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Abstract—With the advent of cloud computing, machine learn-
ing as a service (MLaaS) has become a growing phenomenon
with the potential to address many real-world problems. In
an untrusted cloud environment, privacy concerns of users is
a major impediment to the adoption of MLaaS. To alleviate
these privacy issues and preserve data confidentiality, several
private inference (PI) protocols have been proposed in recent
years based on cryptographic tools like Fully Homomorphic
Encryption (FHE) and Secure Multiparty Computation (MPC).
Deep neural networks (DNN) have been the architecture of choice
in most MLaaS deployments. One of the core challenges in
developing PI protocols for DNN inference is the substantial
costs involved in implementing non-linear activation layers such
as Rectified Linear Unit (ReLU). This has spawned a search
for accurate, but efficient approximations of the ReLU function
and neural architectures that operate on a stringent ReLU
budget. While these methods improve efficiency and ensure data
confidentiality, they often come at a significant cost to prediction
accuracy. In this work, we propose a DNN architecture based
on polynomial kervolution called PolyKervNet (PKN), which
completely eliminates the need for non-linear activation and
max pooling layers. PolyKervNets are both FHE and MPC-
friendly - they enable FHE-based encrypted inference without
any approximations and improve the latency on MPC-based PI
protocols without any use of garbled circuits. We demonstrate
that it is possible to redesign standard convolutional neural
networks (CNN) architectures such as ResNet-18 and VGG-16
with polynomial kervolution and achieve up to 30× improvement
in latency of MPC-based PI with minimal loss in accuracy on
many image classification tasks.

Index Terms—Private inference, homomorphic encryption,
multi-party computation, polynomial kervolution, non-linear ac-
tivation, pooling

I. INTRODUCTION

In today’s cloud computing era, most major cloud service
providers (CSP) offer machine learning (ML) as a service
(MLaaS) to enable customers gain valuable insights from
their data, without the need for investing in resources and
expertise to build or run predictive models on their own. Deep
neural networks (DNN) have become the de-facto standard
for ML tasks, especially in the areas of computer vision and
natural language understanding. Ever since the introduction
of AlexNet [1] in 2012, which achieved state-of-the-art
(SOTA) performance on a large-scale image classification
task using a DNN model with 60 million parameters and
tens of layers, the ML community has developed several
deeper and larger DNN models. While SOTA vision models
such as convolutional neural networks (CNN) and vision
transformers have millions of parameters and hundreds of

Fig. 1. An illustration of private machine learning inference based on fully
homomorphic encryption.

layers, SOTA language models such as GPT-3 have billions
of parameters. These humongous models require extensive
computational and memory resources, serving as a driving
force for outsourcing/offloading ML computations to the
cloud. Thus, the MLaaS model has the potential to solve
many real-world problems in a cost-effective way across a
range of industries including finance, healthcare, and logistics.
For example, healthcare providers can exploit the MLaaS
framework to accurately diagnose diseases based on patient
data such as medical images and electronic health records.

The key roadblock in the widespread adoption of MLaaS
is the sensitive nature of customer data and the privacy
concerns associated with the release of such sensitive
information to untrusted CSPs. Apart from end-user privacy
concerns, regulations such as General Data Protection
Regulation (GDPR) also place stringent data confidentiality
requirements, thereby hindering the growth of MLaaS.
Cryptographic tools such as homomorphic encryption (HE)
and secure multi-party computation (MPC) offer a solution to
the problem of privacy-preserving machine learning. While
these confidential computing tools can be applied for both
model learning and inference, they come at a tremendous



computational and/or communication cost, often rendering
the training task unviable. Therefore, most of the effort in
privacy-preserving machine learning has focused on private
inference (PI), where the goal is to apply a pre-trained ML
model on “encrypted” data and perform inference in the
encrypted domain (see Figure 1). In this context, encryption
refers to the fact that the service provider never sees the
private data of customers.

Fundamental challenges in the efficient implementation of PI
protocols are the large depth of the underlying neural networks
and the complexity introduced by the presence of non-linear
(activation and pooling) layers in the DNN architecture.
It is well-known that deeper networks have exponentially
larger expressive power and better generalization ability
compared to shallow architectures [32]. Furthermore, in the
absence of non-linear activation layers, the entire DNN can
be compressed into a single linear layer, severely degrading
the accuracy of the resulting model. Thus, both large depth
and non-linearity are essential to the unparalleled success of
DNN models and compromising on them can cause substantial
loss in accuracy of DNN models. However, adding more
layers and non-linearities stymie the possibility of designing
efficient PI protocols. This is because non-linear operations
are orders of magnitude more computationally expensive in
the case of both HE and MPC. Solving this accuracy vs.
efficiency trade-off has been a subject of active research and
the proposed solutions broadly fall into two categories. One
approach is to develop accurate and efficient approximations
for non-linear activation functions commonly used in DNNs
such as Rectified Linear Unit (ReLU) [2]–[4]. Alternatively,
neural architecture search (NAS) algorithms have been used
to identify architectures that can work accurately within a
constrained non-linearity (e.g. ReLU) budget [5]–[7]. While
the first approach typically leads to significant accuracy
degradation, the latter method caps the computational
complexity, while maintaining accuracy at comparable levels.

In this work, we propose a different strategy to solve the
accuracy vs. efficiency conundrum in PI protocols. Specifi-
cally, we leverage the idea of kervolution (kernel convolution)
proposed in the computer vision literature to design DNNs that
are more conducive to encrypted inference. Since kervolution
operators are based on patch-wise kernel functions (as opposed
to point-wise non-linearity in traditional CNNs), they can
capture higher order interactions between features without
increasing the number of parameters. Furthermore, kervolution
also avoids the need for non-linear activation and max pooling
layers - an ideal scenario for private inference. Therefore, the
main contributions of this work are as follows:

• We are the first to identify the synergy between the
requirements of private inference protocols and the
characteristics of kervolutional neural networks [8],
leading to the design of more accurate and efficient
DNNs amenable to private inference.

