florence-2 to perform object semantic
labeling and 2D bounding box prediction. Our approach yields semantically meaningful and
visually coherent object bounding boxes compared to the often difficult-to-discern or ambiguous
bounding boxes from the original CA-1M annotations. To maximize recall, we intentionally lower
the confidence thresholds of GroundingDINO and RAM, ensuring the inclusion of low-confidence
but potentially relevant objects. These candidates are retained for further validation in subsequent
matching and filtering stages.

Stage 2: Bidirectional 2D Bounding Box Matching. To associate model-predicted 2D bounding
boxes (with semantic labels) with unlabeled boxes in CA-1M, we propose a bidirectional matching
and refinement strategy. This not only enables semantic annotation of meaningful objects but
also filters out noisy or ambiguous CA-1M bounding boxes, thus enhancing the utility of its 3D
annotations (e.g., 3D oriented bounding boxes). The strategy consists of two steps:

1. Matching CA-1M Bounding Boxes to Model Predictions. We first match original CA-1M
2D bounding boxes to model-predicted bounding boxes based on the IoU metric. Due
to the sparsity, occlusions, and fragmentation of annotation, multiple CA-1M boxes may
correspond to a single prediction, resulting in many-to-one matches.

2. Refining Model Predictions via One-to-One Mapping. To resolve many-to-one matches,
we retain only predicted boxes that match at least one CA-1M bounding box. For each, we
assign the CA-1M bounding box with the highest IoU as its unique match. This enforces a
one-to-one correspondence, eliminating redundant or weakly aligned CA-1M boxes. The
result is a refined set of original bounding boxes with strong semantic alignment.

Visualizing Matching Results. Fig. 13 shows the effectiveness of our bounding box matching
procedure. The first row shows successfully matched CA-1M bounding boxes annotated with
RAM-predicted object labels, while the second row highlights unmatched bounding boxes, typically
corresponding to ambiguously annotated objects. This demonstrates that our method reliably filters
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out uncertain annotations and assigns semantic labels to clearly identifiable objects. For subsequent
scene graph generation, we adopt the model-predicted bounding boxes instead of the original CA-1M
ones, as they better align with the visible object extents, facilitating more accurate instance mask
extraction via models like SAM?2.

+ air conditioner

«/ paper towel

- o <o -
b 4

Figure 13: Visual comparison of 2D bounding box matching. The top row shows matched CA-1M
bounding boxes with object labels; the bottom row displays unmatched or ambiguous cases.

B.2.4 3D Object Description Generation and Scene Graph Construction.

The process of 3D scene graphs construction largely follows the 2D scene graph pipeline in
Appx. B.1.2 and the description generation in Appx. B.1.3. The resulting graphs are structurally
similar to those from Openlmages in Fig. 8. The key distinction is CA-1M’s focus on indoor en-
vironments and its provision of high-precision geometric data (e.g., ground-truth depth, camera
intrinsics/extrinsics, 3D oriented bounding boxes). The enhanced 3D scene graph outperforms
2D-based counterparts in object localization and spatial relation accuracy, enabling structurally
rich and quantitatively grounded 3D QA data across 28 spatial relation types..

B.2.5 Free Space QA Generation for Object Placement

A key challenge in spatial referring is identifying unoccupied regions suitable for object placement.
We propose a multi-step pipeline to address this.

Step 1: Detecting Viable Platforms via Qwen2.5-VL. We first filter out scenes lacking plausible
placement surfaces (e.g., only walls or ceilings). To this end, we employ the Qwen2.5-VL-7B,
initialized with a system prompt (Listing 9) that specifies its role and procedure. For each image, a
user prompt (Listing 10) directs the model to detect candidate images with surfaces such as tables,
floors, or shelves. Fig. 14 shows the filtering results. The first row shows scenes without platforms,
while the second row shows scenes with platforms. This filtering enables subsequent computationally
intensive analysis to focus on semantically relevant scenes for placement queries.

Listing 9: System Prompt for Qwen2.5-VL to identify images with suitable platforms.

image_have_platform_system_text_prompt = """
You are an expert visual scene understanding assistant.

Your task is to analyze an image and determine whether it contains **
any obvious flat horizontal surfaces** where physical objects can
be placed. These include **xfloors, tabletops, bed surfaces, or
other flat and stable areas*x*.

IMPORTANT :

- If you can see any part of the **xfloor**, **tabletop**, **bedx**, or
*x*similar flat surfaces**, you MUST assume it can support physical
objects (\eg, books, boxes, pillows).
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- Do NOT consider whether the surface is cluttered, partially visible,
or obstructed. If the platform exists and is horizontal, assume
it can hold objects.
- Your answer must be based strictly on visible surfaces.

You must provide a short reasoning based on visual evidence in the
image, followed by a final conclusion.

Your response MUST strictly follow this format:
"[Your analysis]. | Yes/No"

Examples of valid responses:

Example 1:

The image shows a wooden floor that is flat and unobstructed. And it
could potentially support physical objects. | Yes

Example 2:

There is a bed clearly visible in the scene with a flat top surface
where items like pillows or books can be placed. | Yes

Example 3:

A rectangular table is visible in the center of the image, providing a

flat surface suitable for placing objects. | Yes

Example 4:

The image contains mostly a wall with a window and no visible floor,
table, or other flat surfaces. | No

Do NOT provide any extra commentary or formatting outside this exact

format.
nnn

Listing 10: User Prompt for Qwen2.5-VL to identify images with suitable platforms.

image_have_platform_user_text_prompt = """

Please examine the image and determine whether it contains any **clear
horizontal platforms** where physical objects can be placed.
These platforms include: **xfloors, tabletops, bed surfaces, or
other flat and stable horizontal areas*x*.

Important mnotes:

- As long as x**any part*x of a **xfloor**, **xtabletop**, **bed surface
*¥*, or similar platform is visible in the image, you must assume
it is capable of supporting physical objects (such as books, boxes
, pillows, etc.).

- Do NOT consider whether the surface is messy, partially blocked, or
whether there’s enough space. If the platform exists and is
horizontal, you must assume it can hold objects.

- Your answer must be based entirely on visible visual evidence in the

image.

You must respond in the following exact format:
"[Your analysis]. | Yes/No"

Refer to the following examples to guide your response:

Example 1:

The image shows a wooden floor that is flat and unobstructed. And it
could potentially support physical objects. | Yes

Example 2:

There is a bed clearly visible in the scene with a flat top surface
where items like pillows or books can be placed. | Yes
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Example 3:
A rectangular table is visible in the center of the image, providing a

flat surface suitable for placing objects. | Yes
Example 4:
The image contains mostly a wall with a window and no visible floor,
table, or other flat surfaces. | No

Please strictly follow the format and do not add any extra commentary.
nmnn

no platform

have platform
p—

Figure 14: Visualization of platform filtering results. Row 1: Examples of images filtered out (lacking
platforms). Row 2: Examples of images retained (containing platforms).

Step 2: Gravity Alignment and Top-Down Projection. To enable top-down (orthographic) scene
projection, we apply gravity alignment matrices from the CA-1M to transform point clouds and
object 3D bounding box into a consistent frame where gravity uniformly points downward. This
normalization allows for projection onto a plane orthogonal to the gravity vector, revealing object
layouts and spatial relations more clearly. Fig. 17 shows the point cloud and coordinate axes before
and after alignment.

Figure 15: * Figure 16: *
(a) Before gravity alignment (b) After gravity alignment

Figure 17: Visualization of gravity alignment. (a) The scene before alignment. (b) The scene after
alignment, with the Y-axis oriented along the gravity vector.

Step 3: Programmatic Platform Association. After gravity alignment, we associate objects with
supporting platforms based on their spatial relationships. For relationships such as “front/behind/left-
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/right”, we identify the platform supporting a target object by checking the top surfaces of candidate
platforms. A platform qualifies if its top surface is within 0.05 meters of the object’s bottom surface
and overlaps at least 70% of the object’s bottom area in top-down view. For the “below” relationship,
when an object may be suspended in mid-air, we identify the supporting platform as the one located
beneath it, whose top surface is nearest to the object’s bottom, and whose top-down intersection
with the object exceeds 70% of the object’s area. For the “above” relationship, the object’s own top
surface is treated as the reference platform, eliminating the need for additional platform search. For
the “between” relationship involving two objects, each object’s supporting platform is determined
independently using the same procedure as in the “front/back/left/right” cases. The space between
them is considered valid only if both share the same supporting platform, ensuring spatial reasoning
occurs within a unified physical context.

Step 4: Identifying Other Objects on the Platform. After identifying the target object and
its supporting platform, we locate other relevant objects co-occurring on the same platform. For
“front/behind/left/right/between’, candidate objects are selected based on the following criteria:

1. Their bottom must not be significantly higher than the top of the target object.
2. Their top must remain above the platform surface.
3. Their XZ-plane footprint must intersect with that of the target object.

4. Their volume must not exceed 4.236 times that of the target object.

To mitigate the over-filtering of solid objects during visible point selection via depth matching, we
introduce a volumetric constraint (thresholded at approximately 4.236, i.e., (1/ 0.618)3, the cube of
the reciprocal of the golden ratio). This prevents large, potentially hollow objects—such as tables with
substantial under-space—from being misclassified as fully occluding based solely on their bounding
box volume, which would mislead placement reasoning on the primary platform. Instead, the filter
targets small to medium-sized objects, where the bounding box volume more accurately reflects
actual occupancy. For such objects, even if hollow, the limited under-space is typically negligible for
placement purposes. This behavior is shown in the top-view occupancy maps in Fig. 18 and Fig. 26,
where a large table is excluded due to exceeding the volume threshold. Despite being present in the
scene, its hollow geometry allows for usable space beneath, justifying its omission.

