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Abstract001

Large language models (LLMs) offer im-002
pressive performance but are impractical for003
resource-constrained deployment due to high004
latency and energy consumption. Knowledge005
distillation (KD) addresses this by transferring006
knowledge from a large teacher to a smaller007
student model. However, conventional KD, no-008
tably approaches like Forward KL (FKL) and009
Reverse KL (RKL), apply uniform divergence010
loss across the entire vocabulary, neglecting011
token-level prediction discrepancies. By inves-012
tigating these representative divergences via013
gradient analysis, we reveal that FKL boosts014
underestimated tokens, while RKL suppresses015
overestimated ones, showing their comple-016
mentary roles. Based on this observation, we017
propose Token-wise Distillation (ToDi), a018
novel method that adaptively combines FKL019
and RKL per token using a sigmoid-based020
weighting function derived from the teacher-021
student probability log-ratio. ToDi dynami-022
cally emphasizes the appropriate divergence023
for each token, enabling precise distribution024
alignment. We demonstrate that ToDi consis-025
tently outperforms recent distillation baselines026
using uniform or less granular strategies across027
instruction-following benchmarks. Extensive028
ablation studies and efficiency analysis further029
validate ToDi’s effectiveness and practicality.1030

1 Introduction031

Recent advances in large language models (LLMs),032

driven by scaling up model size, have substantially033

enhanced their ability to follow user instructions034

and generate contextually appropriate responses035

(Brown et al., 2020; Sanh et al., 2021; Wei et al.,036

2022; Chung et al., 2024). However, the continued037

enlargement of model size introduces several chal-038

lenges, including increased inference latency, high039

energy consumption, and inefficiency in resource-040

constrained environments. To address these issues,041

1The code is available at https://anonymous.4open.
science/r/ToDi-4266
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Figure 1: Token-wise learning signals for KL-based dis-
tillation objectives. Conventional methods apply a fixed
divergence across the entire vocabulary, while ToDi dy-
namically blends Forward and Reverse KL per-token
based on the teacher–student probability ratio, balanc-
ing gradients across all tokens.

knowledge distillation (KD; Hinton et al., 2015) 042

has been widely adopted; this approach aims to 043

minimize the performance gap between teacher and 044

student models by transferring knowledge from a 045

high-performing large teacher model to a smaller 046

student model. Recently, various knowledge distil- 047

lation techniques for enhancing the efficiency of 048

LLMs have been proposed, and research surround- 049

ing these methods is actively underway (Zhang 050

et al., 2024b; Feng et al., 2024; Shing et al., 2025). 051

Conventional knowledge distillation methods 052

often employ divergences such as Forward KL 053

(FKL) and Reverse KL (RKL) to minimize the 054

discrepancy between teacher and student distribu- 055

tions (Hinton et al., 2015; Gu et al., 2024). How- 056

ever, as depicted in the example for FKL and RKL 057

in Figure 1, these approaches apply a single di- 058
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vergence uniformly across the entire vocabulary,059