• We modify the well-known CNN architectures
(e.g., ResNet-18, VGG-16, etc.) to incorporate
polynomial kervolution operators in lieu of traditional
convolution, ReLU, and maxpooling layers. The resulting
PolyKervNets (PKNs) lead to a minimal loss in accuracy
compared to the baseline CNN architectures, when
evaluated on four image classification datasets: CIFAR-
10, CIFAR-100, MNIST, and Chest X-ray dataset for
tuberculosis detection. However, we show that even this
minimal loss in accuracy can be mitigated by designing
shallower residual networks with polynomial kervolution.

• Finally, we leverage PolyKervNets to implement private
inference based on secure multiparty computation (using
the Cheetah protocol [33] and Delphi protocol [21]) on
VGG-16 and ResNet-18 architectures. The results show
that the proposed approach minimizes latency by up
to 30× on the Delphi protocol, with Cheetah giving
similar results (but with much faster inference time).
We also show preliminary results for FHE-based private
inference (using the HELayers library [35]) based on the
ResNet-10 architecture, which achieves better accuracy
and lower latency compared to commonly used ReLU
approximations.

II. RELATED WORK

A. Private Inference

In a typical private inference pipeline, the client encrypts the
raw data using his public key and sends the ciphertexts to the
untrusted cloud. It is assumed that the model owner already
has access to a pre-trained ML model. When the model owner
also serves as the CSP, the pre-trained ML model is directly
applied to the encrypted data and the encrypted inference
results are sent back to the client for decryption using the
secret key (as shown in Figure 1). In a more general case
where the model owner is a separate entity (different from the
CSP), the model architecture and encrypted model parameters
(encrypted using client’s public key) are sent to the cloud and
the inference takes place in the encrypted domain.

There are two possible ways in which private inference can
be achieved - fully homomorphic encryption (FHE) and
secure MPC. When minimal communication between the
client and CSP is desired, FHE is the only feasible solution.
This approach has been enabled by the development of many
FHE cryptosystems such as BFV [9], [10], BGV [11], CKKS
[12], and TFHE [13] over the past decade. CryptoNets [2]
was one of the earliest works to demonstrate that encrypted
inference using FHE is possible. This was followed by
other implementations such as Faster CryptoNets [14], Low
Latency CrptoNets [15], Shift-accumulation based leveled HE
(SHE) [16], and CKKS with bootstrapping [17]. Apart from
SHE that uses gate-level HE operations based on TFHE, all
the other implementations encounter difficulties in dealing
with non-linear activation functions such as ReLU and max
pooling layers. The typical work around is to replace ReLU



with square activation [2] or other polynomial approximations
[3], [4] and utilize sum pooling in the place of max pooling.
As noted in [17], these choices lead to unacceptable trade-off
between accuracy and efficiency.

An alternative approach is to rely on secure MPC or a
combination of HE and MPC. Often, a two-party protocol
(2PC) between the client and the CSP is used for this
purpose. The key difference between the methods that fall
under this umbrella is the manner in which the linear layers
in DNNs are computed. While Gazelle [18] and SAFENet
[19] use HE, MiniONN [20], DELPHI [21], CryptoNAS [5],
and DeepReduce [7] rely on arithmetic secret sharing. As
with FHE-based methods, the primary bottleneck in the MPC
approach is the computation of non-linear layers, which is
usually achieved using garbled circuits. Since garbled circuits
are several orders of magnitude more expensive to compute
than secret sharing protocols, non-linear computations take
up the lion’s share of the overall computational and/or
communication load. This has led to the development of
techniques that either perform ReLU dropping after training
[7] or design neural network architectures that operate within
a given ReLU budget. Hybrid methods that perform selective
ReLU dropping as well as ReLU approximation have also
been proposed [19].

In contrast to the above techniques, our goal is to completely
remove all non-linear activation functions and almost all the
pooling layers from the DNN architecture. This is facilitated
by the use of kervolution operators, which was first proposed
in [8]. To the best of our knowledge, our work is the first
attempt to achieve efficient private inference through total
elimination of activation and max pooling layers without
compromising on accuracy.

B. Kervolutional Neural Networks

Existing CNN models primarily rely on the activation layers
to introduce point-wise non-linearity into the ML model. In
[8], it was argued that CNN architectures can be made more
expressive if the linear convolution layer is replaced with
patch-wise non-linearity using the kernel trick. This approach
was referred to as kernel convolution (or kervolution) and has
the potential to improve generalizability and model capacity,
while retaining the advantages of simple linear convolution
such as speed and number of parameters. Three kernel types
were proposed in [8] for use in the kervolutional layer:
Norm Kervolution, Polynomial Kervolution and Gaussian
Kervolution. While both polynomial and Gaussian kernels
were found to achieve good recognition accuracy in [8],
Gaussian kervolution requires computing an exponential
function, which is expensive in the encrypted domain. Hence,
we utilize only polynomial kervolution (PolyKerv) in this
work because of its better suitability to PI protocols.

Polynomial Kervolution: The standard convolution operator
takes an input x ∈ Rn (vectorized version of a 2-dimensional
matrix) and filter weights w ∈ Rn and outputs:

kc(x,w) = (xT w + b), (1)

where b represents the bias. In contrast, the polynomial kervo-
lution operator applies patch-wise non-linearity and outputs:

kp(x,w) = (xT w + cp)
dp =

dp∑
j=0

cdp−j
p (xT w)j , (2)

where dp(dp ∈ Z+) is the degree of polynomial and
cp(cp ∈ R+) is the balance factor. Intuitively, the polynomial
degree extends the feature space to dp dimensions and
the balance factor is able to balance the non-linear terms.
Thus, the polynomial kernel learns linear terms just like the
standard convolutional operator, but is also able to output
nonlinear terms, which can be considered as an approximation
of an activation layer’s output. In other words, polynomial
kervolution subsumes the functions of both the standard
convolution operator and the non-linear activation layer, while
making the activation learnable and more expressive per use.

