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Abstract

We design automated supervised learning systems for data tables that not only contain
numeric/categorical columns, but text fields as well. Here we assemble 15 multimodal
data tables that each contain some text fields and stem from a real business application.
Over this benchmark1, we evaluate numerous multimodal AutoML strategies, including a
standard two-stage approach where NLP is used to featurize the text such that AutoML for
tabular data can then be applied. We propose various practically superior strategies based
on multimodal adaptations of Transformer networks and stack ensembling of these networks
with classical tabular models. Beyond performing the best in our benchmark, our proposed
(fully automated) methodology2 manages to rank 1st place (against human data scientists)
when fit to the raw tabular/text data in two MachineHack prediction competitions and
2nd place (out of 2380 teams) in Kaggle’s Mercari Price Suggestion Challenge.

1. Introduction

Automatic Machine Learning (AutoML) aims produce end-to-end pipelines that can ingest
raw (messy) data, train models, and output accurate predictions, all without human in-
tervention (Hutter et al., 2018). Given their immense potential, many AutoML systems
exist for data structured in tables, which are ubiquitous across science/industry (He et al.,
2019; Truong et al., 2019; Gijsbers et al., 2019). Many data tables contain not only numeric
and categorical fields (together referred to as tabular here), but also fields with free-form
text. For example, Table 1 depicts actual data from the website Kickstarter. Despite their
commercial value, there exist few automated ML solutions for such multimodal data.

In this paper, we consider design choices for automated supervised learning with mul-
timodal datasets that jointly contain text, numeric, and categorical features. Even though
text is extremely common in enterprise data tables, how to automatically analyze such
multimodal data has not been well studied. This likely stems from a lack of available
benchmarks, as well as existing beliefs that basic featurization of the text (Eisenstein, 2018;
H2O.ai) should suffice for tabular models to exhibit strong performance. By introducing
a new benchmark of 15 multimodal text/tabular datasets from real business applications,
we provide the first comprehensive evaluation of different strategies for supervised learning
with data of this form.
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Table 1: Example of data in our multimodal benchmark with text (name, desc), numeric
(goal, created at), and categorical (country, currency) columns. From these features, we
want to predict if a Kickstarter project will be funded or not (final status).

2. Methods

Featurizing Text for Tabular Models In this paper, all tabular (numeric/categorical)
modeling is simply done via AutoGluon-Tabular, a highly accurate open-source tool for
automated supervised learning on tabular data (Erickson et al., 2020; Yoo et al., 2020).
AutoGluon achieves strong performance by ensembling a diverse suite of high-quality models
for tabular data. While neural networks are popular for text, decision tree ensembles are
typically superior for tabular data (Bansal, 2018; Fakoor et al., 2020b; Huang et al., 2020).

To allow tabular models to access information in text fields, the text is typically first
mapped to a continuous vector representation which replaces a text column in our data
table with multiple numeric columns (one for each vector dimension). One can treat each
text column as a document, and each individual text field as a paragraph within the doc-
ument, such that each text field can be featurized via NLP methods for computing text
representations (Eisenstein, 2018; Devlin et al., 2019; Mikolov et al., 2013).

Transformer Models for Text Pretrained Transformers have become a cornerstone of
modern NLP, where the model is first pretrained in an unsupervised manner on a massive
text corpus before being applied to our (smaller) labeled dataset of interest (Devlin et al.,
2019; Raffel et al., 2020). This allows our modeling to leverage information gleaned from
the external text that would otherwise not be available in our limited labeled data. The
Transformer also effectively aggregates information from various aspects of a training ex-
ample, using a self-attention mechanism to contextualize its intermediate representations
based on particularly informative features (Vaswani et al., 2017).

Neural Architectures for Multimodal Data In many multimodal datasets, some of
the predictive signals are solely found in text fields, while other predictive information is
restricted to tabular feature values (or interactions between text/tabular values). To enjoy
the benefits of end-to-end learning without sacrificing accuracy, we present various strategies
to adapt Transformer networks to simultaneously operate on inputs from both modalities.

All-Text A simple (yet crude) option is to convert numeric and categorical values to
strings and subsequently treat their columns also as text fields (Raffel et al., 2020). Through
its byte-pair encoding, a pretrained Transformer can handle most categorical strings and
may be able to crudely represent numeric values within a certain range (here we round all
numbers to 3 significant digits in their string representation).