For the “below” relation, an object on a platform is considered below the target object (when the
target might be suspended or on a higher tier) if:

1. Its footprint (XZ-plane projection) intersects with that of the target;
2. Its bottom is no higher than the top of the target;

3. Its top is not below the top surface of its supporting platform.
For the “above” relation, an object is considered above the platform of target object if:

1. Its bottom is within 20 cm above the platform’s top surface;
2. Its top is not below the platform’s top surface;
3. Its footprint (projection on the XZ plane) overlaps with that of the platform.

Step 5: Sampling Unoccupied Points in the Top-View Occupancy Map. After identifying the
target object, its supporting platform, and adjacent objects, we determine the surrounding free space.
This includes regions in front, behind, left, right, above, or below the target. To locate free space
in the horizontal directions (‘“front/behind/left/right”), we define a 90° sector centered on the
target and oriented in the respective direction. The sector radius is set to the maximum of either the
diagonal of the object’s footprint or a fixed 20 cm, ensuring adequate coverage. For vertical directions
(‘“above/below”), we project the object’s top or bottom surface onto the supporting platform. To
mitigate overestimation from coarse 3D bounding boxes, we shrink the projection to 80% of its
original size (centered), reducing overlap with nearby objects and better approximating usable space.
To identify free space “between’ two target objects, we define the search region as the planar area
enclosed by the projections of both objects onto their shared supporting surface. This region is
evaluated for occupancy by other objects. Across all spatial contexts (‘“above/below/between”’),
we enforce a minimum free area constraint: the unoccupied region must exceed 0.036m? (half an
A4 sheet) in a top-down view. This threshold filters out trivial cases and ensures the queried space
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can accommodate small objects such as a book or cup. Free space is computed by analyzing object
footprints in the gravity-aligned top-down view. In Fig. 18, 22, 26, blue-shaded regions indicate the
final sampling areas after accounting for bounding box scaling and occlusions. These visualizations
highlight viable unoccupied regions for subsequent placement analysis.

Step 6: Projection and Visibility Filtering. Given candidate points sampled in the top-down view
(XZ-plane) as free space or target locations, we project them into the original 2D camera image
to assess visibility. Each point is assigned the y coordinate of the platform’s top surface, forming
full 3D coordinates. Using camera intrinsics, extrinsics, and gravity alignment, we project these 3D
points onto the 2D image plane, as shown in Fig. 19, 23, 27. To determine visibility, we compare
the z-coordinate of each 3D point with the corresponding depth value in the aligned depth image.
Points are discarded as occluded if this difference exceeds 2.5 cm. For the front, behind, left, and
right directions, we sample 9, 000 points per direction and retain the direction if at least 2, 000 points
remain visible. For the above, below, and between relations, we sample 10, 000 points and require a
minimum of 6, 000 visible points. We compute the mean position of the remaining visible points as
the representative target location. If its depth deviates from the depth image by more than 2.5 cm,
we instead choose the nearest point within this threshold. Fig. 20, 24, 28 illustrate this process,
highlighting visible points and the final selected target (blue circle).

Figure 18: * Figure 19: * Figure 20: *
(a) Top-view occupancy map (b) Sampled points projected  (c) Visible points with the final
with right-side search area onto the 2D image placement center

Figure 21: Visualization of right-side free space identification. (a) Top-view occupancy map with
the target’s right-side search area. (b) Projection of sampled candidate points into the image plane.
(c) Non-visible points are removed; the final placement center is marked with a blue circle.

Platform

Target
Below Points

Figure 22: * Figure 23: * Figure 24: *
(a) Top-view occupancy map of  (b) Sampled points projected  (c) Visible points with the final
the object’s bottom surface into the 2D image placement center

Figure 25: Visualization of bottom-side free space identification. (a) Top-view occupancy map of
the target’s bottom surface on the platform. (b) Projection of candidate points into the image plane.
(c) Non-visible points are filtered; the final placement center is indicated.

B.2.6 Generating Diverse QA via precise 3D annotations

Building on the 2D QA generation pipeline (Appx. B.1.4), we utilize a template-based approach
augmented with QwQ-32B to generate diverse QA pairs for 3D scenes. Unlike 2D images, 3D
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Figure 26: * Figure 27: * Figure 28: *
(a) Top-view occupancy map (b) Sampled points projected  (c) Visible points with the final
with between search area into the 2D image placement center

Figure 29: Visualization of between-object free space identification. (a) Top-view occupancy map
showing the area between two target objects on the same platform. (b) Projection of sampled points
into the image plane. (c) Non-visible points are filtered; the final placement center is indicated.

datasets offer rich and precise spatial annotations—such as depth maps, camera poses, and
per-object 3D bounding boxes—which enable the construction of more complex QA with spatial
referring with reasoning. Additionally, QA generation from 3D data accounts for above/below
relations in both world and camera reference frames: the former reflects gravity, while the latter
corresponds to vertical image orientation. Leveraging these annotations, we design both qualitative
and quantitative QA templates grounded in the following spatial concept categories:

1. Relative Position Relations: Encompasses spatial relations such as left/right, above/below,
front/behind, inside/outside, touching/separated, and near/far. These queries require accurate
3D positioning and spatial layout to infer inter-object relationships in physical space.

2. Orientation and Rotation Reasoning: Involves reasoning over face/back direction, ori-
entation (horizontal/vertical), and relative angles, using 3D object or camera poses (e.g.,
orientation vectors, rotation matrices) to infer facing direction or viewpoint shifts.

3. Geometric Attribute Comparisons: Covers attributes like size (big/small), height (tal-
I/short), and width (wide/thin). These comparisons rely on true 3D dimensions, mitigating
distortions from 2D projections.

4. Quantitative Spatial Reasoning: Involves computing depth, distance, relative angles, and
spatial betweenness using precise 3D coordinates and metric reasoning.

5. Free Space Reasoning: Identifies free space above, below, or between objects. As illustrated
in Fig. 21, 25, and 29, blue-shaded regions represent unoccupied areas computed from object
footprints and platform segmentation. To mitigate overestimation from large bounding boxes,
we apply a shrink factor (e.g., 80%) to the projected surfaces for above/below queries.

6. Location and Placement Prediction for Spatial Referring: Involves predicting precise
2D coordinates from language descriptions, e.g., “Point to the second chair from the left”
— identifying a target object, or “Indicate a free spot to the right of the white box on the
second shelf” — selecting a valid placement location. These tasks require accurate 2D-3D
projection and fine-grained spatial understanding, forming a vital bridge between visual
perception and physical interaction and execution.

Building on the structured templates, we design a diverse suite of 3D QA covering spatial reasoning,
geometric comparison, viewpoint inference, environmental understanding, and coordinate-level
localization. Leveraging QwQ-32B’s powerful capabilities, our pipeline also generates complex
reasoning QA pairs that are both structurally diverse and semantically rich.

3D training data visualization. For specific examples of 3D training data and their visualizations,
please refer to Appx. F, which contains detailed sample presentations.
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B.3 Synthetic Data Generation in the simulator

We want to arm our model with multi-step referring capabilities with spatial reasoning. While 2D and
3D data enable single-step spatial understanding, they are less scalable for multi-step spatial referring
with reasoning. Therefore, we generate synthetic data in the simulator.

B.3.1 Indoor Scene Generation

Initial Scene Generation. We utilize Infinigen [137] to generate a large corpus of indoor
scenes. To be specific, we configure the generation process to exclude small objects by setting
compose_indoors.solve_steps_small=0 to avoid pre-existing clutter on target surfaces. This
allows us to reserve space for the subsequent placement of our curated 3D assets. This initial step
yields over 3k unique indoor scenes.

Scene Filtering. The generated scenes underwent a rigorous filtering process to ensure their suitability
for our downstream tasks. The primary filtering criteria included:

* Adequate Tabletop Area: Selected scenes contain at least one sufficiently large, continuous
tabletop surface (e.g., desk, table, counter) suitable for object placement. Scenes with absent
or impractically small surfaces are excluded.

* Acceptable Lighting Conditions: Scenes with extreme lighting issues (e.g., darkness,
oversaturation, unnatural hues) are discarded to ensure a viable baseline for subsequent
lighting adjustments.

* Scene Realism and Coherence: Scenes with severe geometric inconsistencies or implausi-
ble layouts are removed to maintain physical plausibility.

* Camera Accessibility: Scenes are required to support feasible camera placement with clear
views of the target surfaces. Highly cluttered or confined environments are deprioritized.

Scene Adjustments. To enhance diversity and control experimental variables, filtered scenes
underwent automated modifications:

* Lighting Randomization: Light source intensities (e.g., ceiling lights, lamps) are uniformly
scaled within [0.6],1.4]], where I denotes the original intensity.

* Camera Pose Adjustment: For each tabletop, camera viewpoints are defined with pitch
angles randomly sampled from [—60°, —30°] relative to the tabletop plane, oriented toward
the region center.

* Camera Height and Distance Variation: Camera height is uniformly sampled from 0.3—
0.8 m above the tabletop. Distance to the target area is adjusted to maintain full visibility,
conditioned on surface size and field of view.