Though the idea of kervolution was introduced in [8],
it was primarily used as a replacement for the standard
convolution operator in CNNs, leaving the rest of the
architecture (including activation and pooling layers) intact.
The possibility of removing ReLU and replacing the max
pooling layers with average pooling was left as a tantalising
teaser in a single experiment, where the LeNet-5 architecture
was modified to achieve good performance on the MNIST
dataset. In this work, we push this idea to the extreme and
attempt to design DNNs using only polynomial kervolution
and completely removing all ReLU layers.

We believe that the use of kervolutional neural networks
has not taken off in the broader computer vision community
because of its poor cost-benefit trade-off. Replacing convo-
lution with kervolution and retaining ReLUs increases the
computational cost (for plaintext inference), while providing
only marginal improvement in accuracy. Removing the ReLUs
affects the stability of the training process and erases even
the marginal accuracy gains. Hence, there is little incentive to
use kervolutional neural networks for inference on plaintext
data. However, the trade-offs are completely different in the
private inference scenario. For private inference, removing
ReLUs provides huge gains in latency and marginal reduction
in accuracy becomes acceptable.

III. PROPOSED METHOD: POLYKERVNETS (PKNS)

The goal of this work is to design DNNs using polynomial
kervolution layers that do not require non-linear activation
functions and hence, more conducive for private inference.
The challenge with designing such networks is the difficulty
in training (optimizing their parameters) using traditional



gradient descent techniques because of vanishing/exploding
gradients. Since residual networks (ResNet) [22] are known
to be easier to optimize, we start with ResNet as the baseline
architecture and design PolyKervResNets (PKRs), which are
composed of kervolution-based residual blocks.

Fig. 2. Top: The residual block design of the standard (vanilla) ResNet-18
architecture. Bottom: The residual block design of PolyKervResNet (PKR-L).
Here, L denotes the number of residual blocks, which is varied from 2 to 4,
resulting in different PKR architectures with varying levels of depth.

A. Input to the Residual Blocks

A typical ResNet architecture consists of four residual blocks.
However, before the input is fed to these residual blocks, it
passes through a 7×7 convolution layer (with 64 channels and
a stride of 2), followed by ReLU activation and a 3× 3 max
pooling layer (with stride of 2). In the PKR architecture, we
modify the 7× 7 convolutional layer into a 3× 3 polynomial
kervolution layer and remove the ReLU and max pooling lay-
ers which follows it (see Figure 2). This produces a 64-channel
output that is a non-linear function of the input. We skip the
ReLU and pooling layers because the kervolution layer already
introduces the required non-linearity. Consequently, the size of
the inputs to each residual block in a PKR is twice the size
of the input to the corresponding residual block in a vanilla
ResNet architecture.

B. Residual Block Design

Since our eventual target is to design DNNs that enable
efficient private inference, we start with the ResNet-18 archi-
tecture. In ResNet-18, each residual block has two identical
sub-blocks and each sub-block has the following structure: a
3 × 3 convolution layer, followed by ReLU activation, and
another 3 × 3 convolution layer. The output of this second
convolution layer is added to the output of an identity function
(input to the block) and this combined output is passed through
another ReLU activation. For the block, the first convolution
has a stride of 2 which downsizes the input size by a factor of
2. The final output of the second sub-block serves as the input
to the next residual block. In the proposed PolyKervResNet-18

(PKR-18), we eliminate all the ReLU activation layers within a
residual sub-block and replace both the 3×3 convolution filters
with 3 × 3 polynomial kervolution filters. This is illustrated
in Fig 2, where L represents the number of residual blocks.
There is no change in the number of filters/channels in any of
the residual blocks. Note that it is also possible to design the
residual sub-block in the PolyKervResNet such that only the
first convolution layer is replaced with polynomial kervolution,
the second 3× 3 convolution layer remains unaltered, and the
final ReLU function is eliminated. We refer to this variation
as MixedPolyKervResNet (MPKR).

C. Output of the Residual Blocks

Similar to vanilla ResNet, the output of the final residual block
in a PKR is passed through an average pooling layer before
it is flattened and presented to a fully connected (FC) layer.
Since the PKR is trained on plaintext data, a softmax function
is applied to the output of the FC layer and the network is
trained using the standard cross-entropy loss. During private
inference, the encrypted logit values from the final FC layer
can be sent back to the client, who can decrypt them to perform
inference (assign the sample to the class with the highest logit
value).

D. Other CNN Architectures

To further establish the versatility and applicability of PolyK-
ervNets, we replace all the convolution layers in other well-
known CNN architectures such as VGG-16 [23], AlexNet
[1] and LeNet-5 [24] with polynomial kervolution layers.
We also remove all the non-linear activation layers in these
networks and replace the max pooling layers with average
pooling layers. The resulting architectures are referred to
as PolyKervVGG-16 (PKV-16), PolyKervAlexNet (PKA-
8) and PolyKervLeNet-5 (PKL-5), respectively. Originally,
all the above CNN architectures have three fully connected
(FC) layers at the end, of which the first two FC layers are
followed by activation layers and the last FC layer followed
by a softmax layer. However, since our goal is to remove all
the activation layers, we use only one FC layer followed by
the softmax layer in our PolyKervNets (see Figure 3).