Fuse-Early Rather than casting them as strings, we can allow our model to adaptively
learn token representations for each numeric and categorical feature via backpropagation
(see Figure 1b). We introduce an extra factorized embedding layer (Lan et al., 2019) to
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(d) Notation used in these figures.

Figure 1: Fusion strategies in Multimodal-Net, dense output layers on top are not shown.

map categorical values into the same Rd vector representation encoded by the pretrained
NLP model for text tokens (with different embedding layers used for different categorical
columns in the table). All numeric features are encoded via a single-hidden-layer Multi-
layer Perceptron (MLP) to obtain a unified Rd vector representation. These vectors are fed
into a 6-layer Transformer encoder whose self-attention operations can model interactions
between the embeddings of text tokens, categorical values, and numeric values.

Fuse-Late Rather than aggregating information across modalities early on in the network,
we can perform separate neural operations on each data type and only aggregate near
the output layer (see Figure 1c). This design allows each branch to extract higher-level
representations of the values from each modality, before the network needs to consider how
modalities should be fused. Here we use a multi-tower architecture in which numeric and
categorical features are fed into separate MLPs for each modality. The text features are fed
into a pretrained Transformer network. Subsequently, the topmost vector representations
of all three networks are pooled (via either: mean/max pooling or concatenation) into a
single vector from which predictions are output via two additional dense layers.

3. Aggregating Text & Tabular Models

Despite their success for modeling text, the application of Transformer architectures to
tabular data remains limited (Huang et al., 2020; Fakoor et al., 2020a,b). The use of tabular
models together with Transformer-like text architectures has also received little attention
(Wan et al., 2021; Ke et al., 2019). Note that ‘tabular models’ throughout are trained on
only numeric/categorical features, e.g., various tree ensembles used in AutoGluon-Tabular.

3.1 Embedding Text as Tabular Features

In our first class of aggregation methods, a Transformer is used to map the text fields into
a vector representation. Subsequently, the text fields are replaced in the data table by
additional columns corresponding to each dimension of the embedding vector (Embedding-
as-Feature in Figure 2a). We consider three ways to featurize text using a Transformer.
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Figure 2: Methods to combine Multimodal-Net and classical tabular models.

Pre-Embedding The most straightforward strategy is to use a pretrained Transformer
that is not fine-tuned on our labeled data. Subsequently we can train tabular models (or
tabular AutoML systems) over the featurized data table (Blohm et al., 2020).

Text-Embedding The Pre-Embedding strategy is not informed about our particular
prediction problem and the domain of the text data. In Text-Embedding, we further fine-
tune the pretrained Transformer to predict our labels from only the text fields. By adapting
to the domain of the problem, Text-Embedding is able to extract more valuable features
that can improve the performance of tabular models. This is particularly true in settings
where the target only depends on one out of many text fields, since the fine-tuning process
can produce representations that vary more based on the relevant field vs. irrelevant text.

Multimodal-Embedding Our text representations may improve when self-attention is
informed by context regarding numeric/categorical features. Thus we alternatively consider
embedding text via our previous multimodal networks. These models are again fine-tuned
using the labeled data and now produce a single vector representation for all columns in
the dataset, regardless of their type. However, since Transformers are better suited for
modeling text than tabular features, we only replace the text fields with the learned vector,
all other non-text features are kept and used for subsequent tabular learning.

3.2 Ensembling Text/Tabular Predictions

Utilized by most AutoML frameworks (LeDell and Poirier, 2020; Feurer et al., 2015; Er-
ickson et al., 2020), model ensembling is a straightforward technique to boost predictive
accuracy. Ensembling is particularly suited for multimodal data, where different models
may be trained with different modalities. However, the resulting ensemble may then be
unable to exploit nonlinear predictive interactions between features from different modal-
ities. To remedy this, we advocate for the use of our multimodal Transformers that fuse
information from text and tabular inputs. Furthermore, we propose stack ensembling with
nonlinear aggregation of model predictions that can exploit inter-modality interactions be-
tween different base models’ predictions, even when base models do not overlap in modality.

