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ABSTRACT

Neural networks in continual learning often lose plasticity: some neurons become
inactive, while others fire almost constantly. This limits adaptation to shifting
data and wastes capacity. Prior work mitigates this by periodically reinitializ-
ing low-utility units, but such resets can destroy previously learned features and
do not proactively prevent low utility. We study a simple diagnostic measure:
the firing rate of ReLU units, defined as the fraction of positive pre-activations.
Low rates identify dead units, while very high rates indicate linearized, always-
on units. Based on this view, we introduce a lightweight load-balancing mecha-
nism that adjusts per-neuron thresholds to keep firing rates within a target range.
Across continual ImageNet and class-incremental CIFAR-100, improvements in
firing-rate distributions help explain differences in plasticity across approaches,
including our load-balancing mechanism and well-known techniques, notably L2
regularization and non-affine normalization.

1 INTRODUCTION

Deep learning models have achieved state-of-the-art performance on a broad range of tasks when
trained on fixed datasets (He et al., 2016; Liu et al., 2022). However, performance often degrades in
continual learning settings, where the data distribution evolves over time (Khetarpal et al., 2022; Lee
et al., 2023; Abbas et al., 2023). Simply continuing training on new data often leads to optimization
instabilities and catastrophic forgetting, and the mechanisms behind these failures are not yet fully
understood (Lyle et al., 2024). A common remedy is to retrain a new model from scratch, which
restores accuracy but is often impractical due to computational cost.

Ideally, a continual learning system would strike a balance between plasticity, the ability to adapt to
new data, and stability, the ability to preserve what it has already learned (Carpenter, 1987; Elsayed
& Mahmood, 2024). Declining stability is known as catastrophic forgetting (McCloskey & Cohen,
1989), while declining plasticity is commonly called plasticity loss. Overcoming these challenges
would allow models to evolve as data changes over time, mimicking the way humans and animals
continuously learn without retraining from scratch.

Contributions:

• We introduce firing-rate analysis as a simple, interpretable diagnostic tool for neuron uti-
lization and plasticity loss in continual learning, offering a unified view across tasks and
architectures.

• We analyze and compare the firing-rate distributions of existing methods, including L2
regularization and non-affine normalization, and show how these patterns relate to plasticity
loss.

• We propose a load-balancing mechanism that dynamically adjusts neuron activity by shift-
ing activation inputs. It keeps firing rates balanced and outperforms previous baselines.
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2 BACKGROUND

Plasticity loss. The phenomenon of plasticity loss has been observed in both supervised learning
(Ash & Adams, 2020; Berariu et al., 2021; Dohare et al., 2024) and reinforcement learning (Lyle
et al., 2022; Nikishin et al., 2022; Dohare et al., 2024). Several approaches have been proposed to
improve plasticity. For instance, injecting noise during training (Ash & Adams, 2020), periodically
resetting the last layers (Nikishin et al., 2022), expanding the network during training (Nikishin
et al., 2023), using the Concatenated ReLU activation function Abbas et al. (2023), reinitializing
low-utility neurons (Sokar et al., 2023; Dohare et al., 2024), perturbing gradients of low-utility neu-
rons Elsayed & Mahmood (2024), and regularizing weights toward their initial values Kumar et al.
(2024). Some studies combine multiple techniques. For example, Lee et al. (2023) combines layer
resets with Concatenated ReLUs, LayerNorm (Ba et al., 2016), and the sharpness-aware minimiza-
tion optimizer (Foret et al., 2021).

Many of these interventions restore plasticity by potentially destroying learned information, by re-
setting neurons or entire layers of the networks, rather than preventing collapse in the first place. In
contrast, we ask how to sustain plasticity proactively through minimal architectural changes.

Measuring neuron utility. Many of the above methods rely on a measure of neuron utility. For
example, Dohare et al. (2024) define a neuron’s contribution utility as the magnitude of its activation
multiplied by the magnitudes of all outgoing weights, tracked as a moving average during training.
Sokar et al. (2023) define the dormancy score as the neuron’s activation magnitude, normalized
by the magnitudes of other neurons in the same layer and averaged over the dataset; a neuron is
considered dormant if the dormancy score falls below a threshold. Elsayed & Mahmood (2024)
define weight utility as the change in loss after zeroing a weight, which yields a global ranking over
all weights but is more expensive to compute and requires second-order Taylor approximations.

In contrast, we introduce a firing-rate diagnostic that reveals the distribution of neuron utilization,
across layers and over time, rather than collapsing activity into a single summary statistic.

