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Abstract
Crystalline materials often exhibit a high level of
symmetry. However, most generative models do
not account for symmetry, but rather model each
atom without any constraints on its position or
element. We propose a generative model, Wyck-
off Diffusion (WYCKOFFDIFF), which generates
symmetry-based descriptions of crystals. This
is enabled by considering a crystal structure rep-
resentation that encodes all symmetry, and we
design a novel neural network architecture which
enables using this representation inside a discrete
generative model framework. In addition to re-
specting symmetry by construction, the discrete
nature of our model enables fast generation. We
additionally present a new metric, Fréchet Wren-
former Distance, which captures the symmetry
aspects of the materials generated, and we bench-
mark WYCKOFFDIFF against recently proposed
generative models for crystal generation. As a
proof-of-concept study, we use WYCKOFFDIFF
to find new materials below the convex hull of
thermodynamical stability.

1. Introduction
Materials science is a field of research that is essential for
technological advancement. With machine learning seeing
success in a variety of fields, materials science is no excep-
tion. In the search for new materials, so called generative
models are an attractive class of methods, and a number of
models that can generate new materials have been devel-
oped (see, e.g., Park et al., 2024, for an overview). However,
crystalline materials are often characterized by their specific
symmetries, which are integral to their materials properties.
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This is an aspect that only recently has been built into gener-
ative models (Jiao et al., 2024; Zhu et al., 2024; Levy et al.,
2025). Instead, models without any built-in mechanisms
that ensure symmetry in materials have and are still being
developed (Xie et al., 2022; Jiao et al., 2023; Merchant et al.,
2023; Zeni et al., 2025). As demonstrated by several works
(Levy et al., 2025; Cheetham & Seshadri, 2024; Zeni et al.,
2025), materials generated from methods without these ex-
plicit constraints often lack the symmetrical characteristics
of materials found in databases. For example, Cheetham
& Seshadri (2024) find that roughly 34 % of the materials
generated by the GNoME model (Merchant et al., 2023) be-
long to four different space groups of which only one exists
in the Inorganic Crystal Structure Database (Belsky et al.,
2002) where it makes up only 1 %, and Zeni et al. (2025)
mention that their MatterGen model tends to generate less
symmetric structures than are present in the training data.

The symmetry of a material can be encoded in a protostruc-
ture description (Parackal et al., 2024, see also Section 2.1),
where elements occupy Wyckoff positions in crystal struc-
tures categorized into space groups. This description avoids
specifying the exact atomic coordinates, while maintain-
ing the key structural information, which has been shown
to be efficient for searching for novel stable materials by
enabling an initial step where candidate crystal structures
with high likelihood of being stable are identified based on
the symmetry description alone. This step avoids wasting
computational resources on exact coordinate calculations
across all possible materials (Goodall et al., 2022). Addi-
tionally, the infinite space of continuous coordinates also
opens the risk of generating degenerate materials or struc-
tures outside of the symmetry proximity. Since materials of
high symmetry are generally the interesting materials to ex-
plore, generation of large sets of low symmetry materials is
inefficient. Explicitly encoding symmetry could allow a gen-
erative model to only generate within a space of interesting
materials of higher symmetry, allowing a symmetry-infused
generative model to generate a broader variety of relevant
crystalline materials compared to a generative model using
exact coordinate representations.

Explicitly enforcing knowledge about symmetry in gener-
ative models for crystal structures is currently an underex-
plored research direction. Our approach is different from
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Figure 1. Illustration of the (graph) representation of a material used in our generative model. A material of space group 62 has four
Wyckoff Positions (a, b, c, d). Two of them (a and b, dark blue) has the constraint that at most one atom can occupy the position, and we
hence model that as a single variable indicating which atom type that occupies the corresponding position (∅ denoting no atom). For the
other two positions (c and d, light blue), any number of atoms can occupy the position, and we hence model this as a set of variables, one
for each atom type, which indicates how many of the respective atom types that are occupying the position. To the left is the state of
the material at some sampling time t, and to the right is the prediction of the “clean” material x0 made by the neural network. For all
variables, there is a corresponding row in the figure, corresponding to probability vectors, and all rows hence sum to 1.

previous works in how we specifically target the genera-
tion of protostructures using a representation that enables
the use of generative models for discrete data to generate
new materials. Our method shows competitive performance
against other methods on various quantitative metrics. The
generated protostructures can be used as part of a machine-
learning based workflow for materials discovery to find new
stable crystal structures. As a proof of concept, we realize
a subset of the generated protostructures into crystal struc-
tures and from this set we highlight some examples with
interesting and varied chemistries (CsSnF6, NaNbO2, and
Ca2PI), which are on or below the currently known convex
hull of thermodynamically stable compounds. Data and
code is available online1.

2. Background
2.1. Representing Crystals

An ideal crystalline material is commonly represented by its
crystal structure as an infinitely repeating set of unit cells
with atoms of specified chemical elements placed at specific
atomic positions. In the unit cell, the M atoms are specified
by their positions X ∈ RM×3 and elements Z ∈ ZM , and
the geometry of the unit cell can be specified by three lattice
vectors L ∈ R3×3. As an alternative, one can separately
specify the symmetry of the atomic positions, and then
specify the atomic coordinates only by precise values for
the remaining degrees of freedom. This representation is
discussed in the following.

Protostructures All possible combinations of symme-
tries of crystal structures can be categorized into 230 space
groups (Müller et al., 2013). The atoms, each a chemical el-

1https://github.com/httk/wyckoffdiff

ement from the periodic table of elements, can then occupy
a so called Wyckoff position in the crystal structure, which
represents sets of points on which the symmetry operators
act in a specific way. Hence, if an atom is specified to sit
at a specific Wyckoff position, depending on the nature of
that Wyckoff position, this declares it to reside exactly at
a specific point; anywhere along a line; in a plane; or in a
volume, and the symmetry operators then imply that equiva-
lent atoms sit at a number (the multiplicity) of other points
in the unit cell, called the orbit. These different Wyckoff
positions are labeled using a letter from the Latin alphabet
(a, b, c, etc.). The space group completely determines which
Wyckoff positions that are available, as tabulated by The
Volume of International Tables for Crystallography (IUCr,
2002).