Weighted-Ensemble We first consider a straightforward aggregation strategy that sim-
ply takes a weighted average of the predictions from our Transformer model and various
tabular models like those trained by AutoGluon-Tabular. Here, our Transformer and other
models are independently trained using a common training/validation split. Subsequently,
we apply ensemble selection, a greedy forward-selection strategy to fit aggregation weights
over all models’ predictions on the held-out validation data (Caruana et al., 2004).
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Stack-Ensemble Rather than restricting the aggregation to a linear combination, we can
use stacking (Wolpert, 1992). This trains another ML model to learn the best aggregation
strategy. The features upon which the ‘stacker’ model operates are the predictions output
by all base models (including our Transformer), concatenated with the original tabular
features in the data. Following Erickson et al. (2020), we try each type of tabular model
in AutoGluon-Tabular as a stacker model. To output predictions, a weighted ensemble is
constructed via ensemble selection applied to the tabular stacker models (Figure 2c). We
do not consider our larger Transformer model as a stacker since lightweight aggregation
models are preferred in practice. Overfitting is a key peril in stacking, and we ensure that
stacker models are only trained over held out predictions produced from base models via
5-fold cross-validation (bagging) (Van der Laan et al., 2007; Erickson et al., 2020).

4. Experiments

Here we empirically evaluate several multimodal AutoML strategies, with a particular focus
on how to best leverage Transformers for text/tabular data. To keep our study tractable, we
adopt a sequential decision making process that decomposed our design into three stages:
1) determine the appropriate Transformer backbone and fine-tuning strategy for text data
alone, 2) determine the best way for generalizing Transformer to multimodal data among our
considered variants, and 3) choose the best method to aggregate text and tabular models.
At each subsequent stage of the study, we explore modeling choices that are specific to
that stage and simply use the best choice found in the empirical comparisons of the options
available in previous stages. Each modeling strategy is run over our benchmark of 15
tabular datasets with text fields, detailed in Appendix E. We evaluate regression tasks via
the coefficient of determination (R2), multiclass classification tasks via accuracy, and binary
classification tasks via area under the ROC curve (AUC).

Choice of Transformer Backbone Our first decision is which pretrained Transformer
network to employ. We consider the base version of RoBERTa (Liu et al., 2019) or ELEC-
TRA (Clark et al., 2020). Existing results may not translate to our setting, since Transform-
ers are typically applied to datasets with at most a couple text fields per training example
(Wang et al., 2019b,a). We first fine-tune the pretrained Transformer models as our sole
predictors, using only the text features in each dataset. This reveals which model is better
for the types of text in our multimodal datasets. In fine-tuning, we consider two tricks
to boost performance: 1) Exponentially decay the learning rate of the network parameters
based on their depth (Sun et al., 2019); 2) Average the weights of the models loaded from
the top-3 training checkpoints with the best validation scores (Vaswani et al., 2017).

The first section of Table 2 shows that ELECTRA performs better than RoBERTa across
the text columns in our benchmark datasets. Our Text-Net used in subsequent experiments
is thus ELECTRA fine-tuned with both exponential decay and checkpoint-averaging.

Best Multimodal Network Next, we explore the best way to extend the Text-Net model
to operate across numeric/categorical inputs in addition to text fields. Three multimodal
network variants are considered here: All-Text, Fuse-Early, Fuse-Late (see Figure 1). Across
our datasets, Table 2 shows that the Fuse-Late strategy outperforms the other options for
producing predictions from multimodal inputs using a single neural network (including
Text-Net). We fix this Fuse-Late model as our Multimodal-Net in subsequent experiments.
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Method prod qaq qaa cloth airbnb ae mercari jigsaw imdb fake kick jc wine pop channel avg. ↑ mrr ↑

Choosing Text-Net: NLP Backbones and Fine-tuning Tricks
RoBERTa 0.588 0.412 0.268 0.700 0.344 0.953 0.561 0.960 0.731 0.929 0.751 0.615 0.811 -0.000 0.301 0.595 0.07
ELECTRA 0.705 0.410 0.356 0.718 0.349 0.955 0.586 0.965 0.750 0.824 0.754 0.606 0.813 0.003 0.315 0.607 0.17
+ Exponential Decay τ = 0.8 0.728 0.436 0.431 0.743 0.337 0.953 0.579 0.963 0.852 0.963 0.760 0.664 0.808 0.004 0.308 0.635 0.09
+ Average 3 F 0.729 0.451 0.432 0.746 0.350 0.954 0.581 0.965 0.858 0.961 0.766 0.656 0.807 0.004 0.307 0.638 0.12

