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Abstract

Real fabrics exhibit complex spatial variation from stitch-
ing, hemming, and other processes. Simulating these
with finite element methods is computationally demand-
ing, and suffers from membrane locking artifacts that make
cloth artificially stiff. We introduce Mass-Spring Net,
a learned, simulatable model that can model complex,
spatially-varying fabric behavior from motion observations
alone. Our approach accurately models spatially varying
properties, is robust to membrane locking, and can poten-
tially enable fast fabric manipulation in robotics. Com-
pared to prior work our method achieves much-faster train-
ing time, resists membrane locking that exist in synthetic
training data, and early results show that it maintains high
accuracy and good generalization to novel scenarios.

1. Introduction

Accurate and fast simulation of cloth surrogates is cru-
cial for robotics simulation and training [7, 11, 17, 19],
particularly for fabric manipulation tasks [2, 4, 12, 14–
16, 19, 20]. Oftentimes, these applications require real-time
performance, while maintaining physical realism to enable
effective robot learning and control. However, modeling
and simulation of real-world cloth objects remains challeng-
ing for several reasons. First, real cloth objects often exhibit
complex, spatially varying constitutive properties that sig-
nificantly affect behavior. A simple example is shown in
Fig. 1. Heat-shrinking, stitching, printing, and bonding in-
troduce spatially varying material properties that are chal-
lenging to model using standard methods. Second, FEM
cloth simulations can suffer from numerical artifacts such
as membrane locking [13], which lead to unrealistic bend-
ing behavior when meshes are not finely discretized. Previ-
ous work has attempted to address this issue by simulating
up to fine scales [18] or applying constraints to solving dy-
namics [1, 5]. This problem is particularly pronounced in

real-time applications where coarse meshes are necessary
for computational efficiency.

Figure 1. Equilibrium configurations of a square piece of cloth
with spatially heterogeneous (left, right) vs. using homogeneous
material (middle). Purple regions are stiffer than yellow ones. For
the homogeneous cloth all triangles share the same stiffness, as
in previous work, which is taken to be the average stiffness of
triangles in the heterogeneous cloth. Despite identical initial and
boundary conditions, stiffness variation leads to distinct behaviors.
Our method can capture such variation.

In this work, we introduce a learning-based framework,
called Mass-Spring Net, which addresses physical accu-
racy and efficiency using mass-spring-based systems, simi-
lar to recent recent work such as PhysTwin [4] and Spring-
Gaus [21]. Our main contributions include: (1) Ability to
model spatially-varying constitutive properties of fabrics;
(2) Resistance to membrane locking problems that plague
FEM-based simulations; (3) Minimal training requirements
using only point cloud data and total mass.

2. Method
Learning task definition. Fig. 2 shows the neural surro-
gate modeling pipeline and the architecture of our constitu-
tive model. Our method takes as input a reference system:
T frames of motion of a piece of cloth, with N landmark
points on the cloth tracked from frame to frame. In addi-
tion to the positions yi ∈ R3N of the landmarks at each
frame i, we assume the reference system also provides the
external force fland,i acting on each landmark at each frame
(e.g. gravity), an estimate of the cloth’s area density ρ, and
a binary classification of each landmark as either free or



Figure 2. Method overview. (a) The material modeling pipeline. We sample system state (y0, ẏ0) from the reference cloth at the first
time step of a rollout, resample following the scheme in Sec. 5 to get target particle positions, feed it to the neural constitutive model hθ

to predict neural particle force ft, then integrate. To further evolve the surrogate we use previously predicted states. (b)-(e) illustrates
the architecture of our Mass-Spring Net which models a simple rectangular cloth, with rest configuration shown in (b) and a deformed
configuration in (c). (d): Each neural spring (circle) takes the relative position and velocity of particles at its two ends, and predicts the
spring’s internal force. Then each particle accumulates forces applied by its surrounding springs. (e) Neural spring. At every time step, the
module computes elastic and damping force and sums them up. Parts with learnable parameters are in dark red.

