CodeGEMM: A Codebook-Centric Approach to
Efficient GEMM in Quantized LLMs

Gunho Park, Jeongin Bae, Byeongwook Kim, Baeseong park, Jiwon Ryu,
Hoseung Kim, Se Jung Kwon, Dongsoo Lee

NAVER Cloud
gunho . park3@navercorp.com
github.com/naver-aics/codegemm

Abstract

Weight-only quantization is widely used to mitigate the memory-bound nature of
LLM inference. Codebook-based methods extend this trend by achieving strong
accuracy in the extremely low-bit regime (e.g., 2-bit). However, current kernels rely
on dequantization, which repeatedly fetches centroids and reconstructs weights,
incurring substantial latency and cache pressure. We present CodeGEMM, a
codebook-centric GEMM kernel that replaces dequantization with precomputed
inner products between centroids and activations stored in a lightweight Psum-
book. At inference, code indices directly gather these partial sums, eliminating
per-element lookups and reducing the on-chip footprint. The kernel supports the
systematic exploration of latency—memory—accuracy trade-offs under a unified
implementation. On Llama-3 models, CodeGEMM delivers 1.83x (8B) and 8.93
(70B) speedups in the 2-bit configuration compared to state-of-the-art codebook-
based quantization at comparable accuracy and further improves computing effi-
ciency and memory subsystem utilization.

1 Introduction

Driven by the power-law scaling principle, large language models (LLMs) have grown increasingly
larger, delivering remarkable advancements in performance [9, 10]. Notably, open-source models
like Llama-3 [4] have reached a scale of 405 billion parameters, demonstrating significant improve-
ments over their predecessors. However, deploying such massive models efficiently in production
environments poses substantial challenges. For instance, the 405B model requires approximately
810GB of storage for its parameters alone, exceeding the memory capacity of a single multi-GPU
node configured with 8 NVIDIA H100s, which offers a total of 640GB of memory. To address
these limitations, extensive research has been dedicated to developing various model compression
techniques aimed at reducing model size while minimizing performance degradation [8, 24, 22].

Among compression strategies, quantization has emerged as a particularly effective tool for cutting
model size and bandwidth demands with minimal accuracy loss. In large language models (LLMs),
challenges with activation quantization—caused by activation outliers—and the significant memory
footprint of weight parameters have spurred research into weight-only quantization [6]. These
methods focus on quantizing model weights to maximize memory efficiency without compromising
performance.

State-of-the-art techniques show that 4-bit weight-only quantization achieves nearly the same per-
formance as unquantized models [13, 12], with notable progress even in 3-bit quantization [21, 1].
However, in extreme low-bit (e.g., 2-bit) settings, uniform quantization suffers from significant per-
formance degradation due to its limited representational capacity. Structured non-uniform methods

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/naver-aics/codegemm

@ Load Large Codebook (2) Redundant Comput. & @ Load Small (@ Psumbook Retrieval @

0 c§ cz c§ eg Psumbook on Cache &

z EO 3lcq |5]d i(g) :) Zg Z Oy

1 1] chfct]cd|<h FEIEE £0 |[c3]c9|8 |8 X £0 0 N

0 £2 ([3]t |c3)3 o[l X 1 [cd]ct]et el E1 [

R & EIEIEE FEIEE FAEEE Al

3| Codebook (FP16) alalala = EIEIE £3 [s

1 FEIEIE Codebook Input Psumbook
Code Dequantization Weight (FP16) (FP16) (FP16) | code Output
(INT2) (FP16) (INT2) (FP16)

(a) On-the-fly dequantization (b) Proposed

Figure 1: Comparison of matrix multiplication kernels for codebook-based quantized models. The
dequantization-based kernel performs on-the-fly dequantization, requiring the entire codebook to be
loaded into cache. In contrast, CodeGEMM precomputes partial sums and stores them in a Psumbook,
eliminating dequantization overhead and redundant computation.

like Binary-Coded Quantization (BCQ) [30] improve performance over uniform quantization but still
fall short of satisfactory results. These challenges emphasize the need for advanced non-uniform
quantization techniques capable of maintaining high accuracy in extremely low-bit scenarios.

Codebook-based quantization has emerged as a promising algorithm capable of delivering superior
performance in extremely low-bit environments [14, 16, 25, 26, 27]. Unlike traditional quantization
methods that represent individual values with fewer bits, codebook-based quantization aims to
represent data more efficiently by mapping input vectors to a limited set of centroid vectors. As
a result, the original vectors are compressed and stored as codes pointing to the corresponding
centroids in the codebook. However, this approach introduces a unique challenge: the efficient
management of the codebook. As illustrated in Figure 1(a), unlike uniform quantization, codebook-
based quantization relies on the codebook to reconstruct quantized values during computation.
Without efficient codebook handling, the overhead associated with dequantization can negate the
memory benefits of codebook-based quantization, potentially reducing overall efficiency.

In this paper, we propose CodeGEMM, a GEMM method designed to efficiently support codebook-
based quantization, enabling practical speedups from extremely low-bit quantization. Unlike existing
dequantization-based GEMM kernels, which load the entire codebook into programmable cache
memory and rely on dequantization during computation, the proposed kernel precomputes all possible
partial sum (Psum) results between the centroid and input data, storing these results as a Psumbook in
cache memory (Figure 1(b)). This approach eliminates the necessity for the traditional dequantization
step, during which particular centroids are retrieved from the codebook through codes. Instead,
the kernel directly retrieves precomputed Psums, reducing redundant computation and significantly
decreasing the space complexity required for cache storage. Moreover, the proposed kernel supports
a wide range of hyperparameters that define the configuration of codebook-based quantization,
facilitating the execution of various quantized models within a unified kernel. This flexibility enables
users to explore and evaluate trade-offs among latency, memory usage, and accuracy, providing a
versatile and efficient solution for quantized operations.

The contributions of this work are as follows:

1. We introduce CodeGEMM, a new approach centered on codebooks to enhance the efficiency
of GEMM in codebook-based quantized LLMs. CodeGEMM overcomes the drawbacks
of existing methods, which require loading the entire codebook into programmable cache
memory for dequantization-based operations and suffer from redundant computations.

2. CodeGEMM accommodates a broad spectrum of codebook hyperparameters, such as the
number of codebooks, vector length, and group size, all within one kernel. This adaptability
allows for investigating the trade-offs between latency, memory consumption, and accuracy
in codebook-based quantized models, facilitating better optimization for various use cases.