Continual learning benchmarks. Many benchmarks have been proposed to evaluate continual
learning, but there is no single standard, and new variants are often introduced, making comparisons
difficult. In this work, we adopt the benchmarking setup of Dohare et al. (2024) to assess our method.
We therefore focus on the continual ImageNet and class-incremental CIFAR-100 benchmarks, which
they used to evaluate continual backpropagation (CBP).

3 PLASTICITY THROUGH THE LENS OF FIRING RATES

Plasticity loss often reflects neuron-level collapse in ReLU networks, where some neurons stop
firing, and others become always active. Plasticity, in turn, depends on whether a neuron spends
time on both sides of its threshold. We therefore use the firing rate, the fraction of pre-activations for
which a neuron is active, as a diagnostic tool of neuron use. Tracking firing-rate distributions reveals
training anomalies, and keeping them in a balanced range correlates with improved adaptation under
distribution shift as we will demonstrate in the experimental section.

Firing rate. A ReLU implements a two-regime, piecewise-linear map: off for x < 0 (slope 0) and
on for x ≥ 0 (slope 1). We therefore use the firing rate to diagnose whether a neuron remains stuck
in one regime or alternates between them over inputs and time. Concretely, consider a pre-activation
x passed through a ReLU, producing y = max(0, x). For a batch of pre-activations x1, . . . , xn ∈ R
for a particular neuron, define the instantaneous batch firing rate as

ρ =
1

n

n∑
i=1

[xi ≥ 0], (1)

where [·] ∈ {0, 1} denotes the Iverson bracket. Thus, ρ is an empirical estimate of Pr(x ≥ 0)
under the current data distribution. Because continual learning is non-stationary, instantaneous batch
estimates can be volatile. We therefore track the exponentially averaged firing rate, denoted ρ̄, to
track the longer-term trend:

ρ̄← τ ρ̄+ (1− τ)ρ, (2)
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with decay τ ∈ [0, 1]. We initialize ρ̄ to 50% and use τ = 0.99 in our experiments. The exponential
moving average smooths batch noise while remaining responsive to a changing data distribution.

Interpretation. The firing rate ρ̄ is directly tied to the unit’s nonlinearity. Near ρ̄ = 0 the neu-
ron is dead or dormant and contributes neither activation nor gradient. Near ρ̄ = 1 it is a linear
pass-through with ∂y

∂x = 1. Gradients continue to flow, but its behavior is linear. In both extremes
the neuron adds no curvature to the overall network, reducing effective capacity. Intermediate firing
rates correspond to neurons that regularly cross the threshold in both directions, providing nonlin-
earity to shape decision boundaries.

Connection to plasticity loss. Plasticity loss at the neuron level manifests as saturation of ρ̄ toward
0 or 1. In either case, the neurons ability to adapt its decision boundary to shifting data diminishes,
even if its weights continue to update. This view motivates using firing rates both as a diagnostic for
plasticity and as a control signal for the load-balancing mechanism introduced later.

3.1 OPTIMAL FIRING RATE

From a functional standpoint, a ReLU is most useful when it alternates between active and inactive
regimes. This occurs when it is on about half the time, suggesting an optimal firing rate of 50%.

An information-theoretic view makes this precise: view a neuron’s activation state as a binary ran-
dom variable S = [x ≥ 0]. Under the pre-activation distribution encountered during continual train-
ing, S ∼ Bernoulli(p) with p = Pr(x ≥ 0), which we estimate with the average firing rate ρ̄. The
Shannon entropy

H(p) = −p log2 p− (1− p) log2(1− p) (3)

quantifies how unpredictable the activation state is across the data stream. Higher entropy means
the state carries more information. Formally, because S is a deterministic function of the pre-
activation x, the mutual information between x and S equals the entropy, i.e., I(x;S) = H(S).
Maximizing the mutual information I(x;S) therefore amounts to maximizing H(S), which has a
unique maximum at p = 0.5. Departures toward 0 or 1 reduce entropy and hence reduce the neuron’s
effective capacity and plasticity. This is a per-neuron argument; network-level entropy also depends
on dependencies among units, as discussed in Appendix B.

While this is a per-neuron, theoretical argument, our experiments will show that targeting a firing
rate near 50% often yields the strongest performance.

3.2 FIRING-RATE DYNAMICS IN CONTINUAL BENCHMARKS

In this subsection, we study firing-rate behavior on the continual ImageNet and class-incremental
CIFAR-100 benchmarks. These settings build on widely used datasets, are tailored to CNN and
ResNet architectures that provide a stronger test of plasticity than simpler MLP models, and are
straightforward to interpret. Together, they offer a useful testbed for examining how neuron firing
rates evolve under distribution shift.