In this work, we use the term prototype as defined for
AFLOW prototype labels (Mehl et al., 2017), i.e., the combi-
nation of the spacegroup and how the Wyckoff positions are
occupied by unspecified but distinct elements, without addi-
tional information about the remaining degrees of freedom
for those occupied positions. In more detail, the AFLOW
prototype label ABC6 hR24 166 a b h specifies first the
anonymous composition AB6C (i.e., AB6C), then the Pear-
son symbol hR24, followed by the spacegroup number
166, and a list of Wyckoff labels for the positions occu-
pied by the distinct elements in the anonymous formula,
a h b (i.e., positions a, h, and b). Furthermore, following
Parackal et al. (2024) we use the term protostructure to
refer to a prototype where specific chemical elements are
assigned to the Wyckoff positions (but where the degrees
of freedom of the structure remains unspecified). Proto-
structures can be labeled by extended AFLOW prototype
labels, e.g., AB6C hR24 166 a h b:Cs-F-Sn, to indi-
cate that the previously anonymous elements A, B, and C
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are Cs-F-Sn (Cs, F, Sn), which occupy the spacegroup
166 Wyckoff positions a h b (a, h, b)2.

2.2. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) are a type of generative models
that have received tremendous interest lately. In essence,
they are based on the idea of starting from a pure noise
sample xT , which is iteratively “denoised” to end up with
a “clean” sample x0. This denoising is enabled by viewing
the data-to-noise (forward) process as a fixed Markov chain

q(x0:T ) = q(x0)

T−1∏
t=0

q(xt+1|xt), (1)

where q(x0) is the data distribution and the transitions
q(xt+1|xt) are designed such that, for large T , q(xT ) con-
verges to a distribution p(xT ) from which we can easily
sample, like a Gaussian distribution in case of continuous
variables. The reverse process is then parametrized as

pθ(x0:T ) = p(xT )

T−1∏
t=0

pθ(xt|xt+1), (2)

where pθ(xt|xt+1) are fitted such that pθ(xt|xt+1) ≈
q(xt|xt+1). Sampling according to the reverse process will
then give (approximate) samples from the data distribution
q(x0).

While most diffusion models have been developed for con-
tinuous data, there are also several methods designed for the
discrete case (e.g., Hoogeboom et al., 2021; Austin et al.,
2021; Campbell et al., 2022; Sun et al., 2023; Lou et al.,
2024). Conceptually, the idea is the same, but the transitions
(both in the forward and backward directions) operate on
discrete state-spaces and the limiting distribution p(xT ) is
typically chosen to factorize over the components of xT to
enable easy sampling. In this work we make explicit use of
the method D3PM by Austin et al. (2021), which we explain
in more detail in the context of our model in Section 3.

2.3. Related Work

CDVAE The Crystal Diffusion Variational Autoencoder
(CDVAE) (Xie et al., 2022) is a generative model for crystal
structures that combines a variational autoencoder (VAE)
with a diffusion model. Generation from CDVAE starts with
sampling from the VAE: a vector z ∼ N (0, I) is sampled
from which the lattice vectors L, the number of atoms M ,
and the initial composition are decoded. The positions of
the M atoms are randomly initialized, and the elements are

2Note that the canonicalization of the protostructure compared
to the prototype is different, due to protostructures being canoni-
calized based on alphabetical element order.

randomly assigned according to the decoded composition.
The diffusion process then consists of denoising the posi-
tions and elements, conditioned on z, while keeping L fixed
during the full process. The positions and atoms are updated
without any explicit or built-in constraints with respect to
symmetries.

DiffCSP and DiffCSP++ DiffCSP (Jiao et al., 2023)
builds upon CDVAE by replacing the VAE with a dif-
fusion model that jointly learns the lattice and coordi-
nates, enabling more precise modeling of crystal geometry.
DiffCSP++ (Jiao et al., 2024) further incorporates space
group symmetry by leveraging pre-defined structural tem-
plates from the training data to learn atomic types and coor-
dinates aligned with these templates. However, this might
limit the diversity and novelty of the generated materials.

SymmCD To address this limitation, SymmCD (Levy
et al., 2025) introduces a physically-motivated representa-
tion of symmetries as binary matrices, enabling efficient
information-sharing and generalization across both crystal
and site symmetries. SymmCD is related to our work in
the sense that it also generates Wyckoff positions, but the
approach is conceptually different: it start by sampling a
number M of “representative” orbits, and then the element
and the aforementioned binary representations of these are
generated. We, on the other hand, will “start” from all Wyck-
off positions and then generate which and how many of each
element (if any) occupy each position.

WyCryst A similar work to ours is WyCryst (Zhu et al.,
2024), which also generates only a Wyckoff-based descrip-
tion (and assign exact coordinates in a later step). However,
this is based on a different representation than ours, and
their study focuses on generation of strictly ternary materi-
als while we put no such restrictions on the materials.

3. Wyckoff Diffusion
3.1. Representing a Protostructure

Given a space group s ∈ G = {1, . . . , 230}, we denote the
set of all possible Wyckoff positions as L(s)3. To represent
a protostructure, we partition the set of Wyckoff positions
into the positions without degrees of freedom (i.e., an atom
occupying the position is limited to a fixed point in space)
and the positions with degrees of freedom (i.e., an atom oc-
cupying the position can be positioned anywhere on a line,
in a plane, or in a volume). We call these constrained and
unconstrained positions, and use the notation L0(s) ⊂ L(s)
and L∞(s) ⊂ L(s) for the respective sets. Although uncon-
strained Wyckoff positions can virtually be occupied by any
number of atoms, in our modeling, a maximum of P atoms

3All possible Wyckoff positions can be found in IUCr (2002).
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of each type can occupy an unconstrained Wyckoff position
(which means the unit cell has P times the multiplicity of
that Wyckoff position of such atoms). We denote Na as
the largest atomic number under consideration. Both Na

and P can be determined from training data. Conditionally
on the space group s, the unconstrained positions can then
be represented by z∞ ∈M∞ = {0, 1, . . . , P}|L∞(s)|×Na ,
i.e., each element z∞(i,j) ∈ {0, 1, . . . , P} is the number of
atoms of type j occupying the unconstrained Wyckoff po-
sition i. A constrained position, however, can only be oc-
cupied by 0 or 1 atoms (as the positions are restricted to
a fixed point in space). Therefore, we represent the ele-
ments of the atoms occupying each of these positions as
z0 ∈ M0 = {0, . . . , Na}|L0(s)|, where the value 0 corre-
sponds to no atom occupying the position. To summarize, a
protostructure can be described as the tuple4

(s, z∞, z0) ∈ G×M∞ ×M0. (3)

3.2. Model Overview

Given our representation of a protostructure in Equation (3),
we now aim to sample from the (unknown) distribution
pdata(s, z

0, z∞). Since the space group determines the num-
ber of Wyckoff positions, we propose to first sample a space
group s, and then sampling the remaining variables condi-
tioned on s. Using the representation (s, z0, z∞) ensures
that we sample a valid material where constrained positions
are occupied by at most one atom. As an estimation of the
distribution of s, we can use the empirical training data dis-
tribution p̂data(s), and write our model of pdata(s, z0, z∞)
as

pθ(s, z
0, z∞) = p̂data(s)pθ(z

0, z∞|s), (4)

where pθ(z0, z∞|s) is a diffusion model. We will in the next
sections describe how we design pθ(z

0, z∞|s), and when
doing so, we will for simplicity use the notation x as the
concatenation (z0, z∞), as well as keeping the conditioning
on s implicit. Algorithm 1 outlines the full generation of a
material using WYCKOFFDIFF.