IV. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of PolyKervNets through
experiments on four datasets (CIFAR-10, CIFAR-100, TB
Chest X-ray, and MNIST) using four standard CNN archi-
tectures (ResNet-18, VGG-16, AlexNet, and LeNet-5). The
proposed approach is benchmarked against five baseline meth-
ods: ReLU - this is original CNN architecture, DeepReduce
- architecture obtained using the ReLU reduction method
proposed in [7], Square - ReLU replaced by square activation
[2], PolyApprox-1 - ReLU replaced by quadratic polynomial
approximation proposed in [3], and PolyApprox-2 - ReLU
replaced by quadratic polynomial approximation proposed in
[4]. The evaluation metrics used for benchmarking are accu-
racy and inference time/latency. Note that the inference time
in PI (especially FHE-based) protocols is highly dependent on



Fig. 3. Other CNN architectures that are redesigned as PolyKervNets. Box (i) shows the VGG-16 (blue) and PKV-16 (green) architectures; Box (ii) shows
the AlexNet (blue) and PKA-8 (green) architectures; Box (iii) shows the LeNet-5 (blue) and PKL-5 (green) architectures.

the multiplicative depth of the ML model, which represents the
maximum number of multiplicative operations (gates) required
along any of its circuit paths. Hence, we also report the
multiplicative depth of various models along with the number
of parameters in the model, which is coarse proxy for model
capacity.

A. Datasets

CIFAR10 and CIFAR100: CIFAR10 and CIFAR100 [26]
are standard natural image classification datasets used in
the literature. CIFAR10 contains 60000 images - 50000
images for training and 10000 images for inference. It
consists of 10 classes and each class has an average of
5000 train images and 1000 test images. CIFAR100 also
contains the same total number of images, with the only
difference being that the 60000 images in CIFAR100 come
from 100 classes at an average of 600 images per class. Both
CIFAR10 and CIFAR100 contain RGB images of size 32×32.

TB Chest X-ray: In a bid to demonstrate the effectiveness
of the proposed approach on a more real-world image
classification task, we evaluate it on the tuberculosis (TB)
Chest X-ray dataset [27]. This dataset has 4200 X-ray
(grayscale) images of size 512× 512 drawn from two classes.
The normal class contains 3500 images, while the tuberculosis
class contains 700 images.

MNIST: To demonstrate the working of a PolyKervNet for
encrypted inference using the CKKS FHE scheme, we em-

ployed the much simpler MNIST dataset, which contains
60000 28× 28 gray-scale images representing the 10 digits.

B. Pre-processing and Training Details

Our primary goal is to benchmark the accuracy and latency of
PolyKervNets relative to the baseline CNN architectures. We
would like to emphasize that the objective is not to achieve
state-of-the-art accuracy on specific datasets. Therefore, we
do not focus on searching for the best training settings for
each architecture and dataset. Instead, we use common pre-
processing steps, hyperparameter settings, and optimization
algorithms across all architectures for a fair comparison.

CIFAR10 and CIFAR100: The CIFAR10 and CIFAR100
datasets have predefined train and test splits within the
Pytorch dataset module. The input images were kept the same
(32×32) and a batch size of 128 was used. We then employed
horizontal flips and random rotation as data augmentation
strategies for these two datasets. The whole train and test
sets were also normalized before going in as inputs to the
architectures.

TB Chest X-ray: Since there were no predefined train-test
splits for this dataset, we implemented a custom dataset
loader that randomly selects 3700 images for training and
retains 500 images as the test set, while maintaining the
original class proportions of the dataset. The images were
downsized to 64 × 64 for faster training. The random crop
augmentation was leveraged to extract a 56 × 56 patch from



the downsized images and these cropped patches were resized
back to a size of 64 × 64. A batch size of 32 was set for
this task in order to have more training batches, while also
reducing training time.

MNIST: No augmentation was applied for this dataset
because the task is very simple. We chose a batch size of 32
for this dataset.

Training Details: All the DNN architectures were trained
using the Adam optimizer with a learning rate of 1e-3 with
a scheduler set to decrease the learning rate by 10 every 80
steps. For polynomial kervolution, we used polynomial degree
dp = 2 to ensure a fair comparison with square activation
[2] and the quadratic polynomial ReLU approximations used
in [4] and [3]. The balance factor cp was set to 1 in our
experiments. Each network is then trained for 200 epochs on
CIFAR10 and CIFAR100, and 50 epochs on the TB Chest
X-Ray datasets. All our experiments in the plaintext domain
were run on the following computing environment:

• System used: NVIDIA QUADRO RTX 6000
• Operating System: Ubuntu 21.04
• GPU memory: 24 GB GDDR6

For private inference experiments based on for PolyKervNets
(PKNs) as well as other baseline methods, we used the
following computing environment:

• System used: Intel Xeon(R) Silver 4215 CPU
• Base Frequency: 2.50 GHz
• RAM: 32 GB
• PI protocols: HELayers CKKS [35], [36], Delphi [21],

Cheetah [33]

TABLE I
TEST ACCURACY OF DIFFERENT RESNET-18 MODELS ON THE TB CHEST

X-RAY, CIFAR-10, AND CIFAR-100 DATASETS.

Method TB X-Ray (%) CIFAR-10 (%) CIFAR-100 (%)

ReLU [25] 99.2 91.9 72.8
DeepReduce [7] 99.2 92.4 72.5
PolyApprox-1 [3] 97.4 89.0 66.4
PolyApprox-2 [4] 98.5 89.4 68.3
Square [2] 97.1 84.2 61.7
PKR-18 99.2 90.1 71.3

C. Plaintext Evaluation

Accuracy of ResNet-18 models on different datasets: We
first evaluate the accuracy of different ResNet-18 models,
obtained using the five baseline methods and the proposed
PolyKervResNet (PKR-18), on the TB Chest X-ray, CIFAR-
10 and CIFAR-100 datasets. As emphasized earlier, we did
not extensively search for the most optimal training settings
for each dataset. Consequently, the accuracy achieved by
the vanilla ResNet-18 model on CIFAR-10 (CIFAR-100)
dataset was only 91.9% (72.8%). While these accuracy values
are reasonably high, they do not match the state-of-the-art
accuracy values reported in the literature. For instance, there

are pre-trained ResNet-18 models available on the Internet
that can achieve 93.07% accuracy on CIFAR-101 and 75.61%
top-1 accuracy on CIFAR-1002. However, it is difficult in
practice to replicate the exact training settings used to train
such models. To enable fair comparison, it is essential to
have a common training setting across different baseline
methods and CNN architectures. Hence, we do not focus on
optimizing the accuracy of each individual model and rather
base our analysis on the relative accuracy trends.