3. On Llama-3.1 models, CodeGEMM delivers 1.83x (8B) and 8.93x (70B) speedups in the
2-bit configuration compared to state-of-the-art codebook-based quantization at comparable
accuracy, and further improves computing efficiency and memory subsystem utilization.

Step®: Group Norm. Step®: Clustering Step®: Centroid Assignment

m”r’ *‘:’:—»16«: @a of2]1]1 0 Centro?d #0
8> | <85 | <8o | <8> ° o 2(of2(3 1 Centroid #1
8> | <85> | <85> | <8> o3 3]10[1]1 F2 Centroid #2
8 | 8> | 8> [8> |----- [j(e o°) """"" 113[2(3 F3 Centroid #3

Weight (FP16, M x K) Centr0|ds (FP16, 2°) Code (INT2, M x K/v) Codebook (FP16, 2”x v)

Figure 2: Tllustration of quantization process of a (4 x 32) weight matrix withb =2, m =1,v =8
and g = 16.

2 Background

2.1 Weight-only quantization

As generative language models grow larger and demand greater memory, model quantization has
become essential for reducing memory footprints, minimizing model size, and improving inference
efficiency. Quantization is commonly applied in two ways: (1) quantizing only the weights or (2)
quantizing both weights and activations. However, activation quantization poses significant challenges
due to the dynamic range of activation values and extreme outliers, termed massive activations [23],
which exceed typical values by over 2000 x.

To address these challenges, many studies have focused on weight-only quantization. GPTQ [6] uses
approximate second-order information to compress weights to 4 bits with minimal accuracy loss.
AWAQ [13] scales salient weights based on activation magnitude to reduce quantization-induced errors.
Weight-only quantization enables compact model compression, reducing memory and accelerating
inference with specialized kernels [6, 13, 20, 11]. However, at extremely low precision, it still
suffers notable accuracy degradation. For instance, QulP [3] uses random rotation matrices to
mitigate this issue, achieving acceptable accuracy but still facing challenges at extremely low-bit
levels. To overcome these limitations, non-uniform quantization methods have been introduced [5,
25, 14, 27]. Unlike traditional uniform quantization, non-uniform approaches offer greater flexibility
in representing a wider range of values, enhancing accuracy in extremely low-bit quantization
scenarios [5].

2.2 Codebook-based quantization

Extensive research has been conducted to utilize codebook-based quantization for compressing
large language models, utilizing its non-uniform properties and flexibility in representing a wide
range of values [5, 16, 25, 26, 27]. In particular, GPTVQ [27] extended the GPTQ framework to
incorporate codebook-based quantization, interleaving the quantization of one or more columns with
updates to the remaining unquantized weights. Similarly, AQLM [5] introduced an adaptation of
multi-codebook quantization for large language models, proposing a method to optimize the codebook
using a calibration dataset. QuIP# [25] adopts a smoothening approach similarly to QulIP [3], applying
a rotation matrix to transform weights into a space that minimizes worst-case quantization error before
mapping them to structured lattice codebooks. Similarly, QTIP [26] builds on this idea by combining
rotation-based smoothening with trellis-coded quantization to further enhance performance.

In this work, we build upon the additive codebook quantization strategy adopted in AQLM [5],
which represents weights as the sum of multiple centroid vectors. Compared to smoothening-based
approaches that rely on matrix transformations such as rotations, additive codebook quantization
offers a more intuitive and inference-efficient alternative by avoiding transformation overhead during
runtime. This formulation enables fast lookup-based inference and supports flexible trade-offs
between accuracy, memory footprint, and latency through careful control of hyperparameters such as
the number of codebooks and vector length.

Codebook-based quantization reduces memory footprint by representing the original weights as a
set of vectors and approximating each individual vector with a corresponding centroid vector. As
illustrated in Figure 2, a weight matrix of size (M x K) is quantized into codebooks and corresponding
codes using several key hyperparameters, including the vector length (v), group size (g), the number
of bits per code (b), and the number of codebooks (m). In the first step, the parameter v specifies

the granularity at which the (M x K) weight matrix is partitioned into vectors. Each vector is then
normalized by a scaling factor to facilitate efficient clustering of weight vectors (Step @)). The
normalization group size g, which is always greater than or equal to v, defines the range over which
normalization is performed, ensuring consistent scaling across all vector elements. Specifically, given
that the length of each vector is v, a total of g/v weight vectors are treated as a single group for
normalization purposes.

After normalization, vectors are clustered and mapped to centroid values, which serve as representative
values for each cluster (Step @). A widely used approach for determining these centroid vectors is
the K-means clustering algorithm, which partitions the data into a predefined number of clusters [5,
27, 14]. The algorithm iteratively initializes cluster centroids and assigns each data point to the
nearest cluster based on a chosen distance metric, repeating this process until convergence is achieved.

Each centroid vector is assigned a unique index, referred to as a code. The number of clusters is set
to 2°, where b denotes the number of bits per code, allowing representation of values ranging from 0
to 2° — 1. A codebook that maps each code to its corresponding centroid vector is constructed (Step
Q), and original weight values can subsequently be reconstructed by decoding the codes using this
codebook. To minimize quantization error, multi-codebook concept has been proposed [5, 2], which
performs the quantization process m times, constructing m codebooks and summing their values to
represent the original weight value more accurately.

Since applying codebook-based quantization makes v sized full-precision values to be represented by
m different codes of b bit precision, the average bit per weight is decided by these hyperparameters.
Specifically, the number of bits per weight is calculated by dividing the total quantized bits by the
number of weights. The total bit size, and consequently, the average bit per weight ¢, can be expressed
as follows:

Scodebook + Scode + Snorm
M- K
16-m-2b~v+b-m-M-%+16-M-%
B M- K ’
where the precision of each vector element in the codebook is set to FP16. Equation 1 also reveals
that multiple combinations of hyperparameters can achieve the same average bit per weight. For
example, as shown in Table 1, various combinations including (v, m, b, g) = (4, 1, 8, -1) and (v, m, b,
g) = (16, 3, 8, 32) result in almost the same average bit per weight of 2. Since our goal is to maintain
model accuracy under extremely low-bit quantization, achieving an optimal trade-off between
bit precision and accuracy is essential. However, the impact of these hyperparameters on model
accuracy and inference latency remains largely unexplored, necessitating extensive investigation
through comprehensive experimental studies. In this paper, we analyze how different hyperparameter
combinations with similar average bits per weight influence the trade-offs between memory footprint
and performance, providing valuable insights into optimizing quantized models.

q_ =
ey

Table 1: Average bits per weight for various quantization configurations. Geode, Geodebooks aNd @rorm
represent the average bits allocated to codes, codebooks, and group normalization factors, respectively.