Choosing Multimodal-Net: Fusion Strategy
All-Text 0.907 0.454 0.419 0.746 0.366 0.957 0.599 0.967 0.840 0.967 0.799 0.645 0.810 0.013 0.480 0.665 0.19
Fuse-Early 0.913 0.441 0.418 0.745 0.377 0.953 0.596 0.967 0.843 0.960 0.770 0.653 0.806 0.013 0.474 0.662 0.24
Fuse-Late, Concat F 0.907 0.449 0.445 0.747 0.395 0.958 0.603 0.966 0.857 0.961 0.773 0.639 0.812 0.015 0.481 0.667 0.17
Fuse-Late, Mean 0.912 0.458 0.431 0.748 0.399 0.955 0.602 0.967 0.869 0.963 0.773 0.625 0.807 0.015 0.478 0.667 0.09
Fuse-Late, Max 0.910 0.452 0.429 0.747 0.401 0.956 0.599 0.966 0.863 0.957 0.761 0.634 0.808 0.015 0.484 0.665 0.12

Choosing Aggregation: Multimodal Model Ensembling
Pre-Embedding 0.895 0.216 0.247 0.642 0.449 0.972 0.433 0.586 0.871 0.926 0.743 0.491 0.680 0.012 0.526 0.579 0.13
Text-Embedding 0.867 0.446 0.432 0.748 0.430 0.972 0.434 0.587 0.855 0.962 0.790 0.658 0.830 0.008 0.502 0.635 0.20
Multimodal-Embedding 0.907 0.439 0.437 0.749 0.438 0.974 0.432 0.587 0.847 0.967 0.794 0.683 0.829 0.007 0.517 0.640 0.18
Weighted-Ensemble 0.907 0.439 0.429 0.744 0.453 0.976 0.597 0.957 0.876 0.923 0.787 0.641 0.814 0.018 0.554 0.674 0.39
Stack-Ensemble F 0.909 0.456 0.438 0.751 0.459 0.977 0.605 0.967 0.878 0.964 0.797 0.624 0.836 0.020 0.556 0.683 0.59

Tabular AutoML + Feature Engineering Baselines
AG-Weighted 0.891 0.046 0.076 -0.002 0.426 0.841 0.098 0.587 0.845 0.686 0.668 0.004 0.173 0.016 0.549 0.394 0.11
AG-Stack 0.891 0.046 0.077 0.001 0.435 0.841 0.098 0.587 0.844 0.697 0.670 0.003 0.175 0.017 0.550 0.395 0.10
AG-Weighted+ N-Gram 0.892 0.426 0.382 0.610 0.450 0.978 0.526 0.909 0.842 0.966 0.772 0.357 0.829 0.019 0.546 0.633 0.11
AG-Stack+ N-Gram 0.895 0.414 0.383 0.654 0.466 0.979 0.569 0.915 0.850 0.968 0.775 0.612 0.842 0.020 0.548 0.659 0.19
H2O AutoML 0.869 0.247 0.159 0.163 0.329 0.976 0.430 0.531 0.813 0.756 0.669 0.411 0.478 0.014 0.530 0.492 0.11
H2O AutoML + Word2Vec 0.859 0.244 0.285 0.624 0.347 0.973 0.534 0.847 0.827 0.943 0.755 0.443 0.778 0.013 0.524 0.600 0.16
H2O AutoML + Pre-Embedding 0.846 0.227 0.312 0.644 0.367 0.969 0.282 0.572 0.874 0.893 0.738 0.549 0.571 0.007 0.501 0.557 0.12

Table 2: Predictive performance of AutoML strategies over our multimodal benchmark.
Column ‘avg.’ lists each method’s average score (across datasets) and ‘mrr’ lists the mean
reciprocal rank among all models evaluated in the benchmark. Each subsection encapsulates
the variants compared at a design stage, with the final choice (best avg.) marked by F.

Aggregating Transformers and Tabular Models Now that we have identified the
best single neural network architecture for multimodal text/tabular inputs, we consider
how to combine such models with classical learning algorithms for tabular data. Where not
specified, the tabular models are those trained by AutoGluon-Tabular (see Appendix C.4).
Here we considered the following aggregation strategies: Pre-Embedding, Text-Embedding,
Multimodal-Embedding, Weighted-Ensemble, Stack-Ensemble.

The third section of Table 2 illustrates that Stack-Ensemble is overall the best ag-
gregation strategy. As expected, Text-Embedding and Multimodal-Embedding outperform
Pre-Embedding, demonstrating how domain-specific fine-tuning improves the quality of
learned embeddings. Multimodal-Embedding performs better than Text-Embedding on some
datasets with similar performance across the rest, showing it can be beneficial to use text
representations contextualized on numeric/categorical information.