From Table I, we observe that all models have high test
accuracy on the TB X-ray dataset, with PKR-18 having
the same accuracy of 99.2% as the original (ReLU) and
ReLU-constrained (DeepReduce) models. On the CIFAR-10
and CIFAR-100 datasets, the ReLU and DeepReduce models
had almost comparable accuracy, which was marginally
higher than the PKR-18 model. However, the PKR-18 model
had much better accuracy compared to square activation
and marginally better accuracy compared to the polynomial
ReLU approximations. This is because deep models with
square activation often fail to converge well due to gradient
explosion, indicating that square activation is not good
enough to replace the ReLU function, especially in the case
of complex classification tasks. This result is consistent
with the observations reported in [4] on square activation.
While the other polynomial approximations fare better, they
still suffer from the same issues as square activation, albeit
to a much lesser extent. Thus, rigid quadratic polynomial
approximations are not effective replacements for the
ReLU activation functions and the proposed PolyKervNets
consistently outperform networks designed with such
approximations.

The small accuracy degradation suffered by the PKR-18 model
(in comparison to ReLU and DeepReduce) is primarily due
to accumulation of errors during training, which is typically
aggravated by the depth of the network. One way to mitigate
this problem is to reduce the depth of the network, which
can be easily achieved in a ResNet architecture by decreasing
the number of residual blocks. The PKR-18 architecture uses
the same number of residual blocks as ResNet-18 (L = 4).
The model obtained by removing one residual block (PKR-
14) has better accuracy compared to PKR-18 on CIFAR-10
as well as lower multiplicative depth and smaller number of
parameters (see Table II). Further removing another residual
block (PKR-10) again leads to performance improvement and
resulting accuracy becomes almost equal to that of vanilla
ResNet-18 with all the non-linear layers intact. Reducing the
number of residual blocks to a value less than two did not
yield any accuracy improvement, which can be explained by
the excessive loss of model capacity. Thus, for the CIFAR-
10 dataset, L = 2 represents the optimal number of residual
blocks in a PolyKervResNet because it offers the best com-

1https://github.com/huyvnphan/PyTorch CIFAR10
2https://github.com/weiaicunzai/pytorch-cifar100



promise between model capacity and ease of training.

Fig. 4. Tradeoff between multiplicative depth and accuracy for various
CNN architectures and baseline methods on the CIFAR-10 dataset. Clearly,
polynomial kervolution achieves better trade-off compared to other ReLU
approximations and ResNet-10 has the best accuracy among the different
CNN architectures.

TABLE II
TEST ACCURACY ON THE CIFAR-10 DATASET, MULTIPLICATIVE DEPTH,

AND NUMBER OF PARAMETERS FOR POLYKERVNETS.

Architecture Accuracy (%) Mult. Depth Params (M)

PKR-18 90.1 18 11.2
PKR-14 91.0 14 2.8
PKR-10 91.9 10 0.7
PKV-16 91.2 14 14.8
PKA-8 79.9 6 3.4
PKL-5 69.2 3 0.007

Robustness to other CNN Architectures: The accuracy
results for the various CNN architectures on the test split of
the CIFAR-10 dataset are summarized in Figure 4 and Table
II. There are three key pointers in these results:

• The PolyKerv versions of VGG-16, AlexNet, and LeNet-
5 (referred to as PKV-16, PKA, and PKL-5, respectively)
have slightly lower accuracy compared to their original
(ReLU) counterparts but significantly higher accuracy
compared to the rigid polynomial approximations of
ReLU. At a high level, these results indicate the proposed
idea of replacing convolution, ReLU, and max-pooling
layers with polynomial kervolution and average pooling
is generic and can be applied to most base CNN archi-
tectures, without much loss in accuracy.

• Figure 4 also shows that irrespective of the base archi-
tecture, polynomial kervolution achieves better trade-off
between multiplicative depth and accuracy compared to
polynomial approximations of ReLU. This again demon-
strates the superiority of polynomial kervolution over
ReLU approximations.

• Finally, among the various architectures, ResNet-10 (with
two residual blocks) achieves the highest accuracy, even
though it has a lower depth compared to ResNet-14,
VGG-16, and ResNet-18. While the poor performance
of shallow architectures like LeNet-5 and AlexNet are
due to their small model capacity, the marginally lower
accuracy of deeper architectures (ResNet-14, VGG-16,
and ResNet-18) is due to the difficulty in training these
networks in the absence of ReLU activations. For the
selected dataset, ResNet-10 provides the best compro-
mise between these two phenomena. Consequently, PKR-
10 (which uses ResNet-10 architecture with polynomial
kervolution) achieves the best accuracy on CIFAR-10,
while having low multiplicative depth and fewer number
of parameters.

TABLE III
TEST ACCURACY ON THE CIFAR-100 DATASET, MULTIPLICATIVE DEPTH,

AND NUMBER OF PARAMETERS FOR VARIOUS MODELS.

Model Method Accuracy (%) Mult. Depth Params (M)

ReLU [25] 71.1 NA 34.0
DeepReduce [7] 71.1 NA 34.0

VGG- PolyApprox-1 [3] 67.6 16 33.6
16 PolyApprox-2 [4] 68.1 16 33.6

Square [2] 60.6 16 33.6
PKV-16 (Ours) 70.2 14 14.8

ReLU [25] 72.8 NA 11.2
DeepReduce [7] 72.5 NA 11.2

ResNet- PolyApprox-1 [3] 66.4 18 11.2
18 PolyApprox-2 [4] 68.3 18 11.2

Square [2] 61.7 18 11.2
PKR-18 (Ours) 71.3 18 11.2

The accuracy results for the various DNN architectures on the
test split of the CIFAR-100 dataset are summarized in Table
III. Due to the larger number of classes, we apply only the
VGG-16 and ResNet-18 architectures on this dataset as the
smaller architectures did not have sufficient model capacity to
achieve good performance. Similar to the earlier results, the
ReLU-constrained (DeepReduce [7]) ResNet-18 and VGG-16
models had almost the same test accuracy on CIFAR-100 as
the corresponding vanilla models (which use ReLU activation
without any constraints). However, these two methods are
not amenable to FHE-based private inference because of the
presence of ReLU functions. On the other hand, the FHE-
friendly models with square activation [2] and polynomial
approximations of ReLU [3], [4] have significantly less accu-
racy on CIFAR-100. In contrast, the proposed PolyKervNets
(PKR-18 and PKV-16) are FHE-friendly and exhibit little
compromise on accuracy, even though PKV-16 uses fewer
number of parameters (due to the removal of two FC layers)
compared to other VGG-16 models.