pinned in place. This reference system data might come
from a high-fidelity finite element simulation, or from mo-
cap markers pinned on a real-world cloth [2]. The surro-
gate system is a mass-spring network consisting of a user-
specified number of particles P connected by S springs.
The task is to learn stiffness and damping coefficient for
each spring, from the reference system’s landmark trajecto-
ries. As a preprocessing step, we map the given landmark
trajectories to target positions x̂i ∈ R3P of each particle,
and the external forces to forces fext,i on each particle (Sec-
tion 5). These quantities are used to supervise training of
the neural constitutive model (Section 2.1).

Finally, given the predicted internal forces and the pre-
scribed external forces and boundary conditions, we use
semi-implicit Euler time integration to advance the state of
the surrogate model from frame to frame. We learn the neu-
ral constitutive model parameters θ by comparing this sim-
ulated trajectory to the ground-truth motion observations
x̂i=1:T (Section 2.2).

2.1. Neural Constitutive Modeling

As shown in Fig. 2 (d), we use the incidence matrix A ⊗
I3×3 to extract the displacement d and relative velocity v
between each spring’s two endpoints from the system posi-
tion and velocity vectors x and ẋ, as described in Liu et al.
[6]’s method of fast simulation of mass-spring systems. The
total internal force applied by each neural spring is com-
puted as the sum of an elastic restoring force and viscous

damping force (see Fig. 2 (e)):

fspring =
k(∥d∥ − l0)

∥d∥
d+

b(v · d)
∥d∥2

d, (1)

where the elastic and damping coefficient ks=1:S , bs=1:S

are learnable parameters.

2.2. Simulation and Training
Forward dynamics. We set the surrogate system’s initial
conditions based on the target positions computed in Sec-
tion 5, i.e.

x0 = x̂0, ẋ0 =
x̂1 − x̂0

∆t
,

where ∆t is the reference system time step. We step these
initial conditions forward in time with semi-implicit Euler
integration. In particular, we update velocity using

M(ẋj+1 − ẋj) = ∆t [fext,j + fsprings(xj)] , (2)

where M is the R3P×3P diagonal mass matrix, and position
using xj+1 = xj +∆t ẋj+1.

Loss formulation. We iterate the above time integration
process to simulate an entire trajectory xj=1:T . We compare
this trajectory to the target trajectory x̂j=1:T using the loss

L = λfLf + λJLJ + λk neg.Lk neg. + λb neg.Lb neg.. (3)

In Eq. 3, Lf denotes the force loss, which penalizes differ-
ence between target and simulated net force applied on each



particle in the system at each time step. The target net force
is estimated from the target positions and Newton’s Second
Law:

Lf =
1

P (T − 2)

T−1∑
i=2

||fi − f̂i||22 (4)

fi = M

(
xi+1 − 2xi + xi+1

(∆t)
2

)
, (5)

where fi = fext,i + fsprings(xi) denotes the net force (includ-
ing gravity, environmental damping, and the spring forces)
applied to each particle at time step i of forward dynam-
ics. LJ denotes the impulse loss, which penalizes difference
between target and predicted system impulse:

LJ =
1

P

∥∥∥J− Ĵ
∥∥∥2
2
, (6)

where J is the accumulated impulse on each particle from
the start to the end of the trajectory, integrated using the
Trapezoid Rule:

J =
1

2

T−1∑
j=1

(fj + fj+1)∆t, (7)

and Ĵ is computed analogously from the f̂ . Intuitively, the
force and impulse loss terms act analogously to the P and
I terms in a PID controller, where the former penalizes dis-
crepancy between predicted and target instantaneous forces
applied to each particle and the latter penalizes error ac-
cumulation over time. We notice through experiments that
the optimal weights λJ , λf vary across different sources of
data (i.e. reference systems) and need to be fine-tuned, just
as the weights of a PID controller must be tuned when a
mechanical system’s parameters change.