regardless of how severely the student misesti-060

mates each token. This uniform-loss assumption061

persists in symmetric and hybrid variants of FK-062

L/RKL (Wen et al., 2023; Ko et al., 2024; Agarwal063

et al., 2024), and even dynamic combinations at064

the vocabulary-set or time-step level like Adaptive065

KL (Wu et al., 2025). We hypothesize that such066

uniform treatment is sub-optimal because different067

tokens may require different correction signals.068

In this paper, we analyze the limitation of uni-069

form application by investigating token-specific070

optimal signals through a gradient-based analysis071

of divergences in existing KD methods (Section 3).072

This analysis reveals that FKL effectively increases073

the probability of tokens that the student model un-074

derestimates relative to the teacher model, whereas075

RKL excels at suppressing the probability of tokens076

that it overestimates, showing their distinct and077

complementary roles. However, existing methods078

apply a uniform divergence loss across the entire079

vocabulary, failing to leverage these complemen-080

tary signals effectively at the token level. As shown081

in Figure 1, this uniformity prevents appropriate082

training signals for individual tokens, particularly083

when the student significantly over- or underesti-084

mates the teacher’s distribution.085

Motivated by this insight, we propose a novel dis-086

tillation method, Token-wise Distillation (ToDi)087

(Section 4). As illustrated in Figure 1, ToDi dy-088

namically balances the contributions of FKL and089

RKL based on token-level prediction discrepancies090

by adaptively combining them per-token using a091

token-specific weighting function. This approach092

directly provides tailored training signals that cap-093

ture fine-grained differences between the teacher094

and student distributions, going beyond uniform095

loss application.096

We demonstrate ToDi’s effectiveness through097

extensive experiments and show that ToDi consis-098

tently outperforms recent distillation baselines on099

various instruction-following benchmarks, achiev-100

ing superior ROUGE-L scores and higher win rates101

in GPT-4-based pairwise evaluations. Furthermore,102

we validate the critical importance of ToDi’s token-103

wise divergence control. We also show that ToDi104

maintains stable training and linear time complex-105

ity with respect to vocabulary size, highlighting its106

efficiency and practicality.107

The principal contributions of this paper are as108

follows:109

• We analyze and show the complementary roles of 110

FKL and RKL for KD through gradient analysis. 111

• Based on this analysis, we propose ToDi, a new 112

KD method that adaptively combines FKL and 113

RKL per token according to prediction discrepan- 114

cies and enables fine-grained distribution align- 115

ment. 116

• We provide theoretical grounding for ToDi and 117

demonstrate its superior performance over exist- 118

ing methods through extensive experiments on 119

instruction following tasks. 120

2 Related Work 121

2.1 Objective Functions of KD 122

In knowledge distillation (Hinton et al., 2015), the 123

student model is trained to mimic the teacher’s 124

output distribution by minimizing the divergence 125

loss. The FKL induces mode averaging, smooth- 126

ing a multimodal teacher distribution, while the 127

RKL causes mode collapse, driving the student to 128

focus on a single mode (Minka et al., 2005; Koller 129

and Friedman, 2009; Chan et al., 2022; Wang 130

et al., 2023a). To counter these extremes, Wen et al. 131

(2023) adopted the symmetric Jensen–Shannon Di- 132

vergence (JSD), and Agarwal et al. (2024) gen- 133

eralized it to interpolate between FKL and RKL. 134

Skewed KL variants (SKL, SRKL) further mix the 135

student distribution into the teacher’s distribution 136

for stability (Ko et al., 2024), while TAID (Shing 137

et al., 2025) inserts a time-varying intermediate 138

distribution between teacher and student. 139

Despite these advances, all prior work on ap- 140

plying KD for language models still processes the 141

entire vocabulary distribution at every sequence po- 142

sition and applies a uniform loss across tokens. This 143

coarse treatment misses token-level mismatches be- 144

tween teacher and student, limiting the student’s 145

ability to replicate the teacher’s fine-grained pre- 146

dictive structure. Our proposed method aims to 147

overcome this limitation by applying a token-wise 148

dynamic divergence control, precisely addressing 149

these fine-grained mismatches. 150

2.2 Dynamic Combination of FKL and RKL 151

Several studies have explored combining FKL and 152

RKL to take advantage of both methods. Lee et al. 153

(2023) proposed a straightforward additive com- 154

bination, whereas Amara et al. (2022) introduced 155

BD-KD, which adjusts the weights of FKL and 156

RKL on a per-sample basis via the entropy gap 157
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Figure 2: Toy example demonstrating the behavior of FKL and RKL gradients. In regions where p > q, FKL
provides stronger gradients, while in regions where q > p, RKL provides stronger learning signals.