Continual ImageNet: firing-rates and accuracy. In the continual ImageNet benchmark (Dohare
et al., 2024), the model is trained on a sequence of binary classification tasks. For each task it
learns to discriminate two randomly sampled classes from ImageNet (Deng et al., 2009) before
moving on to a new pair. Because all tasks have comparable difficulty, accuracy degradation across
tasks indicates reduced plasticity (Dohare et al., 2024). Following Dohare et al. (2024), images are
downsampled to 32× 32 resolution, which preserves ImageNet’s class diversity while making long
sequential runs computationally feasible for thousands of tasks. This setup is substantially more
demanding than MNIST-scale benchmarks. We use a compact CNN with ReLU activations (see
Appendix D for training details).

Firing-rate distributions and test accuracies are shown in Figure 1. Accuracy curves report the
mean over multiple seeds, with shaded bands denoting ±1 standard error of the mean. Because
tasks are formed by randomly sampled binary class pairs, this benchmark exhibits higher run-to-run
variability. The error bands make this variability explicit without altering the overall ranking among
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Figure 1: Continual ImageNet: Evolution of firing rate distributions (left) and test accuracy with
error bands (right), averaged over 10 seeds. Standard training collapses neuron activity, while Batch-
Norm, L2 regularization, and CBP maintain more balanced firing. The temporal alignment between
balanced firing rates and rising accuracy highlights their connection to plasticity.

methods, and results are best interpreted in terms of the trajectory of accuracy curves, which captures
plasticity dynamics. Absolute accuracies for all methods and tasks are listed in Appendix G.

Throughout this paper, firing-rate distributions are visualized as two-dimensional heatmaps: the
horizontal axis denotes training progress (number of tasks), the vertical axis spans firing rates from
0 to 100%, and each column shows a histogram over all neurons in the network. Brighter regions
indicate many neurons with that firing rate, whereas darker regions indicate fewer. These plots reveal
how activity patterns evolve over time.

Key findings:

1. Baseline. Continual training on changing tasks leads to rapid accuracy deterioration after
only a few tasks, consistent with prior findings (Dohare et al., 2024). Firing rates col-
lapse toward near 0% for most neurons, aligning with the drop in accuracy due to limited
plasticity.

2. BatchNorm. Adding Batch Normalization (Ioffe & Szegedy, 2015) improves accuracy and
plasticity over the baseline. The firing rates do not collapse and accuracy eventually im-
proves after ≈ 500 tasks. This illustrates that firing rates are more closely tied to plasticity
than to accuracy.

3. L2. With L2 regularization, test accuracy is almost as good as CBP. The firing rates show a
distinctive pattern: many collapse to near 0%, whereas consistently some are in the 1-50%
range. Plasticity remains strong in this case, indicating that no single firing-rate distribution
universally characterizes plasticity.

4. BatchNorm + L2. Combining Batch Normalization and L2 regularization prevents ex-
treme firing rates. Both accuracy and plasticity remain high in this setting.

5. CBP. Continual Backpropagation (Dohare et al., 2024) largely prevents neurons from col-
lapsing to 0% firing rates. Early in training, many neurons saturate near 100%, indicating
linearized ReLU behavior. After ≈ 500 tasks, the distribution re-centers and broadens,
producing more balanced activity and coinciding with improved accuracy. While purely
correlational, the temporal alignment between more balanced firing-rate distributions and
accuracy suggests that maintaining intermediate firing rates supports plasticity.

Class-incremental CIFAR-100: firing-rates and accuracy. In the class-incremental CIFAR-100
benchmark, the model begins by learning to classify a small set of randomly sampled classes fomr
CIFAR-100 (Krizhevsky et al., 2009). Additional classes are gradually introduced, and the model
must classify all classes encountered so far until the full set of 100 is included. Because the classi-
fication problem grows harder as more classes accumulate, performance can decline even without
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Figure 2: Class-incremental CIFAR-100: Firing-rate distributions (left) and test accuracy with
error bands (right), averaged over 15 seeds. Baseline training leads to gradual neuron inactivity,
while resets and CBP maintain non-collapsed firing patterns. Accuracy closely follows these trends,
indicating that balanced firing rates preserve plasticity.

plasticity loss (Dohare et al., 2024). To disentangle this effect, we compare continual training with
a model trained from scratch on the same subset. If the continually trained model performs worse
than a model trained from scratch, this indicates plasticity loss, whereas superior performance sig-
nals knowledge transfer (Dohare et al., 2024). We use a ResNet-18 with ReLU activations (see
Appendix D for training details).

Firing-rate distributions and test accuracies are shown in Figure 2. Results are averaged over multi-
ple seeds, with shaded bands denoting ±1 standard error of the mean.