A value of g = —1 indicates row-wise group normalization.
\% m b g ‘ Qcode Qcodebook qnorm ‘ q
4 1 8 -1 2.0 0.001 0.004 | 2.005
8 2 8 -1 2.0 0.004 0.004 | 2.008
16 4 8 -1 2.0 0.016 0.004 | 2.020
8 1 8 16 1.0 0.002 1.000 | 2.002
16 3 8 32 1.5 0.012 0.500 | 2.012

2.3 Kernels for Quantized LLM

Recent weight-only quantization techniques, aimed at reducing bit-widths to sub-4-bit levels to en-
hance memory efficiency, are also focused on achieving practical speedups. For instance, GPTQ [6]
and AWQ [13] provide INT3-FP and INT4-FP kernels for uniform quantization, respectively, along-
side their quantization methodologies. While these kernels achieve reduced latency relative to the

FP16 cuBLAS baseline, they fall short of improving computational efficiency. This limitation arises
as the benefits primarily stem from more efficient data movement facilitated by quantization, rather
than from the computational performance itself. To address this issue, LUT-GEMM [20] introduces a
kernel that reduces computational complexity by utilizing a lookup table, leveraging the BCQ format
to represent quantized weights.

Especially in codebook-based quantization, the current kernel [5] relies on a dequantization process.
This process reconstructs the original weights by using the codes to retrieve the corresponding
centroids from the codebook. These codes serve as indices for querying the codebook, where the
corresponding centroids are retrieved and used as dequantized weights. The (M x K/v) code matrix
retrieves centroid vectors of length v, reconstructing a dequantized matrix of the same shape as the
original matrix (M x K). Subsequent matrix multiplication with the input matrix is then performed
in the same manner as with the original weight matrix. To support efficient dequantization, current
kernels load the entire codebook in programmable cache to enable rapid retrieval of centroid vectors.
However, this approach leads to significant memory write overhead during the codebook load phase.
Furthermore, as the codebook size increases, loading the entire codebook in programmable cache
becomes more challenging. For instance, in the AQLM (1 x 16) kernel the codebook requires
216 centroids of length v = 8, each represented in FP16. This requires 26 x 1 x 8 x 2 bytes
(=1MB) of shared memory, far exceeding the capacity of both A100 (164KB) and H100 (224KB).
As a result, the codebook cannot reside in shared memory and must be repeatedly fetched from
DRAM, significantly increasing latency. Furthermore, while this dequantization approach effectively
optimizes data movement, it does not reduce computational complexity, which remains identical to
that of the original matrix multiplication.

3 CodeGEMM: Codebook-based GEMM

Motivation. Figure 1 illustrates the matrix multiplication process in codebook-based quantization
and highlights two key challenges. First, loading the entire codebook into programmable cache
incurs substantial overhead that scales with the size of the codebook and is repeated by each thread
block, leading to performance degradation in large-scale deployments. Second, computations are
often redundant, as each input vector interacts with a limited set of centroids, resulting in repeated
calculations across the output matrix. To address these challenges, we propose a method that
minimizes codebook load overhead and avoids redundant computation, enabling more efficient use of
limited on-chip cache and improving overall efficiency.

Methodology. CodeGEMM introduces a codebook-centric approach to efficient matrix multiplica-
tion in quantized LLMs. Instead of loading the entire codebook, CodeGEMM stores precomputed
results of the inner products between the centroid vectors and input activations in the programmable
cache. This approach reduces space complexity and eliminates the need for dequantization operations
that retrieve centroids for each code from the codebook. Instead, the kernel repeatedly utilizes the
precomputed results, significantly reducing the computational complexity.

Figure 3 illustrates the computation process of CodeGEMM, depicting a matrix multiplication
operation between a weight tile of dimensions (¢, X t,,) and an input tile of dimensions (¢,, x 1).
Initially, the input tile is partitioned into inputs of dimensions (¢,,/v X v x 1) to facilitate efficient
computation with centroids stored in the codebook (Step @)). These segmented inputs are represented
as T, = Tyxjk, Where j € [0,1,...,t,/v—1]and k € [0,1,...,v — 1]. The corresponding code
matrix is similarly partitioned into code tiles of dimensions (¢ X t,,/v) to align with the input tiles
for effective computation. In our implementation, we set t,, = 32 and ¢, = 2048 to align with
hardware-friendly tiling strategies and to maximize reuse of the Psumbook within each thread block.
Next, each segmented input computes inner products with the centroids to generate partial sums
(Psums), which are then stored as a Psumbook in the programmable cache (Step G). Each entry in
the Psumbook, pf , is calculated as follows:

v—1
pl=Y chxal, i€01,...,2 -1 @
k=0

By storing the Psumbook in the programmable cache instead of the full codebook, CodeGEMM
replaces the conventional process of fetching and computing with centroids for each code with a more

Step@: Input reshape Step@: Build Psumbook Step@: Data retrieval & Accumulation

Xo

X £0
Rl 511111
2

X2

X3

F3 fcofci|c|cs
Codebook (FP16, 2°x v)

Code tile
(INT2 th X tw/v)

Psumbook (FP16, tW/vx 2”x1)

- 5.4 ————— ===
Retrieval

Partial sum (FP16, t, x t,/v)

— Reshape
Xe2]

| X13| Input tile
X14 (FP16, t, v x vx 1

X15

Input tile
(FP16, t, x 1) Index for each Output

Psumbook (FP16, t, x 1)

Figure 3: Overview of the CodeGEMM kernel operation for codebook-based quantized models.
1) Input data is reshaped into vectors to align with the codebook dimensions. 2) Precomputed
inner products between the codebook and input vectors are stored in the Psumbook within the
programmable cache, significantly reducing computational overhead. 3) During computation, codes
query the corresponding partial sums from the Psumbook, which are then accumulated to generate
the output efficiently without requiring on-the-fly dequantization.

efficient retrieval of precomputed Psums using code as a key. This not only reduces computational
complexity but also lowers space complexity, as only the scalar inner product results are cached rather
than the full centroid vectors. Finally, the partial sums corresponding to each input are retrieved
from the Psumbook via code-based indexing and then accumulated to generate the final output
activations for the thread block (Step 9). In contrast to existing kernels that load the entire codebook
into the programmable cache, our approach of storing precomputed inner product results allows for
significantly more efficient computations for codebook-based quantized LLMs.