between teacher and student distributions. Wu et al.158

(2025) presented AKL—tailored for LLM distilla-159

tion—that adaptively combines the two divergences160

based on the observation that, in early training,161

FKL primarily learns head predictions while RKL162

focuses on tail predictions. Nevertheless, such ap-163

proaches still dynamically apply FKL and RKL164

to the entire vocabulary distribution at every se-165

quence position without assigning dynamic weights166

to individual tokens. This limitation prevents a fine-167

grained reflection of token-level prediction differ-168

ences between teacher and student, thereby hinder-169

ing the learning of detailed predictive structures. In170

contrast, our proposed ToDi method dynamically171

balances FKL and RKL on a per-token basis, cap-172

turing fine-grained probability discrepancies and173

enabling more precise predictive structure learning.174

3 Gradient Behavior of FKL and RKL175

In this section, we formalize knowledge distilla-176

tion for autoregressive LLMs and analyze the FKL177

and RKL objectives from a gradient perspective.178

By understanding the gradients, we precisely ex-179

amine how the learning signal for each vocabulary180

token depends on the relative magnitudes of the181

teacher probability p(vi | y<t,x) and the student182

probability qθ(vi | y<t,x), providing insight into183

token-specific optimal signals.184

3.1 Preliminaries185

An autoregressive LLMs generates an output se-186

quence y = [y1, . . . , y|y|] conditioned on an input187

sequence x. At each time step t, it selects one token188

from a finite vocabulary V = {v1, . . . , v|V|}.189

KD minimizes the discrepancy between the190

teacher’s distribution p(yt | y<t,x) and the stu-191

dent’s distribution qθ(yt | y<t,x), where θ denotes192

the student parameters and y<t = [y1, . . . , yt−1]193

Case Forward KL Reverse KL

p > qθ ↑ Strong push-up ≈ Weak push-up

p < qθ ≈ Weak pull-down ↓ Strong pull-down

Table 1: Complementary training signals of FKL vs.
RKL.

are the tokens generated before step t. 194

During KD, the loss is typically instantiated as 195

either the FKL or the RKL. At time step t, the 196

contribution of each divergence for a token vi ∈ V 197

is defined as: 198

D
(t,i)
FKL(p, qθ) = p(vi |y<t,x) log

p(vi |y<t,x)

qθ(vi |y<t,x)
,

(1) 199200

D
(t,i)
RKL(p, qθ) = qθ(vi |y<t,x) log

qθ(vi |y<t,x)

p(vi |y<t,x)
.

(2) 201

Training Objective We accumulate the token- 202

level divergences (from Equations 1 and 2) over all 203

time steps and vocabulary entries to obtain the total 204

forward and reverse KL divergence losses: 205

LFKL =

|y|∑
t=1

|V|∑
i=1

D
(t,i)
FKL

(
p, qθ

)
, (3) 206

LRKL =

|y|∑
t=1

|V|∑
i=1

D
(t,i)
RKL

(
p, qθ

)
. (4) 207

3.2 Theoretical Analysis 208

We theoretically analyze the FKL and RKL train- 209

ing signals. In particular, we examine how the two 210

divergences exert opposite corrective effects de- 211

pending on the relative magnitudes of the teacher 212

distribution p(yt | y<t,x) and the student distri- 213

bution qθ(yt | y<t,x). The analysis is grounded 214
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Figure 3: Illustration of the Token-wise Distillation. (Left) For each vocabulary token, the contributions of FKL
and RKL are dynamically combined using a token-specific weight αt,i. (Right) The weight αt,i, determined by the
teacher–student probability ratio, smoothly increases FKL emphasis when p > qθ and RKL emphasis when qθ > p.

in the token-level definitions given in Equations 1215

and 2.216

Gradient Form. From the derivations summa-217

rized in Appendix A, the partial derivatives of each218

divergence with respect to qθ are:219

∂

∂qθ(vi | y<t,x)
D

(t,i)
FKL (p, qθ) = − p(vi | y<t,x)

qθ(vi | y<t,x)
, (5)220

∂

∂qθ(vi | y<t,x)
D

(t,i)
RKL (p, qθ) = log

qθ(vi | y<t,x)

p(vi | y<t,x)
+ 1.