The final two loss terms of Equation (3) are regulariza-
tion terms that penalizes non-physical, negative spring stiff-
ness or damping constants. Specifically,

Lk neg. =

S∑
s=1

ReLU(−ks) (8)

Lb neg. =

S∑
s=1

ReLU(−bs), (9)

where the k and b are the learned per-spring parameters of
our neural constitutive model (see Sec. 2.1). The term stays
at zero as long as the estimated parameter stays positive.

3. Experiments
3.1. Implementation
We implement our differential simulation pipeline using
NVIDIA Warp [8] and PyTorch [10].

3.2. Reconstructing Spatially Varying Materials
Here we show that Mass-Spring Net can accurately estimate
the stiffness (k) and damping (b) properties of a reference
cloth with spatially varying stiffness, using the RMSE met-
ric. We build the reference cloth with masses and springs,
and we construct a surrogate system with the same resolu-
tion as the reference cloth. Bending and the complete set
of shear springs are included in both the reference and the
surrogate. This allows us to establish a one-to-one map-
ping from springs in the reference cloth to springs in the
surrogate cloth. We also assess the quality of motion recon-
struction using the RMSE of motion reconstruction.

Figure 3. Predicted vs ground-truth (a) spring stiffness con-
stants; (b) damping constants; (c) per-frame motion reconstruc-
tion RMSE. The curve shows mean RMSE across 16 test rollouts
on each time step; we subsample five steps to visualize the distri-
bution across rollouts. Each cloth contains 5, 826 springs.

Fig. 3 shows the accuracy of stiffness and damping es-
timates, and the reconstruction error obtained from a test
set which contains 16 8 s-long rollouts. The reference cloth
we used to generate training and test rollouts is a square-
shaped, 15.5×15.5 m cloth discretized into a 32×32 parti-
cle grid connected by springs. The reference cloth contains
springs with three stiffnesses: 10, 50 and 100 N/m, and
all springs share the same damping constant of 6 N/m/s.
Fig. 3 (a) tells that most of our estimated stiffnesses are
close to the ground-truth. The damping estimates are also
close to the ground-truth on average, despite some varia-
tions: see (b).

3.3. Immunity to Membrane Locking
Finite element methods are susceptible to membrane lock-
ing, a phenomenon that produces artificial bending stiffness
that is more significant at coarse resolutions [13]. An inter-
esting consequence of our approach, which is learning ma-
terial properties from force and impulse losses and not the
shape of the draped cloth, is that we are able to model ma-
terial properties even when the training data generated from
a low-resolution FEM-based simulation is significantly af-
fected by the numerical limitations of membrane locking.
Thus, our simulation results match higher-resolution FEM
simulations more closely than the training data– see Fig. 4.

Moreover, we offer a qualitative comparison with Mesh-
GraphNet (MGN) [11] in terms of the two surrogate’s be-



Figure 4. Our 32x32 surrogate (center) was trained on a data from
a 31x31 FEM mesh (left) that exhibits significant membrane lock-
ing. This is apparent in the drape test of the cloth on a square table.
Remarkably, our results more closely match the results of a higher
resolution FEM cloth simulation (right), indicating that our model
captures material properties well.

Figure 5. Mass-Spring Net (left, dark blue) vs MGN (right, dark
blue) trained on kinematic data sampled from low-resolution (16×
16) mesh (light blue), settled to the misaligned configuration in
evaluation. A high-resolution (61 × 61) mesh (red) is placed in
each scene for reference.

havior in the misaligned equilibrium configuration. Notice
that in Fig. 5 MGN matches the low-resolution mesh’s be-
havior more than the high-resolution mesh’s, which makes
sense, because the surrogate is trained to model the behav-
ior of the low-resolution mesh when boundary conditions
and trajectories are provided as inputs. Yet Mass-Spring
Net is robust to numerical artifacts that exist in the training
data. Moreover training of Mass-Spring Net takes orders of
magnitude faster: 80 minutes vs 36 hours.