Key findings:

1. Baseline. As in continual ImageNet, neurons progressively fall inactive, though the col-
lapse is less drastic. Over time, many units reach zero firing, limiting the model’s capacity
to learn new tasks.

2. Resets. Resetting the network after each task prevents firing-rate collapse. Neurons con-
sistently adapt to the new classes from their initialization. The distribution shifts as the
number of classes grows, reflecting the increasing difficulty of the task.

3. CBP. The firing-rate distribution under Continual Backpropagation closely resembles the
Resets setup. Test accuracy closely tracks the Resets baseline, and firing rates are concen-
trated in the 10-30% range with some units reaching around 60%. This pattern indicates
that neurons remain active and avoid collapse without full network reinitialization.

Summary of findings. In summary, firing-rate analysis provides a straightforward lens on plas-
ticity in continual learning. Across both benchmarks, conventional training rapidly leads to inactive
neurons, while CBP maintains balanced firing-rate distributions that closely resemble those of fully
reset networks. This shows that CBP preserves plasticity without reinitialization and validates firing
rates as a useful diagnostic tool.

4 LOAD BALANCING: BOUNDING PER-NEURON FIRING RATES

In this section, we investigate whether explicit control of firing rates can achieve performance be-
yond full network resets between tasks. We introduce a lightweight mechanism, load balancing, that
shifts each neuron’s pre-activation to keep its long-term firing rate within target bounds. Concretely,
before a ReLU we replace the pre-activation x by a shifted value

x̃ = x+ sg(β), (4)

where β ∈ R is a per-neuron offset initialized to zero and sg(·) denotes a stop-gradient (i.e., β is
treated as constant for backpropagation). Rather than updating β by gradient descent, we adjust it
after each batch using a simple controller based on the exponentially averaged firing rate ρ̄:

β ←


β + α if ρ̄ < ρmin

β − α if ρ̄ > ρmax

β otherwise,
(5)
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Figure 3: Continual ImageNet: Firing-rate distributions (left) and test accuracy (right) under
BN+L2 with and without load balancing. Constraining neurons to intermediate regimes (40-60%
or 50%) improves accuracy over both the unconstrained baseline and CBP.
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Figure 4: Class-incremental CIFAR-100: Firing-rate distributions (left) and test accuracy (right)
for different load-balancing ranges. Loose bounds (5-95%) reproduce reset-like behavior with im-
proved accuracy, while tighter control near 50% yields further gains, surpassing both resets and
CBP.

where α > 0 is a small step size (we use α = 0.001) and [ρmin, ρmax] ⊂ [0, 1] specifies the target
range. Because the update mechanism uses feedback from measured firing rates, we compute those
rates on the shifted pre-activations x̃, which is the signal the ReLU actually receives. During infer-
ence, β is fixed. Intuitively, this shifts the effective activation threshold horizontally so that neurons
spending too little (or too much) time in the active regime are nudged toward the target range.

Practical considerations. In practice, the shift β can compete with the learned bias of the pre-
ceding layer. We mitigate this by placing a BatchNorm immediately before the shift and using L2
regularization. This configuration is already present in the class-incremental CIFAR-100 setup; for
continual ImageNet we adopt the BN+L2 configuration. We implement load balancing as a small
layer inserted before each activation, which measures firing rates and adapts the shifts. PyTorch
code for this layer is provided in Appendix E.

Load balancing in continual ImageNet. Using BN+L2 as the base configuration, we evaluate
load balancing with different bounds on the continual ImageNet benchmark, with results shown
in Figure 3. Constraining firing rates to an intermediate band (40-60%) yields higher accuracy
than both unconstrained BN+L2 and CBP, and fixing all neurons to 50% achieves comparable
performance. We omit a broader 5-95% setting because BN+L2 already discourages extreme firing
rates near 0% and 100%.

Load balancing in class-incremental CIFAR-100. In the class-incremental CIFAR-100 bench-
mark, we evaluate two load-balancing configurations and compare their performance relative to the
Resets baseline, where the network is reinitialized after each task. The results are presented in
Figure 4. Using loose bounds of 5-95% reproduces firing-rate patterns similar to the reset-based
baseline. This configuration already achieves higher accuracy than both resets and CBP. Pushing the
bounds more aggressively to 50% yields even better performance.