(6)221

Difference in Training Signals by Relative Prob-222

ability. The two gradients can be compared223

through a single ratio r =
p
(
vi|y<t,x

)
qθ

(
vi|y<t,x

) :224

• r > 1 (the student model underestimates).225

Here, the FKL gradient −r is a negative value226

whose magnitude exceeds 1, pushing qθ to in-227

crease sharply. The RKL gradient, log 1
r + 1,228

turns negative only when r > e and its mag-229

nitude is smaller, producing a relatively weak230

corrective signal. Thus, for tokens underesti-231

mated by the student, FKL provides the domi-232

nant "push-up" signal.233

• r < 1 (the student model overestimates). In234

this case, the FKL gradient remains a small235

negative value, whereas the RKL gradient is236

a positive value greater than 1, providing a237

strong signal to decrease qθ. Consequently,238

when the student overestimates, RKL provides239

the dominant "pull-down" signal.240

In summary, as organized in Table 1, our theo-241

retical analysis reveals that FKL and RKL provide242

complementary training signals around the bound- 243

ary r = 1: FKL strongly encourages increasing stu- 244

dent probability (i.e. push-up) for underestimated 245

tokens (p > qθ), while RKL strongly encourages 246

decreasing student probability (i.e. pull-down) for 247

overestimated tokens (qθ > p). 248

3.3 Empirical Analysis of a Toy Example 249

To empirically examine how FKL and RKL 250

gradient magnitudes depend on the relative 251

teacher–student probabilities at each token, we con- 252

struct a toy example by defining teacher distribu- 253

tion p(x) and student distribution q(x). Figure 2 254

illustrates the comparison of gradient magnitudes 255

according to the relative relationship between the 256

teacher distribution p(x) and the student distribu- 257

tion q(x) in a toy example. The left panel shows 258

where the two distributions intersect, with the re- 259

gions p(x) > q(x) and q(x) > p(x) shaded sepa- 260

rately. The right panel visualizes, for each index, 261

the gradient magnitudes induced by FKL and RKL. 262

Consistent with the theoretical analysis, we ob- 263

serve in the toy example that in the region where 264

p(x) > q(x), FKL produces substantially larger 265

gradients than RKL, delivering a strong corrective 266

signal for tokens that the student under-estimates 267

relative to the teacher. Conversely, in the region 268

where q(x) > p(x), the magnitude of the RKL 269

gradient is greater, indicating a strong signal to 270

suppress over-estimation. Consequently, FKL and 271

RKL provide specialized training signals in differ- 272

ent scenarios. 273

4 ToDi 274

In this section, we introduce Token-wise Distilla- 275

tion (ToDi), which dynamically adjusts the contri- 276

butions of FKL and RKL based on the token-level 277
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probability ratios in the teacher and student distri-278

butions.279

Objective Functions for ToDi. As shown in the280

gradient analysis of Section 3, for each vocabulary281

token vi, when p(vi | y<t,x) > qθ(vi | y<t,x),282

the FKL provides a learning signal that effec-283

tively increases qθ, and conversely, when qθ(vi |284

y<t,x) > p(vi | y<t,x), the RKL offers a sig-285

nal that reduces qθ. Building on this insight into286

their complementary roles, we propose a novel dis-287

tillation method, Token-wise Distillation (ToDi),288

which dynamically combines FKL and RKL ac-289

cording to the relative magnitudes of the teacher290

probability p(vi | y<t,x) and the student probabil-291

ity qθ(vi | y<t,x). Unlike conventional approaches292

that apply a single loss uniformly across the entire293

vocabulary, ToDi computes a specific loss for each294

token vi at time step t, denoted D
(t,i)
ToDi. This token-295

level loss is a weighted sum of the token’s FKL and296

RKL divergences. Specifically, the token-level loss297

D
(t,i)
ToDi is defined as follows:298

D
(t,i)
ToDi(p, qθ) = αt,i ·D(t,i)

FKL(p, qθ)

+
(
1− αt,i

)
·D(t,i)