Some typical cases of scene filtering are shown in Fig.30.

B.3.2 3D Asset Selection and Preparation

Our 3D assets are sourced from the Objaverse [138] LVIS dataset and undergo a two-stage filtering
process to ensure quality and relevance.

Stage 1: Category Filtering. We select objects based on LVIS annotations, following categories:

* Are typically placeable on surfaces.

* Have a maximum dimension under 1 meter, suitable for tabletop scenarios.

Stage 2: Attribute-based Filtering. Next, we apply fine-grained filtering using attributes from the
OrienText300K [7] dataset. Retained assets satisfy the following criteria:

» Axis Alignment: Key features (e.g., edges, handles) align with canonical camera axes.
« Single Object: Represents a standalone object, not a scene or object collection.
* Color Diversity: Contains colors beyond white or gray.

* No Ground Plane: Excludes auxiliary visualization ground planes.
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° The area of the object placement platform is not big enough.

Figure 30: Cases of Scene Filtering

* High Quality: Clean, well-constructed geometry without artifacts.

* Distinguishable Views: Canonical views (front, back, top, bottom, left, right) exhibit
meaningful visual or semantic differences.

» Reasonable Object: Represents a common, identifiable object, not an abstract shape or an
unidentifiable entity.

This process yields a curated set of over 9k high-quality 3D assets.

Stage 3: Manual Filtering. Due to the suboptimal quality of annotations, we perform manual
verification based on the seven defined rules. Since object size estimation relies on LVIS-labeled
categories with a +30% tolerance, we additionally discard instances whose irregular geometry (e.g.,
entangled cables of a wired mouse) distorts the bounding box and hinders reliable scaling. After
filtering, we retain over 3k high-quality 3D assets compliant with our criteria.

Fig.31 shows the screening results for some representative 3D assets, which encompass all the criteria
mentioned above.

B.3.3 3D Asset Annotation with LLM

To generate diverse annotations, we leverage OrienText300K’s orientation and caption data, processed
via GPT-40 with tailored prompts to extract structured textual attributes for each sample.

Generated Attributes:

* Orientation Descriptions: Prepositional phrases indicating the object’s canonical front,
salient parts, or intrinsic orientation (e.g., “on the front of ...”, “on the handle side of ...”),
suitable for insertion into sentence templates.

* Color Labels: A single-word descriptor of the object’s dominant color. If multiple colors
are prominent, the attribute is marked as “none” (e.g., “blue”, “none”).

* Object Labels: Concise noun phrases specifying the object category (e.g., “coffee mug”,
“computer mouse”), usable as subjects or objects in templates.

» Category Consistency: A boolean flag indicating alignment between the object’s visual
category and its textual description.

LLM Prompt: The exact prompt used to obtain these annotations is provided in Listing 11.
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Figure 31: Cases of 3D assets Filtering

Listing 11: Prompt of generating brief description, color and orientation preposition.

Your objective is to generate four distinct labels derived from the
provided 3D asset information. Each asset is characterized by the
following attributes:

Category: {category}
Detailed description: {description}
Direction hint: {direction_hint}

Based on the information above, you are required to perform
the following four tasks:

Task 1: Consistency Verification

Evaluate whether the asset’s specified category aligns semantically
with its detailed description. Output "True" if consistent,

and "False" otherwise.

Task 2: Object Description Phrase Generation

ormulate a concise and unambiguous object description phrase. This
phrase must encapsulate the primary characteristics of the object,
not contain any articles (\eg, "a", "an", "the"), and be
grammatically suitable for use as either the subject or object
within a template sentence.

Task 3: Simplified Directional Phrase Generation
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Generate a concise and clear simplified directional description phrase
based on the provided direction_hint. This phrase must be capable of
functioning as a prepositional phrase to describe the relative
position of other objects within a template sentence. In the generated
phrase, the current object should be represented by "OBJECT".

Task 4: Color Extraction
Extract the dominant color of the asset based on the detailed
description, adhering to the following criteria:

1.
2.

The extracted color must be a single English word in lowercase.
If the detailed description does not explicitly state a color,

return the string "none".

Please ensure your output strictly adheres to the following JSON
format. The output must be a valid JSON object without any
supplementary explanations, comments, or introductory/closing

remarks.

{
"consistent": (True/False),
"simple_desc": "simplified object description phrase",
"simple_dir": "simplified directional description phrase",
"color": "the main color"

}

Category Bible

Description The images depict a 3D model of

an old book with reddish-brown
covers and visible pages. The
covers have a worn, textured

appearance while the sides show Direction Prep on the spine side of the OBJECT
the pages.

Consistent True

Simple Description |Bible

Color brown

Direction Hint | spine

Direction Vec | (0, -1, 0)

Figure 32: A Sample of generating object phrases, colors, and orientation descriptions from 3D asset
information and orientation hints.

B.3.4 Scene Population and Data Rendering

The curated 3D assets are then programmatically placed into the filtered and adjusted indoor scenes.
Asset Placement Strategy:

* Assets are placed predominantly on identified tabletop surfaces.

* To enhance the model’s understanding of object orientation and inter-object relationships,
placement strategies included:

— Increasing the proportion of objects with orientation vectors within the X-Y plane (e.g.,
laptops, teddy bears, mugs) in many scenes.

— Increasing the co-occurrence of objects from the same category that have significantly
different features. (e.g., a ceramic cup with a handle and a cola cup).

— Ensuring plausible physical arrangements (e.g., no excessive interpenetration, objects
placed upright).

* The number of assets per scene varied from 3 to 9.

Rendering Details:

* Renderer: High-fidelity, physically-based images are rendered using the Blender Cycles.
* Image Resolution: Output images are rendered at 960 x 540 pixels.

* Render Quality: The configure_render_cycles.num_samples parameter is set to
2048 to achieve high-quality renders while maintaining reasonably controlled noise.
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B.3.5 Question-Answer Pair Generation

Based on the rendered scenes and their corresponding ground truth information (scene graphs, object
properties, masks), we generate question-answering (QA) pairs. This process involves two steps:

Step 1: Generating Unique Object Referring Expressions. For each object in a scene, we formulate
unique identifiers or referring expressions based on a combination of its attributes and relationships:

LEINT

* Feature Category: The semantic class of the object (e.g., “the mug”, “the laptop”).

* Color: The primary color of the object (e.g., “the red mug”).

 Left-Right Rank: Ordinal position from left to right (e.g., “third bottle from left to right”).
* Front-Back Rank: Ordinal position from front to back (e.g., “farthest LEGO minifigure”).

* Distance Rank from Anchor: Ordinal position based on distance from a salient anchor
object (e.g., “the closest plate to the blue mug”).

* Height Rank: Ordinal position based on the height (e.g., “the second tallest teddy bear™).

These components are combined to create unambiguous references (e.g., “the second red object from
the left”’). When filling objects into template structures in the subsequent process, we can randomly
select from all referring expressions.

Step 2: Applying QA Templates. Due to the heavy reliance on spatial relationships between objects,
we initially developed a template structure to formalize these relationships:

* Position: Location of an object relative to another (e.g., “on the left of the green bottle”).

* Orientation: Questions involving an object’s intrinsic orientation (e.g., “on the handle side
of the red mug”).

* Distance Queries: The precise distance (e.g., “0.2 meters to the left of the plate”).

* Betweenness: Identifying an object located between two other objects (e.g., “between the
stapler and the telephone”).

* Specific Surface Locations: Locating objects relative to parts of a surface (e.g., “at the far
left corner of the table™).

QA Template Types:

* Locate from Description: Given a unique referring expression for an object, ask for its
location (e.g., “Give me the position of ...”).

* Identify from Relations: Provide several spatial relationships an object satisfies and ask to
identify the object (e.g., “Please specify an object on the desktop that satisfies the following
spatial constraints: ...”).

* Locate Empty Space: Define a point in an empty area on a surface based on its spatial
relationships with surrounding objects, and ask to confirm this empty location (e.g., “Please
provide a point in the vacant area on the desktop that simultaneously satisfies the following
spatial conditions: ...”).

Generation of Thought Processes (Reasoning Steps): For each QA pair, a structured thought
process or chain of reasoning is also generated. This involved selecting the pertinent pieces of
information from the complete scene graph and ground truth data that are necessary to arrive at the
answer. This recorded reasoning follows a predefined format.

C Implementation Details and Samples of RefSpatial-Bench

The RefSpatial-Bench benchmark evaluates spatial referring with reasoning in complex 3D indoor
scenes through two tasks: Location Prediction and Placement Prediction, each comprising 100
samples. Each sample includes a manually selected image, a referring caption, and precise mask
annotations. Moreover, to evaluate the effectiveness of the RFT training strategy, we further select 77
samples from these 200 samples and define it as the Unseen set, which contains novel spatial relation
combinations absent from RefSpatial to test the model’s generalization.
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Location Task: Given an indoor scene and a unique referring expression, the model predicts a 2D
point indicating the target object. Expressions may reference color, shape, spatial order (e.g., “the
second chair from the left”), or spatial anchors.

Placement Task: Given a caption specifying a free space (e.g., “the vacant area to the right of the
white box on the second shelf”), the model predicts a 2D point within that region. Queries often
involve complex spatial relations, multiple anchors, hierarchical references, or implied placements.

Unseen Set: This set comprises 77 samples from the Location/Placement task, specifically designed
to evaluate model generalization after SFT/RFT training on RefSpatial, as it includes novel spatial
relation combinations not present in RefSpatial.