D. Private Inference Evaluation

MPC: We use the Cheetah [33] and Delphi [21] protocols to
implement MPC-based private inference. Cheetah and Delphi
are both hybrid cryptographic protocols that leverage a mix
of 2PC and HE primitives for PI. Delphi uses HE operations



TABLE IV
PERFORMANCE OF VARIOUS MODELS FOR 2PC-BASED PRIVATE INFERENCE USING THE DELPHI AND CHEETAH MPC PROTOCOLS.

DELPHI CHEETAH
Models-Dataset Variants Accuracy (%) Latency (s) Improvement Latency (s) Improvement

Vanilla 92.8 12.02 6.08
Deep Reduce 92.7 6.49 1.9× 3.93 1.5×
PolyApprox-1 88.4 1.18 10.2× 0.42 14.7×

VGG-16 CIFAR-10 PolyApprox-2 87.4 0.42 28.6× 0.36 16.9×
Square 80.1 0.41 29.3× 0.36 16.9×
PKV-16 (Ours) 91.2 0.38 31.6× 0.27 22.5×
MPKV-16 (Ours) 85.3 0.30 40.1× 0.26 23.4×

Vanilla 97.8 39.59 10.34
VGG-16 TB Chest X-ray PKV-16 (Ours) 96.2 1.10 36.0× 0.41 25.2×

MPKV-16 (Ours) 94.8 1.07 37.0× 0.39 26.5×

Vanilla 72.8 17.44 7.0
Deep Reduce 72.5 9.48 1.8× 4.76 1.5×
PolyApprox-1 66.4 1.58 11.0× 0.49 14.3×

ResNet-18 CIFAR-100 PolyApprox-2 68.3 0.61 28.6× 0.43 16.3×
Square 61.7 0.55 31.7× 0.42 16.7×
PKR-18 (Ours) 71.3 0.59 29.6× 0.43 16.3×
MPKR-18 (Ours) 70.5 0.53 32.9× 0.37 18.9×

Vanilla 99.6 72.49 11.89
ResNet-18 TB Chest X-ray PKR-18 (Ours) 99.2 1.92 37.8× 0.79 15.1×

MPKR-18 (Ours) 99.2 1.75 41.4× 0.69 17.2×

to implement the linear (convolution) layers, Beaver’s
multiplication triplets [31] for polynomial approximations
and square activation, and Garbled Circuits (GC) [30] for
non-linear computations such as ReLU. On the other hand,
Cheetah is a state-of-the-art protocol that uses a novel
HE-based (but SIMD-free) operation for the linear layers in
DNNs and an improved Oblivious Transfer (OT) protocol
for the nonlinear layers. The original Delphi work [21]
also includes neural architecture search (NAS) to identify
an optimal architecture, where some ReLU functions are
replaced with polynomial approximations in order to reduce
the amount of GC computations of ReLU. However, in this
work the NAS is performed using the DeepReduce method
[7], which has been proven to be more effective than the
original Delphi NAS method.

We evaluated the inference time of our proposed method as
well as other baselines on the TB-Chest Xray, CIFAR-10
and CIFAR-100 datasets using the VGG-16 and ResNet-18
architectures on each dataset. The accuracy and inference
time of these models for 2PC-based private inference are
summarized in Table IV. The vanilla version of VGG-16
(applied to CIFAR-10) and ResNet-18 (applied to CIFAR-
100) implemented using the Cheetah protocol consumed
about 6.1 and 7 seconds, respectively, for private inference.
The DeepReduce method was able to achieve 1.5× faster
inference for both architectures without compromising on
accuracy. On the TB-Chest Xray dataset, the vanilla version
of both VGG-16 and ResNet-18 implemented using the
Cheetah protocol consumed approximately 10.3 seconds and
11.9 seconds, respectively, for private inference.

Using the Delphi protocol, the vanilla version of both

VGG-16 (applied to CIFAR-10) and ResNet-18 (applied to
CIFAR-100) consumed about 12 seconds and 17 seconds,
respectively, for private inference. The DeepReduce method
based on the Delphi protocol achieved 1.9× faster inference
than the original VGG-16 and 1.8× faster inference than
the original ResNet-18 without compromising on accuracy.
Clearly, the results for both protocols are consistent, with
Cheetah being able to achieve faster PI than Delphi.

Among the approximation methods for both architectures,
using both MPC protocols, the square activation has the best
latency improvement (approximately 17× over the original
architectures while using Cheetah and 30× while using
Delphi). Unfortunately, the square activation also leads to a
large degradation in accuracy. The PolyApprox-2 method of
[4] achieves a much better accuracy-latency trade-off.

