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ABSTRACT

This paper tackles the challenge of improving automated driving perception sys-
tems, focusing on rare, complex, or novel scenarios that previously deployed mod-
els fail to handle and developers struggle to identify. To address this, we propose
a novel two-stage method (SPIDER ) to diagnose and resolve perception model
insufficiencies using Vision Language Models (VLMs). In the first stage, we seg-
ment data in a semantic embedding space to identify regions containing visually
similar samples that differ in detection performance. By comparing these high-
and low-performance subsets, we use a VLM to extract semantic effects — inter-
pretable factors correlated with model errors. In the second stage, these effects
guide targeted data acquisition to improve the model. Samples representing the
identified effects are selected, and the perception model is fine-tuned using this
curated dataset. Evaluations on the NuScenes dataset demonstrate that SPIDER
can effectively identify insufficiencies in the perception model and quantifies key
parameters. SPIDER enhances model robustness and improves transparency and
explainability, which are critical for safety in automated driving systems.

1 INTRODUCTION

In recent years perception systems have achieved remarkable capabilities with deep learning. At
the same time, they remain extremely complex and opaque. Modern perception models behave as
black boxes, making it difficult for developers to understand why the system fails in rare, complex,
or shifting scenarios. (Li et al., 2024) This lack of transparency severely hampers debugging, as
engineers have limited insight into the insufficiencies of a perception model and often cannot tell
which visual factors (e.g., weather, lighting, object attributes, scene context) co-occur with insuf-
ficiencies. Thus, engineers must often resort to expert knowledge when trying to improve or fix
errors (Kuznietsov et al., 2024). In safety-relevant applications like automated driving, such blind
spots are unacceptable, as an unrecognized insufficiency can carry severe consequences.

Insufficiencies must often be identified within very large datasets, representing a broad Operational
Domain (OD) with a multitude of potential influences on model performance. Without automated
and interpretable analysis tools, manually scanning such data for subtle insufficiencies would be pro-
hibitively time-consuming and practically infeasible. Therefore, we propose SPIDER as a solution
which:

1. discovers and explains, at scale, which semantic factors correlate with an insufficiency
within a given model.

2. leverages the explanations to guide improvement of the same model, with artifacts that can
be referenced within a safety case.

We use VLMs to analyze the differences between high and low performing inputs to build an under-
standing of model’s error modes. For example, while the model accurately detects trucks in general,
SPIDER identifies that when view of the truck is obstructed by colored road barriers, the model
struggles on trucks, but not on other vehicles, or on images with road barriers in general.

Beyond their role in model improvement, insufficiencies must also be traceable in the context of a
safety argument. This requires not only detecting correlations but also providing explanations that
are human-understandable.

1
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Existing approaches only partially meet this need. Out-of-distribution detection and novelty dis-
covery highlight unusual inputs but do not localize or characterize model-specific insufficiencies.
Embedding-space clustering can find error-prone regions in data, yet typically answers where errors
occur rather than why, and often requires strong supervision or extensive human-in-the-loop analy-
sis. Cross-modal techniques and captioning methods provide descriptive fidelity but are not designed
to extract causally suggestive contrasts between high- and low-performance samples, nor to close
the loop to data acquisition and re-training. Consequently, detection and explanation are frequently
decoupled, and explanation and remediation are rarely integrated into a repeatable pipeline.

We solve this by finding semantic regions with high performance differences and by employing
a VLM to generate human understandable explanations for identified patterns. We first propose
a technique, that clusters related success and error modes in a semantic embedding space. We
show how VLMs can accurately identify the common trend in the error modes by contrasting these
success and error modes, and propose a technique to select data based on the identified effects. Our
experiments show that we improve performance across large datasets in an interpretable manner.

2 RELATED WORK

In order to identify a suitable approach towards solving the above mentioned problems, the related
work is analyzed. This analysis focuses on three key aspects. First, clarifying what constitutes an
insufficiency and how it can be measured even if no ground truth is known. Secondly, how to identify
and isolate an insufficiency for a model. Third, having identified an insufficiency in a model, how
can a correlating explanation or ”effect” be extracted that accurately describes the insufficiency.