Notably, we introduce reasoning steps (step) for each benchmark sample, quantifying the number
of anchor objects and their associated spatial relations that effectively narrow the search space.
Specifically, each step corresponds to either an explicitly mentioned anchor object or a directional
phrase linked to an anchor that greatly reduces ambiguity (e.g., “on the left of”, “above”, “in front of”’,
“behind”, “between”). We exclude the “viewer” as an anchor and disregard the spatial relation “on”,
since it typically refers to an implied surface of an identified anchor, offering minimal disambiguation.
Intrinsic attributes of the target (e.g., color, shape, size, or image-relative position such as “the orange
box” or “on the right of the image”) also do not count towards step.

A higher step value indicates increased reasoning complexity, requiring stronger spatial un-
derstanding and reasoning about the environments. Empirically, we find that beyond 5 steps,
additional qualifiers yield diminishing returns in narrowing the search space. Thus, we cap
the step value at 5. Instructions with step > 3 already exhibit substantial spatial complexity.
Detailed statistics on step distributions and instruction lengths are provided in the Tab. 11. To
further show the diversity and reasoning complexity of RefSpatial-Bench, we present representative
examples from both the Location and Placement tasks. Fig. 41, 42, 43, and 44 show Location queries
with varying reasoning step counts, where RoboRefer accurately localizes the target object (marked
by a blue dot). Similarly, Fig. 45, 46, 47, and 48 show Placement queries involving the identification
of free space based on spatial relations. These examples highlight the step-wise complexity of the
queries and the effectiveness of RoboRefer in addressing challenging spatial referring tasks.

Table 11: Statistics of the RefSpatial-Bench across Location/Placement tasks and unseen sets.

RefSpatial-Bench  Step  Samples Avg. Prompt Length

Step 1 30 11.13

Location Step 2 38 11.97
Step 3 32 15.28

Avg. (All) 12.78

Step 2 43 15.47

Step 3 28 16.07

Placement Stepd 22 2268
Step 5 7 22.71

Avg. (All) 17.68

Step 2 29 17.41

Unseen Step 3 26 17.46
Step 4 17 24.71

Step 5 5 23.8

Avg. (All) 19.45

To more comprehensive evaluate the spatial referring task, we expand the original RefSpatial-Bench
in terms of difficulty and diversity, producing the manually annotated RefSpatial-Expand-Bench. It
includes more indoor cases (e.g., shops and factories), and also introduces outdoor scenes not present
in RefSpatial-Bench (e.g., streets, parking lots, and parks). Statistics of this extension are provided in
Tab. 12 and Tab. 13. The detailed evaluation results of RoboRefer on this expanded benchmark are
showed in Tab. 14.

53



Table 12: Statistics of the RefSpatial-Expand-Bench

Task Type Indoor Outdoor Total

Location 115 126 241
Placement 120 80 200
Total 235 206 441

Table 13: Statistics of the RefSpatial-Expand-Bench by step and task.

Task Type Step Samples Avg. Prompt Length

Step 1 54 10.61

Location Step 2 129 12.56
Step 3 58 16.10

Avg. (All) 241 12.98

Step 1 3 15.00

Step 2 86 15.14

Placement Step 3 75 16.95
Step 4 29 22.24

Step 5 7 22.71

Avg. (Al 200 17.11

D Implementation Details for RoboRefer

D.1 Architecture

We adopt NVILA [38] as base model, including a visual encoder, an LLM, and a multimodal projector.

Visual Encoder. We use the same image encoder as siglip-s0400m-patch14-448 [75] from
NVILA [38], supporting 448 x 448 resolution for richer visual details. Rather than simply resizing
the image to a fixed resolution and producing the same number of tokens, this image encoder processes
inputs at dynamic resolutions, yielding more visual tokens from higher-resolution images via finer
patch division. This enables fine-grained vision-language understanding, crucial for tasks like point
prediction that require detailed perception beyond VQA. We further incorporate a dedicated depth
encoder, structurally mirroring the image encoder and initialized with its weights. It encodes relative
depth maps as special images, providing spatial cues to enhance 3D understanding.

Large Language Model. We adopt the Qwen2 LLLM backbone from NVILA [38], which has been
fully fine-tuned with extensive data during supervised training. This endows the model with rich
visual knowledge, facilitating downstream 3D spatial understanding and reasoning tasks.

Multi-Modal Projector. To align multi-modal representations (e.g., image to language, depth to
language), we use linear connectors, the same as NVILA [38], which is better than Q-Former, to allow
the LLM to focus on visual understanding and improve generalization. Separate connectors for image
and depth embeddings ensure modality-specific processing and prevent cross-modal interference.

D.2 Training Data

Here we highlight the training data used at each stage, including the number of samples per dataset
and the overall total. See Tab. 15 for details.

SFT stage. Specifically, in the first step of the SFT stage, i.e., depth alignment, we train a depth
projector to align depth and language space using the RefSpatial (RGB-D) dataset with 2.5M samples.
To increase training efficiency, we slice multi-turn conversations (up to 15 turns per sample), yielding
3.4M samples post-processing to train our model. In the second step, i.e., spatial understanding
enhancement via full-parameter fine-tuning—we use both RefSpatial (RGB) and RefSpatial (RGB-D)
datasets, yielding 6.8M samples after slicing. To further improve instruction-following and referring
capabilities, we incorporate auxiliary datasets: 965k samples from instruction-tuned data (LLaVA-
1.5 [134], LRV [133]), 321k from referring datasets (RefCOCO/+/g [87]), 176k from SAT [4]
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Table 14: Accuracy results of 2B SFT and 8B SFT Models on RefSpatial-Expand-Bench.

Task Category 2B SFT 8B SFT
Over all 50.21 61.00
Indoor 49.57 58.26

Location Outdoor 50.79 63.49
Step 1 61.11 72.22
Step 2 52.71 62.02
Step 3 34.48 48.28
Over all 48.50 60.00
Indoor 50.83 60.00
Outdoor 45.00 60.00

Placement o ) 3333 3333
Step 2 41.86 51.16
Step 3 5467  70.67
Step 4 48.28 55.17
Step 5 71.43 85.71

Table 15: Details about the training datasets used in the SFT and RFT stages. D.A. and S.U.E denote
the Depth Alignment and Spatial Understanding Enhancement step in the SFT stage, respectively.

Stage |Categories|Datasets
SFT (D.A) |Spatial ~ |RefSpatial (RGB-D)

Spatial RefSpatial (RGB), RefSpatial (RGB-D), SAT [4], EmbSpatial [22]

SFT (S.U.E)|General |[COCO [150], GQA [18], OCR-VQA [151], TextVQA [152], VG [153], LRV [133]
REC RefCOCO/+/g [87]

RFT |Spatial  |RefSpatial (RGB-D) w/ Reasoning Processing

benchmark training sets, and 127k from EmbSpatial [22] benchmark training sets. These additions
help bridge distribution gaps between RefSpatial and benchmark-style queries. After slicing, the
total number of samples used in this stage reaches 8.5M post-slicing.

RFT Stage. In the RFT stage, we train the model using RefSpatial data annotated with detailed
reasoning processes, including key intermediate steps and final answers. To ensure both training
efficiency and effective learning, we use moderately difficult samples (typically involving three
reasoning steps), resulting in a 100k-sample dataset.

D.3 SFT Training Details

We formulate the SFT training stage as follows: given a dataset D consisting of samples in the form
of triplets (O, Q, A), where O is a sensor image (either RGB or RGB-D), Q is a textual question,
and A is the corresponding answer. The answer .4 may be a direct response (e.g., a point coordinate)
or include intermediate reasoning steps (e.g., perceptual results followed by the final answer). The
training objective is to maximize the likelihood of generating the answer given the input pair (Q, A):

T
Lspr = —E0,0,4)~D Zlogmg(yt | O0,Q,y<t), (1)

t=1

where 7y is the model’s token distribution. The output model wgp serves as the initialization for the
next RFT stage, ensuring a robust foundation for reinforcement learning.

To be specific, our SFT consists of two steps. In the first step, depth alignment, only the depth
projector is updated by using the RefSpatial (RGB-D). We employ a maximum learning rate of le-4,
a weight decay of 0, and a warm-up ratio of 0.03. The 2B variant is trained with a batch size of 7
per GPU, and the 8B variant with 3, both for one epoch. In the second step of spatial understanding
enhancement, we fine-tune all model parameters using the datasets described in Sec. D.2. Training is
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conducted for one epoch with a maximum learning rate of Se-5. We use a batch size of 6 per GPU for
the 2B model and 2 for the 8B model. Other hyperparameters follow those in the first step. For more
details, please refer to NVILA [38] settings during alignment and SFT.

D.4 RFT Training Details

During the RFT stage, we refine mgpr via GRPO [114], a reinforcement learning method designed
for efficiency and scalability. Unlike PPO [154], which relies on a costly value network, GRPO esti-
mates relative advantages by comparing intra-group rewards, reducing computation, and simplifying
optimization. This makes it well-suited for reasoning-intensive spatial referring tasks. In detail, we
modify R1-V [122] to support our 3D-aware architecture. Training is conducted for two epochs with
a batch size of 1 per GPU and 8 outputs in GRPO. For details about hyperparameters, see R1-V [122].