3.3. Discrete Diffusion

As both z0 and z∞ are discrete variables, we will use the
Discrete Denoising Diffusion Model (D3PM) (Austin et al.,
2021) as our underlying diffusion model. In this framework,
a datapoint is denoted as x = (x1, . . . , xD) where each
variable xk is a discrete variable, and “noise” is added inde-
pendently to each variable according to a discrete Markov
chain. By denoting xk

t as a one-hot encoding of the k:th

4For ease of notation, we have omitted the dependence of M∞
and M0 on s.

variable xk at sampling time t, the Markov forward process
(cf. the general description in Section 2.2) can be written as

q(xk
t+1|xt) = Categorical(xk

t+1|p = xk
tQt+1), (5)

with Qt+1 being a transition matrix, and q(xt+1|xt) =∏D
k=1 q(x

k
t+1|xt). The matrices Qt+1 are chosen so that the

stationary distribution (q(xk
T ) for large T ) is a simple distri-

bution (we discuss this choice in Section 3.5). The variables
xk
t are assumed conditionally independent given xt+1 in the

backward process, i.e., pθ(xt|xt+1) =
∏D

i=1 pθ(x
k
t |xt+1),

and as the backward distribution q(xk
t |xt+1,x

k
0) can be

computed exactly, the backward process pθ(x
k
t |xt+1) is

parametrized as a marginalization over all possible xk
0 ,

pθ(x
k
t |xt+1) =

∑
xk
0

q(xk
t |xt+1,x

k
0)pθ(x

k
0 |xt+1). (6)

In other words, to use this framework, it is necessary to de-
termine a suitable noise process (i.e., choosing the matrices
Qt+1), and construct and train a model which can predict
the “clean” variable xk

0 , given a noisy sample xt+1 (i.e., the
model pθ(xk

0 |xt+1)).

3.4. WyckoffGNN – Neural Network Backbone

For the parametrization of pθ(xk
0 |xt+1), we design a novel

neural architecture, WyckoffGNN, that takes a “noisy” data
point xt+1 as input, and outputs D different probabil-
ity vectors, where D is the number of variables. This
means that for the Wyckoff representation in Equation (3),
the neural network needs to predict the probabilities for
D = |L∞(s)| × Na + |L0(s)| different categorical distri-
butions. To do this, we view each Wyckoff position in L(s)
as a node in a fully connected graph. As different space
groups have different number of Wyckoff positions, using
the graph representation and processing this with a graph
neural network (GNN) gives us the flexibility to utilize a
single model for all space groups. The GNN is used to
encode each position as a vector in Rd, and we then use a
neural network to decode the vectors into the corresponding
probability distributions. An illustration of this can be found
in Figure 1.

Encoding Wyckoff Positions The encoding of Wyckoff
positions starts with an initial set of vectors {h0

i }
|L(s)|
i=1 , one

for each Wyckoff position. These encode the atoms occu-
pying the respective positions, i.e., d-dimensional vector
embeddings of the atom types on the positions in L0, and
the number of each element on the positions L∞ (see more
details in Appendix A). Additionally, we have a set of static
vectors {hpos

i }
|L(s)|
i=1 which encode information about the po-

sition like the Wyckoff letter and the number of degrees of
freedom, but also the space group s and the sampling time t
(again, in the form of high-dimensional embedding vectors,

4



WyckoffDiff – A Generative Diffusion Model for Crystal Symmetry

Algorithm 1 WYCKOFFDIFF

Note: We use the notation xt = (z0t , z
∞
t ). In the for-

loop over k, if k is an unconstrained position, xk
0 consists of

Na variables and MLP(hk) outputs Na different probability
vectors (sampled independently)

Sample s ∼ p̂data(s)
Sample xT ∼ pθ(xT |s) {Prior distribution, e.g., assign
all variables to zeros}
for t in T − 1 . . . 0 do

Encode material as {hk}|L(s)|
k=1 = GNN(s,xt+1)

for k in 1 : |L(s)| do
pθ(x

k
0 |xt+1, s) = Cat

(
xk
0 ;p = MLP(hk)

)
Compute pθ(x

k
t |xt+1, s) according to Equation (6)

Sample xk
t ∼ pθ(x

k
t |xt+1, s)

end for
end for
return s, x0

see Appendix A). We then design the l:th update of the vec-
tors as first concatenating hl−1

i with its corresponding hpos
i ,

and then one layer of a message-passing neural network
(Gilmer et al., 2017) where first, for each Wyckoff position,
a message ml

i is computed as ml
i =

∑|L(s)|
j=1 Ml(wi,wj),

where wi and wj are the aforementioned concatenation
of vectors. The message ml

i is hence an aggregation of
messages sent between pairs of Wyckoff positions, and the
purpose is to propagate information about the full material.
As we do not have an inherent graph but rather assume a
complete graph, we construct a message function Ml(·, ·)
inspired by Bronstein et al. (2021, chapter 5.4) where we use
two multilayer perceptrons (MLPs, or fully connected neu-
ral networks). One MLP takes in the neighboring vector wj

and outputs a new vector w′
j = MLPϕ(wj), while the other

takes as input a concatenation of wi and wj and outputs
a scalar ai,j = MLPθ(cat(wi,wj)), which is multiplied
with w′

j , i.e.,

Ml(wi,wj) = ai,j(wi,wj)w
′
j(wj). (7)

The message ml
i is hence a linear combination of transfor-

mations of the neighbor vectors zj . This message is then
added to the current vector, so that the updated vector rep-
resentation becomes hl

i = hl−1
i + ml

i. Performing such
updates N times (i.e., a neural network with N layers), we
obtain our encoded positions as the vector representations
{hN

j }
|L(s)|
j=1 . Algorithms describing the GNN layer and the

message function together with more details on hyperparam-
eter choices can be found in Appendix A.