Computational complexity. In a matrix multiplication operation with a weight matrix of size
(M x K) and an input matrix of size (K x IN), the computational complexity of a standard GEMM
kernel is given as O(M N K). This complexity also applies to dequantization-based kernels, as they
improve data movement efficiency through quantization but do not reduce the overall computation
cost.

In contrast, CodeGEMM reduces the computational workload by precomputing all inner product
results between the centroid vectors and input activations, storing them in a Psumbook, and replacing
repeated computations with simple retrieval operations. This allows CodeGEMM to achieve a lower
computational complexity compared to conventional methods. The computational complexity of
CodeGEMM, assuming M > 20 is expressed as follows:

K K
Czcbuild—i-creadZ@(m~2b-v~v-N)+O(m-M.v.N)

20 1 m
=O0(mMNK|=+=-))~0O(MNK -—),
M v v

where Chyi1q and Cleqq represent the computational complexity of building the Psumbook and
retrieving values from it, respectively. Consequently, CodeGEMM achieves a computational reduction
factor of (m/v) compared to conventional kernels, where m is the number of codebooks and v is the
vector length—both crucial for optimizing performance. This enables CodeGEMM to enhance data
movement efficiency through quantization, like traditional dequantization-based kernels, while also
reducing computational complexity for higher efficiency.

3

Space Complexity. Dequantization-based GEMM kernels load the entire codebook into the pro-
grammable cache to perform computations. In this case, the space complexity is given by O(m-2°-v),
which corresponds to the full size of the codebook. In contrast, the space complexity of CodeGEMM
is O(m - 2° - t,,/v), where t,, denotes the width of the weight tile. Since CodeGEMM stores pre-
computed inner product results rather than full centroid vectors, its space complexity is inversely
proportional to the vector length v, resulting in a smaller cache footprint. This reduction in memory

requirements allows CodeGEMM to achieve more efficient cache utilization, making it better suited
for accelerators with limited programmable cache sizes.

4 Experiments

Setup. We evaluate CodeGEMM by exploring the trade-offs across key hyperparameters, focusing
on three primary metrics relevant to LLM compression: memory footprint, latency, and accuracy.
The memory footprint is quantified using the average number of bits per weight ¢ and computed
according to Equation 1. Latency is measured to compare raw kernel performance for matrix
multiplication, assuming the shape of linear layers used in Llama-3 [4], a widely adopted architecture.
Specifically, latency is reported as the sum of kernel execution times for all linear layers in a
single Transformer decoder block without layer fusion. All latency measurements are performed
on an NVIDIA A100 80GB GPU. Throughput (or, equivalently, end-to-end latency) is additionally
measured using the Llama implementation provided by the HuggingFace [29] library with layer
fusion. Although this library is not optimized for high-throughput inference, it remains one of the
most widely used frameworks and thus serves as a practical baseline. Accuracy is evaluated using the
1lm-eval-harness [7] benchmark suite across both zero-shot and 5-shot settings on standard tasks.

Memory Footprint vs. Latency. Table 2 presents the kernel-level latency of various quantized
matrix multiplication methods on 2-bit quantized Llama3 models (8B and 70B). LUTGEMM [20], de-
signed for uniform quantization, achieves strong performance by eliminating redundant computations
through efficient use of lookup tables. QuIP# [25] and QTIP [26], which rely on smoothing-based
transformations, mitigate the associated overhead through highly optimized fused kernels, demonstrat-
ing competitive latency. AQLM [5] with the 2x 8 configuration improves data movement efficiency
via quantization, resulting in moderate latency reduction despite retaining the same computational
complexity as the FP16 baseline. However, AQLM-1 x 16 suffers from significantly higher latency
due to inefficient dequantization caused by its large codebook (e.g., 2'° entries), which exceeds
on-chip cache capacity. In contrast, CodeGEMM achieves up to 2.18x and 1.64x speed-ups over
the FP16 baseline and AQLM, respectively, at the same average bit precision. This improvement is
due to both the use of precomputed inner products, which reduce computational complexity, and the
efficient utilization of shared memory.

Figure 4(a) shows the relationship between memory footprint and latency of the Llama-3.1-8B model
under a single batch operation. As shown in Table 1, codebook-based quantization enables diverse
configurations within a given memory footprint by adjusting hyperparameter settings. According
to Equation 1, the group size g impacts the memory footprint. Smaller group sizes increase the
total memory footprint, leading to higher latency in memory-bound operations. For g > 32, the
fine-grained group normalization incurs minimal latency overhead despite the growing memory
footprint. However, as g decreases further, the overhead becomes more pronounced, particularly in
per-vector normalization (i.e., ¢ = v), where the latency rises sharply. Additionally, this overhead
is amplified when the group normalization scale factor constitutes a larger proportion of the total
memory footprint, which is more likely when the number of codebooks m is small.

Table 2: Kernel-level latency (us) of quantized matrix multiplication in 2-bit quantized Llama3
models (8B and 70B). CodeGEMM achieves consistently lower latency than other methods.

cuBLAS LUTGEMM QuIP# QTIP AQLM AQLM CodeGEMM CodeGEMM
(fp16) (q2-g128) (e8p) (r2) (1x16) (2x8) (m2v8g128) (mlv4gl28)

8B 332.45 160.1 162.63 189.94 645.51 250.12 172.18 152.69
70B 1111.36 299.9 403.59 477.04 22855 674.67 373.49 293.82

Efficiency and Utilization. We measured DRAM traffic proxies and power efficiency using
nvidia-smi [18] telemetry. Metrics were sampled at a 100 ms cadence over a 10s window and
averaged across trials. Memory utilization represents the fraction of the sampling interval during
which device (global) memory was actively read from or written to [18]. As summarized in Table 3,
on a matrix multiplication workload with M =1, N=28672, and K=8192, CodeGEMM delivers sub-
stantially higher compute efficiency (GFLOPS/W) than dequantization-based kernels. Parenthetical
values denote two-sigma error margins over 128 samples. Beyond lower latency, CodeGEMM also

shows higher energy efficiency and improved memory-subsystem utilization, indicating reduced and
more structured DRAM access relative to dequantization-based approaches.

Table 3: Kernel-level Performance evaluation on a GEMV with (M, N, K) = (1,28672,8192).
Performance metrics are obtained from nvidia-smi telemetry. CodeGEMM delivers higher power
efficiency and improved memory utilization than dequantization-based codebook kernels.