RKL(p, qθ),
(7)299

where αt,i is a token-specific weight dynamically300

computed for each token vi based on the relative301

teacher and student probabilities.302

As illustrated in Figure 3 (Left), we utilize the303

weighting function to amplify the contribution of304

FKL when needed (when p > qθ) and amplify the305

contribution of RKL when needed (when qθ > p).306

The overall distillation loss is then the sum of307

these token-level losses over all time steps and vo-308

cabulary entries:309

LToDi =

|y|∑
t=1

|V|∑
i=1

D
(t,i)
ToDi(p, qθ). (8)310

Weighting Function for ToDi. The core of311

ToDi’s token-wise control lies in the weighting312

function that determines αt,i. This weight must313

dynamically adjust according to the relative mag-314

nitudes of p(vi | y<t,x) and qθ(vi | y<t,x) to315

effectively leverage the complementary nature of316

FKL and RKL.317

Specifically, the token-specific weight αt,i is de-318

fined by a function W of these probabilities:319

αt,i = W
(
p(vi | y<t,x), qθ(vi | y<t,x)

)
(9)320

Function αt,i(r) (r = p/qθ) β

Sigmoid 1
1+e− log r = r

1+r
1

Scaled tanh 1
2

(
1 + tanh(log r)

)
2

Jeffreys (fixed) 1
2

0
Step function 1[ r > 1 ] β→∞

Table 2: Various weighting functions can be unified un-
der the Generalized ToDi, where each can be expressed
in the form αt,i(r) = σ(β log r) with an appropriate
scaling factor β.

The function W should assign a larger value 321

(thus increasing the contribution of FKL) when 322

p(vi | y<t,x) > qθ(vi | y<t,x), so as to boost 323

the student’s probability. Conversely, when qθ(vi | 324

y<t,x) > p(vi | y<t,x), a smaller function value 325

(favoring RKL) is appropriate. To satisfy these re- 326

quirements and enable fine-grained control, the 327

function W must meet the following four condi- 328

tions: 329

• If p(vi | y<t,x) > qθ(vi | y<t,x), then αt,i 330

should be greater than 0.5 to emphasize FKL. 331

• If qθ(vi | y<t,x) > p(vi | y<t,x), then αt,i 332

should be less than 0.5 to emphasize RKL. 333

• To allocate more extreme weights when the 334

teacher–student probability gap is larger, αt,i 335

must be a monotonically increasing function 336

of the ratio p(vi | y<t,x)/qθ(vi | y<t,x). 337

• αt,i must lie within the valid weight range 338

[0, 1]. 339

To satisfy all four conditions, we adopt the sig- 340

moid function for W, defining αt,i as: 341

αt,i = sg

[
σ

(
log

p
(
vi | y<t,x

)
qθ
(
vi | y<t,x

))] (10) 342

Here, σ(·) denotes the sigmoid function, and 343

sg[·] the stop-gradient operator. By applying sg[·], 344

we block gradient flow through its arguments, ef- 345

fectively treating the weight αt,i as a fixed value 346

during the backpropagation of the loss. 347

As illustrated in Figure 3 (Right), αt,i smoothly 348

varies between 0 and 1 according to the magnitude 349

of p(vi | y<t,x)/qθ(vi | y<t,x), naturally reflect- 350

ing the teacher–student probability discrepancy. A 351

detailed proof that the sigmoid satisfies all four con- 352

ditions is provided in Appendix B. Furthermore, 353

we implement the stop-gradient operator sg[·] as 354

a detach operation during training; its effects are 355

discussed in detail in Appendix C. 356
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Methods DollyEval S-NI UnNI SelfInst VicunaEval Average