Decoding the Probabilities When we have obtained the
encodings {hN

i }
|L(s)|
i=1 of the Wyckoff positions, we need to

decode these into vectors of probabilities. For constrained
Wyckoff positions, L0, this corresponds to probabilities

over which atom type (if any) that is occupying the position.
For the unconstrained Wyckoff positions L∞, it instead
corresponds to, for each atom type, the probabilities over
the number of atoms of the corresponding atom type that
occupies this position. As the output differs between these
two types of positions, we use two different MLPs for the
decoding. For the constrained positions, an MLP takes as
input the representation hN

i and outputs a single vector of
probabilities over atomic numbers, where we use 0 as “no
atom” and only consider the atomic numbers 1 to Na = 100,
as there are no training data points involving higher atomic
numbers. For the unconstrained positions, an MLP instead
outputs Na different probability vectors over number of
atoms, one for each atom type. Again, we use a truncated
range of 0 to P = 54 based on training data. An algorithm
outlining the full forward-pass of the neural network can be
found in Algorithm 2 in the appendix, together with more
details in Appendix A.

Training To train our neural network, we start by sam-
pling a time t from the discrete uniform distribution
Uniform([1, . . . , T ]). Then, to sample xt ∼ q(xt|x0),
we sample xk

t ∼ q(xk
t |x0) = Categorical(p = xk

0Qt)
independently for each k ∈ {1, . . . , D}, where Qt =
Q1 · · ·Qt−1Qt, and the choice of Qt is described in Sec-
tion 3.5. The neural network takes as input this noisy sample
xt, and as in DiGress (Vignac et al., 2022), we optimize the
cross-entropy between the true sample x0 and the predicted
distribution pθ(x0|xt). We also tried the variational objec-
tive by Austin et al. (2021), but the large state spaces made
it unfeasible to fit into GPU-memory.

3.5. The Choice of Qt

Austin et al. (2021) proposes a few different choices of Qt.
In our work, we use a matrix of the form

Qt = (1− βt)I + βt1m
T , (8)

where βt is given by some user-defined schedule, 1 is a
vector of ones, and m is a vector of probabilities. With this
transition matrix, a variable stays in its current state with
probability 1− βt, and with probability βt it transitions to
a new state sampled from a Categorical(p = m) distribu-
tion. This is a general form for which the choice m = 1/D
gives rise to D3PM-uniform by Austin et al. (2021). In this
general form, for large T , the limiting distribution q(xk

T )
becomes Categorical(p = m), and sampling from D3PM
hence starts by sampling each variable xk

T from this dis-
tribution. Although using the uniform distribution could
work, in case the data is very “sparse”, for example in our
case where most of the elements in the matrix representation
in Section 2.1 are 0, using the uniform distribution as the
limiting distribution could require many generation steps
just to find the correct level of “sparseness”. Vignac et al.
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Table 1. Results on the material generation task. All metrics are computed for 10 000 samples, and we present averages and standard
deviations for three models trained with different seeds. To compute FWD, the training set was subsampled to contain an equal number of
samples. In the case of novel materials, 10 000 novel materials have been generated. The different options for WYCKOFFDIFF indicates
the different prior (limiting) distributions. *Models trained only for 100 instead of 1 000 epochs. **SymmCD is somewhat unstable and
produces materials with NaN values (∼ 4% of the materials), while WYCKOFFDIFF-uniform produces a few materials with 0 atoms
(≲ 0.05%), and we therefore discard these, meaning the numbers for these models are slightly biased (however, the numbers are still
computed on 10k samples).

NOVEL

NOV. ↑ UNIQ. ↑ UNIQ. ↑
MODEL FWD ↓ (%) (%) FWD ↓ (%) NOV./MIN. ↑

CDVAE 41.9± 2.69 99.4± 0.06 99.9± 0.00 41.8± 2.60 99.9± 0.00 71
DIFFCSP++ 0.83± 0.14 48.4± 0.56 98.4± 0.12 5.15± 0.17 98.7± 0.06 46
SYMMCD** 1.47± 0.29 52.3± 1.21 98.4± 0.12 4.53± 0.65 98.9± 0.06 115

O
U

R
S

WYCKOFFDIFF-UNIFORM** 2.29± 0.15 40.2± 0.40 98.2± 0.15 13.71± 0.61 98.0± 0.12 159
WYCKOFFDIFF-MARGINAL* 1.65± 0.07 55.7± 1.95 98.6± 0.21 6.71± 0.94 98.9± 0.06 -
WYCKOFFDIFF-MARGINAL 0.55± 0.05 31.4± 1.46 98.0± 0.12 4.57± 0.45 97.6± 0.23 125
WYCKOFFDIFF-ZEROS* 1.03± 0.24 54.9± 2.54 98.8± 0.17 5.39± 0.22 99.3± 0.15 -
WYCKOFFDIFF-ZEROS 0.48± 0.02 30.2± 0.97 98.1± 0.23 4.34± 0.56 98.1± 0.15 119

(2022) propose to use the empirical marginal distribution
instead of the uniform distribution as m. As we show in
the experiments section, we find that using a marginal distri-
bution, or a Dirac distribution at zero for all variables (i.e.,
starting from a material without any atoms at all), greatly
improves the performance compared with using the uniform
distribution.

3.6. Evaluation Metric – Fréchet Wrenformer Distance

To evaluate a generative model, we strive to find a way
of projecting materials into some lower-dimensional space,
and draw conclusions about the difference between gener-
ated materials and real materials in this space. To do this,
we take inspiration from the Fréchet Inception distance used
for image generation (Heusel et al., 2017), and propose the
metric Fréchet Wrenformer distance (FWD). This metric
computes the Wasserstein distance between Gaussian dis-
tributions fit with embeddings of the generated materials
and training set, respectively, extracted from the pretrained
Wrenformer (Riebesell et al., 2024), which adapts the GNN-
based model by Goodall et al. (2022) to a Transformer
architecture (Vaswani et al., 2017) and is distributed with
the aviary software5. The FWD metric aims to capture
the similarities of the generated materials with the train-
ing materials, while being invariant to exact geometry as
the Wrenformer only takes into account the protostructure
of the material. Similar developments have been done for
chemical (Fréchet ChemNet distance, FCD (Preuer et al.,
2018)) and biological (Fréchet Biological distance, FBD
(Stark et al., 2024)) applications.

5https://github.com/CompRhys/aviary/tree/
main

4. Numerical Evaluations
4.1. FWD, Novelty, and Uniqueness

The quantitative evaluation of our models uses the WBM
dataset6 (Wang et al., 2021) created by substitution of chem-
ical elements in the crystal structures available from the
Materials Project (MP) (Jain et al., 2013) to generate a to-
tal of 257k materials. We set aside 10k+10k materials as
validation and test sets. We start by comparing WYCKOFFD-
IFF with CDVAE (Xie et al., 2022), DiffCSP++ (Jiao et al.,
2024), and SymmCD (Levy et al., 2025) as they constitute
examples of models that to different degrees model crystal
symmetry. Implementation details of these baseline meth-
ods can be found in Appendix B. It should be noted that
we encountered some numerical issues during generation
with SymmCD, resulting in NaN values, and we chose to
discard these failed materials (∼ 4% of samples, see more
details in Appendix B). We also found that using WYCK-
OFFDIFF with uniform initialization can produce a small
amount (≲ 0.05%) of “void” materials with 0 atoms, which
we also discarded.

