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ABSTRACT

Deep reinforcement learning has achieved impressive success in control tasks.
However, its policies, represented as opaque neural networks, are often difficult
for humans to understand, verify, and debug, which undermines trust and hinders
real-world deployment. This work addresses this challenge by introducing a novel
approach for programmatic control policy discovery, called Multimodal Large
Language Model-assisted Evolutionary Search (MLES). MLES utilizes multimodal
large language models as programmatic policy generators, combining them with
evolutionary search to automate policy generation. It integrates visual feedback-
driven behavior analysis within the policy generation process to identify failure
patterns and guide targeted improvements, thereby enhancing policy discovery
efficiency and producing adaptable, human-aligned policies. Experimental results
demonstrate that MLES achieves performance comparable to Proximal Policy
Optimization (PPO) across two standard control tasks while providing transparent
control logic and traceable design processes. This approach also overcomes the
limitations of predefined domain-specific languages, facilitates knowledge transfer
and reuse, and is scalable across various tasks, showing promise as a new paradigm
for developing transparent and verifiable control policies.

1 INTRODUCTION

High performance and transparency are two central challenges in the design of policies for control
tasks (Milani et al.| |2024). In recent years, deep reinforcement learning (DRL) has achieved remark-
able performance across various domains. However, two fundamental challenges persist, stemming
from the opaque, neural network-based nature of DRL policies (Vouros} 2022; Hickling et al., 2023}
Puiutta & Veith, 2020). First, such policies function as black boxes, offering limited insight into their
decision-making processes. This lack of transparency undermines trust, complicates verification,
and hinders adoption, particularly in safety-critical applications such as autonomous driving and
healthcare (Perez-Cerrolaza et al.,|2024). Second, the policy learning process in DRL relies on
gradient-based optimization over high-dimensional parameter spaces, making it difficult to analyze,
intervene in, or reuse the learned knowledge. These limitations have driven the ongoing pursuit of
policies that are not only high-performing but also transparent, verifiable, and human-readable.

The recent rise of large language models (LLMs) offers a promising opportunity to develop control
policies that are both transparent and high-performing. LLMs possess strong capabilities in contextual
understanding, reasoning, and generation, particularly excelling in coding-related tasks (Achiam!
et al.,|2023)). Building on this foundation, the LLM-assisted Evolutionary Search (LES) paradigm
has emerged as a powerful framework for automated design. LES combines the generative and
reasoning capabilities of LLMs with the iterative optimization strengths of Evolutionary Computation
(EC)(Liu et al.,[2023a)). In this paradigm, LLMs serve as mutation or crossover operators, guided by
prompt templates and evaluation feedback, to iteratively refine candidate designs (Romera-Paredes
et al., |2024; Liu et al., 20244} |Ye et al., 2024)). LES has shown success in the automated discovery
of code, algorithms, and heuristics. In the reinforcement learning domain, recent studies such as
Eureka et al. (Ma et al.| 2024; Kwon et al., 2023} Sun et al., 2024} [Masadome & Haradal, [2025) have
demonstrated that LES can be used to shape reward functions that improve agent performance.

Inspired by these advances, we pose the question of (1) whether LES can directly synthesize high-
performance programmatic policies, rather than merely designing auxiliary components like reward
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functions. This direction holds the potential to yield agents that are both effective and transparent, thus
bridging the gap between high-performance black-box models and human-understandable control
logic. Building on this, we further investigate (2) how this process can be enhanced to generate more
reliable policies, while also improving the efficiency of the policy discovery.
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Figure 1: Overview of methodological differences. (a) Standard DRL: agents learn via reward-guided
interaction with environments. (b) Our MLES: directly evolves programmatic policies by integrating
behavior analysis during the EC-based policy discovery process.

To address these questions, we propose Multimodal LLM-assisted Evolutionary Search (MLES), a
novel framework for the automatic discovery of programmatic control policies. MLES extends the
LES paradigm in two key ways. First, it targets the direct evolution of policies, where policies are
expressed as executable programs enriched with natural language rationales. These are developed
through natural language interactions with LLMs, enabling the synthesis of policies that are both
semantically meaningful and easily understandable. Second, MLES introduces behavior analysis
into the evolutionary loop. This enhances the search efficiency and makes the policy discovery
process more transparent and traceable. By grounding policy evaluation in richer signals beyond
scalar quantitative metrics, MLES enables more adaptable and human-aligned policy evolution. In
summary, this paper makes the following contributions:

(1) We propose the MLES framework, which integrates multimodal LLMs (MLLMs) with EC to
directly synthesize programmatic control policies through interaction with the environment. Unlike
existing LES-based approaches that focus on reward function shaping, MLES enables end-to-end
policy discovery, akin to DRL methods. An overview comparison is shown in Fig.

(2) We present a prototypical instantiation of MLES and evaluate it on two standard RL benchmarks:
Lunar Lander and Car Racing. Experimental results show that MLES produces effective policies
with transparent control logic and traceable design processes, achieving performance comparable to a
strong DRL baseline, Proximal Policy Optimization (PPO).

(3) We conduct an extensive analysis of MLES regarding its effectiveness and search efficiency,
complemented by thorough ablation studies. We also investigate how different forms of behavioral
evidence and prompt designs influence the policy evolution process.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

Control policy discovery refers to the process of searching for high-quality policies within a predefined
policy space, with the goal of maximizing expected performance in a given environment. Formally,
given a policy space IT and an evaluation function F'() that measures the quality of a policy = € TI,
the policy discovery problem can be formulated as the following optimization problem:

= F 1
" = argmax F'(m) )
Different policy discovery methods achieve this by varying the policy space II and the optimization

mechanisms used. For instance, DRL methods employ optimizers to search for optimal neural
network parameters within a continuous parameter space. Genetic Programming, combined with
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domain-specific languages (DSLs), uses evolutionary algorithms to explore and identify the optimal
combinations of predefined grammars within a discrete grammar space.

In the case of MLES, policy discovery is framed as a search process driven by LLMs within a
knowledge-rich policy space. When given a control task, LLMs implicitly and inherently shape this
policy space based on their understanding of the task. This space is rich with task-relevant concepts
and ideas, as well as valuable insights from other fields, allowing for flexible and expressive policy
generation. By integrating LLMs as policy generators within an evolutionary search process, MLES
allows for purposeful exploration and exploitation of the policy space, facilitating the progressive
discovery of higher-performing policies.

2.2 FRAMEWORK OVERVIEW
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Figure 2: An overview of the MLES framework. The left side of the MLES illustrates the evolutionary
search loop, while the right side details the structure and construction of an evolutionary individual.
The red module on the far right exemplifies a method for generating behavioral evidence. During
each search step, a subset of parent individuals is selected from a policy pool and used by the prompt
sampler to create a multimodal few-shot prompt. MLLMs reason over this prompt to generate a new
offspring policy. The offspring is then evaluated and visualized, resulting in the creation of a new
individual that is added to the policy pool and managed accordingly.

@ Behavioral evidence

The MLES framework orchestrates a closed-loop evolutionary process to iteratively search for
programmatic policies within the policy space, as illustrated in Fig. 2] The framework requires
the following configurable inputs to facilitate the discovery: (1) a selection of MLLMs for policy
generation, (2) a formal task description, (3) an initial set of programmatic policies, (4) an evaluator
for executing policies in the environment, and (5) a summarizer for generating behavioral evidence
from policy executions. The framework consists of the following six core components:

Evolutionary search loop. The evolutionary search loop serves as the main control mechanism that
orchestrates the entire evolutionary process. It manages iterations and maintains a dynamic balance
between exploration and exploitation via configurable evolutionary operators, ensuring an effective
search within the policy space.

Policy pool. It acts as a dynamic repository that holds the current policy population. It is responsible
for selecting appropriate parent policies based on the evolutionary operator and integrating newly
generated offspring into the pool, thereby facilitating the continuous evolution of the policies.

Evaluators. The evaluators are responsible for executing policies in the target environment. They
output both quantitative performance metrics (e.g., episode rewards) and raw behavior traces. To
improve efficiency and minimize delays, the policy evaluation procedure is often parallelized.

Summarizer. It converts raw behavior traces collected by the evaluators into behavioral evidence.
This evidence captures qualitative aspects of policy execution that go beyond scalar performance
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metrics, offering a deeper understanding of the policy’s behavior. This component is crucial for
enabling informed policy modifications by the MLLMs and represents a key innovation of our MLES.

Prompt sampler. It constructs multimodal few-shot prompts tailored to the current evolutionary
operator by integrating selected parent policies and their corresponding behavioral evidence. These
prompts provide essential context and guidance, directing the MLLMs to propose meaningful policies
aligned with the intended transformation, thus steering the evolution toward promising directions.

LLMs ensemble. This component consists of a configurable set of MLLMs. These MLLMs reason
over the multimodal few-shot prompts, leveraging their advanced vision-language understanding,
reasoning, and code generation capabilities to generate new candidate policies.

Through the iterative refinement process, MLES progressively discovers a diverse set of high-
performing programmatic policies. Concurrently, this process explores a wide range of both successful
and suboptimal policies, yielding valuable insights that enhance human understanding of the target
task and provide a foundation for knowledge transfer and reuse in related control scenarios.

2.3 PoLICY REPRESENTATION IN EVOLUTIONARY SEARCH PROCESS

During the search process, each candidate policy is treated as an individual, structured as a tuple
consisting of four elements that capture the policy’s logic, intent, performance, and behavioral
characteristics: Code, Thought, Quantitative Metrics, and Behavioral Evidence.

Code. Each policy is implemented as an executable Python program that defines the agent’s decision-
making logic. This representation supports automated evaluation within the evolutionary loop and
ensures direct compatibility with the environment. Moreover, expressing policies in code offers high
transparency and modularity, making them human-readable, easy to debug, and conducive to reuse or
modification during the search process.

Thought. The thought is a concise natural language summary that captures the underlying rationale
or design intent of a policy, highlighting key strategies that guide the agent’s behavior. By providing
a high-level semantic abstraction, thoughts help LLMs interpret the associated code more effectively
and support deeper reasoning during policy generation. Prior work (Liu et al.| 2024a) has shown that
incorporating such descriptions into prompts can improve the efficiency and effectiveness of LES.

Quantitative metrics. Quantitative metrics are task-specific numerical evaluations obtained by exe-
cuting the policy in the environment. These metrics serve as direct indicators of policy’s performance
(ie., F(-) in , such as episode rewards, success rates, or other user-defined scores tailored to
the tasks. They provide a consistent basis for ranking and selecting candidate policies, ensuring
high-performing individuals are effectively identified and prioritized for further refinement.

Behavioral Evidence. (BE) While quantitative metrics are essential for measuring performance,
they provide only a partial understanding of a policy and often fail to offer actionable guidance for
policy improvement. To address this limitation, MLES introduces BE, which captures the overall
behavior of a policy or highlights key events that help identify areas for improvement. By analyzing
BE, MLLMs can observe policy outcomes in detail, accurately identifying failure modes such as
incorrect decisions or reward hacking (e.g., exploiting bugs for undeserved rewards), thus enabling
more targeted policy modifications and corrections. This provides richer information for MLLMs to
work with, facilitating the discovery of human-aligned policies. This design is similar to how human
experts refine policies: they do not merely rely on evaluating numerical scores but also examine
behavioral patterns (e.g., failure modes, unexpected interactions) to identify areas for improvement.
The format of BE is flexible, including images, videos, and even text-based state sequences, and
more. Further examples illustrating the format and necessity of BE can be found in Appendix

2.4 EVOLUTIONARY SEARCH FOR DISCOVERING POLICY

This subsection details the evolutionary search loop in MLES. Building upon the EoH framework (Liu
et al.| 2024a), we integrate behavioral evidence analysis, thereby introducing a prototype implemen-
tation of MLES designed to discover high-performing programmatic policies. The pseudocode of
MLES is shown in Algorithm[I] At each search step, parent selection determines the starting points,
while evolutionary operators guide the generation of new policies. By combining carefully designed
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operators with principled selection strategies, MLES achieves a dynamic balance between exploration
and exploitation, facilitating the search for high-performing policies within the policy space.