In this work, we focus on performance insufficiencies arising from deep learning-based object de-
tectors. Performance insufficiencies are typically evaluated as pairwise distances, as in Caesar et al.
(2020), or volume intersection between predicted and ground truth objects as in Geiger et al. (2012).
Other methods, such as proposed by Sharma et al. (2021) and Majumdar et al. (2025), estimate
potential insufficiencies by detecting out-of-distribution (OOD) samples.

To uncover systematic error sources in AI-based systems, it is necessary to identify subgroups within
the dataset where performance insufficiencies occur. Addressing such insufficiencies requires locat-
ing Region of Interests (ROIs), regions that contain data points sharing similar characteristics, and
common error causes. Approaches proposed by d’Eon et al. (2022), Eyuboglu et al. (2022), and
Jain et al. (2023) cluster embeddings to find error-prone subgroups, sometimes extending into cross-
modal spaces and generating textual descriptions. However, these approaches mostly focus on where
insufficiencies occur without uncovering the nuanced underlying cause of insufficiency. Approaches
like ADA-Vision (Gao et al., 2023) or retrieval-based methods (Rigoll et al., 2023) further introduce
human-in-the-loop refinement or data collection, but at the cost of automation or interpretability.

After identifying ROIs that contain equivalent insufficiencies of the AI model, the next step is to
provide a precise characterization of the samples within these regions. Li et al. (2023) proposes a
mechanism to decode image embeddings into textual descriptions. While useful for caption gener-
ation, its primary goal is descriptive fidelity rather than diagnosing factors correlating with model
errors. VisDiff (Dunlap et al., 2024) and the framework proposed by Zhong et al. (2023) employ lan-
guage models to articulate differences between subsets of data. Based on that Greer & Trivedi (2024)
present an interpretable novelty detection approach by identifying out-of-distribution samples and
providing explanations about the novelty. In follow-up work (Greer et al., 2025), they demonstrate
the effectiveness of their proposed method for active learning in 3D object detection. Nevertheless,
this approach is limited in terms of the identification and characterisation of out-of-distribution or
rare samples, while it does not capture model insufficiencies.

Across these directions, two main limitations emerge. First, prior work often separates detection and
explanation, either identifying insufficiencies without explaining them or describing differences in
the dataset without linking them to model errors. Second, methods frequently rely on either strong
annotation requirements or human involvement, limiting scalability.
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Figure 1: Architecture of the 1st stage. • symbolizes each object embedding eo,i of object so,i
within the embedding space, the detection performance is displayed by the color of the symbol.
⋆ and ⋆ denote the positive and negative anchor embeddings for ROI identification. Positive and
negative subsets of the ROI D+

R and D−
R are then fed to the VLM to extract common concepts εC

and differentiating concepts εD.

3 PROBLEM FORMULATION

The objective of this work is 1) to identify patterns in the error modes of vision-based object-
detection algorithms for automated driving, and 2) to subsequently leverage such insights towards
model improvement. Concretely, let Mbaseline be a pre-trained perception model, for which we
assume we do not have access to the original training dataset. To identify issues with the base model
Mbaseline we assume access to a labeled validation dataset Dval and a performance metric p so that
we can quantify the model’s performance on a large set of samples. While doing so is standard, basic
practice to measure performance and compare models, in this work we further use Dval to pinpoint
specific, targeted error modes of the base model. That is, we firstly aim to discover semantically
coherent “effects” that correlate with model degradation, which we can then use to improve model
performance in an interpretable manner.

Specifically, we use the identified semantic effects to guide additional data collection. We consider
a setting where we have a large pool of unlabeled dataD, from which we may select a limited subset
Dselect with |Dselect| ≪ |D| for labeling. This is typical for autonomous driving, as AVs generate
vast amounts of data during deployment, not all of which can be labeled under budget constraints.
Therefore, we must select samples that most align with the identified performance-degrading effects,
so that retraining on Dtrain ∪ Dselect incrementally addresses the model’s error modes.