AutoGluon Baselines We also compare with variants of AutoGluon-Tabular without
our Multimodal-Net as baselines (and variants of H2O AutoML described in Appendix D):

AG-Weighted / AG-Stack : We train AutoGluon with weighted / stack ensembling of its
tabular models, here ignoring all text columns.

AG-Weighted + N-Gram / AG-Stack + N-Gram: Similar to AG-Weighted / AG-Stack,
except we first use AutoGluon’s N-Gram featurization to encode all text in tabular form.

The last section of Table 2 shows that while these powerful AutoML ensemble predictors
can outperform our individual neural network models (particularly for datasets with more
tabular-signal), our proposed Stack-Ensemble and Weighted-Ensemble are superior overall3.
Given the success of pretrained Transformers across NLP, we are surprised to find both N-
Grams and word2vec here provide superior text featurization than Pre-Embedding.

3. Tutorial to easily run these methods on any text/tabular dataset: https://auto.gluon.ai/stable/

tutorials/tabular_prediction/tabular-multimodal-text-others.html
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Appendix

Appendix A. Performance in Real-world ML Competitions

Some datasets in our multimodal benchmark originally stem from ML competitions. For
these (and other recent competitions with text/tabular data), we fit our automated solution
using the official competition dataset, without manual adjustment or data preprocessing.
We then submit its resulting predictions on the competition test data to be scored, which
enables us to see how they fare against the manual efforts of human data science teams.

Our Stack-Ensemble model achieved 1st place in two prediction competitions from Ma-
chineHack: Product Sentiment Classification4 and Predict the Data Scientists Salary in
India5, and this model achieves 2nd place in another MachineHack competition: Predict
the Price of Books6, as well as a Kaggle competition: California House Prices7. Simply
training only our Multimodal-Net suffices to achieve 2nd place in a very popular Kaggle
competition in which 2380 teams participated: Mercari Price Suggestion Challenge8 (which
offered a $100,000 prize). These results demonstrate that, without any manual adjustment,
our AutoML solution outperforms top data scientists on real-world text/tabular datasets
that possess great commercial value.

Appendix B. Feature Importance Analysis

Feature importance scoring is a valuable tool for understanding how the AutoML system
works and whether text fields in a dataset are worth their overhead. We compute permuta-
tion feature importance (Breiman, 2001) for three models: the AG-Stack+N-Gram baseline,
our Multimodal-Net, and our Stack-Ensemble (containing the Multimodal-Net). The im-
portance of a feature is defined as the drop in prediction accuracy after values of only this
feature (which are entire text fields for a text column) are shuffled in the test data (across
rows). We only shuffle original column values so our importance scores are not biased by
preprocessing/featurization decisions (except in how these directly affect model accuracy).
Figure 3 shows that both Multimodal-Net and our Stack-Ensemble with this model rely
more heavily on text features than the N-Gram baseline. With more powerful modeling of
text fields, models may begin to rely more heavily on the text fields. An exception here is
the brand name feature in the mercari data, but this feature usually contains just a single
word in its fields.

4. https://www.machinehack.com/hackathons/product_sentiment_classification_weekend_

hackathon_19/overview. “Anonymous Submission ID 1556” entry.
5. https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_

hackathon/overview. “Xingjian Shi” entry.
6. https://machinehack.com/hackathons/predict_the_price_of_books/overview. “Xingjian Shi” en-

try.
7. https://www.kaggle.com/c/california-house-prices, “sxjscience” entry.
8. Multimodal-Net achieved a score of 0.38685 on the private leaderboard: https://www.kaggle.com/c/

mercari-price-suggestion-challenge/leaderboard

7

https://www.machinehack.com/hackathons/product_sentiment_classification_weekend_hackathon_19/overview
https://www.machinehack.com/hackathons/product_sentiment_classification_weekend_hackathon_19/overview
https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_hackathon/overview
https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_hackathon/overview
https://machinehack.com/hackathons/predict_the_price_of_books/overview
https://www.kaggle.com/c/california-house-prices
https://www.kaggle.com/c/mercari-price-suggestion-challenge/leaderboard
https://www.kaggle.com/c/mercari-price-suggestion-challenge/leaderboard


Shi, Mueller, Erickson, Li, and Smola

(a) Permutation importance in “mercari”. (b) Permutation importance in “imdb”.