Evolutionary operators. The core of MLES is a set of evolutionary operators that drive the generation
of new policies. We define four operators, categorized into two types:

» Exploration operators (E1 and E2): These operators aim to enhance the behavioral diversity of the
population by generating novel policies based on the analysis of parent policies’ control logic.
E1 prompts the LLM to examine both the code and thought of selected parent policies and then
synthesize a new policy that implements fundamentally different control strategies, encouraging
exploration of uncharted regions in the policy space. E2 prompts the LLM to identify shared
patterns across multiple parent policies and construct a new policy that generalizes from these
patterns, akin to the crossover operation in evolutionary computation.

e Multimodal modification operators (M1_M and M2_M): These operators instruct MLLMs to
analyze BE and refine existing policies through detailed, informed modification. M1_M asks the
MLLMs to identify behavioral shortcomings by jointly analyzing the policy code and its BE, then
revise the control logic accordingly. M2_M prompts the MLLMs to identify critical parameters in
the policy and adjust them based on the observed evidence, leading to targeted optimization. The
integration of BE analysis provides grounded insights for the MLLM’s reasoning, resulting in
more coherent and purposeful offspring generation.

Patrent seleicti:n(ll. for eiih seafch step,lpar- Algorithm 1 Pseudocode of MLES
ents are selected from the policy pool us- - — —— -
ing exponential rank selection, a standard Require: Task description, training instances, inter-
method in EC (Blickle & Thiele| [1996). faces of Evaluator and Summarizer

In this scheme, policies are ranked accord- ¢ Initialize policy pool

ing to their performance, and the selection 2: while termination c;ondltlon not met do
probability p; for the policy at rank r; is > for gaih evolutlonarly Qpe;ator dol' ,
proportional to an exponential decay of its O?:)tec't p;}rgent FO ICIef r‘im'PO ICy poo
rank, typically expressed as p; o e "%, ain GEs ol parent policies

This method provides a robust way to con- 80“5tht TEfUItlTHOdallfeW‘s_hol\tAII’jﬁﬁpt
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ing the exploitation of high-performing _ E/;faluate Of(gSPﬂélg andlgreate ltls BE
policies while maintaining diversity by en- " anage and update policy poo

suring lower-ranked individuals still have 10 end for

a chance of being selected. 11: end while o
12: return A pool of control policies

AN A

Few-shot prompt construction. After se-
lecting the operator and parents, the prompt
sampler constructs a task-specific few-shot prompt to guide the MLLMs in generating new policies.
Each prompt consists of the following components: (1) a task description, (2) the code and thought of
each parent policy, (3) relevant BEs, and (4) operator-specific instructions. Together, these elements
provide the necessary context and guidance for effective policy generation.

Policy generation & individual construction. Guided by the constructed prompts, the LLM
ensemble generates a candidate policy. The policy is then executed by evaluators to assess the
quantitative metrics. The raw data from its executions is processed by the behavior summarizer,
converting it into BE, and ultimately leading to the construction of the corresponding individual.

Policy pool management. Offspring individuals are filtered for redundancy and ranked based on
their quantitative metrics. The top N individuals, based on these rankings, are then added back into
the policy pool, facilitating progressive refinement and sustained diversity over successive iterations.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

Benchmarks. We evaluate the proposed MLES framework on two representative control tasks from
the OpenAl Gym suite (Brockman et al., 2016): Lunar Lander and Car Racing. These tasks
collectively cover both discrete and continuous control settings, providing a comprehensive testbed
for our method.
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* Lunar Lander is a discrete-action control task where the agent must land a spacecraft on a
designated pad. The agent has four action choices, and the environment has an 8-dimensional
state space. It is commonly used for benchmarking RL methods in discrete action domains.

» Car Racing is a more complex continuous-control task. The agent drives a car along procedurally
generated tracks based on pixel observations. This control task poses a greater challenge due to
its high-dimensional input (9696 x3 image) and continuous action space, making it an ideal
testbed for evaluating image-conditioned programmatic policies.

Baselines. We compare MLES against both DRL methods and an existing LES approach for direct
control policy discovery:

¢ Deep Q-Network (DQN) (Mnih et al.,[2013) is a value-based DRL algorithm designed for discrete
action spaces. It serves as a representative DRL baseline for Lunar Lander.

* Proximal Policy Optimization (PPO) (Schulman et al.||2017)) is a widely used on-policy policy
gradient method that can handle both discrete and continuous control tasks.

* EoH (Liu et al}|2024a)) is a recent LES framework for automated code discovery. We use it as a
baseline to assess the added value of behavioral evidence analysis in MLES, as it shares the same
evolutionary framework but lacks the visual feedback-driven behavior analysis used in MLES.

Beyond the baselines listed above, we also considered other paradigms for generating human-readable
policies, such as genetic programming (GP) and policy distillation. However, GP-based approaches
are highly dependent on manually-designed DSLs (Trived: et al., 2021} |Q1iu & Zhul |[2022). Adapting
them to our benchmarks would require non-trivial effort, making a fair comparison difficult. On the
other hand, distillation-based methods typically incur a performance loss compared to their DRL
teacher models (Verma et al., |2018). Therefore, evaluating MLES against high-performing DRL
methods is the most direct and meaningful measure of its capabilities.

Implementation details. Both MLES and EoH employ GPT-40-mini for policy generation. The LLM
query budget is set to 2000 requests, corresponding to 10,000 and 8,000 environment resets for Lunar
Lander and Car Racing, respectively. To ensure a fair comparison, we train all baselines under an
identical budget of environment resets. The policy pool size N is set to 16, with the initial population
of policies for MLES shared with EoH to avoid any biases arising from different starting points. All
experiments are conducted on a machine equipped with an Intel Core 19-13980HX processor and 32
GB of RAM. For the Lunar Lander task, we select five representative instances for training, while for
the Car Racing task, four representative tracks are chosen. Both tasks use ten test environments, each
generated from a random seed in the range zero to nine. Each experiment is repeated five times to
ensure the robustness and reliability of the results.

3.2 EXPERIMENTAL RESULTS

Table 1: Performance on benchmarks. Best results are in bold, second-best are underlined.

Lunar lander Car Racing
Method Training Testing Training Testing
Average SEM  Bestrun Average | Average = SEM  Bestrun Average
DQN 1.017  +0.022 1.066 0.508 79.777  £2.635 91.182  71.724
PPO 1.032  +0.026 1.076 0.846 99.212  +0.390 100.000 94.546
Initial policy | 0.629 — — 0.653 | 17.772 — — 17.619
Eoh 1.053  £0.021 1.085 0.776 89.808 +£1.553 96.675 = 79.286
MLES 1.090  £0.005 1.098 0.819 98.070  £0.719 100.000 96.358

Comparative evaluations of MLES. Table [l| presents the performance of each method on Lunar
Lander and Car Racing benchmarks. We report the average and best performance from five indepen-
dent runs for both training and testing instances, along with the standard error of the mean (SEM).
On the Lunar Lander task, a score above 1.00 signifies a successful landing on all instances, with
higher scores indicating greater fuel savings. For the Car Racing task, a score of 100 represents a
flawless completion of all tracks. For both tasks, a higher score indicates better performance. The
specific metrics used for these evaluations are detailed in Appendix [C]
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As Table[T]shows, the MLES achieves the highest training performance on Lunar Lander and ranks
second-best on Car Racing, performing comparably to the strong PPO baseline. Compared to the
Initial Policy, which serves as our starting point, MLES demonstrates substantial improvements
across both tasks, highlighting its practical effectiveness. These results provide strong evidence that
MLES is capable of synthesizing high-performing policies directly through environment interaction,
delivering performance on par with strong DRL baselines.

When compared to EoH, MLES consistently and significantly outperforms it on both training and
testing instances. Furthermore, MLES exhibits superior convergence and stability, as indicated by its
smaller SEM. The performance gap is especially pronounced in the more challenging Car Racing
task. This outcome demonstrates that integrating behavior analysis not only substantially enhances
the effectiveness of policy evolution but also improves the robustness of the generated policies.

However, we observe a consistent drop in testing performance relative to training across all methods.
This indicates that generalization remains a challenge. In Appendix [B.5] we explore how MLES can
leverage its population-based nature to improve generalization through policy ensembling.

Analysis of policy discovery efficiency. Figs. [3]and [d]illustrate the convergence of the best policy
performance with respect to the count of environment resets for four methods. Colored curves
represent the mean performance over five runs, and shaded areas indicate the SEM, reflecting the
stability during the policy discovery process.
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Figure 3: Convergence on Lunar Lander task Figure 4: Convergence on Car Racing task

As demonstrated, the MLES consistently shows superior search efficiency compared to the baselines.
On the simpler Lunar Lander task, MLES discovers high-performing policies within approximately
5,000 environment resets, which is substantially faster than both PPO and DQN. On the more chal-
lenging Car Racing task, MLES achieves a convergence speed comparable to PPO while exhibiting
significantly lower variance across runs, indicating more stable learning dynamics. In comparison
to EoH, MLES achieves both faster convergence and higher final performance across tasks. The
narrower confidence intervals in later stages further emphasize MLES’s robustness and consistency.
These results highlight the benefits of incorporating visual feedback-driven behavior analysis into the
evolutionary process. By leveraging richer signals beyond scalar performance metrics, MLES more
effectively guides policy search, leading to faster convergence and enhanced stability.

Another noteworthy observation is that both MLES and EoH exhibit higher initial performance
compared to DRL baselines. This advantage stems from the ability of the LES paradigm to easily
use prior knowledge as initial policies, allowing for a more informed starting point for the search.
In contrast, defining meaningful policies in the form of neural networks is challenging, and DRL
methods typically rely on randomly initialized weights. This highlights the inherent capacity of
MLES to reuse and transfer knowledge. This capability is particularly valuable in domains where
expert heuristics are available, enabling more sample-efficient exploration from the outset.

Qualitative analysis of the transparency. Fig. [5| presents an evolutionary process for Car Racing
policies, showing how individual scores change over generations. This visualization clarifies why
each policy was generated and how it was refined. Such transparency firmly demonstrates that
the policy discovery process of MLES is interpretable and traceable. By analyzing the BE, the
MLLMs identify failure patterns in parent policies and perform targeted improvements accordingly.
The final policy’s code and accompanying thought are provided in Appendix [F] To validate the
human-readability of the generated policies, we asked 20 graduate students with computer science
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backgrounds to review them. The participants reported that they could understand the code and noted
that the detailed comments embedded within the code were particularly helpful. In summary, MLES
offers transparency on two levels: (1) the discovered programmatic policies are fully human-readable;
(2) the policy discovery process is entirely transparent and highly informative for further research.
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Figure 5: Evolutionary process of Car Racing policies. The plot depicts population score distributions
over generations, with yellow lines tracing all ancestors of the best-performing policy. The blue
lineage is examined in detail to reveal the stepwise improvements guided by BE-driven insights.