4 STAGE ONE: EFFECT EXTRACTION

The first stage is designed to identify and describe the insufficiencies of a model. An overview of
the architecture is depicted in figure 1. In order to identify insufficiencies, the preexisting training
dataset is processed and augmented with additional information. In order to focus the later analysis
on the objects to detect, each ground truth object so,i within each sample of the dataset is identified
and extracted. Following each cropped object is embedded using the embedding model E( ), in this
work we use CLIP VIT-L-14(Radford et al., 2021), yielding eo,i, a compact representation that
captures the semantic properties of the image. To quantify insufficiency, the Intersection over Union
(IoU) of each ground truth object is calculated for the best fitting object predicted by the baseline
model Mbaseline. To isolate relevant ROIs, we propose a Monte Carlo sampling approach guided
by post-hoc evaluation criteria. This method generates candidate ROIs in a semantic embedding
space by sampling candidate regions in a semantic embedding space and subsequently verifying
their suitability. The presented method is designed with an generative approach in mind, focusing
on an anchor embedding with poor performance from which one individual ROI is going to be built.
We do this because, although a basic clustering algorithm like K-means can effectively cluster a
dataset based on semantics, we want the region of interest to center on the model’s error modes. The
generation process for a ROI consists of the following primary steps:

First, the anchor samples, used to initialize the subregions of the ROI, without (positive) and without
(negative) insufficiencies are defined. The negative anchor e−⋆ is randomly chosen, with the proba-
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Figure 2: Architecture of the 2nd stage. ■ denote the embeddings ek of samples sk, while ⋆
denotes the anchor embedding e⋆,train

bility inversely weighted by the sample performance, from the embedding space. The ROI is defined
by selecting all samples above a similarity threshold simcrit. Following, the positive anchor e+⋆ is
identified based on the following criteria:

1. the performance difference must exceed a minimum threshold

p(e+⋆ ) > p(e−⋆ ) + ∆pmin

2. the cosine-similarity must be above a threshold

sim(e−⋆ , eo,i) > simcrit with sim(ei, ej) :=
ei · ej
∥ei∥∥ej∥

3. the performance gradient must be maximal

e+⋆ = argmax
eo,i

p(e−⋆ )− p(eo,i)

sim(e−⋆ , eo,i)

Having identified the anchors, the identified ROI DR is divided into positive and negative candidate
subsets, D+

R,cand and D−
R,cand respectively, based on a performance threshold.

eo,i ∈
{
D+

R,cand : p(eo,i) ≥ pcrit
D−

R,cand : p(eo,i) < pcrit
with pcrit =

p(e+⋆ ) + p(e−⋆ )

2

In order to distill each subset down to a suitable magnitude for further processing, we employ the
Farthest Point Sampling algorithm. Farthest Point Sampling iteratively adds
samples that are maximally separated from the already selected dataset, thereby preserving diversity
of samples (see Appendix B). Thus yielding D+

R and D−
R. The algorithm is chosen to ensure good

coverage of the embedding space within the ROI and to prevent an over-representation of too sim-
ilar samples in the subset. This effect can be observed, for example, when the recording vehicle is
stationary at an intersection.

A VLM is utilized to extract differentiating effects between the ROI subsets. The input consists of
the two sets of samples from the first stage, D+

R and D−
R, one associated with high performance and

another with low performance. Each set includes 100 samples, chosen to balance representative-
ness and VLM context length constraints. The model is prompted to identify both differentiating
attributes εD, that explain the performance gap and common attributes εC, that are shared by both
subsets. These text based effect descriptions serve as semantic indicators of data insufficiencies and
are used to guide the sampling of new data. For these experiments gemini-2.0-flash was
chosen as a VLM model.