As the focus of our work is on the generation of protostruc-
tures and the compared methods all generate full geometries,
we convert these materials to AFLOW protostructures (Mehl
et al., 2017) using aviary5, with default tolerance param-
eters. For all methods, we generate 10 000 protostructures
and compute the FWD, novelty (Nov., the fraction of gen-
erated protostructures not present in the training set), and
uniqueness (Uniq., fraction of unique protostructures among
the generated). We discuss validity in Appendix D. The re-

6We provide an experiment on Carbon24 (Pickard, 2020) in
Appendix E
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Table 2. The number of unique and novel prototypes among 10 000
novel protostructures.

MODEL
# UNIQUE & NOVEL

PROTOTYPES

CDVAE 2083± 61
DIFFCSP++ 527± 39
SYMMCD 780± 49

WYCKOFFDIFF-UNIF. 1214± 32
WYCKOFFDIFF-MARG. 733± 11
WYCKOFFDIFF-ZEROS 1175± 80

sults are presented in Table 1. It should be noted that, in
this discrete setting, we do not expect the novelty to be 1
even for a ”perfect model”. However, in a practical materi-
als discovery setting we are mainly interested in the novel
materials and, since FWD is a metric that benefits from
sampling materials from the training set, we also compute
FWD and uniqueness among only novel materials. To do
this, we generate enough materials so that we have obtained
10 000 novel protostructures from all methods. To simulate
the computational cost if applying the postprocessing step
of filtering out novel materials, we provide the number of
novel materials per minute (nov./min). u

From Table 1, we first conclude that CDVAE, which does
not incorporate any knowledge about symmetry, generates
materials that are very dissimilar to the training distribution,
as indicated by the very high FWD. As FWD measures
similarity based on protostructures, the high value is likely
to be due to the inability to capture the symmetry properties
of materials. By examining the distribution of space groups,
we find that 36% of the materials generated by CDVAE are
from space group 1, and >90% are in space gropus 1-15,
while the corresponding numbers for WBM are 0.3% (SG
1) and 13% (SG 1-15). Similar results were found by (Levy
et al., 2025).

We also notice that the choice of initial distribution in
WYCKOFFDIFF makes a big difference, and using the uni-
form distribution severely underperforms compared to ini-
tializing from the marginal distribution, or with completely
empty materials. This highlights that even if the model
is supposed to “denoise”, starting from something that is
closer to the actual data plays a big role. Compared to the
baselines, we notice that the novelty for WYCKOFFDIFF is
somewhat lower, which seems to be connected with training
time: numbers for models trained with only 10 % of the
number of steps shows a higher novelty, indicating that the
model is “memorizing” the training distribution. However,
looking at sampling speed, WYCKOFFDIFF is much faster
as it does not generate full geometries, and hence, even if
the novelty is lower, we produce more novel materials with
the same amount of computation time, and we could view

5 4 3 2 1 0 1
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Figure 2. Distribution of formation energies predicted by Wren for
WYCKOFFDIFF-zeros generated (unfiltered) protostructures and
novel protostructures, relative to the training set. Q10, Q50,and
Q90 are the 10th, 50th, and 90th percentiles respectively.

this “novelty filer” as part of the generative procedure. Ad-
ditionally, when computing FWD on only novel materials,
WYCKOFFDIFF outperforms all baselines, indicating that
even if the protostructures are novel, they are to a larger
extent faithful to the training distribution.

4.2. Prototype Uniqueness

In Section 4.1, materials were classified as different if their
protostructures were different. Now, we consider only the
prototypes to evaluate the models’ abilities to generate struc-
tural novelty. Among the 10 000 novel protostructures,
we count the number of unique and novel prototypes and
present this in Table 2. We see that our model indeed gener-
ates new prototypes, which highlights that it is not merely
learning a “substitution-algorithm”, where it learns to use
an already know structural template (i.e., the prototype) and
just replace the elements. We also see that only CDVAE
performs better in this regard, but as CDVAE has no restric-
tions in its generation, this is expected. However, when
comparing to DiffCSP++ and SymmCD which do take sym-
metry into account, WYCKOFFDIFF produces significantly
higher number of unique and novel prototypes, showing its
promise as a general generative model for crystal structures.

4.3. Wren Energies

To further investigate the protostructures generated by
WYCKOFFDIFF and get a sense of their usefulness, we
compare the formation energies (i.e., the energy required to
form a material from the pure elements, see Appendix F for
more details) of the generated protostructures with those of
the training set. To compute the formation energies, we rely
on the same pretrained Wrenformer model as used for FWD
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Ehull = -0.001
Ca2PI
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Figure 3. Selection of a three examples out of WYCKOFFDIFF generated crystal structures close to or below the convex hull of WBM and
Materials Project (MP). Displaying the energy above hull Ehull [eV ] relative to the convex hull of WBM and MP combined. (a) has a
formation energy of Eform = −2.610 the resulting in Ehull being negative distinctly below hull. In comparison with the convex hull
structure (a) is indeed below the hull, highlighted with the green star in the phase diagram. (b) has a formation energy of Eform = −2.537,
resulting in a negative Ehull but insignificantly far from the hull. (c) has a formation energy of Eform = −1.422 which makes the Ehull

approximately zero. Comparing (b) and (c) with the convex hull shows that the structures are on the hull, indicated by the smaller stars.

(see Section 3.6), which can predict the formation energy
only given a protostructure. Figure 2 shows histograms of
formation energies of protostructures generated by the zeros-
initialization model. We see that the materials in general
follow the same distribution as the training set, where the
novel materials have a slight shift towards higher energies.
A possible explanation is that the training data, ultimately
derived from structures seen in experiments, samples the
lowest energy structures thoroughly enough that the filter-
ing on novel materials rejects more lower energy structures
than higher energy ones. This further suggests the ability
of WYCKOFFDIFF to generate protostructures that are also
physically plausible. We see overall the same results for the
distributions for the other versions of WYCKOFFDIFF, and
present those in Appendix C.