D.4.1 Sampling Action Groups

Given an input state s = (O, Q), where O denotes the visual encoding of the RGB or RGB-D obser-
vation and Q the textual encoding of the question, GRPO samples a set of actions {a1, as,...,an}
from the current policy 7y, initialized from wgpr. The sampling process is:

a; ~mpla]| O0,Q), fori=1,2,...,N 2)

This strategy ensures diverse responses, promoting exploration and preventing premature convergence.

D.4.2 Reward Design and Policy Update

Each sampled action a; is assigned a reward R(a;) based on verifiable criteria, yielding a reward set
r1,7T2,...,rN. For spatial referring tasks, R(a;) integrates two outcome-based and our proposed two
process-based components. The outcome-based reward functions are defined as follows:

Outcome Format Reward R . This component ensures structured and interpretable outputs by
requiring the model to a predefined format: reasoning within “<think>...</think>” and the final
answer in “<answer>...</answer>”. A reward is assigned 1 for strict compliance, 0 otherwise.

Point L1 Reward Rp. This component evaluates the accuracy of the model’s final point prediction
by comparing it with the ground truth from the annotations of RefSpatial. Following the criterion
inspired by Seg-zero [131], a stricter reward of 1 is assigned if the L1 distance between the predicted
and ground-truth points is within 50 pixels; otherwise, the reward is O.

Notably, most process-based rewards depend on a Process Reward Model (PRM), typically a fine-
tuned LLM or VLM tasked with providing feedback. However, applying such an approach in our
setting presents two main challenges. (1) LLMs cannot process images, making it impossible to
determine whether predicted coordinates match the target object. (2) Although VLMs integrate visual
and textual information, prior work [155] has shown they may lack precise visual understanding when
dealing with textual coordinates. Since the correct assessment of predicted coordinates is paramount
for reward assignment, additional or specialized methods are needed to ensure reliable feedback.

To address this issue, we propose a rule-based process reward for spatial referring that obviates
the need for a Process Reward Model. Our approach directly evaluates key intermediate perceptual
steps using the ground-truth step-wise annotations provided in RefSpatial. This contrasts with most
existing methods on process-based rewards [156, 157], which emphasize strictly sequential reasoning
and rely on a PRM for evaluation. In contrast, our method employs metric-sensitive rule-based
process reward functions to assess intermediate perceptual results in an order-invariant manner.
Our key insight lies in two aspects: (1) Metric-sensitivity: Different spatial attributes require
distinct metrics due to inherent differences in their representations (e.g., points for positions, vectors
for orientations). (2) Order-invariance: The reasoning process in spatial referring is not strictly
sequential; for instance, identifying the position of the keyboard or the mouse first does not affect the
final interpretation of “the free area between the keyboard and the mouse”.

In detail, we have two process-based reward functions:

Process Format Reward Rpp. Similar to the Outcome Format Reward strategy, this compo-
nent enforces a structured and interpretable reasoning process, thereby facilitating accurate reward
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computation. In particular, the model is required to produce outputs in the following format:

[Perception Typel [Target Object]: [Valuel 3)
where “Perception Type” must be one of three categories: “Position”, “Orientation”, or
“Size”. The “Target Object” corresponds to a uniquely identifiable entity (e.g., “the second
largest cup” or “the second large cup from large to small”). The “Value” depends
on the selected “Perception Type”:

* For “Position”, the value should be a normalized 2D coordinate of the form [(x, y)],
where both 2 and y lie in the interval [0, 1], rounded to three decimal places.

* For “Orientation”, the value is a 3D unit vector (x, y, z) representing the object’s
semantic orientation in the camera coordinate system.

* For “Size”, the value represents a scalar measured in meters.
Below are examples to illustrate the expected format:

* [Position] [the second largest cupl: [(0.245,0.147)]
* [Orientation] [the handle of the second largest cup]: (1.000, 0.000, 0.000)
* [Size] [the second largest cup]: 0.12

Accuracy Reward R 4... The reward is computed only for steps annotated as key steps in RefSpatial.
In detail, we use regex matching to determine whether the “Target Object” in the current process
format appears in the key-step annotations. If not, the step receives no reward. Since the model has
already undergone a cold-start phase in SFT, it can interpret instructions and identify relevant target
objects. Thus, a failed match implies that the model cannot accurately refer to the object linguistically,
and no reward is assigned. For each perception type, we apply a specific metric to compute the
reward: (1) “Position”: If the L1 distance between the predicted point and the ground truth is below
50 pixels, the reward is 1; otherwise, 0. (2) “Orientation”: If the cosine similarity between the
predicted and ground-truth vectors exceeds 0.8, the reward is 1; otherwise, 0. (3) “Size”: If the
predicted value falls within =15% of the ground truth, the reward is 1; otherwise, 0.

We prioritize the correctness of the final outcome over intermediate steps. To prevent reward
accumulation from multi-step processes, we scale the process reward by 0.25. The final reward
function is defined as:

ri = Ror(a;) + Rp(a;) + aRpr(a;) + aRacc(a;) 4)

where « is set to 0.25. By normalizing the rewards within the sampled group, we obtain the set of
relative advantages { A1, Az, ..., Ay} defined as

T mean({r;})
Ty ©

which measures how each reward compares to the mean in units of standard deviation. We then
update the policy based on these advantages, reinforcing actions with higher relative advantages
while reducing the likelihood of those deemed less effective. To ensure stable reinforcement learning,
the update is further constrained by minimizing the KL divergence between the updated policy and
its reference counterpart, thereby promoting incremental and controlled policy adjustments.

E Experimental Setting and Details

E.1 Experiments Compute Resources

We conduct experiments on an A100 GPU cluster, with each node equipped with 8 GPUs.

2D Web Data Coarse Filtering. We perform the initial coarse filtering of 1.7M Openlmages using
SigLIP2. The process runs on 1 node and takes 8.5 hours and yields 933k high-quality samples.
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2D Web Data Fine-grained Filtering. We further filter 933K samples using Qwen 2.5-VL 7B to
ensure high visual quality and spatially relevant QA pairs. The process is conducted on 1 node (two
models per GPU) over 2.5 days, yielding approximately 845k high-quality samples.

Pseudo-3D Scene Graphs Construction. We construct pseudo-3D scene graphs for 845k samples
using 3 nodes, requiring 10 hours for depth estimation and another 10 hours for camera parameter
extraction, segmentation masks, and point cloud generation. Additionally, we generate object-level
captions for all instances using 4 nodes over 18 hours by using Qwen 2.5-VL.

Reasoning QA Generation from 2D data source. To enrich factual statements with contextual
scenarios, we employ QwQ-32B to construct reasoning QA, utilizing 4 nodes over 3.75 days.

3D Data Filtering and Scene Graphs Construction. Given the limited amount of 3D data (100k)
and the availability of precise annotations, only 2D bounding box bidirectional matching is required.
This process is completed in 3 hours using 1 node.

Reasoning QA Generation from 3D data source. To enrich factual statements with contextual
scenarios, we employ QwQ-32B to construct reasoning QA, utilizing 4 nodes over 1.5 days.

Synthetic Data Generation in Simulator. We use 4 RTX 4090 GPUs to generate data for one week.

Depth Alignment in SFT. The process is conducted on 10 nodes over 12 hours for 2B variants and 8
nodes over 40 hours for 8B variants. Both variants training use ZeRO-3.

Spatial Understanding Enhancement in SFT. The process is conducted on 10 nodes over 2 days
for 2B variants and 10 nodes over nearly 1 week for 8B variants. Both variants training use ZeRO-3.

Spatial Referring in RFT. The process is conducted on 1 node over 3 days for 2B variants. However,
our model is over twice as slow as other Qwen 2/2.5-VL-based methods [122, 130], mainly because
they process only a single RGB image during training and can leverage vLLM for group inference
acceleration. In contrast, our method requires RGB-D inputs and modifies the original NVILA
architecture, making it incompatible with vLLM or SGLang acceleration.

E.2 Spatial Understanding Benchmarks

We evaluate several public single-step spatial understanding benchmarks, including CV-Bench [15]
(2D Spatial Relation, 3D Depth Order, 3D Distance), the BLINK [16] validation set (Spatial Relation,
Relative Depth), RoboSpatial [2] (configuration), SAT [4], and EmbSpatial [22], following their
official evaluation protocols. We exclude non-spatial tasks from our evaluation, such as 2D Counting
in CV-Bench and Art Style or IQ Test in BLINK. Since all these benchmarks are multiple-choice
tasks, we report accuracy as the evaluation metric.

We compare 3 categories of models: (1) proprietary VLMs, such as Gemini-2.5-Pro [9], which show
strong spatial perception, as shown in the Gemini-Robotics [107] paper; (2) open-source VLMs
trained on general VQA datasets; and (3) spatially specialized models trained on spatially relevant
datasets, offering basic spatial understanding.

E.3 Spatial Referring Benchmarks

We evaluate three recent robotic referring benchmarks—RoboReflIt [140], Where2Place [5], and
RoboSpatial [2], all limited to 2 reasoning steps. Specifically, RoboRefIt concentrates on object loca-
tion referring by leveraging object attributes and spatial relations with anchor objects. Where2Place
further explores how to place objects relative to anchor objects in the camera’s coordinate frame.
RoboSpatial builds on this idea, considering the same form of placement relative to anchor objects,
but many samples in benchmarks consider the object-centric coordinate frame. We also evaluate
more complex multi-step spatial referring on RefSpatial-Bench, a challenging benchmark based on
real-world cluttered scenes, as introduced in Appx. C. For all these benchmarks, we use the same
evaluation protocol: we first compute the proportion of predicted points that fall within the ground
truth mask for each sample, and then average the results across all samples to obtain the success rate.