GPT2 1.5B → GPT2 120M

Teacher 26.66±0.30 27.17±0.33 31.60±0.13 14.42±0.49 16.32±0.41 23.23
SFT 23.09±0.53 16.44±0.39 18.96±0.08 9.72±0.43 14.81±0.34 16.61
FKL 24.06±0.43 18.43±0.22 21.42±0.04 11.13±0.34 15.53±0.45 18.12
RKL 24.22±0.18 18.60±0.10 21.99±0.07 11.42±0.33 15.65±0.51 18.38
JS 23.77±0.29 17.31±0.17 19.74±0.07 10.08±0.37 15.08±0.32 17.20
TVD 23.90±0.61 17.89±0.24 20.87±0.12 10.73±0.71 15.20±0.30 17.72
SKL 24.05±0.31 17.18±0.31 20.43±0.08 10.54±0.55 14.93±0.29 17.42
SRKL 24.20±0.40 18.02±0.18 21.67±0.09 11.05±0.48 15.07±0.22 18.00
AKL 24.67±0.29 18.29±0.23 21.46±0.12 10.62±0.68 15.28±0.16 18.07
ToDi (Ours) 24.81±0.62 19.42±0.18 22.16±0.21 11.30±0.41 15.61±0.34 18.66

LLaMA2 7B → TinyLLaMA 1.1B

Teacher 28.88±0.23 30.72±0.36 32.02±0.08 19.89±0.58 18.76±0.59 26.05
SFT 23.36±0.26 26.19±0.18 26.69±0.08 15.76±1.04 15.88±0.63 21.58
FKL 25.40±0.50 30.13±0.43 29.47±0.06 18.22±1.12 16.77±0.31 24.00
RKL 24.11±0.31 32.09±0.37 30.29±0.11 17.97±0.84 16.02±0.73 24.09
JS 24.41±0.34 28.55±0.33 28.69±0.10 17.31±0.32 16.21±0.52 23.03
TVD 24.71±0.74 29.23±0.25 29.12±0.05 16.64±0.83 16.19±0.63 23.18
SKL 25.32±0.54 31.10±0.38 29.89±0.11 17.45±0.69 16.32±0.33 24.01
SRKL 24.93±0.18 30.52±0.31 30.62±0.15 17.17±0.68 16.41±0.36 23.93
AKL 25.50±0.53 30.41±0.28 30.55±0.08 17.52±0.57 16.79±0.34 24.15
ToDi (Ours) 26.26±0.31 31.53±0.22 31.29±0.17 18.14±0.23 16.96±0.23 24.83

Table 3: Across all distillation settings, our proposed ToDi consistently outperforms every baseline in ROUGE-L
score. The best result is shown in bold, and the second best is underlined.