5. Materials Discovery Using WYCKOFFDIFF

We now demonstrate how WYCKOFFDIFF fits into a materi-
als discovery pipeline. Starting with a generation of 20 000
novel crystal structures, 10 000 from each of two WYCK-
OFFDIFF models (WYCKOFFDIFF-zeros and a previous iter-
ation of WYCKOFFDIFF-marginal; see Appendix G.3), we
extract structures with chemical elements that are not noble
gasses and where the underlying computational methods
used for the training data are known to be more reliable, i.e.,
elements from the s-, p-, and d-blocks of the periodic table
of elements.

We then realize the resulting 12 650 protostructures into
crystal structures by a process where we first semi-randomly
assign values to the degrees of freedom of the Wyckoff po-
sitions using the Pyxtal library (Fredericks et al., 2021)
using the implementation in aviary5. Subsequently, we

use the interatomic potential MACE7 (Batatia et al., 2023)
to perform a constrained relaxation where the energy is min-
imized while the symmetries set by the protostructure are
retained. We repeat this process of realizing and relaxing
crystal structures until the two lowest energies seen lies
within a small cutoff of 0.01 eV/atom. The lowest energy
found is taken as our computationally predicted energy of
the material generated by WYCKOFFDIFF. As is common
in materials science, this energy is converted into a forma-
tion energy by for each atom subtracting the corresponding
energy per atom from a representative elemental solid.

Low formation energies are only indirectly related to stabil-
ity; the thermodynamically stable material at a composition
is the one with the lowest formation energy compared to
all alternative competing phases and linear combinations
of phases, which spans the so called convex hull of ther-
modynamical stability (see, e.g., Bartel et al. (2020) and
Appendix F for more details). However, given the indi-
rect relationship, we selected 200 structures with the lowest
formation energies to investigate further. We used the high-
throughput toolkit (httk) (Armiento, 2020) to recalculate
them with density functional theory (DFT) using the VASP
electronic-structure software (Kresse & Hafner, 1994) and
evaluated their stability relative to the known convex hull
from all materials in the MP (Jain et al., 2013) and WBM
(Wang et al., 2021) databases (further details in G.2).

Out of the 200 selected materials, we highlight three hand-
picked examples with interesting chemistries (CsSnF6,
NaNbO2, and Ca2PI), shown in Figure 3 in their respective
composition phase diagrams generated using pymatgen
(Ong et al., 2013). The DFT results for these generated ma-
terials confirm them to be stable; one is distinctly below, and

7https://github.com/ACEsuit/mace-mp/
releases/tag/mace_mpa_0
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the other two are on, the convex hull. Hence, the generated
structure for CsSnF6 is clearly a new predicted material not
present in MP or WBM. The other two materials, NaNbO2,
and Ca2PI, already exist in MP (i.e., they are part of the
known convex hull and therefore on it), and can be traced
to experimental works (Roth et al., 1993; Hadenfeldt &
Herdejürgen, 1988). These are thus explicit examples of
WYCKOFFDIFF recreating materials outside of its training
set (WBM), which are experimentally confirmed to exist.
These results substantiate the ability of the model to gener-
ate materials that are physically reasonable. Furthermore,
our investigation of the 200 selected materials finds seven
other fluorides confirmed by DFT to be distinctly below the
known convex hull from WBM and MP (details presented
in Appendix G.1, Table 6). The over-representation of new
stable fluorides in this set of 200 materials is likely due
to that our proof-of-concept methodology of extracting the
smallest, i.e., most negative, formation energies may bias
towards this chemistry, rather than being a feature of the
model.

6. Discussion & Conclusions
In this paper we propose WYCKOFFDIFF, a novel gener-
ative model which leverages a new representation of the
symmetrical aspects of materials together with a novel neu-
ral network architecture and discrete diffusion to generate
new protostructures. Although obtaining the full material
requires extra steps, viewing the protostructure and the full
geometry as separate processes opens up the possibility of
using models tailored for each respective task, and use of
computational effort where it is most needed. As we high-
light with our proof-of-concept materials discovery pipeline
in Section 5, the precise geometry can be uncovered via a
pretrained generally applicable interatomic potential such
as MACE, only for the most promising materials. WYCK-
OFFDIFF shows competitive performance compared to the
current state-of-the-art both in terms of novel generated ma-
terials/min, structural novelty, and agreement with the data
distribution based on the newly proposed Fréchet Wren-
former Distance.
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A. WyckoffGNN Details
A.1. Architecture

Here we give some more details on our neural network backbone, WyckoffGNN. As mentioned in the main text, it is based
on the message-passing neural network framework (Gilmer et al., 2017), where each node in a graph is represented by a
vector hl

i, and each layer corresponds to an update of this representation according to

ml+1
i =

∑
j∈N (i)

Ml(h
l
i,h

l
j), (9a)

hl+1
i = Ul(h

l
i,m

l+1
i ). (9b)

Algorithm 2 describes the full pass through the network. It makes use of Embedding() layers which maps discrete features,
like the atom types or number of atoms of a certain atom type, to vectors in some vector space Rd, and Linear() which are
affine maps of vectors in Rdin to Rdout , i.e., Linear(x) = Wx+ b. The embedding of the number of atoms embeds the
number of atoms of each atom type in z∞ into a scalar which are concatenated and then processed by a linear layer such
that all initial representations h0 of all Wyckoff positions are of the same dimension.

Algorithm 3 describes the update of the hidden representations as in Equation (9). As we are working on a fully connected
graph, the sum over the neighbors is over all positions. In our case, the input to Ml is not the hidden representations hl

i and
hl
j , but concatenations of the hidden representations and its corresponding position vector hpos

i which contains some general
information of the Wyckoff position like the number of degrees of freedom, the letter, but also the space group and sampling
timestep t. Algorithm 4 outlines how Ml is computed.

A.2. Choice of βt

As a scheduler for βt, we used the cosine scheduler by Hoogeboom et al. (2021). By defining αt = 1−βt and ᾱt =
∏t

s=1 αs,
we choose βt such that

ᾱt = cos

(
t/T + s

1 + s

π

2

)
, (10)

with s = 0.008.