We compare two main categories of models: (1) Proprietary models (i.e., Gemini-2.5-Pro) with
strong spatial referring capabilities, and (2) spatially specialized models trained on spatially relevant
datasets, exhibiting basic spatial referring abilities.
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Figure 33: Map Visualization (RViz).

E.4 Simulation Evaluation

We use the same evaluation protocol of Open6DOR V2 introduced in SoFar [7], following the official
repository. Specifically, we only test the position track as this work focuses on location and placement
via spatial referring rather than executing 6DOF manipulation tasks. Notably, we find that our model
achieves nearly 100% success in the perception stage (i.e., determining location and placement),
with failures primarily attributed to motion planning errors such as IK failures or collision-prone
trajectories. We show more demonstrations of simulation evaluation in Appx. F.

E.5 Real-world Evaluation

E.5.1 URS Manipulation

We show two demos for UR5 Manipulation: human disturbance and voice interruption. In the human
disturbance case, RoboRefer runs at 2.5Hz. Significant shifts in predicted 2D coordinates trigger
motion interruption and re-planning. In the voice interruption case, incoming speech commands are
continuously monitored. Upon detection, the current task is halted. We use the Whisper [158] ASR
model to transcribe speech, which RoboRefer processes into new 2D coordinates for task redirection.

For grasping, the 2D coordinates are fed into SAM?2 [78] to generate a segmentation mask, which
filters the target object’s point cloud from the scene captured by a third-person Intel RealSense L515
depth camera. The extracted point cloud is input to AnyGrasp [159] to predict a grasp pose in the
camera coordinate frame. Using an eye-to-hand calibration method, the grasp pose is transformed
into the URS robot’s base frame for execution.

For placement, RoboRefer predicts the 2D placement point, which is converted to 3D coordinates
using the camera’s intrinsic parameters and depth data. The 3D point is then transformed into the
robot’s coordinate system to guide the placement action.

E.5.2 G1 Humanoid Mobile Manipulation

For grasping, we employ a head-mounted Intel RealSense D435 on the Unitree G1 humanoid to
capture RGB-D images, which are processed by RoboRefer to extract 2D target coordinates. These
coordinates guide SAM?2 [78] to generate a segmentation mask, which filters the third-person D435
point cloud to isolate the target object. The filtered point cloud is then passed to AnyGrasp [159] to

https://github.com/Zhangwenyaol/Open6DOR_V?2_Execution
https://www.universal-robots.com/products/ur5e/
https://www.intelrealsense.com/lidar-camera-1515/
https://www.intelrealsense.com/depth-camera-d435/
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Figure 34: SLAM Navigation (RViz).

Table 16: Ablation on the combination of RGB/RGB-D from RefSpatial for SFT (i.e., spatial
understanding enhancement). Top-1/Top-2 accuracies are represented using bold text, and underlines.

Method Input ‘ 2D-Relation C\;_g-%ggtg ! 3D-Distance ‘ 2D-R}zllz;g\(l)lr§vﬂ3[ll)?]]36pth
Only RGB-D from RefSpatial
RoboRefer-2B-SFT  RGB | 87.69 86.83 82.50 | 79.02 81.45
Combination of RGB and RGB-D from RefSpatial

RoboRefer-2B-SFT RGB 96.15 95.83 90.67 83.92 88.71
RoboRefer-2B-SFT  RGB-D 96.31 97.17 90.83 87.41 91.13

predict a grasp pose in the third-person frame, which is transformed to the robot’s base frame using
known camera-to-robot calibration.

For navigation, the chest-mounted L515 camera continuously captures images used by RoboRefer to
detect nearby landmarks (e.g., a table near the robot). The resulting 2D locations, combined with
depth and intrinsics, are projected into 3D world coordinates and integrated into a global map via
FAST_LIO_LOCALIZATION_HUMANOID for SLAM-based navigation, as shown in Fig 33, 34.

For placement, the head-mounted D435 captures images processed by RoboRefer to localize the
target placement region. The corresponding 3D coordinates, computed from depth and intrinsics, are
transformed into the robot’s base frame for accurate placement execution.

E.6 More Ablation Studies

We conduct additional ablation studies to identify which design choices enhance the performance.

RefSpatial RGB and RGB-D combination for SFT training encourages the image encoder to
learn spatial understanding beyond depth cues. In Tab. 16, incorporating both RGB and RGB-D
data from RefSpatial in the second stage of SFT training effectively enhances the image encoder’s
spatial understanding. In contrast, training solely with RGB-D may lead to over-reliance on the depth
encoder, limiting the image encoder’s ability to learn spatial cues from RGB images alone.

https://github.com/deepglint/FAST_LIO_LOCALIZATION_HUMANOID/tree/main
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F More Demonstrations

Visualization of RefSpatial. We present dataset examples in Fig 36, 37, 38, 39, which cover 31
distinct types of spatial relationships.

Visualization of Simulation Evaluation. We present example rollouts of RoboRefer in Fig. 40.

Visualization of RefSpatial-Bench. We present examples of location in Fig. 41, 42, 43, 44 and
placement in Fig. 45, 46, 47, 48 with RoboRefer predictions.

Visualization of Simulator. We present example rollouts with RoboRefer predictions in Fig. 40.

Visualization of Real-world Evaluation. We present examples in Fig. 49, 50, 51.

G More Discussion on Limitations and Future Work

Despite achieving promising results, our model still has limitations. In particular, it relies on precise
textual descriptions to pinpoint specific object locations and placement targets, including accurate
references to anchor objects. However, in practical real-world robotics scenarios, human instructions
are often ambiguous. While such utterances may still imply a unique location, resolving them
typically requires sophisticated visual-linguistic reasoning and a process of elimination grounded in
human prior knowledge, capabilities that challenge our current model.

We show two representative but interesting examples that highlight the need for human intent
understanding and visual-linguistic reasoning: (1) Probabilistic Preference. As shown in Fig. 35,
humans may refer to a sushi plate as “pick the one facing the drink”. In the depicted scene, there
are four drink bottles, yet only the two in the middle align with the second sushi plate from the left
in the farthest row; the leftmost drink aligns with the first plate, and the rightmost with the third.
Despite this ambiguity, people often judge the second plate to be the intended reference due to its
higher likelihood of being aligned with two out of the four drinks, reflecting a probabilistic bias in
interpretation. (2) Spatial Compatibility. As shown in Fig. 35, a user might instruct, “Place another
sushi between the plate and the soy sauce dish”. Although multiple plate—soy sauce pairs exist, only
the pair closest to the observer affords sufficient physical space to place another sushi plate. Thus,
implicit spatial feasibility guides the correct interpretation, even without explicit constraints.

Our model struggles with these cases because RefSpatial lacks multi-step referring data that embeds
human priors and intent understanding. As RefSpatial is procedurally generated, incorporating
such characteristics at scale remains challenging. Future work may explore procedural synthesis
of intent-aware data or improve model performance via co-training with datasets supporting intent
comprehension, such as PixMo-Points [10].

H Broader Impacts

RoboRefer can serve as a versatile visual assistant with advanced spatial understanding and reasoning.
Due to its integration with large language models (LLMs), it inherits both potential benefits and
risks, similar to other VLMs, such as output hallucinations, biases from base models, and heightened
energy consumption associated with model upscaling. Beyond these considerations, RoboRefer
can also function as a high-level planner with spatial referring abilities, guiding robots in tasks like
manipulation and navigation. While such capabilities substantially enhance robotic control, they also
pose safety challenges when combined with existing control policies.

Despite these concerns, releasing RoboRefer to the broader research community would be highly
advantageous. Open access would foster continued development and refinement of spatial referring
with reasoning, ultimately benefiting diverse robotics platforms (e.g., robotic arms, humanoids)
performing various tasks (e.g., manipulation, navigation).

I Licenses

(1) 2D web image data: Openlmages [135] is released under Apache License 2.0.
(2) 3D embodied video data: CA-1M [136] is released under CC-by-NC-ND.
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Figure 35: Discussion about the limitation of human prior knowledge and intent understanding.

(3) Procedural scene generation: Infinigen [137] is released under BSD 3-Clause License.

(4) 3D digital assets: objaverse-x1 [138] is released under Apache License 2.0.
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Left & Right

Q: Can you confirm if matte
purple fabric belly dancer is

positioned to the of
orange sheer fabric belly
dancer? (A) yes (B) no

A: (B) Indeed, matte purple
fabric belly dancer is on the
left side of orange sheer
fabric belly dancer. Q: Select a point located 8.17@m on the Q: In the image, point out the

of the right Bible on the desktop. detergentand supply its pixel coordinate.
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Close & Far
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blue box) and the oven
(highlighted by a green
box).(A)kitchen  appliances

Q: Which object is to the dark gray
suit at left among (A) pink dotted tie at right

(ci)ectl)(re(l)"::sji(t)tatigg:te? at right (C) brown (B)oven Q: Find out which object is the togull.
AQ) A (A) A:[(0.229, 0.682)]

Above & Below (World)

Q: away is point (0.402, 0.522) Q: Is matte black minivan at left Q: From the real-world

from the camera? to the viewer compared to perspective, does plastic bottle

matte blue hatchback at center? Q: From the real-world perspective, can

you find the picture frame that is 2 GELR 6 diem (e

. . striped bath towel at left? (A)
the light gray fabric couch at lower left?
A: A distance of 18.45 meters exists gntgray yes (B) no

N A: No, matte black minivan at left is
?::nw;:" (POt (1R ©oE2PY) et i in front of matte blue hatchback at

center. A:[(0.168,0.779)] A: (A) Correct.