3.4. Interaction with Rigid Objects
We place the trained surrogate cloth models from the above
experiment under a new scene, in which all particles on the
surrogate cloth are free to move, and the surrogate cloth
starts falling from time t = 0s until it drops onto another
object. We also instantiate the reference cloth in the same
scene and set it to have the same initial state (position and
orientation of the cloth) as the surrogate, and place an iden-
tical object below it for the reference cloth to drape onto.
Figs. 4 and 6 show the steady state after each system set-
tles. Note that as discussed in 3.3, the reference cloth used

Figure 6. After simulation starts, under gravity the reference cloth
(left) drapes onto a cow Crane et al. [3] beneath it and eventually
settles to a steady state. Right: the surrogate cloth drapes onto a
replica of the same cow.

here has the same physical dimension as the surrogate, but
bears 2× higher spatial resolution.

4. Conclusion and Future Work
We presented Mass-Spring Net, a surrogate model trained
with a novel force-impulse loss and training curriculum that
can learn complex, spatially-varying constitutive properties
of a piece of simulated cloth without relying on a refer-
ence mesh. We demonstrated that our method can repro-
duce the observed behavior of both homogeneous and het-
erogeneous cloth sheets better than previous neural network
approaches. It generalizes more readily to new scenarios,
including those with previously unobserved contacts. Fur-
ther, we showed that Mass-Spring Net’s mass-spring-based
architecture is immune to membrane locking that plagues
FEM-based simulations.

Future Work. While our surrogate has shown promise,
they have yet to capture the full complexity of nonlinear
cloth behavior, and have yet been fitted to real-world data.
Additionally, we aim to encapsulate our surrogate model
within an Isaac Sim [9] plugin, enabling seamless inte-
gration with robotic assets for downstream manipulation
tasks and facilitating more comprehensive robotics simula-
tion workflows.

References
[1] Hsiao-yu Chen, Paul Kry, and Etienne Vouga. Locking-

free simulation of isometric thin plates. arXiv preprint
arXiv:1911.05204, 2019. 1
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Supplementary Material

5. Method - Spatial Discretization and Resam-
pling

Figure 7. Spatial discretization of the surrogate system (left) and
the reference system (right). Bending springs and diagonal springs
from top-left to bottom-right can be optionally excluded on con-
struction. For simplicity, we only show two bending springs; the
full surrogate contains bending springs connected at stride = 1.
The dotted lines show how we compute the target position of each
surrogate particle from the positions of nearby reference land-
marks via barycentric interpolation. Note that in training only
landmarks from the reference are needed, and topolgical informa-
tion are not necessary.

Given a desired number of surrogate particles P , we
build our surrogate mass-spring network using an approach
similar to how Sundaresan et al. [14] resamples reference
point cloud: we isometrically unroll the reference system’s
cloth specimen into a rectangle in the plane, then discretize
this rectangle with a P -vertex regular square grid, as shown
in Fig. 7 (a). We place a surrogate spring at each edge of the
grid, with the spring rest length l0 determined by the edge
length in this rest configuration.

As shown in Fig. 7 (b), the reference system landmarks
do not necessarily correspond to the surrogate particles (and
the resolution of the surrogate particle grid might be much
coarser or finer than the density of landmark points). There-
fore we must resample the given landmark positions yi at
each frame i to positions of the surrogate particles.

Let ȳ and x̄ be the rest positions of the unrolled land-
marks and surrogate particles within the 2D rectangle, re-
spectively. For each surrogate particle p, we identify
its three nearest neighbors v{1,2,3} among the ȳj . Let
b{1,2,3} be the barycentric coordinates of x̄p within triangle
{ȳv1 , ȳv2 , ȳv3}. We set the target position x̂p,i of particle p
at frame i to

x̂p,i = b0yv0,i + b1yv1,i + b2yv2,i. (10)

We map external forces to the surrogate particles using
barycentric interpolation in an analogous way.

We also need to assign a mass mp to each surrogate par-
ticle. We simply set mp = ρA/P , where A is the rectangle
area.
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