Generalized ToDi. Any function satisfying the357

four weight conditions introduced above can take358

many forms. To explore this design space and unify359

various weighting strategies, we introduce a scal-360

ing hyperparameter β ∈ R. By incorporating β361

into the sigmoid input, we can express a variety of362

weighting functions in a single unified form. In this363

case, the ToDi weight function αt,i is defined as:364

αt,i = sg

[
σ

(
β · log

p
(
vi | y<t,x

)
qθ
(
vi | y<t,x

))] (11)365

As summarized in Table 2, by simply varying366

the value of β, this unified framework can repre-367

sent a range of weighting functions, such as the368

standard sigmoid (β = 1), scaled tanh (β = 2),369

Jeffreys divergence (Jeffreys, 1946) (β = 0), and370

approximating a step function (β → ∞).371

5 Experiments372

5.1 Experimental Setup373

Training Configuration. We follow the ex-374

perimental setup of Zhang et al. (2024c)375

to evaluate ToDi. For training, we use the376

databricks/dolly-15k dataset, which comprises377

11K training samples, 1K validation samples,378

and 500 test samples. As student models, we379

employ GPT2-120M (Radford et al., 2019) and380

TinyLLaMA-1.1B (Zhang et al., 2024a). We train 381

GPT2-120M via full fine-tuning using GPT2- 382

1.5B as the teacher model, whereas we train 383

TinyLLaMA-1.1B with LoRA (Hu et al., 2022) 384

using LLaMA2-7B (Touvron et al., 2023) as the 385

teacher. 386

Evaluation Protocol. We conduct performance 387

evaluation following the protocol of Gu et al. 388

(2024), using the ROUGE-L metric (Lin, 2004). 389

We assess instruction-following ability across five 390

datasets: DollyEval, S-NI (Wang et al., 2022), 391

UnNI (Honovich et al., 2023), SelfInst (Wang 392

et al., 2023b), and VicunaEval (Zheng et al., 2023). 393

We repeat each evaluation with five different ran- 394

dom seeds, and we report the average scores. Fur- 395

ther details of the experimental setup are provided 396

in Appendix D. 397

Baseline Methods. We use the following meth- 398

ods as baselines to compare the performance of 399

ToDi: 400

• SFT: Fine-tuning the student model directly 401

on the dataset without knowledge distillation. 402

• FKL/RKL (Hinton et al., 2015; Gu et al., 403

2024): Knowledge distillation using Forward 404

or Reverse KL divergence. 405

• JS/TVD (Wen et al., 2023): Symmetric di- 406
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Figure 4: GPT-4 pairwise evaluation of TinyLLaMA
models trained with various KD methods on 5,000
UnNI examples. Bars show Win/Tie/Lose proportions;
p-values on right.

vergences—Jensen–Shannon and Total Vari-407

ation—minimizing the distance between the408

teacher and student distributions.409

• SKL/SRKL (Ko et al., 2024): Skewed KL410

and Skewed Reverse KL, which mix teacher411

and student distributions at ratio λ; SKL uses412

λp+ (1− λ)qθ while SRKL uses (1− λ)p+413

λqθ.414

• AKL (Wu et al., 2025): Adaptive KL that com-415

bines FKL and RKL by considering head–tail416

differences in the distributions.417

To evaluate ToDi’s performance, we select vari-418

ous divergence-based knowledge distillation meth-419

ods as baselines and compare their performance420

based on the choice of divergence.421

5.2 Results422

Overall Performance We first evaluate the over-423

all instruction-following performance of ToDi424

against baselines using ROUGE-L. Table 3 presents425

the performance of the teacher and student mod-426

els under different teacher–student configurations,427

compared across various knowledge distillation428

methods. Our proposed ToDi achieves the high-429

est average score on all five instruction-following430

tasks for both teacher–student pairs, outperforming431

all baseline methods, showing that ToDi effectively432

transfers the knowledge of the teacher to the stu-433

dent. We demonstrate that ToDi consistently out-434

performs all single-divergence baselines and even435

surpasses an approach that uses a single, global436

weight across the entire vocabulary. These results437

indicate that dynamic, token-level adjustment of438

divergence weights—tailored to each token’s pre-439

dicted probability discrepancy—yields significant440

2 4 6 8 10
Epoch

24

25

26

27

28

29

30

R
ou

ge
-L

FKL
RKL
JS
TVD
SKL
SRKL
AKL
TODI

Figure 5: Validation ROUGE-L scores per epoch for
TinyLLaMA using various KD methods.