5 STAGE TWO: MODEL IMPROVEMENT

The second stage is aimed at leveraging the effects identified by the first stage in order to improve
the performance of the baseline model. An overview of the architecture is depicted in figure 2. Ad-
dressing insufficiencies identified through the VLM analysis requires realistic data that exhibit these
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identified effects. A viable strategy is targeted recording, in which additional real-world data are
either deliberately collected or sourced from existing datasets to ensure the relevant insufficiencies
are represented.

Taking these considerations and the scope of this paper into account, the first approach, targeted
recording of additional real-world data, is chosen. We construct an anchor embedding e⋆,train for
the training sample selection by adding the common effect embedding eC to the differentiating effect
embedding eD.

e⋆,train = E(εC) + E(εD)

To build the training set, we extract samples that are similar to this anchor, as we assume that
the training set and anchor embedding can be from different datasets. At the same time, we also
want to introduce diversity for this to be trained effectively. As such, we filter all candidates for
a threshold similarity towards the anchor and then try to achieve good sampling coverage in the
subspace by employing Farthest Point Sampling for k + 1 samples, to account for the
virtual anchor used for algorithm initialization. This approach to data provisioning enables the
transfer of the identified effects from a preexisting dataset to any new dataset by using the semantic
effect descriptions. Further, it also enables the identification of effects on object level, while the
training data can be drawn at the original object level (here images).

Besides targeted data recording, other promising strategies include data generation through full syn-
thesis, which involves constructing entirely artificial scenes from scratch while carefully embedding
the identified insufficiencies, and data augmentation, where existing realistic scenes are system-
atically modified or perturbed to incorporate these insufficiencies and create additional scenario
variants. Both strategies hold potential for future work, yet they share the central challenge of real-
istically capturing the complexity of the real world.

6 EXPERIMENTS

In order to evaluate SPIDER the performance of the fine-tuned model is compared against the per-
formance of the baseline model. As a reference, a naive approach of randomly sampling an equally
sized dataset for fine-tuning is implemented. For the experiments Yolo11n (Khanam & Hussain,
2024) pretrained on the COCO dataset (Lin et al., 2014) is used as the baseline model, due to con-
siderations of training time. For model improvement, the NuScenes dataset (Caesar et al., 2020) is
employed. Mean Average Precision with IoU=[0.5:0.05:0.95] (mAP50−95) is used as established
metric for model improvement. All validation of the models is performed on the NuScenes dataset.
Two basic experiments are set up to evaluate SPIDER .

6.1 SINGLE-ROI EXPERIMENT

This experiment aims at evaluating the effectiveness of the first stage of SPIDER . For this, the
following Hypothesis will be tested.

Hypothesis: The presented approach can effectively identify insufficiencies in the perception model.

In order to quantify the effectiveness of the first stage, a single ROI is identified and used for model
improvement in the second stage. We evaluate end-to-end, since it is not possible to ablate whether
the clustering yields non-trivial points for improvement. The resulting increase in mAP50−95 of the
model correlates with the amount of novel, and therefore previously insufficient, information within
the dataset. This increase is compared to the increase caused by using an equivalently sized, but
randomly sampled, set of images. Thus we can quantify the ratio of additional novel information
extracted by applying SPIDER . In order to account for stochastic influence of the Farthest
Point Sampling algorithm in the second stage, each identified ROI is independently evaluated
five times.

6.2 MULTI-ROI EXPERIMENT

Building on the previous experiment, the question arises as to how strongly SPIDER can be lever-
aged. To qualify this, we aim to answer two key questions:

1. How many samples are sufficient for each ROI?

5
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2. Can an upper bound for the number of ROIs be determined?

In this experiment, multiple ROIs are identified, for each ROI a number of samples are collected.
For the reference approach the number of used samples is equal to the sum of samples for all ROIs.
We vary both the number of ROIs and the number of samples per effect.

7 RESULTS

In this section, we examine the results of the performed experiments. Each experiment was per-
formed on a single H100 GPU.