Method TFLOPS Power (W) GFLOPS/W GPU Util (%) Mem Util (%)
cuBLAS 1.58 318.55 (x626) 495 9687 xo73 96.94 (1045
AQLM-1x16 075 12654 (10490 593 99.00 000 6.00 (0.0,
AQLM-2x8 2.59 254.20 (1247, 1018 9284 (1155 19.96 (1039
CodeGEMM-m2v8g128 543 304.69 o1 1783 85321153 43.75 (xo05)
CodeGEMM-m1v4g128 6.12 316.38 (1837 19.36 84.47 o2 49.80 (121

Memory Footprint vs. Accuracy. Figure 4(b) shows the relationship between memory footprint
and accuracy of quantized models across various hyperparameter configurations. Perplexity, measured
using the WikiText-2 dataset, is used to evaluate accuracy. CodeGEMM builds on block-wise code-
book optimization [5] and incorporates fine-grained group normalization for enhanced performance.
As average bits per weight increase, models demonstrate greater representational capacity, resulting
in lower perplexity. Fine-grained group normalization reduces quantization error, but it increases
memory footprint as the normalization factor grows. Under row-wise group normalization (¢ = —1),
increasing the number of codebooks (m) while keeping the average bit precision fixed leads to
improved accuracy, as the model can better approximate the original weights with additive codebooks.
However, as g becomes smaller (i.e., more fine-grained), this accuracy gain from increasing m
diminishes, and models tend to exhibit similar performance for a given ¢, regardless of the number of
codebooks.

0.35 T T T 20 T T T T T
_____________________________ >
030 CUBLAS (FP16) £ “
~0. =8 =32Vg=128 =-1
2 AQLM (2x8) [Gg=8 Og=32Vg =128 Clg=1| %15 [0g=8 Og=32Vg Og=-1]
=025—0O 1 8 — miv4 — m2v4
3 ov—oO ~ — m2v8 — m3v8
$ 0.20 <10 m4v8 — m4v16
- x
S — m1iv4 — m2v4 Q
0.15 — m2v8 — m3v8 [{ ‘g ov
m4v8 — m4v16 = FP16 Baseline
0.10 L L L N n = 5——.—————.————'37—0——0-———0——
3 4 5 6 2 3 4 6
Bits per weight Bits per weight
(a) Latency vs. Memory footprint (b) Accuracy vs. Memory Footprint

Figure 4: Latency and accuracy trade-offs for the Llama-3.1-8B model under various configurations.

Throughput vs. Accuracy. While many studies on quantization have focused on the trade-off
between memory footprint and accuracy to achieve better performance, the relationship between
throughput (or, equivalently, decode-phase latency) and accuracy has often been overlooked. However,
in real-world applications and service-level deployments, latency is often a critical constraint that
directly impacts user experience and system efficiency.

Table 4 compares the accuracy of CodeGEMM against both uniform and codebook-based quantization
methods. We include FlexRound [12] as a representative uniform quantization baseline and AQLM [5]
for codebook-based quantization. To further improve accuracy, we also apply PV-Tuning [16], a
recently proposed post-quantization calibration method for codebook-based models. Figure 5 reports
the resulting accuracy—throughput trade-offs. Throughput for FlexRound is measured using LUT-
GEMM [20], a state-of-the-art kernel optimized for uniformly quantized models. While FlexRound
demonstrates strong throughput at 2-bit precision, it suffers from the worst accuracy among all
methods, highlighting the limitations of uniform quantization in extremely low-bit settings. The
recent vector-quantization approach VPTQ [14] achieves an average accuracy of 57.98, slightly
higher than CodeGEMM without PV-Tuning. However, its kernel is implemented as a straightforward
dequantize-then-multiply pipeline without operator fusion, which introduces dequantization overhead
and leads to lower throughput than FP16.

AQLM, with its dequantization-based kernel, achieves notably higher accuracy in such settings but
exhibits poor throughput due to the overhead of repeatedly loading large codebooks. Specifically,
AQLM (1 x 16) achieves the best accuracy under a 2-bit memory budget by using a large codebook
(b = 16), but this configuration exceeds the capacity of the programmable cache. As a result, it incurs
inefficient memory access and dequantization latency, leading to a suboptimal throughput—accuracy
trade-off. AQLM (2x8) improves throughput over the FP16 baseline, but only marginally, because
it still pays the dequantization cost and maintains similar computational complexity. In contrast,
CodeGEMM delivers significantly better throughput while maintaining competitive accuracy. More-
over, it shows strong synergy with PV-Tuning, achieving results comparable to or better than AQLM
with less computational overhead. Between different CodeGEMM configurations, the m1v4 variant
consistently outperforms m2v8 in both throughput and accuracy, even though both configurations
maintain a similar average bit precision. This aligns with the kernel-level latency trend observed
in Figure 4(a), while diverging slightly from the perplexity trend in Figure 4(b), suggesting that
end-to-end throughput—accuracy behavior can differ from perplexity metrics. Overall, CodeGEMM
achieves a 1.83x end-to-end speedup over dequantization-based kernels at comparable accuracy
(Figure 5(a)).

Table 4: Accuracy of various quantization methods on the Llama-3.1-8B-Instruct model. The Average
column represents the mean accuracy across all tasks, including MMLU (5-shot) and and 0-shot tasks
such as WinoGrande (WG), HellaSwag (HS), ARC-Easy (ARC-E), and ARC-Challenge (ARC-C).

Method q tok/s MMLU WG HS ARC-E ARC-C Avg.
FP16 16.000 103.8 6839 7395 792 79.63 55.03 71.26
FlexRound-q2g128 [12] 2.125 2053 2427 55.16 43.78 245 2457 41.65
AQLM-2x8 [5] 2.005 1245 4229 5825 6140 46.25 30.89 47.82
+PV-Tuning 2.005 1245 5513 69.14 7243 71.25 4573 62.74
AQLM-1x16 [5] 2213 49.0 58.74 68.75 70.21 73.99 46.16 63.57
+PV-Tuning 2213 490 60.72 70.24 7433 7492 48.89 65.82
CodeGEMM-m1v4g128 2.126 2283 45.16 5896 63.07 6397 38.48 53.93
+PV-Tuning 2.126 2283 5742 69.06 73.85 73.15 46.33 63.96
CodeGEMM-m2v8g128 2.127 2144 4283 6054 62.84 60.14 37.03 52.67
+PV-Tuning 2.127 2144 5542 68.75 73.02 7391 4770 63.76