Summary of findings. This section shows that explicitly controlling firing rates with load bal-
ancing improves continual-learning performance. Constraining rates to intermediate ranges, e.g.,
40-60% or a fixed 50%, yields higher accuracy than both the reset-based baseline and CBP on the
two benchmarks. These settings maintain diverse activation patterns and align with the earlier ar-
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Figure 5: Class-incremental CIFAR-100: Firing-rate distributions (left) and test accuracy (right)
for ReLU, LeakyReLU, and GELU, all based on the BN + L2 setup. In the right plot the dashed
lines show the results for load balancing 50%. Results are averaged over 15 seeds for ReLU, and 4
seeds for LeakyRELU and GELU.
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Figure 6: Continual ImageNet: Firing-rate distributions (left) and test accuracy (right) for ReLU,
LeakyReLU, and GELU, all based on the BN + L2 setup. In the right plot the dashed lines show the
results for load balancing at 50%. Results are averaged over 10 seeds for ReLU and LeakyReLU,
and 5 seeds for GELU.

gument that a 50% firing rate maximizes activation-state entropy and supports nonlinearity. Taken
together, the results highlight balanced neuron utilization as a useful target and indicate that firing-
rate control is a practical mechanism for improving plasticity and knowledge transfer.

5 FURTHER EXPERIMENTS

5.1 BEYOND RELU

The main focus of this paper is on ReLU. Of course, it is interesting to also study the effect of
controlling the load for other activation functions. As a preliminary study we applied the load bal-
ancing approach of Section 4 to LeakyReLU (Maas et al., 2013) and GELU (Hendrycks & Gimpel,
2016). Our results are shown in Figures 5 and 6. In each of the figures, the left panels show the
firing-rate distributions without load balancing. The right panels compare the performance without
load balancing (solid lines) and with load balancing at 50% (dashed lines). The colors correspond
to the colored text above the left panels.

For the class-incremental CIFAR-100 in Figure 5 we see that the firing rates for all three activation
functions show a loss of plasticity. Accordingly, all three profit from load balancing at 50% as can
be seen in the right panel. Curiously, the ReLU activation function profits most (see right edge of
the accuracy panel): without load balancing it has the worst performance, with 50% load balancing
it has the best (together with load balanced LeakyReLU).

For continual ImageNet, we see from the firing rates distribution that loss of plasticity is not a big
issue for any of the three activation functions (left panels of Figure 6). As discussed earlier, this
is due to the use of BatchNorm and L2 regularization for this setup. It appears that all activation
functions profit from load balancing, but the large variances (the background is completely covered
greenish), makes the continual ImageNet experiment somewhat inconclusive.
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5.2 REINFORCEMENT LEARNING

We conducted a preliminary reinforcement learning experiment with Deep Q-Networks (DQN) on
DemonAttack, a setting previously used to demonstrate plasticity loss (Sokar et al., 2023). We
compared a LayerNorm baseline to LayerNorm augmented with load balancing targeting a 50%
firing rate. The load-balanced variant achieved higher evaluation scores as can be seen in Figure 9.

5.3 CASE STUDY: DESIGNING NETWORKS FOR BALANCED FIRING RATES

The preceding sections showed that plasticity correlates with non-collapsed firing-rate distributions,
with the best results near 50%. While load balancing enforced this explicitly, we now ask whether ar-
chitecture alone can induce the same behavior. Guided by firing-rate diagnostics, tracking layer-wise
distributions, we identify minimal, effective modifications. The goal is not exhaustive architecture
design, but a targeted case study of how the firing-rate lens translates into practical design choices.

Non-affine normalization. A direct way to keep ReLU units near the 50% firing regime is to keep
their pre-activations centered at the threshold (zero). Normalization layers compute a standardized
signal and then apply a learned affine transform with parameters γ and α:

x̃ =
x− E[x]√
Var(x) + ϵ

· γ + α. (6)

BatchNorm (Ioffe & Szegedy, 2015) estimates the mean and variance over the batch; LayerNorm
(Ba et al., 2016) does so over features. Crucially, the learned shift α can move the normalized
signal away from zero, so these layers do not, in general, keep the activation centered at the ReLU
threshold.

Therefore, we consider non-affine variants that drop the learned scale γ and shift α. As shown in Fig-
ure 10, non-affine BatchNorm+L2 yields firing rates tightly clustered around ≈ 50% and matches
the performance of CBP. In contrast, non-affine LayerNorm+L2 produces firing rates broadly dis-
tributed across 0-100% and achieves the highest accuracy on this benchmark, surpassing even our
load balancing results. This indicates that while centering promotes balanced activity, performance
gains can also arise from wider, layer-wise variability in firing rates.

Adding load balancing that targets a strict 50% firing rate on top of non-affine LayerNorm reduces
accuracy relative to non-affine LayerNorm alone (see Figure 10). This suggests that enforcing a
single target rate across all units is not universally optimal; instead, balanced utilization distributed
across the full range of firing rates, varying by layer and unit, appears beneficial.