3.3 ABLATION STUDY ON EVOLUTIONARY OPERATORS

We conduct an ablation study to assess the individual contributions and the collective synergy of the
evolutionary operators within the MLES (Table 2] with more detailed results and analysis provided in
Appendix [B.4). The results presented are based on three independent runs, and the metric APerf(%)
quantifies the performance degradation relative to the full MLES framework.

The most pronounced perfor- Table 2: Ablation study results on two control tasks
mance degradation is observed
in the variants that remove the

Lunar Lander Car Racin
multimodal modification opera- Method Average  APerf (%) Average APe%f (%)
tors (w/o M1_M and w/o M2_M).

This highlights the critical role ~ MLES 1.090 0.00% 98.70 0.00%

of leveraging concrete execution /o E1 1.093 +0.17% 87.53 _11.32%
feedback to rectify behavioral w/o E2 1.082 -0.68% 89.04 -9.79%
shortcomings and fine-tune pa- /o MI_M  0.997 -8.54% 86.71  -12.15%
rameters, which significantly en- /o M2 M 1.020 -6.41% 8477  -14.12%

hances the efficiency of the pol-
icy discovery process. In con-
trast, the exploration operators (w/o E1 and w/o E2) exhibit different impacts depending on task
complexity. Their absence leads to a notable performance decrease in the more challenging Car
Racing task, suggesting that the exploration capability of E1 and E2 becomes increasingly vital in
complex policy spaces. However, the effect on the simpler Lunar Lander is minimal, indicating that in
less complex environments, their aggressive exploration might introduce counterproductive variance.

In summary, the full MLES outperforms all ablated variants, confirming the synergistic effect of
the operators. The exploration operators serve as the “engine of creativity,” broadening the search
by introducing diverse policies into the population. Subsequently, the multimodal modification
operators act as the “engine of refinement,” grounding the search by improving these policies based
on behavioral evidence. This powerful combination allows MLES to effectively balance a broad,
creative policy search with a deep, evidence-driven refinement of promising solutions.
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4 RELATED WORKS

Learning human-readable policies. Existing methods for creating transparent policies can be
broadly categorized as post-hoc and direct approaches (Vouros, [2022; |Glanois et al., 2024). Post-hoc
methods aim to explain a pre-trained black-box policy by distilling its behavior into a more transparent
model, such as a decision tree (Bastani et al., 2018} |Gokhale et al., 2024 |[Kohler et al., |2024)), a
mathematical formula (Hein et al.l 2018 |Landajuela et al., 2021; [Hazra & De Raedt, [2023), or a
program in a DSL (Verma et al.|[2018}; | Verma, 2019). Although they can achieve high performance by
mimicking black-box policies, they provide limited insight into proactively constructing or improving
policies, and tend to lack generalization beyond the oracle’s domain (Gu et al., [2025)). In contrast,
direct approaches discover a policy from scratch through interaction with the environment. This
category includes methods that generate policies as logic rules (Jiang & Luol 2019; Delfosse et al.,
2023}, |Glanois et al., 2022)) or programs within a pre-defined DSL (Qiu & Zhul 2022; Liu et al.,
2023b;|Gu et al.| [2024; [Liu et al.,|2024b). However, they are often constrained by static grammars or
limited search spaces, restricting their expressiveness and scalability. Our MLES falls into the latter
category but significantly expands its scope by representing policies as executable programs with
natural language explanations and using pre-trained LLMs to generate more expressive and diverse
control logic, without relying on expert data or static, handcrafted grammars.

LLM-assisted evolutionary search. Recent advances in EC have integrated LLMs into the evolution-
ary loop, giving rise to a new paradigm known as LES (Liu et al.,[2023a)). This paradigm has shown
success in areas such as code generation (Hemberg et al., 2024), scientific discovery (Romera-Paredes
et al., [2024; |Shojaee et al.,|2024), and algorithm design (Liu et al., 2024a; Ye et al.,|2024)). In the RL
domain, LES has been primarily applied to the indirect optimization of agents by evolving reward
functions (Ma et al .| 2024} |[Hazra et al., [2024), thereby improving the performance of downstream
neural policies. However, the resulting policies remain neural and opaque. Our MLES extends
LES toward the direct synthesis of programmatic policies through interactions with the environment.
Additionally, we incorporate behavior analysis into the evolutionary loop, enabling the search to be
guided by richer information beyond scalar rewards. This facilitates a more informed and transparent
form of policy discovery, where both the resulting policy and its design rationale are accessible for
inspection. To the best of our knowledge, this is the first effort to unify LLMs, evolutionary search,
and multimodal evaluation for the direct synthesis of policies in control tasks.

Multimodal large language models. MLLMs extend the capabilities of LLMs by integrating visual
and textual modalities, enabling grounded understanding and vision-language reasoning (Caftagni
et al.|[2024). Recent models such as GPT-4V (Hurst et al., 2024) and Qwen2.5-VL (Bai et al .} 2025))
demonstrate strong performance on tasks requiring joint visual-language comprehension for planning
and high-level control. These advances have led to increasing applications of MLLMs in planning and
optimization (Zheng et al.l 2024} |Szot et al.| 2025; [Elhenawy et al.,[2024ajjb; |[Zhao & Cheong} 2025).
More recently, MLLMs have also been used to adapt reward functions based on visual cues (Narin,
2024; |Wang et al. 2025} |Cuzin-Rambaud et al., [2025)), thereby improving agent learning in complex
RL settings. Our MLES uses the vision-language capabilities of MLLMs to guide the policy search
process with rich information, including policy execution traces, in-depth analyses, and promising
corrective suggestions. This approach facilitates a more transparent and traceable policy discovery,
ultimately supporting the synthesis of reliable, human-aligned policies.

5 CONCLUSION

This paper introduces Multimodal Large Language Model-assisted Evolutionary Search (MLES),
which combines multimodal large language models with evolutionary computation to efficiently
design programmatic policy for control tasks. By incorporating visual feedback-driven behavior
analysis, MLES mimics a human-like control policy development process, which enhances search
efficiency. Our experiments on two standard control benchmarks demonstrate that MLES generates
effective policies with performance comparable to the strong Proximal Policy Optimization (PPO)
baseline. Notably, MLES yields transparent control logic with traceable policy design processes.
MLES offers a flexible and automated approach that reduces human effort and facilitates knowledge
reuse, presenting a promising new paradigm for developing transparent and verifiable control policies.
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6 REPRODUCIBILITY STATEMENT

The technical details of the MLES framework are provided in Section[2] To ensure full reproducibility
of our experimental results, we have included all necessary information in the supplementary materials.
This includes a detailed breakdown of all hyperparameters and experimental setups in Appendix [B.1]
and a comprehensive list of the prompts used in Appendix[E} The source code for our implementation
and experiments is also provided in the supplementary materials, enabling direct replication of all
reported results.
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A DISCUSSION AND LIMITATION

A.1 OUTLOOK OF MLES FOR CONTROL PoOLICY DISCOVERY

This paper provides a preliminary yet compelling demonstration of the Multimodal Large Language
Model-assisted Evolutionary Search (MLES) framework for automatically discovering programmatic
control policies. As evidenced by the results in the Car Racing task (Appendix [F), MLES successfully
constructed a data processing pipeline for image input, guiding control decisions for steering, throttle,
and braking with flawless performance across various tracks. This foundational success points toward
several exciting future directions and highlights the framework’s significant potential.

Modularity enables hybrid architectures for complex scenarios. As observed in Appendix [F}
the programmatic policies discovered by MLES are inherently modular, typically separating into
feature processing and decision-making components. This separation provides a powerful pathway for
tackling more complex environments. Our framework’s ability to autonomously leverage sophisticated
libraries like OpenCV highlights its potential for integrating even more advanced perception modules.

For instance, a pre-trained convolutional neural network (CNN) could be employed for high-
dimensional visual processing. The output from this module—whether processed features or inter-
mediate computations—can then be fed into a transparent control logic for decision-making. This
creates a compelling opportunity for hybrid Al systems that merge the feature-learning power of
deep learning with the transparency and verifiability of code-based control logic. In stark contrast to
end-to-end DRL, where perception and control are inextricably coupled within an opaque network,
our approach ensures that even when perception is a black box, the critical decision logic remains fully
transparent and verifiable. Such a capability is not just an advantage but a necessity for real-world
applications like autonomous driving and embodied intelligence, where handling complex sensory
inputs must be paired with the highest levels of safety and verifiability.

Human-in-the-loop collaboration. The modular, code-based nature of MLES policies also
uniquely facilitates human-expert collaboration. In DRL, the tight coupling of the entire network
makes it challenging to modify specific control preferences. MLES, however, allows experts to inspect
and intervene at any stage of the policy discovery process. If a deficiency is identified, an expert can
manually edit the relevant code block and re-insert the improved policy into the evolutionary pool for
further automated refinement. This enables continuous expert-assisted refinement. Furthermore, this
collaboration can be streamlined via natural language: an expert could simply identify a failure mode
(e.g., “the agent brakes too late on sharp turns”) and provide this feedback in a prompt, allowing the
MLES framework to automatically generate a targeted modification. This creates a seamless and
efficient workflow for expert-guided policy optimization.

Facilitating knowledge transfer and reuse. One of the most significant advantages of MLES
is that the discovered policies are encoded as executable code, which greatly simplifies knowledge
transfer and reuse. In DRL, transferring knowledge often involves complex mechanisms like transfer
learning or fine-tuning, which can be resource-intensive and difficult to implement. MLES bypasses
these challenges by directly encoding prior knowledge into code. This approach not only makes
knowledge transfer easier but also accelerates the policy deployment process. Additionally, LLMs
can assist in this translation process, further reducing the time and effort required. As a result, MLES
is particularly beneficial for tackling problems that involve well-established expert knowledge.

Moreover, this ease of transfer extends to addressing generalization challenges. In many tasks,
different instances of the same problem may require subtle adjustments to the policy for optimal
performance. Despite these variations, the core logic of the policy generally remains consistent.
As such, instead of starting from scratch for each new instance, MLES can adapt and fine-tune
existing policies with minimal adjustments, ensuring continued high performance. A promising
future direction for MLES is the collaborative evolution of policies for instances across multiple
distributions, facilitating knowledge sharing of high-performing policies across different scenarios
during the evolutionary process. This approach will be demonstrated in future work.

With the integration of visual feedback-driven behavior analysis, MLES mimics how human experts
design policies—actively evaluating and adjusting policies in response to feedback. The key advantage
is that MLES operates fully automatically and can scale indefinitely, given sufficient computational
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resources. This scalability significantly accelerates the discovery of viable policies. In summary,
MLES holds substantial potential to be a promising paradigm for transparent control policy discovery.
We believe that MLES offers a new path forward for the field and invite the broader research
community to explore and contribute to this exciting area.

A.2 COMPUTATIONAL CONSIDERATIONS AND COST-BENEFIT ANALYSIS

MLES introduces a computational paradigm distinct from traditional DRL. Instead of relying on
intensive and prolonged local GPU computation for model training, the primary resource consumption
in MLES stems from the inference process of Multimodal Large Language Models (MLLMs).