Scaling to Larger Models. To evaluate the scalability of CodeGEMM for larger language mod-
els, we assess its performance on the Llama-3.1-70B model under various quantization configura-
tions. Table 5 compares CodeGEMM with uniform quantization methods such as GPTQ [6] and
FlexRound [12], as well as the codebook-based method AQLM. As model size increases from 8B
to 70B, latency improvements relative to the AQLM become more pronounced. While the overall
performance trends are consistent with those observed in the 8B model, we observe that (1 x 16)
suffers from significantly degraded throughput at 70B due to the large codebook size (e.g., 216 entries),
which exceeds shared memory limits and introduces excessive dequantization overhead. In contrast,
CodeGEMM achieves a favorable trade-off by leveraging fine-grained group normalization to im-
prove accuracy with minimal increases in memory footprint and latency. The benefit of fine-grained
normalization is evident in the widening accuracy gap between CodeGEMM and AQLM (2x8),
which uses row-wise normalization, at 70B relative to 8B. Consequently, CodeGEMM matches the
accuracy of AQLM (1x16) while delivering an 8.93 x throughput advantage (Figure 5(b)). These
results demonstrate that CodeGEMM scales effectively to large models while maintaining competitive
performance.

5 Related Work

Look-Up Table-Based Computation. Several prior works have leveraged look-up tables (LUTs)
to improve computational efficiency, both at the kernel level [20, 15] and in specialized hardware de-
signs [28, 17, 19]. However, these approaches primarily support uniform or binary-coded quantization
formats, and do not extend to codebook-based non-uniform quantization. In contrast, CodeGEMM is
designed to naturally support codebook-based quantization while also being generalizable to uniform
and binary formats through appropriate codebook configurations. Specifically, uniform and binary
quantization can be accommodated by defining centroids as ¢ € {0, 1}" for uniform quantization and

Table 5: Accuracy of various quantization methods on the Llama-3.1-70B model.

Method q tok/s MMLU WG HS ARC-E ARC-C Avg.
FP16 16.000 OOM 7858 79.64 85.03 86.66 6493 7897
GPTQ-q2g128 2.125 41.7 26.35 53.04 49.04 4895 29.52 4138
FlexRound-q2g128 2.125 41.7 26.70 5359 50.67 25.13 24.83 36.58
AQLM-2x8 2.002 19.0 61.45 59.59 52.83 48.82 28.67 50.27
AQLM-1x16 2.055 55 73.07 76.16 80.83 82.20 5717 73.89

CodeGEMM-m1v4g128 2.125 51.2 68.15 7490 7537 79.42 5273 70.11
CodeGEMM-m1v4g32 2.500 49.1 71.21 76.64 79.43 8241 56.06 73.15

[0 FP16 [] FlexRound [] AQLM-2x8 [J] AQLM-1x16 [0 GPTQ [] FlexRound [] AQLM-2x8 [] AQLM-1x16
% CodeGEMM-m1v4g128 ¢ CodeGEMM-m2v8g128 ¢ CodeGEMM-m1v4g128 ¥¢ CodeGEMM-m1v4g32
80 T T T 80 T T
[m] *!
) 0 s /‘
3 o v | 3 8.93x Speed up
g 60 A1 2
=] =] m]
8 50 1.83x Speed up g 40
< <
405 120 180 20 200 20 40 50
Tokens per second Tokens per second
(a) Llama-3.1-8B (b) Llama-3.1-70B

Figure 5: Latency and accuracy trade-offs for the Llama-3.1-8B model under various configurations.

¢ € {—1,1}" for binary quantization. This generality makes CodeGEMM particularly suitable for
deployment as a fixed-function ASIC kernel, as it enables support for diverse quantization formats
under a unified hardware architecture.

Codebook-based Quantization. Beyond additive codebooks, recent work has explored highly
structured designs that integrate a rotation with the codebook itself. QuIP# [25] and QTIP [26] both
pair their lattice- and trellis-coded codebooks with an inference-time smoothening rotation, and each
work supplies a carefully hand-tuned kernel that fuses the rotation with subsequent look-ups. In
contrast, the additive codebooks we target require only a lightweight table lookup and accumulation
without rotation, so dequantization remains simple and fast. This design lets CodeGEMM deliver
competitive 2-bit accuracy while retaining a single, reusable kernel that scales across a broad range
of quantization settings.

6 Conclusion

Summary. This paper presents CodeGEMM, an efficient matrix multiplication method for
codebook-based quantized models. Instead of loading the full codebook into programmable cache,
CodeGEMM precomputes and stores results in a Psumbook, reducing both space and computational
complexity. Experiments show that CodeGEMM outperforms state-of-the-art kernels in latency while
maintaining high accuracy in extremely low-bit quantization.

Limitations. CodeGEMM requires the Psumbook to reside in on-chip shared memory, which
constrains the usable codebook size. Very large codebooks (e.g., b=16 with 216 entries) exceed
current GPU cache limits. In practice, we therefore fix the per-codebook width to b=8 and recover
accuracy via fine-grained group normalization, which adds negligible latency and yields favorable
accuracy—efficiency trade-offs under realistic hardware constraints. A second limitation is large-batch
throughput: CodeGEMM underperforms compared to Tensor Core—based cuBLAS when the batch
size is large (e.g., M >32). This behavior is common to CUDA Core-based quantized GEMM kernels
and reflects the current commercial GPU architecture rather than an inefficiency of the algorithm
itself. Overall, while CodeGEMM excludes extremely large codebooks and is not optimized for
large batches, its hardware—algorithm co-design addresses key inefficiencies of traditional codebook
quantization, reducing both computational and space complexity.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron,
Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit
inference in rotated 1lms. arXiv preprint arXiv:2404.00456, 2024.

Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector compression.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
931-938, 2014.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783,2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The
language model evaluation harness, 07 2024.

Jung Hwan Heo, Jeonghoon Kim, Beomseok Kwon, Byeongwook Kim, Se Jung Kwon, and
Dongsoo Lee. Rethinking channel dimensions to isolate outliers for low-bit weight quantization
of large language models. arXiv preprint arXiv:2309.15531, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. Finequant: Unlocking
efficiency with fine-grained weight-only quantization for llms. arXiv preprint arXiv:2308.09723,
2023.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable
rounding based on element-wise division for post-training quantization. In International
Conference on Machine Learning, pages 18913-18939. PMLR, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87-100, 2024.

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and
Mao Yang. Vptq: Extreme low-bit vector post-training quantization for large language models.
arXiv preprint arXiv:2409.17066, 2024.

Saeed Maleki. Look-up mai gemm: Increasing ai gemms performance by nearly 2.5 x via
msgemm. arXiv preprint arXiv:2310.06178, 2023.