The proposed PolyKervNets clearly outperform all the above
approximation methods and achieves both very good accuracy
and large improvements in latency. For instance, complete
private inference using the PKV-16 model can be obtained
in 0.27 (0.38) seconds on the Cheetah (Delphi) protocol,
making it about 22.5× (31.5×) faster than the original
VGG-16 architecture, while still achieving greater than 90%
accuracy on CIFAR-10. Similarly, the PKR-18 model requires
only 0.4 seconds and 0.6 seconds for Cheetah-based and
Delphi-based PI on the CIFAR-100 dataset, while achieving
an accuracy of approximately 71%. This is at least 3%
absolute improvement in top-1 accuracy on CIFAR-100 over
the comparable DeepReduce models having similar inference
latency (despite the sub-optimal training settings used in
this work, which results in lower accuracy of the original
ResNet-18 model). We have also tested vanilla and PKN



variants of ResNet-18 and VGG-16 on the TB-Chest X-ray
dataset. Similar to the CIFAR datasets, the accuracy of PKN
variants is marginally lower than the corresponding vanilla
models, but with a significant reduction in latency. Thus, the
proposed PolyKervNets have better accuracy-latency trade-off
than state-of-the-art ReLU reduction/approximation methods.

For our Delphi-based PI experiments using DeepReDuce, we
used a ReLU budget that gives the best performance while
still having a fair improvement on latency. For ResNet-18
model on CIFAR-100 dataset, the DeepReduce model reported
in our paper had a ReLU count of 248K, an accuracy of
72.53%, and a latency of around 9.5s. When the ReLU count
is reduced to 98K, the accuracy degrades to 67.84% and the
latency reduces to around 3.4s. In contrast, the PKR-18 model
had an accuracy of 70.97% (based on the same dataset) and
a latency of 0.6s. Thus, PKR-18 achieves almost 3% higher
accuracy than DeepReduce, while being close to 6× faster.

Note that it is possible to further reduce the ReLU budget and
obtain even faster inference using the DeepReduce method,
but this comes at the cost of significant loss in accuracy. As
reported in [7], among models that required less than a second
for inference, the best achieved accuracy using the ResNet-18
architecture on CIFAR-100 dataset was around 68%. This is
despite the fact that the original ResNet-18 model achieving
an accuracy of 74.5% on CIFAR-100. Due to differences
in the training settings, the corresponding accuracy of the
original ResNet-18 model in our work on the same dataset
is only 72.6%. Hence, we can expect ReLU-constrained
ResNet-18 models with sub-second inference latency trained
using our settings to have an accuracy significantly lower than
68% on CIFAR-100. Since a more detailed investigation of
the accuracy vs. latency trade-off of DeepReduce has already
been reported in [7], we have not repeated this experiment in
this work.

The proposed PKR-18 achieved a latency of around 0.4
and 0.6 seconds per image for the CIFAR-100 dataset using
the Cheetah and Delphi protocols, respectively. However, it
must be noted that the maximum image size used in our
evaluations was 64 × 64 (TB Chest X-ray dataset) and the
corresponding latency based on both MPC protocols were 0.8
and 1.9 seconds. For real-world applications, higher resolution
images (minimum of 224× 224) need to be processed, which
will increase the latency. But this latency increase can be
mitigated through parallelization of computations across
multiple GPUs/CPUs. Thus, the reduced latency of PKNs
indeed brings them closer to practical feasibility.

FHE: We use the HELayers [35], [36] library for
implementation of FHE-based private inference. HELayers
optimizes the tensor packing strategy of various neural
network computations to improve the latency of homomorphic
encryption protocols deployed in the Microsoft SEAL [29]
and HELib [37] libraries. The key advantage of this library

is the ease of use through a Python API, while preserving
efficiency by implementing most of its operations using
C++. Unlike other popular python wrappers of SEAL such
as TenSEAL [28], HELayers allows the use of multiple
convolution layers (which is a consequence of the optimized
ciphertext packing strategy enabled in this library). We
implemented the various ResNet-10 variants used in this
work on the TB Chest X-ray dataset and report the FHE-based
inference results. Since the ReLU function cannot be directly
implemented in FHE, the vanilla (ReLU) ResNet-10 model
or the DeepReduce model cannot be used for FHE-based PI.

The ResNet-10 architecture is a shallower variant of the
ResNet-18 architecture, but with only the first two residual
blocks. The output of the second residual block is passed to
the global average pool layer, which is then flattened and
passed into a softmax layer that has two output neurons.
The Adam optimizer with a learning rate of 1e-3 was used
for training before encrypting the data to verify its private
inference (PI) performance. The ResNet-10 architecture
is employed instead of ResNet-18 to avoid the need for
bootstrapping and to overcome memory limitations.

Table V shows the performance of the above architectures dur-
ing encrypted inference. Though the competing architectures
had comparable PI latency on the TB Chest X-ray dataset, the
proposed PKR-10 and MPKR-10 architectures had the least
degradation of accuracy. This experiment again confirms that
polynomial approximations of ReLU are not good enough for
deeper networks designed for complex real-world tasks and
the real benefits (higher accuracy for approximately the same
inference time) of PolyKervNets (PKNs) can be realized in
such scenarios.

TABLE V
PERFORMANCE OF RESNET-10 VARIANTS FOR FHE-BASED PRIVATE

INFERENCE USING HELAYERS.

ResNet-10 Accuracy (%) Latency (s)

ReLU 96.8 NA
PolyApprox-1 95.1 307.89
PolyApprox-2 95.3 307.20
Square 94.7 307.19
PKR-10 (Ours) 96.1 307.20
MPKR-10 (Ours) 96.1 305.67

V. ABLATION STUDIES

A. Impact of cp and dp hyperparameters

While the core experiments focused on demonstrating the
ability of PolyKervNets to preserve accuracy and improve
latency, there are other factors which impact the performance
of the proposed methods. Firstly, we attempted to study
the impact of the balance factor cp on the PolyKervNet
(PKN) model performance. The accuracy of various PKN
architectures on the CIFAR10 dataset using different values
of cp are shown in Figure 5. The balance factor cp has a



Fig. 5. Impact of the balance parameter (cp) on the accuracy of each
PolyKervNet (PKN) architectures, when evaluated on the CIFAR-10 dataset.
We observe that the accuracy is highest when cp = 0.5, cp = 0.75 and
cp = 1.

significant impact on the accuracy of each model using a
dp of 2. However, cp = 0.5, cp = 0.75 and cp = 1 gave
the best accuracy and most stable performance for most
architectures. Setting cp = 0 could work well in smaller
models and on simpler datasets, but does not work in the case
of deeper models or on complex datasets. Using cp > 1 could
potentially enlarge each layer’s output, and either explode the
gradients or increase the loss, which results to a degradation
in the mode performance. Using 0.5 ≤ cp ≤ 1 stabilizes the
performance depending on the architecture and ensures a
good accuracy when using a degree (dp) of 2.