Algorithm 2 Full GNN forward pass

Input: Spacegroup s, positions with no constraints z∞ ∈ {0, 1, . . . , P}L∞(s)×Na , positions with no degrees of freedom
z0 ∈ {0, . . . , Na}L0(s), number of DOFs xdof ∈ {0, . . . , 3}L(s), Wyckoff letters xletter ∈, timestep t

Output: Probability vectors p∞ ∈ ∆L∞×Na

P and p0 ∈ ∆L0

Na
, where ∆n is the n-simplex

h← stack(Embedding(z0), Linear(Embedding(z∞))
hpos ← Embedding(xdof) + Embedding(xletter) + Embedding(s) + Embedding(t)
for layer in GNN layers do

h← layer(h,hpos) {Algorithm 3}
h← activation(h)

end for
p∞ ← MLPθ(h[xdof ̸= 0])
p0 ← MLPϕ(h[xdof = 0])
return p0,p∞
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Algorithm 3 GNN layer forward pass. All operations are for i = 1, . . . |L(s)|, where |L(s)| is the number of Wyckoff
positions for the spacegroup s

Input: Node features hl = (hl
1, . . . ,h

l
L(s)), position specific embeddings hpos

Output: Updated features hl+1

w← cat(h,hpos)

ml+1
i ←

∑|L(s)|
j=1 Ml(wi,wj) {Ml from Algorithm 4. Complete graph, hence sum over all other positions.}

hl+1
i ← hl

i +ml+1
i {Ul, a simple skip connection}

return hl+1

Algorithm 4 GNN message, Ml(wi,wj) in Equation (9)
Input: Node features wi,wj

Output: Message mi,j = M(wi,wj)

vi,j ← cat(wi,wj)
ai,j ← MLPθ(vi,j) {Scalar}
ai,j ← softmaxj(ai,j) {Will depend on other features, so cannot do this before computing ai,j for all j}
mi,j ← ai,j MLPϕ(wj)
return mi,j

Table 3. Hyperparameters used for WyckoffDiff

PARAMETER VALUE

GENERAL
MAX. TIMESTEP T 1 000
MAX. ATOM NUMBER Na 100
MAX. NUM ATOMS OF AN ELEMENT P 54

GNN

NUMBER OF GNN LAYERS, N 3
DIMENSION OF hl

i 256
DIMENSION OF hPOS

i 16
ACTIVATION FUNCTION SILU (SEE EQUATION (11))

MLPS, GENERAL
NUMBER OF HIDDEN LAYERS 2
ACTIVATION SILU

MLPS IN Ml HIDDEN DIMENSION 2(DIM(hl
i) + DIM(hPOS

i )) = 544

PROBABILITY DECODING MLPS HIDDEN DIMENSION 2DIM(hl
i) = 512

TRAINING

OPTIMIZER ADAMW (LOSHCHILOV & HUTTER, 2019)
LEARNING RATE 2 · 10−4

BATCH SIZE 256
NUMBER OF EPOCHS 1000

A.3. Hyperparameters and Training Details

Training of a model required approximately 38 hours on a single NVIDIA A100. Hyperparameters for WYCKOFFDIFF and
its training can be found in Table 3. The activation function SiLU (Ramachandran et al., 2017) is given by8

SiLU(x) = x
exp(x)

1 + exp(x)
. (11)

We did not perform any hyperparameter search.

8See also, e.g., https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html
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A.4. A Note on Scalability

A bottleneck in our method is that we are operating on complete graphs, meaning that for space groups with many positions,
the number of edges in the graph increases quickly. On the other hand the data dimensionality is fixed for a certain space
group, and more atoms in the unit cell does not change that. E.g., in Figure 1, the number of Cs atoms occupying the
”c” position is represented by an integer, so increasing this from 0 to, say, 4, doesn’t affect the dimensionality of the data.
Increasing the size of the set of elements in the materials (e.g., increasing Na) and increasing the maximum number of atoms
occupying an unconstrained position (i.e., P ) will add additional computational overhead as, e.g., the backward transition
requires summing over all possible values of a variable.

B. Implementation Details of Compared Methods
For all methods, we used the official public implementations91011 and we train all methods for 1 000 epochs. We specify
further details below.

B.1. CDVAE

For CDVAE, we used the hyperparameters used for the MP20 dataset by the original authors, except for the learning rate
which we lowered to 2 · 10−4, as the default value led to instabilities in the training.

B.2. DiffCSP++

For DiffCSP++, we used the hyperparameters specified by the original authors for the MP20 dataset.

B.3. SymmCD

For SymmCD, we used the hyperparameters specified by the original authors for the MP20 dataset, except for the number of
training epochs and batch size, which we reduced to 1 000 and 256, respectively, to ensure fair comparisons.

When generating materials using SymmCD, we encountered an issue where the length and angle matrices contained NaN,
Inf, or extremely small values. To facilitate subsequent evaluation, we filtered out those invalid materials.

C. Wren Energy Histograms
We show the similarities of generated material distrubution across all model versions WYCKOFFDIFF-marginal, WYCK-
OFFDIFF-uniform, and WYCKOFFDIFF-zeros, in Figure 4.
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Figure 4. Distribution of formation energies predicted by Wren for, (unfiltered) generated protostructures, novel generated protostructures,
relative to the training set for the model. Protostructures are generated by (a) WYCKOFFDIFF-marginal (b) WYCKOFFDIFF-uniform (c)
WYCKOFFDIFF-zeros. Q10, Q50,and Q90 are the 10th, 50th, and 90th percentiles respectively.

9https://github.com/txie-93/cdvae
10https://github.com/jiaor17/DiffCSP-PP/
11https://github.com/sibasmarak/SymmCD

15

https://github.com/txie-93/cdvae
https://github.com/jiaor17/DiffCSP-PP/
https://github.com/sibasmarak/SymmCD


WyckoffDiff – A Generative Diffusion Model for Crystal Symmetry

Table 4. Results on the Carbon24 dataset. Due to overall very low novelty, we settled for only 1 000 protostructures, and 1 000 novel
protostructures, for computing statistics.

NOVEL

NOV. ↑ UNIQ. ↑ UNIQ. ↑
MODEL FWD ↓ (%) (%) FWD ↓ (%) NOV./MIN. ↑

CDVAE 110± 5.62 5.30± 1.45 8.4± 0.8 91.6± 7.5 16.7± 2.10 3
DIFFCSP++ 4.12± 1.53 1.40± 0.46 16.6± 0.60 38.6± 4.93 22.3± 1.47 2
SYMMCD** 11.4± 1.85 6.53± 1.72 16.4± 0.46 94.8± 33.1 21.7± 3.84 6

O
U

R
S WYCKOFFDIFF-UNIFORM 0.78± 0.14 1.6± 0.87 19.0± 5.69 52.9± 8.34 23.8± 2.93 14

WYCKOFFDIFF-MARGINAL 0.78± 028 1.4± 0.47 16.4± 0.89 53.0± 2.76 29.0± 3.42 14
WYCKOFFDIFF-ZEROS 0.89± 0.21 1.6± 0.40 16.2± 0.55 49.0± 4.41 27.8± 1.95 12

Table 5. The number of unique and novel prototypes among 1 000 novel protostructures from models trained on the Carbon24 dataset.
Due to overall very low novelty, we settled for only 1 000 novel protostructures for computing statistics.