Figure 36: Visualization of RefSpatial.
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Above & Below (Image)

Q: From the image's perspective,
would you say gold textured tray
at center is positioned glossy
white cabinet at upper center?

A: Yes. Gold textured tray at
center appears below white
cabinet in the image.

Q: From the image's perspective, is wooden chair
at right gold brass saxophone at center? (A)
no (B) yes

A: (B) yes.

~ ¢ \\’//\ » [/\\7, . N = /f l

ool o 3 s = = <
- B - . — ] Q: From the image's perspective, is wooden chair
Q: From the image's perspective, is black iron streetlight at upper left at right gold brass saxophone at center? (A)
white glossy car at right? no (B) yes
A: Yes. Gold textured tray at center appears below glossy white cabinet A: (B) Indeed, light wood/wooden chair at right is
at upper center in the image. positioned under gold brass saxophone at center.
Tall & Short

Q: You are organizing a display of tobacco tins Q: Where is the vodka bottle Q: Give me position of the

and need to stack them vertically. Given that with a red label located? Please bottle with a blue cap. Please
you have a space that can only accommodate provide its 2D coordinates. provide its 2D coordinates.

items up to the height of the object  A:[(0.616,0.258)] A:[(0.383,0.398)]

between the red matte tin can at left and the
matte plastic peterson university flake at

Q: Which object is , the
center, which tin you choose to ensure it fits?

stone fireplace at center or
the wooden photo frame at

A: The matte plastic peterson university flake onthe left side?

at center is taller than the red matte tin can at
left, so choosing the matte plastic peterson
university flake at center ensures it fits within
the space designated for the taller object.

A: The stone fireplace at
center is taller than wooden
photo frame.

Q: Is transparent glass jar at
center, which is the second
glass jar from left to right,

than transparent
glass jar at lower left? (A)
no (B) yes

Q: Which of these two, plastic
recycling bin at right or dark
blue quilted mattress at lower
left, stands ?

A: With less height is the dark
blue quilted mattress at lower
left.

A: (B)Yes.

Figure 37: Visualization of RefSpatial.
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Between

Q: A white paper
towel can be found

translucent
plastic bag at center
and transparent
glass jar at center,
which is the second
glass jar from left to
right, in the front-
back direction.
Please provide its
2D coordinates.

Q: Please mark a point on the
desktop that lies the
leftmost object and the beer
bottle, and is located on the
side with the handle of the the
nearer cup.

A:[(0.526,0.691)]

A:[(0.616, 0.805)]
Free Space

Q: In this image,
there is a matte
table at center.

Please find a
location  within
the

on the white

matte table at
center Q: Please choose a spot located in
the between the red
camera and the right camera.

A:
[(0.539,0.772)]

A:[(0.616, 0.805)]

Angle

Q: What is the between the facing
direction of green matte carton at
center, placed as the first bottle when
sorted from left to right, and the facing
direction of brushed metal refrigerator
at left?

A: The facing directions of green matte
carton at center, placed as the second
bottle when sorted from back to front,
and brushed metal refrigerator at left
are 93 degrees apart.

Rotation (Horizon & Vertical)

Q: If | want to look at the white
matte radiator at lower left, should
?

Q: To directly face white glossy

coffee maker at center, should |
?

A: You should rotate down by
18.701 degrees.

A: It's best to rotate left around
19.945 degrees.

Corner & Edge

Q: Select a point that is Q: Please denote the thermos

positioned in the free space at the bottle positioned at the far left

right on the desktop. area on the desktop.

A:[(0.768,0.655)] A:[(0.352,0.285)]
Distance

Q: You are a gardener who needs to place a new
decorative statue that is 3 feet wide between the
brown rough bark tree at left and the white stone
cherub at center. Is there between
them to fit the statue without moving either
object?

A: The distance between the brown rough bark
tree at left and the white stone cherub at center
is 8.82 feet, which is much more than enough to
accommodate the 3 feet wide statue without
needing to move either object.

Tk

Q: Is the position of metallic chair more
than that of white radiator at upper

Q: Give me position of the
provide its 2D coordinates.

Q: Which object is , the blue orange juice. Please

white fabric trash bin at center or the wooden

photo frame at left?

A:The wooden photo frame at left.

Q: Among these objects, which one is

to the camera? (A) blue fabric shirt at center
(B) dark blue t-shirt at left (C) light blue jeans
at center (D) black cotton shirt at center

A: (B) dark blue t-shirt at left

right? (A) yes (B) no

A: (B) No.

Q: Point out the lamp, which is found
the light gray fabric couch at lower left.

A:[(0.127,0.734)]
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A:[(0.415,0.523)]

Q: Provide the coordinates of a location in the free space on
the desktop that fulfills both of the following spatial criteria: 1.

on the left side of the rightmost pepsi can; 2. the duck.

A:[(0.476,0.432)]

Figure 38: Visualization of RefSpatial.



Q: Considering the relative
sizes of shiny metallic pot at
left and brushed metal faucet
at upper left in the image
provided, is shiny metallic pot
at left smaller than brushed
metal faucet at upper left? (A)
no (B) yes

A: (A) Incorrect.
v

Q: Can you confirm if neon glass
coca-cola sign at upper center is
smaller than yellow matte taxi at
center? (A) yes (B) no

A: (B) Incorrect, neon glass coca-
cola sign at upper center is not
smaller in size than yellow matte
taxi at center.

Face & Back

ok

o s

Q: Is beige fabric couch at upper
right at wooden photo
frame at left? (A) no (B) yes

A: (B)Yes. A:Yes.

Q: Select a point in vacant space
located on the side of the

A:[(0.470,0.561)]

Touch & Far from

Q: Is the picture frame
fabric
lampshade at left? (A) no (B) yes

Q: Locate a point within free
space situated on the
cap. the SpongeBob SquarePants.

side of

A:[(0.626,0.423)]

Q: Is golden-brown bread
at center bigger than
black metal watch at
upper left? (A) yes (B) no

A: (A)Yes, golden-brown
bread at center is larger
in size than black metal
watch at upper left.

Q: Considering the sizes of the black
plastic laptop at center and the
checkered paper notebook on the
desk, which one should you place first
to ensure they both fit comfortably?

A: The laptop is larger, so you should
place the laptop first to ensure both
fit comfortably on the desk.

Q: Does the black fabric baby
carriage at lower center have a
larger size compared to fluffy
white stuffed animal at lower
center? (A) yes (B) no

A: Yes, the black fabric baby
carriage at lower center is bigger
than fluffy white stuffed animal
at lower center.

atright? (A) no (B) yes

A: (B)Yes.

Q: Is shiny red car at center

(B)no
A: (B) No.

Q: Does black fabric shirt at left have
compared to plaid shirt

than
silver metallic hatchback at left? (A) yes

Inside & Outside

Q: What is 2D location of the biggest doughnut?
Please provide its 2D coordinates.

A:[(0.669,0.518)]

i h
Q: Give me position of the smaller ashtray.
Please provide its 2D coordinates.

A:[(0.405, 0.346)]

Q: Is the white
pillow at lower
right, the 1th
pillow viewed
from the front,
than
picture frame
atupper left?

A: Yes, the
white pillow is
wider than the
picture frame.

Q: Is the deer
head

than golden
sculpture  at
center? (A)
no (B) yes

A: (B)Yes.
The caramic
deer head is

Q: Is white matte radiator at lower

Q: Is black matte sink at center next to
white plastic dish rack at center and
it? (A) no (B) yes

A: (A) No.

Q: Is there

the natural woven
placemat at lower center and
green leafy plant at upper right?

A:Yes.

Q: Would you say the plastic toaster at
right is outside matte cabinet at lower
center?

A:Yes.

Figure 39: Visualization of RefSpatial.
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left /nside floral fabric curtain at
left? (A) yes (B) no

A: (A) Yes, floral fabric curtain at
left is surrounding white matte
radiator at lower left.



Place the . in front of the <« ulc on the table

) ¢
)
..

Location Placement Pick-Move-Place Execution

Place the <. behind the ////=1 on the table

Location Placement Pick-Move-Place Execution

°
e

Location Placement Pick-Move-Place Execution

Place the /<5 box to the left of the vincqlass on the table
(G - L

Place the v incglass to the right of the 1crc drive on the table

Location Placement Pick-Move-Place Execution
Place the -/t between the /icrc drive and the box on the table

Location Placement Pick-Move-Place Execution

Place the -/ 1oc at the center of o/l 1/ objecis on the table

@
@)

Location Placement Pick-Move-Place Execution

Figure 40: Visualization of RoboRefer’s prediction (blue point) on Open6DOR V2 [7] benchmark.
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Reasoning Step = 1 Reasoning Step = 1 Reasoning Step = 1

Please point out the box with the Please point out the monitor closest Please point out the third chair from
person logo in the picture. to the viewer in the image. the left to the right.

Reasoning Step = 2 Reasoning Step = 1 Reasoning Step = 3

Please point to the top piece of Please point to the farthest white Please point out the black framed
paper on the white table. cabinet in the picture. painting on the right of the lamp.

W

Reasoning Step = 2 Reasoning Step = 1 Reasoning Step = 1
Please point out the third object
from left to right on the closest
platform.