Next, we attempted to vary the polynomial degree dp used in
PolyKervNets. Using a dp value of 3 or higher in PKN archi-
tectures exposes model training to the problem of exploding or
vanishing gradients. Consequently, models with dp = 3 failed
to learn the tasks well and hence, the results are not reported
in this work. Besides that, using a higher polynomial degree
will increase multiplicative depth, thereby increasing latency.
Hence, we believe that using a sufficient number of layers with
a dp value of 2 is good enough for most tasks.

B. PKNs vs. MPKNs

We performed a comprehensive study of MixedPolyKervNets
and the results are summarized in Table VI. MixedPolyK-
ervNets work well with the ResNet architecture, having
marginally lower accuracy and lower latency compared to
PolyKervNets. However, mixing convolutions and polynomial
kervolutions does not work well with the VGG-16 architecture,
indicating that residual connections play an important role in
stabilizing the training of PolyKervNets.

TABLE VI
COMPARISON OF PKN AND MPKN ARCHITECTURES BASED ON

CIFAR-10 DATASET.

PKN Accuracy(%) Latency(s) MPKN Accuracy(%) Latency(s)

PKR-10 91.9 0.32 MPKR-10 91.9 0.25
PKR-14 91.0 0.45 MPKR-14 91.7 0.40
PKR-18 90.1 0.59 MPKR-18 89.0 0.53
PKV-16 91.2 0.38 MPKV-16 85.3 0.30

C. Impact of removing convolution layers

We also tried to reduce the depth of the network by reduc-
ing the number of convolution layers within each residual
sub-block (from two to one). We refer to this architecture
as PolyKervResNet-Small (PKR-S). Note that in our earlier
experiments, the depth was reduced by decreasing the number
of residual blocks instead of modifying the number of convolu-
tion layers within each block. Though the PKR-S architecture
has the same multiplicative depth as PKR-10, the performance
of the PKR-S model is still considerably lower than that
of PKR-10. This justifies our original design of eliminating
residual blocks as a whole to reduce depth, instead of reducing
the number of convolutions within each sub-block.

TABLE VII
ABLATION SHOWING THE IMPACT OF KNOWLEDGE DISTILLATION ON THE

ACCURACY OF PKR-18 ARCHITECTURES. HERE, WE OBSERVE AN
IMPROVEMENT IN PERFORMANCE WHEN A PKN IS TRAINED BY A

TEACHER MODEL USING DISTILLATION.

Teacher (%) Model (cp, dp) w/o Distillation (%) w/ Distillation (%)

PKR-18 (cp=0, dp=2) 82.1 85.7
ResNet-18 PKR-18 (cp=0.5, dp=2) 90.0 92.4

(93.6%) PKR-18 (cp=1, dp=2) 91.1 93.4
PKR-18 (cp=2, dp=2) 81.1 85.1

D. Training using Knowledge Distillation

Instead of training from scratch, we tried to perform distil-
lation using a pre-trained ResNet-18 model3 as the teacher.
Since this pre-trained model had a higher accuracy (93.6%
on CIFAR-10) compared to our vanilla ResNet-18 model
trained from scratch (91.89% on the same dataset), all the
PKN variants distilled from this teacher had better accuracy
compared to the corresponding models trained from scratch
(see Table VII). For example, the distilled PKN-18 model
had an accuracy of 93.41% compared to the same architecture
trained from scratch (91.1%). This shows that distillation from
a well-trained teacher model is an effective way of improving
the accuracy of PolyKervNets. Unfortunately, we found that
distillation had little impact on the sensitivity of the training
process to other hyperparameters such as dp.

VI. CONCLUSION

In this work, we attempted to design deep neural networks that
are more suitable for private inference. Often, the presence of

3https://github.com/rwightman/pytorch-image-
models/releases/download/v0.1-weights/resnet18d ra2-48a79e06.pth



non-linear activation and pooling layers present the greatest
stumbling block in achieving efficient private inference. In
contrast to prevailing approaches that approximate non-linear
layers such as ReLU with polynomial functions or remove
as many non-linear computations as possible through neural
architecture search, we propose a completely different
approach based on polynomial kervolution. The proposed
approach completely eliminates the need for activation layers
and almost all pooling layers and leads to DNNs with low
multiplicative depth, but good recognition accuracy.

While PolyKervNets are more amenable to private inference,
it is important to note that training PolyKervNets is more
unstable than traditional CNN models. This necessitates a
careful selection of hyperparameters. On the issue of training
stability, the key takeaways from this study are:

• While very shallow PolyKervNets are easy to train,
the training stability decreases as the network depth
increases. This is reason why PKR-10 provides better
accuracy than PKR-14 and PKR-18. For the same reason,
we have not been very successful (thus far) in training
even deeper architectures such as ResNet-50.

• PolyKervNets with residual connections are relatively
easier to train compared to other architectures such as
VGG-16. Therefore, we recommend ResNet or models
with residual connections as the core architecture for
designing PolyKervNets.

• Across various architectures, cp = 1 and dp = 2
consistently give good performance.

Experiments on four datasets prove the efficacy of the pro-
posed PolyKervNets based on both FHE and MPC techniques.
Our experiments also show that reducing the multiplicative
depth of neural networks is not a straightforward task of
removing layers arbitrarily or using coarser approximations.
Instead it is better to closely follow well-tested CNN archi-
tectures and modify them carefully to achieve better trade-off
between accuracy and efficiency.
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