This inference can be realized through two primary modalities: API-based services or local deploy-
ment. In this work, we utilize the API-based approach. While this incurs a direct financial cost, the
expenditure is surprisingly modest, especially when weighed against the unique value generated. For
instance, our experiments show that solving the Car Racing benchmark, which required approximately
2000 requests to a cost-effective MLLM (such as GPT-40 mini), incurred a total cost of around
0.42 USD. Crucially, this nominal cost achieves a goal that is fundamentally unattainable for DRL,
regardless of its computational budget: the generation of transparent, human-readable programmatic
policies. Therefore, from a cost-benefit perspective, MLES offers an exceptionally favorable trade-off,
exchanging a minor financial outlay for a critical capability that traditional methods cannot provide.

Furthermore, this API-centric paradigm offers a significant, often-overlooked advantage: a minimal
requirement for local hardware resources. The computationally demanding MLLM inference is
offloaded to a third-party service, removing the need for powerful local GPUs and thus lowering the
barrier to entry for researchers and practitioners. For institutions with the capacity for local MLLM
deployment, this direct financial cost is effectively eliminated, reducing the expenditure to local
inference costs alone.

Given the continuous downward trend in LLM API pricing and the proliferation of powerful open-
source models, we believe the MLES paradigm is not only viable but also a highly practical and
sustainable approach for developing the next generation of trustworthy Al control systems.

A.3 LIMITATION

Task-specific design of behavioral evidence. The MLES framework leverages Behavioral Evi-
dence (BE) to analyze policy behavior and guide targeted improvements, thereby accelerating policy
discovery. A current limitation, however, is that the design of efficient BE remains a task-specific,
manual process. For MLES to achieve optimal performance, the BE must be sufficiently informative
to capture the nuances of policy failures. In this paper, we design BEs from a human perspective
for the Lunar Lander and Car Racing tasks and successfully apply them within MLES, achieving
high performance. However, for a new task, the design of an appropriate BE-generation pipeline is
required, introducing design overhead.

We foresee three promising avenues to reduce or eliminate this manual effort:

* First, by reusing and fine-tuning the BE-generation pipeline proposed in this paper. As detailed
in Appendix [D.2] methods such as frame stacking are well-suited for tasks with relatively static
backgrounds, while trajectory mapping is effective for tasks focused on object motion, such as
vehicle or drone control. These pipelines can serve as robust starting points for new environments.

* Second, by leveraging video-format BE, such as raw video clips of agent rollouts. This approach
would provide rich, detailed information with minimal design effort but introduces a trade-off
with computational cost, primarily due to the high token count associated with processing image
sequences in MLLMs. The feasibility of this approach will likely improve as the cost of MLLM
inference decreases over time.

» Third, a more ambitious direction is to empower the MLES framework to automatically design its
own BE. Analogous to the way MLES designs programmatic policies, an outer design loop could
be added to the framework to optimize the BE-generation pipeline itself. This can be framed as
a meta-learning problem, where the outer loop discovers an optimal BE pipeline that provides
maximally informative evidence for the inner policy evolution loop, thereby minimizing the need
for human intervention.
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Dependency on multimodal large language models. The performance ceiling of MLES is inher-
ently coupled with the capabilities of its underlying MLLMs. The framework’s ability to understand
complex failure modes is contingent on the MLLM’s visual reasoning, while the quality of generated
policies depends on its code generation and logical deduction abilities.

While this dependency is a limitation, it also means that MLES is designed to continuously improve
as foundational models advance. As MLLMs become more capable, the performance, efficiency, and
scalability of MLES will naturally be enhanced. This symbiotic relationship positions MLES not as a
static method, but as an evolving paradigm poised to leverage future breakthroughs in generative Al
Future work could also explore systematically evaluating the impact of different open-source and
proprietary MLLMs within the MLES framework to better understand this relationship.

B ADDITIONAL EXPERIMENT RESULTS

B.1 HYPERPARAMETERS FOR EXPERIMENTAL SETUP

This subsection presents the hyperparameters used in our experiments involving MLES, EoH, DQN,
and PPO. The experiments were implemented in Python and executed on a single CPU (Intel i9-
13980HX) with 32GB of RAM. Table [3] details the hyperparameters for MLES and EoH, where
identical settings were applied to ensure a fair comparison, based on the configurations from the
EoH paper (Liu et al.,[2024a). Tables [ and [5] present the hyperparameter settings for DQN and PPO
across two tasks, respectively. Tables [6] and [7] show the network architectures used for DQN and
PPO on two benchmarks. To ensure a fair comparison, we maintained identical network structures
(with approximately equal parameter counts) for DQN and PPO in terms of feature processing and
decision-making, excluding the output layers.

Notably, while the PPO agent utilizes a densely parameterized neural network (as shown in Table[7),
the programmatic policies discovered by MLES achieve comparable performance with a significantly
lower computational footprint. This stark difference in complexity makes MLES policies excep-
tionally well-suited for deployment in real-world applications, particularly in resource-constrained
environments such as embedded systems or microcontrollers.

Table 3: Hyperparameter settings for MLES and EoH.

Hyperparameter Parameter Description Value

m Number of parents selected in each evolution step 2

N Population size 16

LLM Version of LLM used in the evolutionary operators GPT-40-mini

LLM temperature ~ Hyperparameter controlling the randomness of LLM text generation 1

Table 4: DQN Hyperparameters for Lunar Lander and Car Racing Tasks

Hyperparameter Lunar Lander Car Racing
Action Space Dimension 4 9 (Discrete actions)
Replay Buffer Capacity 10,000 30,000
Batch Size 128 128
Discount Factor 0.99 0.98
Initial e 1.0 1.0
Minimum € 0.01 0.1

€ Decay Rate 0.9995 0.995
Target Network Update Rate (1) 0.01 0.01
Optimizer Type Adam Adam
Learning Rate 0.001 0.0005
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Table 5: PPO Hyperparameters for Lunar Lander and Car Racing Tasks

Parameter Lunar Lander Car Racing
Discount Factor 0.99 0.99
Generalized Advantage Estimation Parameter  0.95 0.95

PPO Clip 0.2 0.2

Entropy Coefficient 0.01 0.01

Critic Coefficient 0.5 0.5

Max Gradient Norm 0.5 0.5

Batch Size 256 256

Mini Batch Size 64 64
Learning Rate 3e-5 3e-5

Table 6: Network Architectures for DQN and PPO on Lunar Lander Task

Component  Layer Type DQN Configuration PPO Configuration
Input Layer State Dimension 8 (environment observation space)
Hidden Layer Layer 1 Linear(512)—ReLU

Layer 2 Linear(512)—ReLU
Output Layer  Policy Head Linear(4)

Value Head N/A Linear(1)
Activation Hidden Layers ReLU

Output Layer Linear
Parameters Total Parameters 269,316 269,829

Table 7: Network Architectures for DQN and PPO on Car Racing Task

Component Specification DQN PPO
Input Layer Dimensions 96x96x3 (Current frame) + 96x96x3 (Last frame) + 1 (Speed) + 3 (Last action)
Layer 1 Conv2d(3—32, kernel=8x8, stride=4) — ReLU
Convolutional Layers Layer 2 Conv2d(32—64, kernel=4x4, stride=2) — ReLU
Layer 3 Conv2d(64—64, kernel=3x3, stride=1) — ReLU
Shared Network Architecture Linear(8196—512)—RelLLU Linear(8196—512)—RelLU
Policy Head Architecture Linear(512—9) Linear(512—256) — ReLU — Linear(256—3)
y Output Discrete actions (9) Continuous actions (steering, throttle, brake)
Value Head Architecture N/A Linear(512—256) — ReLU — Linear(256—1)
Activation Hidden ReLU
Output Linear Policy: Tanh/Sigmoid, Value: Linear
Parameters Total 4,277,417 4,536,484

B.2 ANALYSIS OF COMPUTATIONAL TIME (WALL-CLOCK TIME)

In this section, we evaluate the wall-clock time of MLES against baselines to assess its computational
efficiency in discovering viable policies. All experiments are conducted on a single machine equipped
with an Intel Core 19-13980HX processor, 32 GB of RAM, and an NVIDIA GeForce RTX 4060

GPU.

We measure efficiency using two primary metrics:

» Total Time: The full runtime of a method until a predefined budget of environment resets
is exhausted. This metric reflects the overall computational cost for a comparable amount of

exploration.

* Time to Threshold: The time elapsed from the start of a run until a method first discovers a
policy meeting a predetermined performance threshold. This metric quantifies the speed at which
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a method solves the task. The thresholds are a score of 1.00 for Lunar Lander and 95.0 for Car
Racing.

The computational time for DQN and PPO primarily consists of GPU-accelerated neural network
training and CPU-based environment rollouts. For MLES and EoH, the time is composed of: (1)
Sample time, the latency for OpenAl API calls (using gpt-40-mini), encompassing network latency
and MLLM inference; (2) Eval time, the CPU time for policy evaluation in the environment; and (3)
minor overhead for population management.

Table 8: Wall-Clock Time Comparison of MLES and Baselines

Task Method Total Time Time to Threshold Remarks
DQN 1h 55min 0Oh 31min
Lunar Lander PPO 1h 44min 1h 11min
EoH 1h 49min Oh 57min Sample time:~20s; Eval time: ~4.5s
MLES 1h 50min Oh 36min Sample time:~20s; Eval time: ~4.5s
DQN  41h 58min —
Car Racin PPO 32h 37min 12h Omin
g EoH 6h 47min — Sample time:~20s; Eval time: ~45s
MLES 6h 28min 3h 16min Sample time:~20s; Eval time: ~45s
Note: “—” indicates that the method failed to reach the performance threshold within the given time budget.

The “Sample time” and “Eval time” in the Remarks column refer to the approximate durations for a single
policy generation (API call) and its subsequent evaluation, respectively.

Table [8| presents the wall-clock time comparison. Time to Threshold The results demonstrate that MLES is
highly competitive in computational efficiency, even outperforming traditional DRL baselines on key metrics.
Several key observations and insights can be drawn from these results:

1. Efficiency from inherent parallelism. For the Car Racing task, both MLES and EoH exhibit
significantly lower Total Time than the DRL methods, an advantage stemming from the inherently parallel
nature of the EC framework. In our implementation, policy sampling and evaluation for MLES and EoH are
parallelized across eight processes. This architecture is highly effective for tasks with long evaluation times
(approx. 45s per rollout in Car Racing), allowing the population to be evaluated concurrently. Conversely, for
Lunar Lander, where Eval time is much shorter (approx. 4.5s), the benefits of parallelization are less pronounced,
and total times are comparable across all methods. This scalability demonstrates that the MLES framework is
well-positioned to tackle more computationally intensive tasks without facing prohibitive runtime bottlenecks.

2. Superior Time to Threshold. MLES demonstrates exceptional performance on the Time to Threshold
metric, which measures the speed of problem-solving. On Lunar Lander, MLES (36min) is competitive with
the fastest baseline, DQN (31min), and substantially faster than PPO (1h 11min). This advantage is magnified
in Car Racing, where MLES reaches the threshold in just 3h 16min, nearly four times faster than PPO (12h).
This superior efficiency is attributable to two factors: (1) the rapid exploration rate enabled by the parallel EC
framework, and (2) the enhanced search effectiveness from targeted policy improvements, which are guided by
our visual feedback-driven behavior analysis.

3. Negligible overhead from multimodal inputs. A key finding is that introducing image-based
behavioral evidence in MLES does not incur a significant latency penalty in API calls compared to the text-only
EoH. The Sample time for both remained around 20 seconds. This demonstrates that the inference efficiency of
current MLLMs like gpt-4o-mini is sufficient to support our framework without creating a bottleneck, rendering
the rich guidance from multimodal feedback a computationally viable enhancement.