MODEL
# UNIQUE & NOVEL

PROTOTYPES

CDVAE 167± 21
DIFFCSP++ 223± 15
SYMMCD 217± 38

WYCKOFFDIFF-UNIF. 237± 25
WYCKOFFDIFF-MARG. 290± 48
WYCKOFFDIFF-ZEROS 278± 15

D. Validity of Materials
Other related works (e.g., CDVAE (Xie et al., 2022) and subsequent works) present two metrics on “validity” of materials.

Structural validity A material is determined to be structurally valid if the distance between two atoms is less than 0.5 Å.
As we are only concerned with protostructures (and thus do not consider the exact geometries), this metric is not applicable
in our study.

Compositional validity If a materials has an overall neutral charge according to SMACT (Davies et al., 2019), it is
determined to be compositionally valid, which is something that can be computed for protostructures. When computing
this on the novel protostructures, this number is 81.8 ± 0.3% for CDVAE, 87.1 ± 0.51% for DiffCSP++, 86.3 ± 0.28%
for SymmCD and 85.9± 1%, 87.7± 0.4, and 86.1± 0.3% for WYCKOFFDIFF-uniform, WYCKOFFDIFF-marginal, and
WYCKOFFDIFF-zeros, respectively. However, the term “validity” in this case should not be taken as a prerequisite for a real
material, as some systems do not fulfill this (e.g., metals with diffuse non-local bonds). Indeed, the validity of the materials
in WBM is 87%, and it is hence not expected (nor desirable) to have this number any higher.

E. Results on Carbon24
As an additional experiment, we used Carbon24 (Pickard, 2020). We used the same training set as in the DiffCSP++
repository, and all baselines used hyperparameter configurations from their corresponding repositories (see above). We used
the same hyperparameters for WYCKOFFDIFF as for WBM, apart from training for 4 000 epochs to match the baselines, and
setting P = 24.

However, all models strggled in general to generate novel protostructures, probably due the dataset containing only a single
element, and a novel protostructure hence needed to be a novel prototype. due to this low novelty, we limited the study to
compute statistics on 1 000 protostructures, and 1 000 novel protostructures. We present the numbers in Tables 4 and 5.
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F. Novel Stable Materials
Low formation energies are only indirectly related to stability; the thermodynamically stable material at a composition is the
one with the lowest formation energy compared to all alternative competing phases and linear combinations of phases, which
spans the so called convex hull of thermodynamical stability (see, e.g., (Bartel et al., 2020)). I.e., in order do determine if a
novel material is stable, the formation energy needs to be compared with the convex hull. Deriving the formation energy of
a material and computing the convex hull is described below.

F.1. Formation Energy

Formation energy is calculated by taking the total energy of a material and subtracting the sum of elemental solid energy for
each element present in the material. A negative formation energy therefore implies a lower energy state of the material
relative to its elemental components. In turn, the formation energy proves that the material will not decompose into its
elemental components.

F.2. Convex Hull

Plotting the formation energies of the materials and its corresponding elemental solid energies in a diagram constructs a
phase diagram. Materials that holds the lowest formation energy in the phase diagram forms a convex hull. The convex hull
constructs serves as the line of stable materials, meaning: if a new crystal structure is discovered but has higher formation
energy in comparison to the convex hull, the new crystal structure will decompose into its closest stable neighbors on
the convex hull; whereas if the new crystal structure has a lower formation energy in comparison to the convex hull, the
new material is novel and stable. The novel stable material is then part of a new convex hull, redefining the line of stable
materials.

G. Supplementary Details on Materials Discovery Demonstration
G.1. Additional Protostructures

As described in Section 5 we performed a selection of three chemically interesting materials, whereas it was noted that
there where a total of eight fluorides with distinctly below the convex hull. In Table 6 we list the materials sorted on energy
distance from the convex hull of WBM and Materials Project (MP), up to the final selected structure.

Table 6. Listed structures up to the final included selection of interesting chemistry. The top section is the eight fluorides with formation
energy distinctly below the convex hull. † Selection of a three examples with interesting chemistry out of WYCKOFFDIFF generated
crystal structures close to or below the convex hull of WBM and Materials Project (MP).

Protostrucuture E form. E above
[eV/atom] hull [eV ]

AB6C hR24 166 a h b:Cs-F-Sn † −2.6103 −0.0322
A2B6CD cF40 225 c e a b:Cs-F-Ni-Rb −2.6043 −0.0194
AB6C hR24 148 a f b:Ba-F-W −3.2550 −0.0097
A6BC cF32 225 e a b:F-Li-Ru −2.4313 −0.0076
A6B3C mC20 12 ij ai d:F-Rb-V −3.1621 −0.0068
A5B2C tP8 123 bj e a:F-K-Zn −2.6064 −0.0038
A6BC cF32 225 e a b:F-K-Ta −3.6294 −0.0027
A6BC mC16 12 ij a d:F-Ti-Zn −3.3484 −0.0019

ABC2 hP8 194 a c f:Na-Nb-O † −2.5369 −0.0009
A6BCD2 cF40 225 e a b c:F-Ga-Na-Rb −3.0972 −0.0003
ABC4 tI24 141 a b h:As-Nd-O −2.8137 −0.0003
A3B hR24 167 e b:F-Ga −2.9513 −0.0002
A2BC7D2 hR36 155 c a bf c:Al-Ba-O-Sb −2.7786 −3.07× 10−05

AB cF8 225 a b:Ca-O −3.3142 6.16× 10−05

ABC hP6 194 c d a:F-La-Se −3.1550 6.20× 10−05

AB4C oC24 63 c fg c:Ca-O-S −2.6801 8.25× 10−05

A2BC hR12 166 c a b:Ca-I-P † −1.4222 0.0001
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G.2. Density Functional Theory Supplementary Details

In order to maintain compatibility with MP and WBM dataset, all DFT calculations and post-corrections
(MaterialsProjectCompatibility) (Jain et al., 2011) were performed using INCAR settings, KPOINTS and
pseudo-potentials defined by Pymatgen (Ong et al., 2013). Calculations where converged to atleast 1e-4 eV in total energy
in electronic steps.

G.3. Previous WYCKOFFDIFF-marginal

The structure A2BC hR12 166 c a b:Ca-I-P (Ca2PI) was found using a previous iteration of the WyckoffGNN
architechure where we did not use softmax in the message-function Ml, but instead used the raw outputs of the neural
network (see Algorithm 4), and encoded the degrees of freedom of the position using a binary representation, i.e., constrained
or unconstrained position instead of 0, 1, 2, or 3 degrees of freedom.
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