Figure 3 shows the results of the single-ROI experiment. Overall the mAP50−95 improvement for
each ROI is larger than the maximum improvement from the reference approach. While the reference
approach varies between an mAP50−95 of 0.117 and 0.123 the oberserved ROIs vary between 0.125
and 0.141. On average SPIDER outperformed the reference approach by 10% to 14%. We conclude
that hypothesis 1 holds, and SPIDER can effectively identify insufficiencies in the perception model.

Table 1 expands on the ROIs with more details. Each ROI can be considered to represent a different
quality. While R1 focuses on object type, R2 focuses on environmental conditions and R3 on
image quality. While the similarity of the anchors sim(e+⋆ , e

−
⋆ ) is quite high, the mean performance

values for the positive and negative subsets vary strongly, highlighting that the positive and negative
categories are only relative and not bound to fixed threshold. Overall the ROIs showcase, that
SPIDER is able to capture subtle differences between positive and negative subsets.

Random 1 2 3

0.10

0.11

0.12

0.13

0.14

m
AP

50
95

Figure 3: mAP50−95 development for the reference random sampling approach and different ROIs
Ri. ····· denotes the maximum and minimum best mAP50−95 value, while ····· denotes the mean
result. Details for the ROIs are shown in Table 1

The results of the multi-ROI experiment are shown in Figure 4. For the sampling settings of 10
and 25 samples per effect, SPIDER consistently outperforms the reference baseline of randomly
selected data. As illustrated in Figure 4, we observe a consistent increase in mAP50−95 for SPIDER
, with improvements of approximately 13% over the reference for these configurations. Using the
sampling setting of 50 samples per effect, the performance difference between SPIDER and the
reference approach is negligible. This shows that there is a critical number of samples per ROI,
which limits the effectiveness that can be used.

Further, the results show that increasing the number of distinct effects used for model fine-tuning
improves mAP50−95. However, this improvement exhibits diminishing returns as the number of
effects grows. This phenomenon is likely due to saturation of novel insufficiency-related information
within the used small scale dataset. Once the major insufficiencies are addressed, newly discovered
effects may represent less impactful or overlapping error modes, reducing the marginal benefit of
additional fine-tuning.

8 ABLATION STUDY

To evaluate the effectiveness of VLMs in identifying insufficiency correlated effects in perception-
related tasks, we design an ablation study that assesses the VLMs ability to semantically distinguish
between two sets of images. The designed ablation study, depicted in Figure 5, is intended to

6
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Table 1: Details of the ROIs displayed in Figure 3. For each ROI one image sample of the positive
and negative subset, the common εC and differentiating εD effects, the mean performance of the
positive (p̄+R) and negative (p̄−R) subset, as well as the similarity between the positive and negative
anchor is shown.

R1 R2 R3

so,i ∈ D+
R

so,i ∈ D−
R

εC

Vehicles
Low Image Quality

Blur
Roads/Parking Areas

People
(often viewed from the back)

Urban environment
(streets, sidewalks)
Low Image Quality
(blurriness, noise)

People
Outdoor environment

Graininess

εD
Prominent Box Trucks
Clearer Vehicle Details

Overcast or
Rainy Weather Conditions

Presence of Cars
Road Markings or

Construction Barriers

Night time setting
Low light conditions
Reflective materials

p̄+R 0.91 0.64 0.60
p̄−R 0.19 0.22 0.06

sim(e+⋆ , e
−
⋆ ) 0.90 0.91 0.95

0 25 50 75
Epoch

0.10

0.11

0.12

0.13

0.14

0.15

m
AP

50
95

10 Samples
per ROI

0 20 40 60
Epoch

25 Samples
per ROI

0 50 100
Epoch

50 Samples
per ROI

ours
reference
2 ROIs
4 ROIs
8 ROIs
16 ROIs

Figure 4: Continuous application of first and second stage over 20 iterations. The size of samples
used from each ROI is varied between 50 and 400 samples. (Top): Model improvement compared
to the baseline model. (Bottom): Advantage of SPIDER , relative to the reference approach.