B.3 INFLUENCE OF BEHAVIORAL EVIDENCE AND PROMPT ENGINEERING ON POLICY
DISCOVERY

This section investigates the influence of different forms of BE and prompt engineering strategies on the policy
discovery process. We employ M1 as the test operator and construct various few-shot prompts, incorporating
diverse forms of BE and specific instructions. Specifically, we evaluate the following five configurations:

e M1: The baseline operator derived from EoH, without any additional input.
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e M1_M: Incorporates image inputs. The prompt explicitly instructs the MLLM to provide a detailed
description and analysis of the image content.

« M1_M': Includes image input, but without explicit instructions for description or analysis. The LLM
directly optimizes the policy based on the provided image.

* MI_T: Introduces textual trajectory coordinates, as illustrated in Fig. [7(c). The prompt explicitly
instructs the MLLM to describe and analyze this information in detail.

« M1_M*: Employs a two-stage process. The image is first processed by an MLLM 1 to generate
a detailed textual description, which is then passed to MLLM 2 for M1-level reasoning and policy
generation. This configuration is akin to using an LLM that does not have direct access to the image.

To quantitatively assess the impact of these different BE forms and prompt instructions, we initialized our
experiments with five distinct populations, each exhibiting significant evolutionary potential. These populations
are carefully selected from an established policy evolution process by MLES for the Lunar Lander task.
Specifically, we identify five generations that have previously demonstrated substantial progress and select their
immediate preceding populations as our initial populations. This selection criterion ensures that our starting
points possess considerable room for improvement, allowing for clearer observation of the operators’ effects.
Each M1 operator variant is applied to these populations for two generations. The entire experiment is repeated
five times to ensure statistical robustness. We measure the impact by observing both the average performance
improvement of the population and the improvement of the best policy within each population.

Table 9: Average performance improvement in population and best policy across different configura-
tions for the M1 operator.

Ml Ml.M MI1_Mf MIL.T M1 _MH#

Population improvement  +19.43%  4+24.55% +20.21% +20.29% +19.73%
Best policy improvement  +1.18%  +4.39%  +237%  +3.64%  +2.95%

Table[9] summarizes the average improvements in population performance and best policy performance brought
about by these operators. Several key observations and insights can be drawn from these results:

1. Integrating BE significantly boosts policy discovery efficiency. A foundational finding is that the
incorporation of BE consistently leads to improved performance compared to the baseline M1 operator. The
baseline M1, without any BE, achieves a population improvement of +19.43% and a best policy improvement
of +1.18%. In contrast, all configurations that utilize BE (M1_M, MlMJf, MI_T, MIMI) exhibit higher
gains in both population and best policy performance. For instance, M1_M demonstrates the highest population
improvement at +24.55% and also the most significant best policy improvement at +4.39%. This clearly indicates
that providing MLLMs with relevant behavioral evidence significantly aids in fine-grained policy evaluation and
enables more targeted policy optimization. The evidence acts as a crucial guide, steering the MLLM toward
more effective policy spaces.

2. The impact of interpretability and richness of BE. Both M1_M and M1_T demonstrate substantial
improvements in best policy performance, with +4.39% and +3.64%, respectively. While both forms of BE prove
beneficial, the visual representation of the lander’s behavior and posture in images is arguably more expressive,
intuitive, and easier for the MLLM to interpret than raw textual state traces. This superior interpretability
and rich expressiveness enable the MLLM to analyze policy behavioral patterns more deeply. These results
support our claim, as discussed in Appendix [D.I] that the most crucial aspect of BE is the quality and inherent
interpretability of the information it conveys, along with how effectively this information can be leveraged
by MLLMs for comprehensive behavioral analysis and subsequent policy refinement. The richer, more direct
semantics embedded in visual data appear to offer a distinct advantage.

3. The benefit of direct image input. Comparing M1_M (direct image input) with M1_M?* (two-stage
processing where an image is first described by an MLLM into text, then passed to the policy generator), we
observe a clear performance disparity. M1_M achieves a population improvement of +24.55% and a best policy
improvement of +4.39%, whereas M1_M* yields slightly lower gains at +19.73% for population and +2.95% for
best policy. When an image transforms into a textual description by another model, even if that description is
“detailed,” there is an inherent risk of information loss or misinterpretation. For an MLLM serving as a policy
generator, directly accessing the raw image appears more advantageous than relying on a cascaded interpretation.
This suggests that the rich, nuanced information present in the original image may be difficult to fully capture
and convey through an intermediate textual representation, at least with current LLM capabilities. This outcome
highlights the value of direct multimodal processing for inherently multimodal tasks, as it avoids potential
bottlenecks and accumulated errors introduced by an intermediate textualization step.
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4. The advantage of explicit instructions for behavioral analysis. The contrast between M1_M and
M1_M" strongly highlights the advantage of providing explicit instructions for behavior analysis within the
prompt. M1_M consistently performs better in both population (+24.55%) and best policy (+4.39%) improvement
compared to M1_MT (+20.21% and +2.37% respectively). Both configurations receive image input, but M1_M
explicitly instructs the LLM to provide a detailed description and analysis of the image, while M1_M' does not.
This gap emphasizes that while MLLMs can implicitly derive information from raw image input to aid inference,
explicit directives to analyze BE can provide rich, relevant context. This promotes the activation of pertinent
knowledge within the MLLM. By encouraging a “thinking aloud” process, such instructions enable the LLM
to synthesize more comprehensive and actionable insights, which are subsequently utilized to generate more
effective policy modifications. This finding is consistent with observations in Chain of Thought and similar
works|Yu et al.| (2025); Wang & Venkatesh| (2025).

In summary, these experiments underscore that both the form of BE and the strategy of prompt engineering
are crucial factors in maximizing the effectiveness of MLES-driven policy discovery. A well-crafted context,
combining expressive and interpretable BE with clearly instructed analytical processes during MLLM inference,
significantly improves reasoning and enables more targeted and effective policy optimization. Our findings
suggest that for complex tasks requiring a nuanced understanding of behavior, direct multimodal input, coupled
with explicit analytical prompts, represents a superior approach.

B.4 ABLATION STUDY

We conduct an ablation study to assess the individual contributions and the collective synergy of the key
components within the MLES framework. This study evaluates variants of MLES where specific operators or
mechanisms are removed. For clarity, we define the key variants as follows:

« MLES' (w/o Exploration): This variant removes both exploration operators (E1 and E2). The policy
search relies solely on refining existing policies based on multimodal feedback (M1_-M and M2_M),
without generating fundamentally new strategies or generalizing from multiple parents.

o MLES* (w/o Multimodal Modification): This variant removes both multimodal modification operators
(M1_M and M2_M). The policy search proceeds using only the code and thoughts of parent policies
(E1 and E2), foregoing any targeted refinement based on BE.

* w/o Thought: This variant removes the natural language “Thought” description from the prompt. The
MLLMs must infer the policy’s logic and intent solely from the raw code, without the high-level
semantic guidance that explains the strategy.

We also evaluate the removal of each of the four operators individually, denoted by the prefix “w/0” (e.g., w/o
E1). The average performance across three independent runs for each variant is summarized in Table[I0] The
metric APerf(%) quantifies the performance degradation relative to the full MLES framework. As shown in
Table[10} each component contributes significantly to the overall performance of the MLES framework.

Table 10: Ablation study results on two control tasks.

Method Lunar Lander Car Racing
Average APerf (%) Average APerf (%)

MLES 1.090 0.00% 98.70 0.00%

w/o E1 1.093 +0.17% 87.53 -11.32%
w/o E2 1.082 -0.68% 89.04 -9.79%
MLES f 1.081 -0.77% 85.17 -13.71%
w/o M1_M 0.997 -8.54% 86.71 -12.15%
w/o M2_M 1.020 -6.41% 84.77 -14.12%
MLES? 0.629 -42.24% 83.16 -15.75%
w/o Thought  1.038 -4.75% 88.80 -10.04%

The critical role of multimodal modification. The most pronounced performance degradation is
observed in the MLES? variant, where removing both M1_M and M2_M results in a catastrophic drop of 42.24%
in Lunar Lander and a significant 15.75% decline in Car Racing. This finding strongly validates our core
hypothesis: leveraging BE for targeted policy refinement is the primary driver of MLES’s effectiveness. Without
the ability to analyze behavioral shortcomings (M1_-M) and fine-tune parameters (M2_M) based on concrete
execution feedback, the policy search becomes vastly less efficient and is prone to stagnation.
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The importance of exploration. The removal of exploration operators (MLEST) also leads to a notable
performance decline, especially a 13.71% drop in the more complex Car Racing environment. This indicates that
operators designed to synthesize fundamentally new strategies (E1) and generalize from successful existing ones
(E2) are essential for navigating challenging policy spaces and escaping local optima. Interestingly, the removal
of E1 in the simpler Lunar Lander task did not degrade performance but instead yielded a slight improvement
(+0.17%). A plausible explanation is that for a less complex problem space, the aggressive exploration of E1
might introduce counterproductive variance. Given a fixed search budget, its absence allows the search to focus
more effectively on refining already promising solutions. This strongly contrasts with its critical role in Car
Racing, underscoring that E1’s contribution is most significant in tasks demanding broad exploration.

Synergistic effect. While both operator types are important, the multimodal modification operators demon-
strate a more foundational impact. However, the full MLES model outperforms all ablated variants, underscoring
the synergistic relationship between exploration and modification. The exploration operators (E1, E2) act as the
“engine of creativity,” broadening the search by introducing diverse policy structures into the population. Subse-
quently, the multimodal modification operators (M1_-M, M2_M) act as the “engine of refinement,” grounding the
search by improving these policies based on empirical evidence.

These results underscore the importance of both exploration operators and multimodal modification operators.
By integrating these two aspects, MLES effectively balances a broad, creative search of the policy space with
a deep, evidence-driven refinement of promising solutions. This powerful combination is key to its ability to
efficiently discover high-performing policies.

The role of Thought. A design choice in MLES is to represent policies as a combination of executable
code and a natural language “Thought” describing the underlying strategy. Removing this “Thought” leads to
a substantial performance drop of 4.75% on Lunar Lander and 10.04% on Car Racing. This underscores the
importance of semantic guidance, which helps MLLMs to quickly comprehend the policy and perform a more
coherent search in the language space, thereby accelerating the policy discovery process. This observation aligns

with prior findings in the EoH paper [Liu et al| (2024a)).

B.5 GENERALIZATION VIA POLICY ENSEMBLE

Finding a single policy that generalizes perfectly to all possible scenarios is often unattainable in practice. The
performance degradation on test instances, observed across all methods in Table [I] illustrates this common
generalization gap. This gap is not necessarily a flaw of any specific method, but rather an inherent characteristic
of complex problems that demand case-specific solutions.
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Figure 6: Performance heatmaps of the final MLES policy populations on (a) Lunar Lander and (b)
Car Racing. Each row represents one of the 16 final policies, and each column represents one of
10 distinct test instances. The varied color patterns across rows for both tasks vividly illustrate the
strategic diversity and complementary strengths within the discovered policy pools.

A significant, inherent advantage of MLES is that its evolutionary process produces not just a single policy,
but a diverse population of high-performing candidate policies. We present performance heatmaps in Fig.
which plots the scores of each policy in the final population across ten distinct test instances for two tasks. The
varied color patterns illustrate that the discovered policies possess complementary strengths: some policies
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excel in particularly challenging instances where others struggle. This diversity confirms that MLES effectively
explores and maintains a rich portfolio of distinct policies. Consequently, this presents a compelling opportunity
to enhance generalization by applying ensemble decision-making to this set of high-performing, complementary
policies.