Figure 3: Importance of text vs. tabular features in two datasets (text features in red).
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Figure 4: Inputting data from 3 text fields into Transformer.

Appendix C. Model Details

C.1 Handling text fields in the Transformer

Given multiple text columns, we feed the tokenized text from all columns jointly into our
Transformer, as illustrated in Figure 4. We follow the usual method to format text from
multiple passages (Devlin et al., 2019): tokenized inputs from different text fields are merged
with special [SEP] delimiter tokens between fields and a [CLS] prefix token is subsequently
appended at the start of merged input. To further ensure that the network distinguishes
boundaries between adjacent text fields, we alternate 0s and 1s as the segment IDs. Here
segment IDs and the [SEP] token were previously used to demarcate boundaries between
passages during pre-training (Devlin et al., 2019). After feeding the merged inputs into
the Transformer, we can extract its intermediate representations at each position as token-
level embeddings (each token has one embedding, which has been contextualized based on
information from the other tokens). A single embedding vector for all text fields is obtained
from the Transformer’s representation at the [CLS] position after feeding the merged input
into the network (Devlin et al., 2019). Similarly, just a single text field can be embedded
via the Transformer’s representation at the [CLS] position, after feeding only this field into
the network.

When the total length of tokenized text fields exceed the maximum allowed length (set
to be 512 throughout this work), we truncate the input by repeatedly removing one token
from the longest individual text field until the length constraint is met. Since self-attention
is permutation equivariant, a common practice is to assign an additional vector that en-
codes each position (namely positional encoding) so that the Transformer can distinguish
between identical tokens occurring at different locations (Vaswani et al., 2017). After merg-
ing multiple text fields into a single input, we simply assign positional encodings based on
this larger input.
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C.2 Network Architectures

In this paper, we used a single-hidden-layer MLP as the basic building block for encoding
features and projecting the hidden states. It has one bottleneck layer and uses layer nor-
malization. We use the leaky ReLU activation (with slope set to 0.1) for all basic MLP
layers mentioned throughout the paper. For the 6-layer Transformer model in Fuse-Early,
we used the GeLU activation like Devlin et al. (2019). We set the number of units, heads,
and hidden size of FFN (the feedforward layers) in this Transformer to be 64, 4, 256 cor-
respondingly. For the categorical features, we use an encoding network that is similar to
the factorized embedding in ALBERT (Lan et al., 2019), in which we use an embedding
layer with 32 units and then project it with a basic MLP layer that has 64 bottleneck
units. We further set the number of output units in the basic MLP to be the same as the
token-embeddings used in the pretrained NLP model (i.e., ELECTRA or RoBERTa) so
that all vectors belong to the same space. In the Fuse-Late variant, we further concatenate
all encoded categorical features and encode them with a second basic MLP layer. Numeric
features are concatenated and encoded with one basic MLP layer. These MLP layers all
utilize 128 bottleneck units and their output unit number matches the dimensionality of
token embeddings for the pretrained Transformer.

C.3 Neural Network Optimization

All networks are trained with the slanted triangular learning rate scheduler (Howard and
Ruder, 2018) with initial learning rate set to 0.0, the maximal learning rate set to 5× 10−5

and warmup set to 0.1. We use a batch size of 128, 10−4 weight decay, and the AdamW
optimizer. All models are trained for 10 epochs and we early stop based on their validation
performance. These learning rate and weight decay values were determined via grid search
on a single smaller (subsampled) dataset that we used for early initial experiments.

To implement exponential learning rate decay, we set the learning rate multiplier as τd

in which d is the layer depth and τ is the decay factor. The intuition is that the pretrained
weights that are closer to the input encode universal properties common across most text
and should evolve more slowly during fine-tuning. We set τ = 0.8 in our experiments.

C.4 Details of AutoGluon Tabular Models in the Stack Ensemble

For improved efficiency, we considered just the following tabular models when running
AutoGluon (Erickson et al., 2020):

• Fully-connected Neural Network with ReLU activations (Erickson et al., 2020).

• LightGBM model with default hyperparameters (GBM) (Ke et al., 2017).

• A second LightGBM model with a different set of hyperparameter values. By default,
AutoGluon uses this second model in conjunction with the first LightGBM model.

• An implementation of Extremely Randomized Trees from the LightGBM library
(Geurts et al., 2006).