11

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko,
Kai Yi, Dan Alistarh, and Peter Richtarik. Pv-tuning: Beyond straight-through estimation for
extreme llm compression. arXiv preprint arXiv:2405.14852, 2024.

Zhiwen Mo, Lei Wang, Jianyu Wei, Zhichen Zeng, Shijie Cao, Lingxiao Ma, Naifeng Jing, Ting
Cao, Jilong Xue, Fan Yang, et al. Lut tensor core: Lookup table enables efficient low-bit llm
inference acceleration. arXiv preprint arXiv:2408.06003, 2024.

NVIDIA Corporation. Nvidia system management interface (nvidia-smi) documentation.
https://docs.nvidia.com/deploy/nvidia-smi/index.html, 2025. Accessed: 2025-
10-22.

Gunho Park, Hyeokjun Kwon, Jiwoo Kim, Jeongin Bae, Baeseong Park, Dongsoo Lee, and
Youngjoo Lee. Figlut: An energy-efficient accelerator design for fp-int gemm using look-up
tables. In 2025 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 1098-1111. IEEE, 2025.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon,
Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized
matrix multiplication based on luts for efficient inference in large-scale generative language
models. arXiv preprint arXiv:2206.09557, 2024.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-
tion for large language models. arXiv preprint arXiv:2308.13137, 2023.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. LIm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Albert Tseng, Qingyao Sun, David Hou, and Christopher M De Sa. Qtip: Quantization with
trellises and incoherence processing. Advances in Neural Information Processing Systems,
37:59597-59620, 2024.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for 1lm
quantization. arXiv preprint arXiv:2402.15319, 2024.

Jianyu Wei, Shijie Cao, Ting Cao, Lingxiao Ma, Lei Wang, Yanyong Zhang, and Mao Yang.
T-mac: Cpu renaissance via table lookup for low-bit llm deployment on edge. In Proceedings
of the Twentieth European Conference on Computer Systems, pages 278-292, 2025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38—45, Online, October 2020.
Association for Computational Linguistics.

Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu,
Amir Yazdanbakhsh, and Yingyan Celine Lin. Shiftaddllm: Accelerating pretrained llms via
post-training multiplication-less reparameterization. arXiv preprint arXiv:2406.05981, 2024.

12

https://docs.nvidia.com/deploy/nvidia-smi/index.html

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have clearly made the main claims in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: All theoretical results are accompanied by their full assumptions and complete
proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All key implementation and configuration details are provided to ensure
reproducibility of the main results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are publicly available, with clear instructions for reproducing
the main results provided in the supplemental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All relevant training and evaluation details are clearly specified in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are omitted because the observed variance was minimal and had no
impact on the conclusions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of hardware and execution time are specified for all experiments in
the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics and does not raise ethical
concerns.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper addresses low-level efficiency improvements for LLM inference
and is not directly tied to applications with societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper presents infrastructure-level optimizations without releasing any
high-risk models or datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all external code and datasets used in the paper, and ensure their
licenses and usage terms are properly followed.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

17

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new code introduced in the paper is publicly released with clear documen-
tation and usage instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects or crowdsourcing were involved in this study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved in this study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not involve LLMs in the core methodology or contributions.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Appendix

A.1 Psumbook Build vs. Read Breakdown

We quantify the relative cost of constructing and consuming the Psumbook by isolating execution to
a single SM and splitting runtime into two phases: building the Psumbook for each tile and reading
it during the main accumulate loop. We sweep tile width ¢,, and batch size M while fixing (N, K)
as indicated, and we report the percentage of execution cycles devoted to each phase for two kernel
variants, m2v8 and m1v4.

Across settings, the build/read split is stable with respect to M at a fixed ¢,,, which indicates that
Psumbook construction amortizes across the batch. At a fixed M, larger ¢,, increases the build
share for small matrices and decreases it for large matrices. Typical ranges are ~28-46% build and
~54-72% read for m2v8, and ~20-42% build and ~58-80% read for m1iv4.

Table 6: Cycle share (%) spent on building vs. reading the Psumbook under varying ¢,, and M.

M N K tw Psumbook Phase (%) Proposed_m2v8 Proposed_mlv4

1 409 409 32 Building / Reading 30.5/69.5 20.3/79.7
1 409 409 64 Building / Reading 33.0/67.0 28.5/71.5
1 4096 4096 128 Building / Reading 31.2/68.8 30.7/69.3
1 8192 8192 32 Building / Reading 45.4/54.6 41.2/58.8
1 8192 8192 64 Building / Reading 45.6/54.4 39.7/60.3
1 8192 8192 128 Building / Reading 28.3/71.7 29.5/70.5
4 4096 4096 32 Building / Reading 30.4/69.6 20.7/79.3
8 4096 4096 32 Building / Reading 30.7/69.3 20.4/79.6
4 8192 8192 32 Building / Reading 45.7/54.3 41.3/58.7
8 8192 8192 32 Building / Reading 46.1/53.9 41.6/58.4

A.2 Tile Size Sensitivity

We revisited our heuristic choices for the tile dimensions and conducted a systematic sweep over t,, €
{32,64, 128} and t;, € {2048, 4096} across representative shapes. We find that ¢;,=2048 consistently
yields the best performance over a broad set of workloads, supporting our original choice. For the
horizontal tile, smaller values such as ¢,,=32 work well for relatively small matrices, whereas ¢,,=64
tends to perform better on large matrices. We attribute this to coarser tiling reducing kernel-launch
overhead and improving partial-sum reduction efficiency at scale. Table 7 summarizes representative

19

https://neurips.cc/Conferences/2025/LLM

results for (N, K) € {(4096,4096), (8192,8192)} at M=1. Overall, these observations justify our
default choice (¢, tn) = (32,2048) for small and medium shapes, with ¢,,=64 preferred as matrices
SIOW.

Table 7: Effect of tile dimensions on end-to-end latency (us).