demonstrate the method for larger scale datasets, where a higher quantity and variance in suitable
metadata is given. For the study, we partition cropped images from the NuScenes dataset based on
perception-relevant concepts derived from the annotated data. To quantitatively determine whether
the concept identified by the VLM aligns with the true underlying discriminative factor, we em-

7
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Figure 5: Methodology for ablation study and LLM-as-a-Judge calibration.

ploy a Large Language Model (LLM) to rate the semantic similarity between the predicted and
ground-truth concepts in the context of environmental perception. To validate the reliability of this
automated evaluation, we perform an additional ablation study comparing the VLM-generated sim-
ilarity ratings with human-provided judgments. Overall, we conduct an ablation study to rate the
LLM’s capability as a semantic similarity judge and to rate the VLM’s capability to identify the key
differentiating concept between two image sets.

8.1 LLM-AS-A-JUDGE CALIBRATION

To assess whether the identified concept aligns with the true concept, semantically for environmental
perception, the LLM is instructed to provide a rating between 1 to 4. A rating of 1 indicates that the
concepts are unrelated, while a rating of 4 denotes semantic equivalence. The specific interpretation
of each rating level is predefined and included in the prompt (see Appendix C).

For the ablation study, we define a tuple of scene-relevant concepts ε1 and ε2, related to perception
tasks in automated driving, such as objects and surrounding environment. We then assign concept
pairs to each discrete rating category. In total, we evaluate 48 concept pairs, approximately evenly
distributed across all rating categories. Each pair is rated four times by the LLM to assess the con-
sistency of the response. The average variance of across these four responses for each pair is 0.04,
indicating small deviations in the LLM’s judgments. Table 2 compares the LLM ratings with our
annotated ground truth. These results suggest that the LLM ratings are closely aligned with our
judgements. A linear regression fitted to the data yields a correlation coefficient of 0.84. It is impor-
tant to note that assigning semantic similarity scores inherently involves subjective interpretation.
Consequently, the annotated ground-truth ratings are not strictly objective. The observed minor de-
viations between the LLM and ground-truth rating can also be attributed to this subjectivity. Overall,
the results indicate that the LLM is capable of providing reliable and consistent ratings of semantic
equivalence between concept pairs, supporting its use as a judge for large scale data sets.

8.2 EFFECT EXTRACTION

This ablation study investigates whether the VLM can identify distinguishing concepts between
different sets of images to enable it to later detect error-influencing factors by comparing image
sets with and without perception errors. To this end, we construct image set pairs by categorizing
cropped NuScenes images according to available annotations. In each experiment, the VLM is
presented with two image sets and prompted to identify the most important concept present in one
set but absent in the other. Both environment-specific pairs (day vs night, rain vs no rain) and object-
specific pairs (sitting/lying pedestrian vs moving pedestrian, adult vs child, police vs bicycle, car vs
truck, motorcycle vs bicycle, car vs pedestrian, police vs adult) are examined.

To evaluate whether the concept identified by the VLM aligns with the original annotation used to
construct the image sets, we apply a secondary prompt where the LLM acts as a judge and assigns a
rating from 1 to 4, as previously described. Each pair of images is tested in ten trials. In each trial,
20 cropped images are randomly sampled for each concept from the complete NuScenes dataset
and provided to the VLM. Table 3 illustrates the results. The identified concepts mostly align with
annotations of the image set, as reflected by the dominance of ratings 4 and 3. However, in some
cases, the rating is 1, indicating no semantic equivalence. In these cases, the VLM either fails to
identify the intended effect or instead captures a different, seemingly more dominant factor that
distinguishes the image sets.

8
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Table 2: Evaluation data for using LLM-as-
a-judge. Here the LLM ratings are com-
pared against the human generated ground-
truth ratings.