• CatBoost gradient boosted trees, which provide sophisticated handling of categorical
features (Prokhorenkova et al., 2018)
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To avoid overfitting in stacking, all models are trained with 5 fold cross-validation (bagging)
as described by Erickson et al. (2020). For classification tasks, the outputs of each base
model which are aggregated in the ensemble are taken to be predicted class probabilities.

C.5 Notes on Hyperparameter Tuning

Note that hyperparameter tuning was not a major focus in this paper. Standard hyperpa-
rameter tuning strategies (Shahriari et al., 2015) are readily applicable to our multimodal
setting, and the experiments presented here could easily employ the advanced Bayesian
optimization techniques available in AutoGluon (Tiao et al., 2020). We expect the perfor-
mance of all of our proposed AutoML strategies will grow even better with time devoted
to hyperparameter tuning. However in this paper we did not conduct such a search and
simply used the default hyperparameters supplied by AutoGluon for tabular models, which
are already highly performant (Erickson et al., 2020; Fakoor et al., 2020b), and the Trans-
former hyperparameters are listed here and are viewable in our released code. Over just
a few datasets, we found performance did not qualitatively differ with other reasonable
hyperparameter settings.

Rather than only reporting a couple thoroughly-tuned results, we instead preferred to
spend our time/compute budget to explore more AutoML strategies over more datasets.
Note that all H2O AutoML variants reported in Table 2 relied on extensive hyperparam-
eter sweeps (automatically used within H2O), and yet were still unable to outperform our
untuned methods. This further supports the claim that we have identified a broadly per-
formant strategy for multimodal AutoML.

Appendix D. H2O AutoML Baselines

The few other existing tools that aim to automate multimodal text/tabular ML are all
commercial software whose source code, allowed scientific usage (benchmarking), and im-
plemented algorithmic strategies remain opaque (Google, 2019; H2O.ai, 2020). As an al-
ternative to AutoGluon, we also run another open-source AutoML tool offered by H2O9

which is very popular in the data science community. Since H2O AutoML is not designed
for the text in our multimodal data tables, we try combining H2O’s NLP tool (H2O.ai) and
tabular AutoML tool (LeDell and Poirier, 2020).

H2O AutoML: We run H2O AutoML directly on the original data of our benchmark. It is
assumed that H2O AutoML ignores all text features (as a tabular AutoML framework), but
H2O categorizes text vs. other feature types slightly differently than us. For fair assessment,
our benchmark leaves key decisions like training/validation splits and how to designate fea-
ture types up to each AutoML tool.

H2O AutoML + Word2Vec: We featurize text fields via H2O’s word2vec algorithm, as de-
scribed in the H2O.ai tutorial, and then run H2O AutoML on the featurized data.

H2O AutoML + Pre-Embedding : We featurize text fields using embeddings from a pre-
trained ELECTRA Transformer, as in Pre-Embedding, and then run H2O AutoML.

9. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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Appendix E. Benchmarking Multimodal Text/Tabular AutoML

We aim to design practical systems for real-world data tables that often contain text. The
empirical performance of our design decisions is thus what ultimately matters. Represen-
tative benchmarks comprised of many diverse datasets are critical for proper evaluation
of AutoML, whose aim is to reliably produce reasonable accuracy on arbitrary datasets
without manual user-tweaking. While such benchmarks are available for ML with standard
tabular data (Gijsbers et al., 2019; Vanschoren et al., 2013; Erickson et al., 2020; Zöller and
Huber, 2021), we are not aware of any analogous benchmarks for evaluating multimodal ML.
Thus we introduce the first public benchmark10 for this purpose, which is comprised of 15
tabular datasets, each containing at least one text field in addition to numeric/categorical
columns.

Our benchmark strives to represent the types of ML tasks that commonly arise in in-
dustry today. In creating the benchmark, we aimed to include a mix of classification vs.
regression tasks and datasets from real applications (as opposed to toy academic settings)
that contain a rich mix of text, numeric, and categorical columns. Table 3 shows it is com-
prised of datasets that are quite diverse in terms of: sample-size, problem types, number
of features, and type of features. To reflect real-world ML issues, we processed the data
minimally (beyond ensuring the labels correspond to meaningful prediction tasks) and thus
there are arbitrarily-formatted strings and missing values all throughout. Subsequent accu-
racy results from Table 2 indicate the 15 underlying prediction problems also vary greatly
in terms of both difficulty and how the predictive signal is divided between text/tabular
modalities. Given this diversity, systems that can perform well across all 15 datasets are
likely to provide real-world value across a broad set of applications.