To validate this potential, we conduct an investigation using a straightforward ensembling strategy, with the
results reported in Table[TT] For the final policy population, the ensemble’s action is selected by majority vote
(for discrete tasks) or by averaging the outputs (for continuous tasks), and each policy is assigned an equal
weight. MLEST and EoH' denote the ensemble versions of the respective methods.

Table 11: Effect of Policy Ensemble on LES Performance

Lunar Lander Car Racing
Method Train Test Train Test
EoH 1.053 0.776  89.808  79.286

EoH' 0.938] 0.8561 82.978] 84.5671

MLES  1.090 0.819 98704  96.358
MLES'  1.032) 09014 96.904) 97.921¢

The results are highly encouraging. Despite the simplicity of the ensemble method, it produced a significant
improvement in test performance for both MLES and EoH. It is worth clarifying that a slight decline in training
performance is also observed after ensembling. This outcome is a well-known characteristic of the bias-variance
tradeoff, where ensembling acts as a form of regularization to improve generalization, sometimes at the cost of
slightly increased bias on the training set.

Crucially, the complementarity of the policies in the population is achieved organically, without employing any
explicit diversity-preservation techniques common in the EC field. This indicates a substantial, yet-to-be-tapped
potential for further improving MLES to address generalization issues. Looking forward, we believe this provides
a promising direction for future work, which could focus on explicitly cultivating a “specialist team” of policies.
This might involve exploring more advanced techniques, such as:

* Feature-Aware Instance Clustering: Automatically grouping similar problem instances based on their
features to train or select specialized policies for each cluster.

* Cooperative Co-evolution: Designing efficient evolutionary mechanisms that encourage the policy popula-
tion to collectively cover the full spectrum of training instances, rewarding policies for succeeding where
others fail.

« Adaptive Collaborative Decision-Making: Creating dynamic ensembling mechanisms where policies
“vote” on the final action with varying confidence levels based on the current state.

Overall, while not the primary focus of this paper, MLES demonstrates inherent properties and substantial
potential that could be harnessed to tackle the challenge of generalization.

C DETAILS OF QUANTITATIVE METRICS IN MLES

C.1 QUANTITATIVE METRICS FOR POLICY EVALUATION IN MLES

In MLES, quantitative metrics serve as indicators of policy performance, analogous to the episode reward
function in DRL. These metrics provide a consistent basis for ranking and selecting candidates during the policy
evolution process. Unlike DRL, where each action is evaluated with immediate rewards in an online fashion,
MLES evaluates the overall performance of a policy across a set of instances. In other words, MLES utilizes
sparse rewards to guide policy learning, focusing on the final performance outcome.

This approach offers a practical advantage in that it eliminates the need for frequent manual design of intermediate
rewards. We only need to focus on transforming the ultimate task goal into an evaluable metric, which can then
support automated policy discovery. This not only simplifies the process but also alleviates the computational
burden associated with reward design. However, this comes with the challenge of lacking direct evaluation of
intermediate behaviors, which may potentially lead to issues such as reward hacking. To address this limitation,
MLES incorporates behavioral evidence (BE), which supplements the evaluation of intermediate actions. A
more detailed discussion of this can be found in Section2.3]and Appendix [D]

Given a set of training instances, MLES aims to maximize (or minimize) the quantitative metric across the
policies in its policy pool. During the evaluation process, the performance of a policy is typically assessed in
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parallel across all relevant instances, and the overall quantitative metric is computed as a weighted average of
the metrics for each instance. Through iterative optimization, this process generates policies that are well-suited
to instances drawn from the same distribution as the training instances.

C.2 QUANTITATIVE METRICS FOR BENCHMARK TASKS

This subsection outlines the quantitative metrics employed for evaluating policies in the Lunar Lander and Car
Racing tasks.

Lunar Lander The quantitative metric for evaluating performance in the Lunar Lander task is the Normalized
Weight Score (NWS), which is defined as follows:

R e
NWS = 500 % 0.6 + (1 —min(55,1)) x 0.2+ 5 x 0.2 )

where R is the mean episode reward, C is the mean fuel consumption, and S is the success rate of completing
the landing task, all computed over multiple instances.

For each training instance, the episode reward is calculated by summing the rewards across all steps taken by the
policy during execution. The reward for each step is determined by the following criteria:

* Reward increases/decreases based on the proximity to the landing pad.

* Reward increases/decreases based on the lander’s speed (slower movement is rewarded).

¢ Reward decreases based on the tilt of the lander (less tilt is better).

* An additional reward of 10 points is awarded for each leg in contact with the ground.

Penalties are imposed for using side or main engines during flight (-0.03 and -0.3 points per frame,
respectively).

A penalty of -100 points is incurred for crashing, and a bonus of +100 points is awarded for a successful
landing.

A policy is considered successful if it achieves an episode reward of at least 200, which contributes to the first
term in the NWS calculation. The policy’s success is also determined by its ability to land safely, which is
reflected in the third term of the NWS. A policy with an NWS greater than 1 indicates a 100% safe landing rate,
with larger values indicating more fuel-efficient landings. To ensure fair comparison, DRL algorithms also adopt
the default reward function as described above.

Car Racing Regarding the Car Racing task, the Gym environment provides a reward of -0.1 points for each
frame, with an additional reward of +1000/N for each track tile visited, where N is the total number of tiles in
the track. This reward function incentivizes agents to complete the race track efficiently while avoiding driving
off the course.

For the Car Racing task, we intuitively use the track completion rate as the quantitative metric for each instance.
MLES aims to maximize the mean track completion rate across the training instances as its objective for policy
discovery. In our experiment, DRL adopts the default reward function from the Gym environment, as described
above.

D THE FORMATS AND NECESSITY OF BEHAVIOR EVIDENCE

This section provides a detailed discussion of the potential formats of Behavior Evidence (BE) and the con-
struction techniques involved, along with the specific forms adopted in this work and the rationale behind our
choices.

D.1 FORMATS OF BEHAVIOR EVIDENCE

The primary objective of BE is to represent the behavior patterns associated with a given policy, thereby helping
MLLMs identify policy shortcomings and facilitate subsequent improvements. BE serves as a crucial supplement
to the evaluation of intermediate actions, addressing the inherent limitations of purely quantitative metrics such
as episode reward and success rate, which often fail to provide granular insights into policy execution.

The precise format of BE is secondary to the quality and interpretability of the information it conveys, and how
effectively this information can be leveraged by MLLMs. MLLM training paradigms, relying on human-provided
images and corresponding natural language descriptions, progressively align model capabilities with human
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Lander Trajectory over 200 steps
Score: 214.574 | Final State: Landing failed [0.097, 1.257, 0.704, -0.686, 0.008, 0.179, 0.000, 0.000]
= [0.168, 1.070, 0.703, -0.952, 0,097, 0.179, 0,000, 0.000]
[0.236, 0.855, 0.627, -0.906, 0.184, 0.171, 0.000, 0.000]
[0.292, 0,673, 0.461, -0.736, 0.246, 0,088, 0,000, 0.000]
[0.328, 0.522, 0.275, -0.615, 0.281, 0.060, 0.000, 0.000]
[0.343, 0,407, 0.053, -0.402, 0.302, 0.054, 0,000, 0.000]
[0.342, 0.323, -0.124, -0.318, 0.303, -0.038, 0.000, 0.000]
[0.319, 0.264, -0.291, -0.217, 0.245, -0.192, 0.000, 0.000]
[0.282, 0.222, -0.418, -0.148, 0.146, -0.216, 0.000, 0.000]
[0.236, 0.184, -0.475, -0.178, 0.032, -0.238, 0.000, 0.000]
0188, 0.149, -0.466, -0.114, -0.076, -0.196, 0.000, 0.000]
[0.141, 0.117, -0.432, -0.131, -0.154, -0.145, 0.000, 0.000]
[0.101, 0,084, -0.354, -0.144, -0.202, -0.075, 0.000, 0.000]
[0.071, 0.054, -0.218, -0.119, -0.229, 0.004, 0.000, 0.000]
[0.052, 0,031, -0.173, -0.101, -0.226, 0.008, 0.000, 0.000]
[0.042, 0.006, -0.077, -0.118, -0.045, 0.582, 1.000, 0.000]
[0.036, -0.007, -0.021, 0.030, 0.002, -0.074, 1.000, 1.000]
[0.034, -0.000, -0.005, 0.000, 0.003, -0.000, 1.000, 1.000]
[0.034, -0.000, 0.000, 0.000, 0.003, -0.000, 1.000, 1.000]
[0.034, -0.000, -0.000, 0.000, 0.003, 0.000, 1.000, 1.000]
[0.034, -0.000, -0.000, 0.000, 0.003, 0.000, 1.000, 1.000]

@ (b) (©

Figure 7: Examples of BE in the Lunar Lander task. (a) Trajectory videos visualizing the agent’s
motion over time. (b) Pose overlays summarizing sequential states in a single image. (c) State traces
presenting a symbolic representation of the agent’s behavior.

understanding. As evidenced by related work, current MLLMs demonstrate a level of visual comprehension
closely mirroring human perception, enabling them to interpret information in a semantically meaningful way.

Fig.[7illustrates three potential BE formats within the context of the Lunar Lander task: videos, images, and
textual state traces. While these formats convey the same underlying information, their interpretability and
computational overhead for MLLM input vary significantly. Videos offer a complete visualization of the entire
process but incur substantial computational expense. With appropriate preprocessing, images can effectively
convey the control process while maintaining relatively low computational costs. Conversely, textual descriptions,
though offering the lowest computational cost, are less intuitive for both human and MLLM interpretation,
demanding greater cognitive effort for comprehension.

It is important to note that agent behaviors in numerous tasks are challenging to represent clearly using purely
textual formats. For instance, in the Car Racing task within our benchmarks, coordinate-based trajectories or
performance records in textual form fail to convey the intricate and subtle interactions between the car and
the track. Such representations do not capture crucial nuances of how the agent controls its motion and the
corresponding dynamic outcomes, which are vital for a comprehensive policy analysis. In contrast, visual
representations offer significantly richer expressiveness for these dynamics, thereby facilitating better policy
understanding by humans. As previously discussed, MLLMs can also leverage visual data to interpret and
analyze the policy’s control process, thereby underpinning the visual feedback-driven behavior analysis within
the MLES.

Furthermore, real-world control tasks, such as bipedal robot walking, drone stabilization, or autonomous driving,
frequently involve complex dynamics that are inherently difficult to articulate or fully capture through textual
means. Visual formats are therefore superior for conveying these complex behaviors. In our experiments, to
strike a balance between comprehensibility for both humans and MLLMs and computational efficiency, we opt
to employ images as the primary format for BE. The specific methodologies for constructing them are detailed
in the subsequent section.

D.2 BE FOR TWO BENCHMARKS

This section details the construction of BE for Lunar Lander and Car Racing tasks, addressing their unique
characteristics.

Lunar Lander. The Lunar Lander task features a static background, with only the lander object in motion.
Given this setup, we can effectively capture the entire behavioral pattern by using a frame stacking technique
with transparency. As illustrated in Fig. [§] this process involves selecting frames at fixed intervals and applying
a transparency effect to each one before stacking them. The resulting BE is a single image that visualizes the
lander’s pose and trajectory at key moments, effectively compressing the time-series information of an entire
episode into a compact, visual representation.