Please point out the sofa on the
right side of the picture that is
closest to the viewer.

Please point to the wooden plate on
the far left of the picture.

Reasoning Step = 1 Reasoning Step = 1 Reasoning Step = 2

Please point to the rightmost box in Please point out the second silver Please point out the painting
the picture. box from left to right in the picture. hanging on the wall.

Figure 41: Some Location Examples. The model is asked to identify the object referred to by a
prompt. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step = 2 Reasoning Step = 2 Reasoning Step = 2

Please point out the blue toothbrush Please point out the card closest to Please point to the third card from
farthest from the faucet. the wooden door. right to left on the cabinet.

.

Reasoning Step = 2 Reasoning Step = 3 Reasoning Step = 2
Please point out the object between
the white box and the farthest black
potinthe picture.

Please point out the vase closest to
the 7V.

Please point to the pillow closest to
the remote controller.

Reasoning Step = 3 Reasoning Step = 2 Reasoning Step = 1
Z;ﬁ:if 5:':;:;:;:6 lli':;g:;tabsl‘tz;: Please point out the orange box on Please point out the yellow five-
J P the white table on the left. pointed star in the picture.

micro-wave oven.

Figure 42: Some Location Examples. The model is asked to identify the object referred to by a
prompt. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step = 2 Reasoning Step = 1 Reasoning Step = 2

Please point out the tallest on Please point out the farthest Please point out the silver on
the black ; from the viewer. the right edge of the

Reasoning Step = 3 Reasoning Step = 2 Reasoning Step = 2
Please point out the under the Please point to the rightmost blue Please point to the closest to
on the . the right

Reasoning Step = 3 Reasoning Step = 2 Reasoning Step = 2
Pl i h . . .
ease point OUt.t e Please point out the blue on Please point to the white closest
under the which is closest box to . .
the in the picture. to the

the viewer.

Figure 43: Some Location Examples. The model is asked to identify the object referred to by a
prompt. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step = 3 Reasoning Step = 1 Reasoning Step = 1
Please point out the second object
from right to left on the platform
with the banana.

Please point out the farthest chair Please point out the orange box in
from the viewer. the picture.

Reasoning Step = 1 Reasoning Step = 1 Reasoning Step = 3

Please point out the remote control Please point to the stool which is the Please point out the white object on
on the right side of the picture. third stool from the front. the first shelf of the cabinet.

Reasoning Step = 3 Reasoning Step = 3 Reasoning Step = 2
z;iss}u:::()sf:::s[:z:;}' Z’;et{]ag Please point out the blue object on Please point out the paper tube
the third level of the wooden shelf. closest to the viewer.

cabinet.

Figure 44: Some Location Examples. The model is asked to identify the object referred to by a
prompt. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step =4

Please point out the free space
between the black water bottle, the
pot lid, and the scissors.

Reasoning Step = 3

Please point out the free space
midway between the first and
second green cups from the left.

Reasoning Step = 4

Please point out the free spot,
equidistant from both the blue bow!

and the red bow!, and between them,

where a new, similar-sized bowl can
be placed.

Reasoning Step = 4

Please point out the free space
between the black cloth box to the
bottom-right of the monitor and the
keyboard.

Please point out the free spot to the
left of the can, where an object of
the same size can be placed at an
equal distance between the can and
the bag.

Reasoning Step = 3

Please point out the free space
between the red box on the left and
the black box.

Reasoning Step = 3

Please point out the free spot
halfway between the blue cup and
the green cup to place another
identical one.

Reasoning Step = 2

Please point out the free space in the
direction the logo of the closest
white bottle to the viewer.

Please point out the free space in the
facing direction of the purple bag.

Figure 45: Some Placement Examples. The model is asked to identify a valid free space based on
spatial reference. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step = 2
Please point out the in the
direction of the handle of the
rightmost green

\

\\\77\’

Reasoning Step =4

Please point out the on
the between the and the
brown

Reasoning Step = 2

Please point out the
inside the closest

Reasoning Step = 2

Reasoning Step = 3
Please point out the in

Pl i h in th .
ease point out the nthe front of the brown object on the

facing direction of the orange

Reasoning Step = 2 Reasoning Step = 2

Please point out the
below the white

Please point out the
below the black

Reasoning Step = 2
Please point out the
between the white
brown

Reasoning Step = 2

Please point out the

below the S B

Figure 46: Some Placement Examples. The model is asked to identify a valid free space based on
spatial reference. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step = 2 Reasoning Step = 3 Reasoning Step = 3

) . Please point out the )
h Pl h
Please point out the in the between the and the ease point out the

direction of the white side of the can. between the and the

Reasoning Step = 4 Reasoning Step = 4 Reasoning Step = 2
Please point out the in Please point out the in Please point out the on
front of the blue which is on the front of the white which is on the ri hF: B
top level of the shelf. the top level of the 9

Reasoning Step = 4 Reasoning Step = 2 Reasoning Step = 3
. Please point out the on the

Please point out the ) . i . ; .

Please point out the in the in facing direction of the
between the black , blue

top corner of the ! second from the front on the
and closest . .

right side.

Figure 47: Some Placement Examples. The model is asked to identify a valid free space based on
spatial reference. The blue point shows the RoboRefer’s prediction (all correct).
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g Wb

Reasoning Step = 3 Reasoning Step = 3

Reasoning Step = 3
Please point out the free spot Please point out the free space Bllanse pEMTe S dha s
between the blue water kettle and between the mouse and the green
cup between the pot and the black box .

the orange.

| | Eﬁiﬁ LE,;,

i

Reasoning Step = 2

Reasoning Step = 2 Reasoning Step = 3
RIS CUSS L L L (L Please point out the free space on

Please point out the free area in the .
the third level from the top of the Sl e

top-left corner of the table. e

i

Reasoning Step = 4
Please point out the free space on

Reasoning Step = 5

Reasoning Step = 3

Please point out the free area on the | . h
table that the first chair from the ACEER [EHs G TR L L (G

LT the table between the speaker to the the right part of the table between
front on the left side is directly . . )
facing. right of the monitor and the mouse. the mouse and the picture frame.

Figure 48: Some Placement Examples. The model is asked to identify a valid free space based on
spatial reference. The blue point shows the RoboRefer’s prediction (all correct).
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Reasoning Step = 3 Reasoning Step = 2 Reasoning Step = 5

Where should an additional panda
be placed in a line? Please mark
the location on the desktop.

Find a location in blank space
located 8.2 meters to the left of
the table.

Identify the panda that is the
closest to the cup.

Reasoning Step = 3 Reasoning Step = 3 Reasoning Step = 3

Please choose a spot located in the  Locate a point within vacant space | gcate a point within vacant space
free space between the car and located @. 05 meters tothe front-  |ocated 0. 13 meters to the right of
the flashlight. facing side of the teddy bear. the cup.

Reasoning Step = 2 Reasoning Step = 3 Reasoning Step = 3

Locate a point within the vacant
space located on the handle side of
the cup.

Please indicate the cup located at Point to the free space between
the left edge onthe desktop. the green and pink plates.

Reasoning Step = 2 Reasoning Step = 2 Reasoning Step = 2
Please indicate the cup located at Please indicate the hamburger .
Point to the hamburger between
the near-left corner onthe located at the far-left corner on

desktop. the desktop. the car and the mug.

Figure 49: Visualization of RoboRefer’s prediction (blue point) in the real-world evaluation.
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Reasoning Step = 3 Reasoning Step = 2 Reasoning Step = 2

A Please select a point located inthe ~ Please select a point located in the
Please select a point in the vacant
vacant area at the far edge of the vacant area at the far-left corner
area between the cup and the car.
desktop. of the desktop.

Reasoning Step = 3 Reasoning Step = 1 Reasoning Step = 5
Please provide a point in the
vacant area on the desktop that
simultaneously satisfies the

Ve SR R Point to the highest hamburger.
corner of the desktop near the following two spatial
green plate. conditions:1.0n the left side of the

Please select a point located in the

car;2.In front of the brown toy.

Reasoning Step = 2 Reasoning Step = 1 Reasoning Step = 1
Point to the hamburger closest to . i Point to the hamburger on the
Point to the rightmost blue plate.
the cup. green plate.
Reasoning Step = 2 Reasoning Step = 1 - Reason;ng Steh =1
Point to the plate that the flashlight i
P f 9 Point to the biggest panda. Point to the closest plate.

is facing.

Figure 50: Visualization of RoboRefer’s prediction (blue point) in the real-world evaluation.
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Reasoning Step = 1 Reasoning Step = 1 Reasoning Step = 1

Point to the farthest panda. Point to the biggest panda. Point to the closest plate.

Reasoning Sfep =2 Reasoning Step = 3 Reasoning Step = 1

Point to the hamburger that is first
close to the nearest mug to the
camera.

Point to the free space on the Point to the hamburger that the
front-facing side of the teddy bear.  flashlight is illuminating.

Reasoning Step = 1 Reasoning Step = 2 Reasoning Step = 1
Point to the plate illuminated by

Point to the nearest panda. the flashlight. Point to the leftmost panda.

Reasoning Step = 2 Reasoning Step = 3 Reasoning Step = 1

Pick the in front of the logo Place the on the table,

side of the leftmost cup. aligned with the apple row. NI B9 S (2

Figure 51: Visualization of RoboRefer’s prediction (blue point) in the real-world evaluation.
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