In Figure 7, non-affine BatchNorm also improves accuracy on class-incremental CIFAR-100 and
already exceeds the reset-based baseline and CBP. The corresponding firing-rate distributions are
concentrated in an intermediate range rather than collapsing to 0% or saturating near 100%.

Normalized skip connections. Building on the normalization view, Figure 8 plots the firing rates
of the first and second ReLU in each ResNet block for class-incremental CIFAR-100. Despite using
non-affine BatchNorm, the distribution of the second ReLU is skewed (second panel). The cause
is architectural: following the classical post-activation block of He et al. (2016) as used by Dohare
et al. (2024) (Conv-BatchNorm-ReLU-Conv-BatchNorm, skip connection, second ReLU),
the pre-activation to the second ReLU is not normalized. In the “Norm. skip connection” variant, we
apply a non-affine BatchNorm to the skip path. The right panels of Figure 8 show that this yields a
more symmetric distribution around 50%. Figure 7 confirms the same trend network-wide together
with a corresponding gain in accuracy. While it is known that the original post-activation block has
drawbacks, our results provide a complementary explanation through the lens of firing-rate balance.

Summary of findings. Non-affine normalization layers and normalized skip connections shift
firing-rate distributions toward balanced regimes, often near 50%, and consistently improve ac-
curacy in continual benchmarks. While their benefits have been discussed from other perspectives,
viewing them through firing-rate dynamics highlights why such modifications improve performance.
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Figure 7: Class-incremental CIFAR-100: Firing-rate distributions (left) and test accuracy (right)
under non-affine normalization and normalized skip connections. Both modifications steer firing
rates toward balanced regimes and improve accuracy beyond resets and CBP.

5 25 50 75 100
0%

25%
50%
75%

100%

Fi
rin

g 
ra

te

Non-affine BN
ReLU 1

5 25 50 75 100

Non-affine BN
ReLU 2

5 25 50 75 100

Norm. skip con.
ReLU 1

5 25 50 75 100

Norm. skip con.
ReLU 2

Figure 8: Class-incremental CIFAR-100: Firing-rate distributions of the first and second ReLU
within all ResNet blocks. Left: Non-affine BatchNorm baseline; the second ReLU distribution is
skewed. Right: Non-affine BatchNorm on the skip path before addition re-centers the second ReLU
pre-activation, yielding a more symmetric distribution around 50%.

6 LIMITATIONS

Load balancing beyond the ReLU family. For the ReLU activations (and to some degree also
for LeakyReLU and GELU, see Section 5.1) the load is easily definable via the sign of the pre-
activation. However, for saturating symmetric activations such as tanh or sigmoid it is less clear how
the load should be measured. Options include controlling the amount of saturation (large absolute
pre-activations) and the degree of linearity (pre-activations around zero). We leave it to future work
to link the entropy-based view of the binary abstraction we pursued to these cases.

Beyond normalization layers. Our load-balancing layer is designed to operate in conjunction
with normalization layers, which stabilize pre-activations so that firing-rate shifts are meaningful.
Methods like CBP are more agnostic to the underlying architecture. Nonetheless, load balancing
remains simple to implement, has minimal overhead, and integrates naturally into widely used ar-
chitectures such as ResNets.

7 CONCLUSION

This work identifies neuron firing rates as a simple, interpretable signal for diagnosing and improv-
ing plasticity in continual learning. We show that continual training often drives rates to extremes,
producing dead or effectively linear units. To counter this, we introduce a lightweight load-balancing
mechanism that maintains firing rates within a target range and improves performance on two es-
tablished benchmarks, surpassing reset-based baselines in some cases. We further demonstrate that
architectural choices, such as non-affine normalization and normalized skip connections, implicitly
encourage similar balance. Taken together, these results position activation statistics as a practical
design tool for sustaining plasticity and building more robust continual learners.

9
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USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in the preparation of this paper as a general-purpose
writing assistant. They helped with phrasing, improving clarity and flow of the manuscript, and
refining figure captions. In addition, LLMs were occasionally consulted for expository assistance
on background concepts, such as entropy and mutual information, but all theoretical contributions,
research ideas, experimental design, and analysis originated from the authors. No parts of the paper
were generated solely by an LLM without subsequent author revision and verification.

REPRODUCIBILITY STATEMENT

Our experiments build on the official implementation of Dohare et al. (2024)1, using the same hy-
perparameters as reported in their paper. We make two deviations. First, we add our load-balancing
layer before each ReLU activation (implementation details are in Appendix E). Second, when using
L2 regularization we apply it to weights only, excluding biases and normalization-layer parameters
(see Appendix D for more details). All new hyperparameters are specified in the main text.
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A ADDITIONAL FIGURES

This section collects supplementary visualizations referenced in the main text.