Car Racing. The Car Racing task is a top-down environment where the camera continuously follows the car,
and the background is dynamic. For this reason, the frame stacking method is not applicable. Instead, we propose
a BE construction method based on a global map and trajectory mapping, as shown in Fig. [9] The process
begins by obtaining the complete coordinates of the track from the environment’s backend to construct a global
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Figure 8: Frame stacking for BE construction for the Lunar Lander task
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Figure 9: Trajectory mapping for BE construction for the Car racing task

track map. The car’s movement trajectory is then recorded throughout the episode and plotted onto this map
upon completion. However, a simple trajectory alone is insufficient for explaining the policy’s decision-making
process.

To address this limitation, we annotate the agent’s dynamic visual field at fixed environment step intervals
along the trajectory. This enhancement provides two key benefits: (1) The density of the visual fields directly
reflects the car’s speed: a denser distribution indicates a slower speed, and vice versa. (2) These visual fields
provide crucial context, enabling MLLM to analyze the specific conditions that led to suboptimal actions, such
as veering off the track. This targeted contextual information facilitates more precise reasoning and informed
policy improvements.

D.3 NECESSITY OF BE

This section presents a qualitative analysis of BE’s necessity, highlighting how it addresses a key limitation of
quantitative metrics: their inability to evaluate the intermediate actions.

Fig. [[0]illustrates the performance of policies designed by EoH and MLES on the same Car Racing track. Both
policies achieve a perfect score, completing 100% of the track. However, a closer inspection of their trajectories
reveals a critical difference. The EoH policy’s trajectory deviates significantly from the track on the final turn,
only completing the course by executing a large corrective maneuver. This behavior is a classic example of
“reward hacking,” a common issue in RL where agents exploit flawed reward functions to achieve a high score
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Figure 10: Trajectories of policies generated by EoH and MLES on a specific track, both achieving a
perfect score

through suboptimal or unintended behaviors|Skalse et al.|(2022). In contrast, the MLES policy’s trajectory is
both rational and efficient, closely mirroring a human driver’s racing line.

Because EoH’s evolutionary process is driven solely by a quantitative performance metric, it fails to evaluate
the quality of the policy’s intermediate actions and thus cannot identify and correct such superficially high-
performing but ultimately flawed policies. This leads to two significant problems: (1) Deceptively high-scoring
policies can persist within the population, hindering the overall evolutionary progress. (2) Policies may achieve
strong results on training instances but exhibit poor generalization to new, unseen instances.

In our approach, MLES utilizes BE as a crucial supplement to quantitative metrics, allowing MLLMs to perform
in-depth behavioral analysis. This qualitative input enables the system to identify and proactively rectify these
“fake-excellent” policies. Furthermore, for policies that are sound but underperforming, BE allows the MLLM to
provide targeted feedback for specific improvements, thereby accelerating the policy discovery process. This
highlights the indispensable role of BE in the LES paradigm for achieving robust and generalizable policy
learning.

E PROMPTS

E.1 TEMPLATES FOR CONSTRUCTING PROMPTS FOR SPECIFIC OPERATORS

This section details the prompt templates utilized for policy generation within the MLES framework. Figs. @
[12] [T3] and[T4]illustrate the specific prompt templates for operators E1, E2, M1_M, and M2_M, respectively. In
all presented templates, black text indicates fixed components, red placeholders denote task-specific elements,
and blue placeholders represent variables that evolve throughout the evolutionary process.

E.2 TASK-SPECIFIC PROMPTS USED IN EXPERIMENTS

This section demonstrates the design of task descriptions and code templates for applying MLES, using two
control problems from our experiments as examples. Briefly, the task description communicates the requirements
for the control policy to be designed, while the code template defines the programmatic policy’s code interface
that MLES needs to generate. Figs. [[5]and [T6] present the task descriptions provided to MLES for the Lunar
Lander and Car Racing tasks, respectively. Figs. [[7]and[T8]show the corresponding code templates.

Task description. The task description serves as a problem statement for MLES, akin to an assignment given
by a teacher to a student. First, we establish the overall context of the policy discovery task by clearly stating the
objective: what control policy MLES needs to design. This primes the MLLMs to inherently prepare relevant
knowledge for policy generation. Second, we explicitly articulate the desired characteristics of an optimal
policy, guiding the LLM’s value alignment with human intent. Furthermore, we can provide a more detailed
description of the control task to facilitate precise programming by MLES. For example, in Fig. @ we elaborate
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You are assigned as an expert to participate in the following task: “[Task Description Placeholder]
| have “[Value Placeholder]” existing algorithms with their codes as follows:

The No. 1 algorithm and the corresponding code are:

“[Thought Placeholder]”

“[Code Placeholder]”

The No. 2 algorithm and the corresponding code are:

“[Thought Placeholder]”

“[Code Placeholder]”

Please help me create a new algorithm that has a totally different form from the given ones.

1. First, describe your new algorithm and main steps in one sentence. The description must be inside within
boxed {}.

2. Next, implement the following Python function:

“[Code Template Placeholder]”

Figure 11: Prompt template for the E1 operator.

You are assigned as an expert to participate in the following task: “[Task Description Placeholder]
| have “[Value Placeholder]” existing algorithms with their codes as follows:

The No. 1 algorithm and the corresponding code are:

“[Thought Placeholder]”

“[Code Placeholder]”

The No. 2 algorithm and the corresponding code are:

“[Thought Placeholder]”

“[Code Placeholder]”

Please help me create a new algorithm that has a totally different form from the given ones but can be
motivated from them.

1. Firstly, identify the common backbone idea in the provided algorithms.

2. Secondly, based on the backbone idea describe your new algorithm in one sentence. The description
must be inside within boxed {}.

3. Thirdly, implement the following Python function:

“[Code Template Placeholder]”

Figure 12: Prompt template for the E2 operator.

on observation details, such as the type of observation data and key visual elements. More comprehensive
information tends to activate more relevant knowledge within the LLM.

Code Template. The code template defines the communication protocol and can optionally furnish MLES
with expert knowledge. A code template typically consists of three parts: function declaration (function name
and parameters), docstring, and function body.

Within the function declaration and docstring, we must pre-define the parameters that the policy and environment
will exchange, ensuring compatibility with the environment’s interface. This involves: (1) identifying the
parameters the environment or system provide to the policy and defining them as input variables in the function
declaration; (2) detailing the type, dimension, range, and meaning of these input parameters in the docstring; and
(3) clearly specifying the policy’s output in the docstring, typically the actions the agent can take. Additionally,
we can incorporate prior knowledge and hints within the docstring to enhance the effectiveness of policies
generated by MLES. As shown in Fig. [T8] we can include “Notes” sections within the docstring to help MLES
better understand the environment and offer specific guidance. For the function body, we can simply provide
a return statement to ensure function completeness, or we can additionally include existing expert heuristics.
Generally, providing some expert knowledge facilitates the policy discovery process of MLES.
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You are assigned as an expert to participate in the following task: “[Task Description Placeholder]”

We have a working algorithm that needs optimization. Below are its concept, implementation, and execution
results:

Concept: “[Thought Placeholder]”

Implementation: “[Code Placeholder]”

Execution results visualization for the algorithm: “[Behavioral Evidence Placeholder]”

Please start by providing a detailed description and analysis of the execution result, enclosed within single
quotes (” ’). Next, based on your analysis, optimize the algorithm by following these steps:

1. Analyze why the results were produced in relation to the algorithm. Identify its weaknesses and areas for
improvement, and enclose your analysis within square brackets [ ].

2. Propose an enhanced algorithm. Use concise language to describe the core idea of your algorithm, and
enclose the core idea within curly braces {}.

3. Implement the enhanced algorithm using the following Python function template:

“[Code Template Placeholder]”

Figure 13: Prompt template for the M1_M operator.

You are assigned as an expert to participate in the following task: “[Task Description Placeholder]”

We have a working algorithm that needs optimization. Below are its concept, implementation, and execution
results:

Concept: “[Thought Placeholder]”

Implementation: “[Code Placeholder]”

Execution results visualization for the algorithm: “[Behavioral Evidence Placeholder]”

Please start by providing a detailed description and analysis of the execution result, enclosed within single
quotes (’ ’). Next, based on your analysis, optimize the algorithm by following these steps:

1. Parameter Analysis:

- Identify all key parameters and their functions.

- Determine which parameters should be modified to improve results.

- Explain why these specific changes would help.

- All content related to Parameter Analysis must be enclosed within brackets [ ].

2. Create a new algorithm that has a different parameter settings of the algorithm provided. Use concise
language to describe the core idea of your algorithm, and enclose the core idea within curly braces {}.

3. Implement the enhanced algorithm using the following Python function template:

“[Code Template Placeholder]”

Figure 14: Prompt template for the M2_M operator.

Implement a novel heuristic strategy function that guides the lander in selecting actions step-by-step to
achieve a safe landing. At each step, an appropriate action could be chosen based on the lander’s current
state and previous state, with the objective of reaching the target location in as few steps as possible. A 'safe
landing’ is defined as a touchdown with low vertical speed, upright orientation, and both angular velocity
and angle close to zero, and both legs in contact with the ground.

Figure 15: Task description for the Lunar Lander task.
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Write a Python function that serves as a control strategy for an agent in a top-down car racing environment.
Environment Overview

In this environment, the agent is required to drive a car along a race track. The primary objective is to cover
as much of the track surface as possible before the time limit expires. To accomplish this, the agent needs
to efficiently navigate the track by controlling the car’s steering, throttle, and brake.

Observation Details

The agent’s observation consists of a 96x96x3 RGB image representing the top-down view of the
environment. The following key visual elements can be identified in this image:

- Car: Red (approximately [=202, <10, <10]).

- Track: Gray (approximately [~102, ~102, ~102]).

- Off-track grass: Greenish (approximately [~102, ~204, ~102]).

- Curbs (Sharp Turns): High-contrast red and white (approximately [>240, <20, <20] and [>240, >240,
>240]).

Inputs at Each Time Step

At every time step, the agent receives the following information:

- The current RGB observation of the environment.

- The current speed of the car.

- The previous RGB observation and the previous action taken by the agent.

Function Requirements

The Python function should incorporate a control policy that combines visual perception from the RGB
observations and past information (previous observation and action). This policy should enable the agent to
maintain optimal control of the car, keep the car on the track, and maximize the efficiency of lap completion.

Figure 16: Task description for the Car Racing task.

F GENERATED PROGRAMMATIC POLICY

This section presents the best policies discovered by MLES, including the code, thought, and performance on a
range of instances.

Lunar Lander. Fig.[19]shows the code for the best policy discovered for the Lunar Lander task. The thought
of this policy provided by MLES is: “The core idea of the new algorithm is to further increase the sensitivity to
vertical velocity, making the lander more responsive to abrupt changes, while also lowering the action thresholds
to enable quicker decisions for stability control.” Fig[20]displays the performance of this policy across several
instances, highlighting its ability to achieve safe landings consistently.

Car Racing. Fig.[21]|shows the code for the best policy discovered for the Car Racing task. The core idea
of this policy is to dynamically adjust the steering sensitivity and throttle response based on the car’s speed
and previous actions. This adjustment enables smoother control over the car’s acceleration and deceleration,
ensuring optimal performance during races. Furthermore, the policy incorporates an improved method for
assessing track boundaries, focusing on smoother transitions between acceleration and deceleration. The policy
intelligently uses the car’s speed to modulate steering and throttle, allowing for better control in turns while
avoiding overly sharp maneuvers that could destabilize the vehicle. Fig. @illustrates the policy’s performance
on several instances, demonstrating its ability to complete the race smoothly, with racing lines that resemble
those of human drivers.