Each dataset in our benchmark is provided with a prespecified training/test split (usually
20% of the original data reserved for test set). Methods are not allowed to access the
test set during training, and for validation (model-selection, hyperparameter-tuning, etc.)
instead must themselves hold-out some data from the provided training data. As the choice
of training/validation split is a key design decision in AutoML, we leave this flexible for
different systems to choose as they see fit. To facilitate comparison between the novel
AutoML strategies presented in this paper, we always used the same AutoGluon-provided

10. Available at: https://github.com/sxjscience/automl_multimodal_benchmark

Dataset ID #Train #Test #Cat. #Num. #Text Task Metric Prediction Target

prod 5,091 1,273 1 0 1 multiclass accuracy sentiment related to products
airbnb 18,316 4,579 37 24 28 multiclass accuracy price of Airbnb listing
channel 20,284 5,071 1 15 1 multiclass accuracy category of news article
wine 84,123 21,031 0 2 3 multiclass accuracy variety of wine
imdb 800 200 0 7 4 binary roc-auc whether film is a drama
jigsaw 100,000 25,000 2 27 1 binary roc-auc whether comments are toxic
fake 12,725 3,182 2 0 3 binary roc-auc whether job postings are fake
kick 86,502 21,626 3 3 3 binary roc-auc will Kickstarter get funding
ae 22,662 5,666 3 2 6 regression R2 American-Eagle item prices
qaa 4,863 1,216 1 0 3 regression R2 type of answer
qaq 4,863 1,216 1 0 3 regression R2 type of question
cloth 18,788 4,698 2 1 3 regression R2 review score
mercari 100,000 25,000 3 0 6 regression R2 price of Mercari products
jc 10,860 2,715 0 2 3 regression R2 price of JC Penney products
pop 24,007 6,002 1 2 1 regression R2 news article popularity online

Table 3: The 15 multimodal datasets that comprise our benchmark. ‘#Cat.’, ‘#Num.’ and
‘#Text’ count the number of categorical, numeric, and text features in each dataset. In
PDF, you can click on each Dataset ID for link to original data source.
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training/validation split, which is stratified based on labels in classification tasks. Our
use of other AutoML frameworks beyond AutoGluon (e.g. H2O) allows each framework to
choose their own data splitting scheme.

E.1 Descriptions of each Dataset

prod: Classify the sentiment of user reviews related to products based on the review text
and product type.

airbnb: Predict the price label of AirBnb listings in Melbourne, Australia based on the
page of each listing which includes many miscellaneous features about the listing.

channel: Predict which news category (i.e. channel) a Mashable.com news article belongs
to based on the text of its title, as well as auxiliary numerical features like the number of
words in the article, its average token length, how many keywords are listed, etc.

wine: Classify the variety of wines based on tasting descriptions from sommeliers, their
price, country-of-origin, and other features.

imdb: Predict whether or not a movie falls within the Drama category based on its name,
description, actors/directors, year released, runtime, and other features.∗

jigsaw: Predict whether online social media comments are toxic based on their text and
additional features related to the poster.

fake: Predict whether online job postings are real or fake based on their text, amount of
salary offered, degree of education demanded, etc.

kick: Predict whether a proposed Kickstarter project will get funding based on its title,
description, amount of money requested, date posted, and other features.

ae: Predict the price of inner-wear items sold by retailer American Eagle based on features
from their online product page.*

qaa: Given a question and an answer (from the Crowdsource team at Google) as well as
additional category features, predict the type of the answer in relation to the question.

qaq: Given a question and an answer (from the Crowdsource team at Google) as well as
additional category features, predict the type of question in relation to the answer.

cloth: Predict the score of a customer review of clothing items (sold by an anonymous
retailer) based on the review text, and product features like the clothing category.

mercari: Predict the price of items sold in the online marketplace of Mercari based on
miscellaneous information from the product page like name, description, free shipping, etc.

jc: Predict the sale price of items sold on the website of the retailer JC Penney based on
miscellaneous information on the product page like its title, description, rating, etc.*

pop: Predict the popularity (number of shares on social media, on log-scale) of Mash-
able.com news articles based on the text of their title, as well as auxiliary numerical features
like the number of words in the article, its average token length, and how many keywords
are listed, etc.

∗. PromptCloud released the original version of the data from which the version of this dataset in our
benchmark was created.
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