Figure 9: DQN: Episode rewards for DQN on DemonAttack with LayerNorm, once with load
balancing at 50% (yellow) and once without (pink). Results are averaged over 8 seeds.
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Figure 10: Continual ImageNet: Effects of non-affine normalization on firing-rate distributions
(left) and test accuracy (right). Non-affine BatchNorm+L2 clusters firing rate near 50%, while
non-affine LayerNorm+L2 broadens the distribution across layers. Both configurations improve
accuracy, with non-affine LayerNorm achieving the highest performance of all methods. Enforcing
50% via load balancing on top of non-affine LayerNorm tightens rates but lowers accuracy.

B DISCUSSION ON FIRING RATE DEFINITION

Locality. Our firing-rate perspective is inherently local, whereas network-level capacity depends
on dependencies among neurons. Consider the vector of binary activation states (S1, . . . , Sm) of all
m units of the network. Its joint entropy satisfies the subadditivity property

H(S1, . . . , Sm) ≤
m∑
i=1

H(Si) (7)

with equality only if the states are mutually independent. The gap, known as total correlation,
measures redundancy. Maximizing per-neuron entropy raises the upper bound on joint entropy,
but the actual joint entropy depends on correlations between units. To maximize global entropy
one would therefore need both high-entropy marginals, to raise potential joint entropy, and low
dependence across units to tighten the bound. Thus firing-rate entropy should be viewed not as a
proof of global optimality, but as a principled local diagnostic.

Magnitude invariance. While informative, the binary-state view ignores activation magnitudes.
Even a unit with ρ̄ = 1 (always active) can still convey information through its activation magni-
tudes. The Bernoulli abstraction only isolates the thresholding effect. Hence maximizing firing-rate
entropy does not guarantee maximal network-level nonlinearity, but it promotes maximal threshold-
induced nonlinearity at the unit level.
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Figure 11: Continual ImageNet: Layer-wise firing rate heatmaps over tasks. Rows correspond
to methods, columns correspond to successive layers. Early layers stay active while later layers
collapse in the baseline; CBP shows heterogeneous behavior; non-affine BN+L2 maintains near-
blanced firing rates across layers.
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Figure 12: Class-incremental CIFAR-100: Layer-wise firing rate heatmaps over tasks. Continual
training and CBP exhibit linearization in Block 2.

C LAYER-WISE FIRING RATES

Thus far we have visualized firing rates aggregated over all neurons. Layer-wise views reveal where
collapse or linearization emerges. All heatmaps follow the visualization convention introduced in
the main text.

In Figure 11, we show layer-wise firing-rates dynamics for continual ImageNet. In the first row
(baseline), the first two convolutional layers sustain high activity while subsequent layers collapse
toward 0%. In the second row (CBP), activity varies considerably across layers over time. By
contrast, non-affine BatchNorm+L2 (third row) maintains a stable, near-balanced firing rates across
layers. Comprehensive results for all approaches are provided in Figure 15.

In Figure 12 (class-incremental CIFAR-100), we observe linearization emerging in the second
ResNet block (Block 2) under continual training and CBP. Load balancing with an upper limit of
95% prevents this effect, which may contribute to its higher test accuracy. However, under load
balancing, firing rates sometimes accumulate at the 95% limit in early layers, indicating saturation
that is also suboptimal. Comprehensive results for all approaches are provided in Figure 16.

D TRAINING DETAILS

Continual ImageNet. Each task in the continual ImageNet benchmark is trained for 250 epochs.
The model is a compact CNN consisting of three convolutional layers followed by two fully con-
nected layers with ReLU activations. L2 regularization is applied to weights only, excluding biases
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and parameters of normalization layers. This differs from the original CBP codebase but follows
common practice and was necessary for strong L2 performance.

All reported results are averaged over 10 random seeds. All experiments were run on a single
NVIDIA A100 GPU and a full run takes approximately 2.5 hours per seed.

Class-incremental CIFAR-100. Each task begins with five randomly sampled classes from
CIFAR-100. Every 200 epochs, five additional classes are introduced, and the model is trained
to classify all classes encountered so far. The architecture is a ResNet-18 with ReLU activations,
adapted to 32 × 32 CIFAR-100 images. Each new task starts from the best checkpoint of the pre-
vious task, selected using validation accuracy, effectively applying early stopping (Dohare et al.,
2024). All reported results are averaged over 15 random seeds. All experiments were run on a
single NVIDIA A100 GPU and a full run takes approximately 6 hours per seed.