M N K tw th Proposed_m2v8 Proposed_mlv4

1 4096 409 32 2048 26.57 25.07
1 4096 4096 64 2048 26.76 25.40
1 4096 4096 128 2048 29.61 26.81
1 409 4096 32 4096 28.95 27.60
1 4096 409 64 4096 28.49 27.68
1 4096 4096 128 4096 37.58 32.87
1 8192 8192 32 2048 39.04 36.02
1 8192 8192 64 2048 37.23 35.33
1 8192 8192 128 2048 40.09 38.54
1 8192 8192 32 4096 37.78 36.17
1 8192 8192 64 4096 38.29 37.70
1 8192 8192 128 4096 45.40 4275

A.3 Effect of Higher Bit Precision

We additionally measured latency for higher average bit precisions using the kernel configura-
tion (¢g=128, b=8, t,, =32, t,=2048). For reference, FP16 cuBLAS latency is included. As
expected, increasing the effective bits per weight (via larger numbers of codebooks m or smaller
vector length v) generally raises latency, and the trend is more pronounced for larger matrices (e.g.,
M=1, N=K=8192). Even at higher bit precisions, CodeGEMM remains competitive with FP16
baselines while offering a flexible accuracy—efficiency trade-off through the (m, v) configuration.

Table 8: Matrix multiplication latency (us) for higher effective bit precisions under
(g=128, b=8, t,=32, t,=2048). FP16 cuBLAS is shown for reference.

M N K m v bit latency
1 4096 4096 N/A N/A 16.000 28.118
1 4096 4096 1 4 2,126 25.074
1 4096 4096 2 4 4.127 27.009
1 4096 4096 1 8 1.127 24.015
1 4096 4096 2 8 2.129 26574
1 4096 4096 3 8 3.126 27.385
1 4096 4096 4 8 4.127 29.797
1 8192 8192 N/A NA 16.000 95.785
1 8192 8192 1 4 2.125 36.020
1 8192 8192 2 4 4.125 49.636
1 8192 8192 1 8 1.125 31.883
1 8192 8192 2 8 2.126 39.040
1 8192 8192 3 8 3.126 47.210
1 8192 8192 4 8 4.127 58.364

A.4 Batch-Size Sensitivity and Fair cauBLAS Accounting

For fair comparison, we include the dequantization stage when reporting FP16 cuBLAS latency, since
dequantization is required to precede GEMM in codebook-based pipelines. Under this accounting,
CodeGEMM remains competitive even at batch sizes of 8 and 16. In data-center deployments,
continuous batching can aggregate requests and increase the effective batch size during decoding; yet,
many scenarios still operate with small batches (e.g., on-device inference). The batch-size sensitivity
observed in CUDA—core quantized kernels reflects architectural constraints such as occupancy limits
and shared-memory bandwidth. This limitation is shared by recent methods (e.g., QuIP# and QTIP)
and does not indicate algorithmic inefficiency. Table 9 reports linear latency on Llama-3-8B.

20

Table 9: Aggregate latency of linear layers (us) within a Llama-3-8B decoder block as a function of

batch size.
cuBLAS AQLM AQLM QUIP# QTIP Proposed Proposed
BS cuBLAS = Dequant b oiant (1x16) (2x8) (e8p) (12) (m2v8) (mivéd)
1 332 1027 1360 646 250 163 190 172 153
4 333 1027 1361 2373 794 445 550 491 405
8 336 1027 1364 4695 1515 818 1034 909 744
16 340 1027 1367 9267 2959 1554 1991 1748 1416

A.5 Additional Benchmarks Across Problem Sizes

We expanded our evaluation to a broad sweep of matrix shapes (M, N, K). Latency is measured
end to end on a fixed hardware and software stack, with all kernels compiled under identical
toolchains. Table 10 reports the full results. cuBLAS runs on Tensor Cores and tends to maintain
relatively stable latency as the batch size M grows, whereas recently proposed quantized ker-
nels—including ours—execute on CUDA cores and often show increased latency with larger M.
Within this CUDA—core class, CodeGEMM consistently performs well on large matrices, where
arithmetic intensity and memory reuse are high. In practice, the method remains competitive across
diverse (M, N, K) settings and is particularly effective for large-scale matrix multiplications that
dominate LLM inference.

Table 10: Kernel latency (us) across diverse (M, N, K) configurations.

AQLM AQLM Proposed Proposed QUIP# QTIP
M- N K= cuBLAS 1316) (2x8) (m2v8) (mlvd) (e8p) (12)

1 2048 2048 1982 2884 2055 20.75 2066 1947 19.44
4 2048 2048 1999 7467 4331 44.04 4192 3671 36.00
8 2048 2048 1979 13536 73.03 75.18 69.72 5944 57.87
1 8192 2048 3057 2884 28.83 25.94 2670 2552 27.08
4 8192 2048 3131 7467 17615 63.97 6536 6070 66.18
8 8192 2048 3170 13536 13809 11539 11611 107.85 118.99
1 2048 8192 2752 6047 3093 2428 2381 2344 2490
4 2048 8192 2982 20386 82.18 56.21 5257 5191 59.03
8 2048 8192 28.69 39644 149.98 98.92 90.73 8991 103.24
1 4096 4096 2800 6313 32.28 24.76 2497 2396 2674
4 4096 4096 2854 21003 89.76 60.58 5779 5392 6274
8 4096 4096 2811 39637 16549 108.16 103.92 9343 110.84
1 14336 4096 88.67 16812 6476 38.85 3751 3891 5130
4 14336 4096 89.08 632.69 217.68 11120 10690 11328 161.23
8 14336 4096 8929 125255 42289 21137 196.68 212.55 308.37
I 4096 14336 8631 16931 5870 36.15 3392 3727 4385
4 4096 14336 8651 63574 19341 103.15 9261 10663 133.36
8 4096 14336 8649 1253.11 372.97 192.63 170.16 19931 252.12
1 8192 8192 9640 18891 62.50 37.99 3545 3831 49.86
4 8192 8192 10041 71324 208.11 111.00 98.66 111.08 157.26
8 8192 8192 9545 1408.68 40229 20773 18425 20829 299.24
| 28672 8192 29774 62553 181.54 86.48 7671 10198 134.03
4 28672 8192 303.10 2462.88 68492 30547 26431 36674 492.14
8 28672 8192 29511 491352 135570 59722 51485 718.13 97035
1 8192 28672 30242 61861 180.38 86.20 7650 101.13 124.90
4 8192 28672 29259 243782 67924 30514 26370 36195 45584
8 8192 28672 293.69 4860.85 134449 59663 51512 71094 897.41

21

	Introduction
	Background
	Weight-only quantization
	Codebook-based quantization
	Kernels for Quantized LLM

	CodeGEMM: Codebook-based GEMM
	Experiments
	Related Work
	Conclusion
	Appendix
	Psumbook Build vs. Read Breakdown
	Tile Size Sensitivity
	Effect of Higher Bit Precision
	Batch-Size Sensitivity and Fair cuBLAS Accounting
	Additional Benchmarks Across Problem Sizes