Ground Truth Rating

LLM Rating

1 2 3 4
1 37 - - -
2 12 21 - -
3 1 29 68 40
4 - - 2 30

Table 3: Effect extraction quality of the VLM
as rated by LLM-as-a-judge

Rating 1 2 3 4
Count 11 4 14 41

9 LIMITATIONS

This study presents several limitations worth noting. First, the proposed two-stage approach heav-
ily relies on VLMs to extract causally correlated factors and generate semantic descriptions of data
insufficiencies. The accuracy and effectiveness of these VLM-generated insights are inherently de-
pendent on the characteristics of the VLM employed, introducing potential biases or inaccuracies
that might propagate into later stages of data provisioning and model fine-tuning. Another limitation
of the first stage of SPIDER is, that while ideally the system would be able to identify effects causally
related to the insufficiency, it can only identify effects correlated to the insufficiency. That is, if the
model struggles to correctly detect people holding umbrellas, it is quite possible, that ”rain” might
be identified as the effect instead. Moreover, the use of targeted real-world recordings for address-
ing identified insufficiencies, although effective, may introduce logistical and economic challenges.
Such targeted data collection efforts can be resource-intensive, potentially limiting the scalability
and practicality of this method for extensive, diverse applications. While other approaches to data
provisioning, such as scene generation and augmentation, exist, fully exploring their effects is be-
yond the scope of this paper and thus remains to be validated. Further, the used Yolo11n object
detection model may not be representative of more complex and capable perception models used
for automated driving systems. While the model is suitable for showing an initial proof of concept,
validation on more complex perception systems is needed.

10 CONCLUSION

This research proposes SPIDER to systematically address and improve insufficiencies within auto-
mated driving perception systems. By leveraging VLMs, this novel two-stage approach effectively
identifies and characterizes model insufficiencies through semantic analysis, subsequently guiding
targeted data provisioning to mitigate these deficiencies. The experimental evaluations shows ef-
fictiveness of SPIDER , demonstrating advantages in model improvement. Specifically, SPIDER
showed consistent performance improvements across both single and multi-effect scenarios, high-
lighting its potential applicability in model improvement settings. Moreover, identifying factors
contributing to insufficiencies in the first stage enhances the understanding of model limitations.

SPIDER is particularly useful for large-scale datasets. Manually scanning millions of samples to
uncover subtle, context-dependent insufficiencies is prohibitively time consuming. Human experts
would often need many hours to detect patterns that SPIDER identifies automatically from seman-
tically coherent ROIs in the embedding space. By contrasting nearby high- and low-performance
samples rather than relying on a single absolute threshold, SPIDER remains effective even when
such thresholds are unavailable, ambiguous, or disputed across tasks and metrics. This design en-
ables practical large-scale use while preserving fine-grained, interpretable error mode descriptions.

Besides model improvement, the knowledge can also be used to restrict the OD of automated driv-
ing system deployment or develop fusion strategies with other perception algorithms based on the
gained insights about the identified model limitations. Further research is recommended to explore
more sophisticated continual learning techniques and validate SPIDER across broader datasets, data
provisioning strategies and more complex perception systems. This work provides a step towards
enhancing the transparency and explainability of perception models, contributing positively toward
safer and more reliable automated driving systems.

9
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A PROMPT

Listing 1: Prompt used for first stage VLM
1 You are tasked with comparing two sets of images ("Set 1" and "Set 2")

.
2 Both sets of images contain objects that a computer vision model was

tasked to detect.
3 In one set this task was significantly better performed than the other

.
4 You job is to identify the most differentiating concepts between the

two sets.
5 For this, you have to analyze the visual content, themes, and

characteristics of each set, and then determine what key elements
distinguish one set from the other.

6 These concepts can concern the object within the picture, the overall
image composition or any other relevant visual elements.

7 Examples are object type, color, size, position, environment
conditions, weather conditions, brightness, blur, focus, etc.

8
9 Please carefully examine both sets of images and determine the key

common concepts that best describe the concepts present in each
individual image.