E ALGORITHM

Load-balancing layer in PyTorch (for 1D inputs, e.g., after fully connected layers with d features):

class LoadBalancer(nn.Module):
def __init__(self, d, min_rate, max_rate, momentum=0.99, step=0.001):

super().__init__()
self.min_rate = min_rate
self.max_rate = max_rate
self.momentum = momentum
self.step = step
self.register_buffer("avg_rate", 0.5 * torch.ones(d))
self.register_buffer("offset", torch.zeros(d))

def forward(self, x):
x = x + self.offset.unsqueeze(0)

if self.training:
with torch.no_grad():
rate = (x > 0).float().mean(dim=0)
self.avg_rate *= self.momentum
self.avg_rate += (1 - self.momentum) * rate
below_mask = (self.avg_rate < self.min_rate).float()
above_mask = (self.avg_rate > self.max_rate).float()
self.offset += self.step * (below_mask - above_mask)

return x

For 3D inputs (after convolutional layers), replace two lines:

x = x + self.offset.reshape(1, -1, 1, 1)

rate = (x > 0).float().mean(dim=[0, 2, 3])
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Figure 13: Continual ImageNet: Fraction of dormant neurons (left; threshold τ = 0.01) and weight
magnitudes (right) over tasks.
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Figure 14: Class-incremental CIFAR-100: Fraction of dormant neurons (left; threshold τ = 0.01)
and weight magnitudes (right) over tasks.

F RELATION TO EXISTING PLASTICITY METRICS

Dormant neurons. A common proxy for plasticity is the fraction of dormant neurons (Sokar et al.,
2023). Following their definition, a neuron’s score is its activation magnitude, normalized by the
magnitudes of other neurons in the same layer and averaged over the dataset; a neuron is labeled
dormant if its score falls below a threshold τ (we use τ=0.01). In Figures 13 and 14, all proposed
approaches maintain a near-zero fraction of dormant units relative to their respective baselines. An
exception is non-affine LayerNorm on continual ImageNet, which shows more dormant units. This
is consistent with the firing-rate heatmaps for the same setting, where some layers exhibit occasional
0% firing (see the last row of Figure 15). Overall, 0% firing is a sufficient (though not necessary)
condition for dormancy, explaining the observed alignment between the metrics.

In Figures 13 and 14, we observe that the percentage of dormant neurons across all approaches
is lower than the baselines and close to zero. The only exception is the non-affine LayerNorm (the
pink line in Figure 13). However, this is also reflected in the firing-rate plots of the same experiment,
where the firing rate occasionally drops to 0% (most clearly visible in the last row of Figure 15).
Dormancy primarily captures the low-activity neurons. Firing-rate distributions are broader, as they
reveal low-rate collapse, high-rate linearization, and intermediate-range activity.

Weight magnitudes. Plasticity loss is often accompanied by growth in weight norms (Dohare
et al., 2024). We observe the same trend in Figures 13 and 14. Methods that avoid collapse also
limit the increase in weight magnitudes, with non-affine normalization yielding particularly small
magnitudes. A notable exception is the load-balancing setup, where larger biases can appear in the
preceding BatchNorm layers (the shift competes with the learned bias).
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Figure 15: Continual ImageNet: Layer-wise firing-rate heatmaps for all approaches.
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Figure 16: Class-incremental CIFAR-100: Layer-wise firing rate heatmaps for all approaches.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G ACCURACY TABLES

Tables 1 and 2 report final test accuracies (with mean ± standard error) for all methods on both
benchmarks.

Table 1: Continual ImageNet: Final test accuracies, averaged over tasks 1900–2000.

Method Accuracy (%)

Non-affine LayerNorm + L2 90.5 ± 1.7
LB 50% 89.6 ± 1.8
LB 40–60% 89.3 ± 1.8
CBP 88.8 ± 1.9
BatchNorm + L2 88.8 ± 3.2
Non-affine BatchNorm + L2 88.6 ± 1.9
L2 87.9 ± 2.1
BatchNorm 85.9 ± 2.2
LayerNorm + L2 85.0 ± 2.4
Baseline 79.0 ± 2.7

Table 2: Class-incremental CIFAR-100: Final test accuracies, averaged over tasks 15–20.

Method Accuracy (%)

LB 50% 78.0 ± 0.1
LeakyReLU + LB 50% 77.9 ± 0.3
Normalized skip connection 77.4 ± 0.2
LB 5–95% 77.1 ± 0.1
Non-affine BatchNorm 77.0 ± 0.1
CBP 76.7 ± 0.1
GELU + LB 50% 76.7 ± 0.3
Resets 76.6 ± 0.1
LeakyReLU 75.9 ± 0.3
GELU 75.7 ± 0.6
Baseline 74.4 ± 0.2
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