G THE USE OF LARGE LANGUAGE MODELS

LLMs are utilized in two primary ways in this study: first, to serve as programmatic policy generators within the
MLES framework; second, to help refine the manuscript by enhancing the clarity of the language, while the
authors maintain full responsibility for the content and direction.
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import numpy as np

def choose_action(s: list, last_action: int, s_pre: list) -> int:
wan
Selects an action for the Lunar Lander to achieve a safe landing at the target location
(0, 0).
Args:
s (list or np.ndarray): The current state of the lander. Elements:

s[0] - horizontal position (x)

s[1l] - vertical position (y)

s[2] - horizontal velocity (v_x)

s[3] - vertical velocity (v_y)

s[4] - angle (radians)

s[5] - angular velocity

s[6] - 1 if the first leg is in contact with the ground, else 0

s[7] - 1 if the second leg is in contact with the ground, else 0
last_action (int): The action taken in the previous step. One of:

0 - do nothing

1 - fire left orientation engine

2 - fire main (upward) engine

3 - fire right orientation engine
s_pre (list or np.ndarray): The state of the lander xbeforex the last action was

executed.

Returns:
int: The chosen action for the next step. One of:
0 - do nothing

1 - fire left orientation engine
2 - fire main (upward) engine
3 - fire right orientation engine

angle_targ = s[0] * 0.5 + s[2] * 1.0 # angle should point towards center
if angle_targ > 0.4:

angle_targ = 0.4 # more than 0.4 radians (22 degrees) is bad
if angle_targ < -0.4:

angle_targ = -0.4
hover_targ = 0.55 % np.abs(
s[0]

) # target y should be proportional to horizontal offset

angle_todo = (angle_targ - s[4]) * 0.5 — (s[5]) = 1.0
hover_todo = (hover_targ - s[1]) = 0.5 - (s[3]) % 0.5
if s[6] or s[7]: # legs have contact

angle_todo = 0

hover_todo = (

-(s[3]1) = 0.5
) # override to reduce fall speed, that’s all we need after contact

a=20

if hover_todo > np.abs(angle_todo) and hover_todo > 0.05:
a =2

elif angle_todo < -0.05:
a =3

elif angle_todo > +0.05:
a=1

return a

Figure 17: Code template for the Lunar lander Task
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import numpy as np
import cv2
def choose_action (observation, car_speed, pre_action, pre_observation):

wan

Determine the next action for the Car Racing agent.

This function takes into account the current state (observation and speed), the previous
action, and the previous observation.

Notes:

— The car in this environment is a powerful rear-wheel-drive vehicle. Avoid accelerating
while turning sharply,

as this can easily lead to loss of control.

— Occasionally, track segments (e.g., after a U-turn) may appear in the observation but
are not part of the immediate drivable path. These should be distinguished to avoid
premature or incorrect decisions.

- Avoid coming to a complete stop, as this may prevent the car from finishing the race.

Args:
observation (np.ndarray): The current state observed by the agent, represented as a 96
x96 RGB image of the car and race track from a top-down view (shape: (96, 96, 3))
car_speed (float): The current speed of the car.

pre_action (np.ndarray): The action taken by the car in the previous step, represented
as a 3-element array.

pre_observation (np.ndarray): The observation received when the previous action was
taken. It has the same shape and format as ‘observation' (i.e., a 96x96 RGB image
) o

Returns:

np.ndarray: The action selected by the agent for the next step, represented as an

array of shape (3,) where:

— Index 0: Steering, where -1 is full left, +1 is full right (range: [-1,
1]).
— Index 1: Gas, (range: [0, 1]).

- Index 2: Braking, (range: [0, 1]).
wnn
action = np.array([0.0, 0.0, 0.0])
# Gray track detection parameters (RGB 95-115 range with +-5% tolerance)
gray_low = 95
gray_high = 115

# Create 3D gray detection mask (all RGB channels within range)
gray_mask = (

(observation[:, :, 0] >= gray_low) & (observation[:, :, 0] <= gray_high) &
(observation([:, :, 1] >= gray_low) & (observation[:, :, 1] <= gray_high) &
(observation[:, :, 2] >= gray_low) & (observation[:, :, 2] <= gray_high)

)

gray_indices = np.argwhere (gray_mask)

center_x = np.mean(gray_indices([:, 1]) if len(gray_indices) > 0 else observation.shape[l

// 2
car_position = observation.shape(l] // 2
offset = center_x - car_position

steering_angle = np.clip(offset / 100.0, -1.0, 1.0)
action[0] = steering_angle

if abs(offset) > 10:

action[l] = 0.0

action[2] = 0.2
else:

action[1l] = 0.8

action[2] = 0.0

gray_density = np.sum(gray_mask) / (observation.shape[0] * observation.shape[l])

if gray_density :
action[l] =
action[2] =

return action

o o A

0.1:
.4
0

Figure 18: Code template for the Car Racing Task
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1674
1675
1676
1677
1678
1679
1680
1681
def choose_action(s: list, last_action: int, s_pre: list) -> int:
1682 W
1683 Selects an action for the Lunar Lander to achieve a safe landing at the target location
(0, 0).
1684 Args:
1685 s (list or np.ndarray): The current state of the lander. Elements:
s[0] - horizontal position (x)
1686 s[1] - vertical position (y)
1687 s[2] - horizontal velocity (v_x)
s[3] - vertical velocity (v_y)
1688 s[4] - angle (radians)
1689 s[5] - angular velocity
s[6] - 1 if the first leg is in contact with the ground, else 0
1690 s[7] - 1 if the second leg is in contact with the ground, else 0
1691 last_action (int): The action taken in the previous step. One of:
0 - do nothing
1692 1 - fire left orientation engine
1693 2 - fire main (upward) engine
3 - fire right orientation engine
1694 s_pre (list or np.ndarray): The state of the lander xbeforex the last action was
1695 executed.
Returns:
1696 int: The chosen action for the next step. One of:
1697 0 - do nothing
1 - fire left orientation engine
1698 2 - fire main (upward) engine
1699 3 - fire right orientation engine
wnn
1700 angle_targ = (s[0] * 0.5 + s[2] * 0.5) # Designed for better orientation control
1701 angle_targ = np.clip(angle_targ, -0.6, 0.6) # Slightly wider bounds for orientation
1702 # Update hover target with amplified sensitivity to vertical speed
1703 hover_targ = 0.3 % np.abs(s[0]) + 0.7 * (s[3] x* 2) # Greater weight for hover
stabilizing
1704
1705 # Calculate actions for adjustments
angle_todo = (angle_targ - s[4]) 1.6 — (s[5]) = 1.2 # More aggressive response for
1706 angle adjustments
1707 hover_todo = (hover_targ - s[1]) » 1.3 - (s[3]) * 0.4 # Enhanced weight for vertical
control
1708
1709 # Stabilizing when legs are in contact
if s[6] or s[7]:
1710 angle_todo = 0 # Maintain upright position priority
1711 hover_todo -= (s[3]) * 0.4 # Stronger adjustment for vertical speed reduction
1712 # Decision-making based on refined thresholds and more responsive measures
1713 a =0
if hover_todo > np.abs(angle_todo) and hover_todo > 0.10: # Slightly tighter hover
1714 threshold
1715 a = 2 # Fire main engine
elif angle_todo < -0.15: # Increased sensitivity for left engine
1716 a = 9
1717 elif angle_todo > 0.15: # Increased sensitivity for right engine
a=1
1718 return a
1719
1720 . . .
1791 Figure 19: Code of the best discovered policy for the Lunar Lander task.
1722
1723
1724
1725
1726
1727

32



Under review as a conference paper at ICLR 2026

Lander Trajectory over 200 st
Score: 268.145 | Final St

Lander Trajectory over 200 steps
Score: 278.652 | Final : Landed safely

Lander Trajectory over 200 steps
Score: 306.884 | Final inded safely

Lander Trajectory over 200
Score: 278.033 | Final State: Lai

¢

Lander Traje 200 \I¢|7~ Lander ctory over 200 steps
Score: 276.970 | F safely Score: 191. State: Landing failed

Figure 20: Performance of the best discovered policy on different instances in the Lunar Lander task.
It shows the lander’s successful landings and stability under various conditions.
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def choose_action (observation, car_speed, pre_action, pre_observation):

nun

Determine the next action for the Car Racing agent.

Args:
observation (np.ndarray): The current state observed by the agent, represented as a 96
x96 RGB image of the car and race track from a top-down view (shape: (96, 96, 3))
car_speed (float): The current speed of the car.

pre_action (np.ndarray): Action taken by the agent in the previous step, represented
as a 3-element array.

pre_observation (np.ndarray): The observation received when the previous action was
taken. It has the same shape and format as ‘observation' (i.e., a 96x96 RGB image
) o

Returns:

np.ndarray: The action selected by the agent for the next step, represented as an

array of shape (3,) where:

— Index 0: Steering, where -1 is full left, +1 is full right (range: [-1,
1]).
- Index 1l: Gas, (range: [0, 1]).

— Index 2: Braking, (range: [0, 1]).

nun

hsv = cv2.cvtColor (observation, cv2.COLOR_RGB2HSV)
# Define masks for track, off-track, and curbs detection

track_mask = cv2.inRange (hsv, (0, 0, 60), (179, 255, 200)) # Track pixels
off_track_mask = cv2.inRange (hsv, (40, 100, 100), (90, 255, 255)) # Off-track pixels
curbs_mask = cv2.inRange (hsv, (180, 100, 100), (255, 255, 255)) # Curbs detection

# Analyze the center region for better decision making
height, width = track_mask.shape
center_region = track_mask[int (height / 3):int (2 * height / 3), int(width / 4):int (3 »*
width / 4)]
# Initialize the action array
action = np.zeros(3)
# Identify whether track is present and where
track_detected = np.sum(center_region) > 0
if not track_detected:
action[2] 1.0 # Full brake if no track detected
else:
# Identify track pixel positions
track_pixels = np.column_stack (np.where (center_region > 0))
mean_x = np.mean(track_pixels[:, 1]) if len(track_pixels) > 0 else center_region.shape

[11 /7 2

# Steering adjustment with consideration for immediate curvature
steering = (mean_x - (center_region.shape[l] / 2)) / (center_region.shape[l] / 2)
action[0] = np.clip(steering, -1, 1) # Normalize steering value

# Adaptive throttle management based on speed
if car_speed < 1.0:

action[l] = 1.0 # Full throttle if the car is very slow
else:

# Adjust throttle considering steering

if abs(action([0]) > 0.5:

action[l] = max (0.0, 1.0 - abs(action[0])) # Reduce throttle during significant
turns
else:
action[l] = min(1.0, action[l] + 0.05) # Gradual increase on straights

# Enhanced braking logic considering sharp turns
if abs(action[0]) > 0.6 and car_speed > 2.0:

action[2] = min(0.4, action[2] + 0.1) # Moderate braking for sudden turns
else:

action[2] = 0.0 # No brake needed on straights

# Prevent the car from stalling
if np.all(pre_action == [0, 0, 1]) and car_speed < 0.5:

action[l] = max(action[1l], 0.5) # Ensure some throttle to avoid stalling
return action

Figure 21: Code of the best discovered policy for the Car Racing task.
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Figure 22: Performance of the best discovered policy on different instances in the Car Racing task.
These figures show the car’s smooth track completion and race line strategy, similar to human racing
behavior.
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