10 Please carefully examine both sets of images and determine the key
concept that best differentiate the two sets from each other.

11
12 Aim to qualify the key concepts with as much detail as possible.
13 For example, instead of saying "color", specify the color or color

palette that is most significant.
14 Instead of saying "high quality," describe the specific attributes

that make the quality high.
15 Instead of saying "different object types", specify how the objects

differ, e.g. "elderly pedestrians" vs. "children".
16 Each concept should represent a unique aspect that distinguishes one

set from the other.
17 Remember to base your analysis solely on the visual information

provided in the two sets of images. Do not make assumptions about
information that is not visually present.

18
19 <images Set="Set_1"></images>
20 <images Set="Set_2"></images>
21
22 Your complete response should be structured as follows:
23 <analysis>
24 [Your detailed analysis and reasoning here]
25 </analysis>
26
27 Your complete response must be structured as follows:
28 <common_concepts>
29 [Most significant common concept]
30 [Second most significant common concept]
31 [Third most significant common concept]
32 [Additional concepts if necessary]
33 </common_concepts>
34 <differentiating_concepts present_in="Set_1">
35 [Most significant differentiating concept in maximum 2 Words (

preferably one), please focus on one distinguishable concept]
36 </differentiating_concepts>
37 <differentiating_concepts present_in="Set_2">
38 [Most significant differentiating concept in maximum 2 Words (

preferably one), please focus on one distinguishable concept]
39 </differentiating_concepts>

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B FARTHEST POINT SAMPLING

The following pseudocode describes the general function of the Farthest Point Sampling
algorithm. Within the proposed approach the anchors e⋆ are used as initial points. In the second
stage, where the anchor is a virtual point, k is increased by one and the anchor is later dropped from
the resulting point list. As the algorithm is used in the embedding space, cosine distance is used as
a distance metric.

dcosine(ei, ej) = 1− ei · ej
∥ei∥∥ej∥

Algorithm 1: Farthest Point Sampling (FPS)

Require: Point set P = {p1, p2, . . . , pn}, sampling size k
Ensure: Sampled subset S ⊆ P , |S| = k

1: Initialize empty set S
2: Select initial point s1 ∈ P arbitrarily (or using a heuristic)
3: S ← {s1}
4: for i = 2 to k do
5: maxDist← −∞
6: nextPoint← null
7: for all p ∈ P \ S do
8: distp ← mins∈S d(p, s)
9: if distp > maxDist then

10: maxDist← distp
11: nextPoint← p
12: end if
13: end for
14: S ← S ∪ {nextPoint}
15: end for
16: return S

13
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C JUDGE PROMPT

Listing 2: Prompt for LLM-as-a-judge
1 You are asked to evaluate whether two concepts, a ground truth and a

prediction, have the same semantic meaning. These concepts
represent common error scenarios/causes in automated driving
vision systems.

2 Use the following rating to evaluate each concept pair:
3 Name Rating Description
4 Not Helpful 1 The match between both concepts is terrible:

completely irrelevant
5 Mostly_not_helpful 2 The match between both concepts is mostly not

helpful: mismatch in some key aspects and details
6 Mostly_helpful 3 The match between both concepts is mostly helpful:

matches in most key aspects and details
7 Helpful 4 The match between both concepts is excellent: both

concepts are semantically equivalent
8
9 Use these examples as references:

10 ID Concept of Interest Predicted Concept Rating
11 B1 Pedestrian Child 4
12 B2 Urban Environment Buildings 3
13 B3 Stop Sign Traffic Jam 2
14 B4 Intersection Occlusion 1
15
16 Task:
17 <concept_of_interest></concept_of_interest>
18 <predicted_concept></predicted_concept>
19 Your complete response should be structured as follows:
20 <analysis>
21 [Your detailed analysis and reasoning here]
22 </analysis>
23 Differentiating Concepts present in "Set 1", but not in "Set 2":
24 <rating>
25 [Your rating name here]-[Your numerical rating here]
26 </rating>
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