performance gains. Additional experiments on di- 441

verse teacher–student configurations are presented 442

in Appendix E. 443

Preference Evaluation via GPT-4 We further 444

evaluate ToDi through a pairwise comparison ex- 445

periment using GPT-4. We also evaluate the sub- 446

jective quality of responses generated by models 447

trained with ToDi using a GPT-4. We randomly 448

select 5,000 samples from the UnNI dataset and 449

compare the responses generated by a TinyLLaMA 450

model trained with ToDi to those produced by 451

models trained with alternative divergence objec- 452

tives. GPT-4 judged which response was superior. 453

As shown in Figure 4, ToDi consistently achieved 454

higher win rates across all comparisons. In most 455

cases, these improvements were statistically sig- 456

nificant (p < 0.001), confirming ToDi’s superiority 457

over the baselines. For additional details, refer to 458

Appendix F. 459

5.3 Analysis 460

Training Stability and Convergence We ana- 461

lyze the training dynamics of ToDi to assess its 462

stability and convergence behavior. As shown in 463

Figure 5, ToDi maintains a large performance mar- 464

gin over other methods at every epoch, achieving 465

the highest scores throughout training. In particular, 466

ToDi outperforms all baselines by a wide margin 467

in the first epoch and exhibits a steady upward tra- 468

jectory during the middle epochs (2–6 epochs). In 469

the later stages (6–10 epochs), its learning curve 470

remains smooth and converges stably without os- 471

cillation. These results indicate that ToDi not only 472

provides a strong training signal as a KD loss func- 473

tion but also ensures reliable convergence. 474

Computational Efficiency We compare the com- 475

putational complexity of ToDi with existing meth- 476

ods to assess its efficiency. The efficiency of 477
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Figure 6: (Left) Performance comparison of Generalized ToDi with different scaling parameters β ∈ {1, 0,−1}
across five evaluation datasets. The dynamic weighting scheme (β = 1) outperforms the static setting (β = 0), while
the reversed weighting (β = −1) shows clear performance degradation on all datasets. (Right) Average ROUGE-L
scores on five instruction-following benchmarks for fixed-ratio FKL–RKL mixtures uniformly applied across the
entire vocabulary distribution versus ToDi’s token-wise weighting strategy.

ToDi is evident not only in its performance but478

also in its computational complexity. For instance,479

AKL—which dynamically adjusts the weights of480

FKL and RKL globally across the entire vocabu-481

lary—incurs a time complexity of O(V log V ) due482

to the required sorting operations. In contrast, ToDi483

performs computations adaptively on a per-token484

basis without any sorting during loss computation.485

As a result, it preserves linear time complexity486

O(V ) with respect to vocabulary size, identical487

to both FKL and RKL.488

Effect of the Generalization Parameter β To489

analyze the impact of the scaling parameter β, we490

compare the three settings β ∈ {1, 0,−1} in gen-491

eralized ToDi. β = 1 corresponds to the default492

ToDi configuration; β = 0 fixes α = 0.5, result-493

ing in an equal combination of FKL and RKL (i.e.,494

Jeffreys divergence); and β = −1 reverses the495

weighting direction, amplifying FKL when qθ > p496

and RKL when p > qθ. Experimental results with497

GPT2-120M are shown in Figure 6 (Left). The498

dynamic weighting scheme (β = 1) outperforms499

both the static setting (β = 0) and the reversed500

setting (β = −1), with the reversed setting exhibit-501

ing even lower performance than the static scheme,502

indicating that ToDi’s adaptive weight adjustment503

contributes to performance improvements. A more504

detailed sensitivity study on β is provided in Ap-505

pendix G.506

Token-wise vs. Uniform Divergence Control507

Rather than applying a fixed FKL–RKL ratio uni-508

formly across all tokens, ToDi dynamically adjusts509

this balance on a per-token basis. To validate this510

effect, we conduct comparative experiments on a511

TinyLLaMA model using the fixed FKL–RKL mix-512

tures schemes. As shown in Figure 6 (Right), ToDi513

consistently achieves higher ROUGE-L scores than514

all fixed-ratio schemes. This demonstrates that flex-515

ible, token-level ratio adjustment, rather than a uni-516

Methods GPT2 TinyLLaMA

AKL 0.477 0.599
ToDi 0.482 0.610

Table 4: Pearson similarities for AKL and ToDi
using trained GPT-2 and TinyLLaMA models in
Section 5, with distributions computed from the
databricks/dolly-15k training set.

form application across the vocabulary, is the key 517

to performance improvements. 518

Coarse vs. Fine-Grained Weighting To demon- 519

strate that a student model trained with ToDi more 520

accurately learns the teacher distribution than one 521

trained with AKL, we compare the distributions 522

generated by each student model to the teacher dis- 523

tribution following Huang et al. (2022). Table 4 524

summarizes our analysis by reporting the Pear- 525

son similarity between the teacher and student 526

model distributions. ToDi achieves higher Pearson 527

similarity than AKL, which—despite adaptively 528

combining forward and reverse KL at each time 529

step—applies a uniform mixing ratio across the 530

entire vocabulary. This indicates that ToDi’s dy- 531

namic, per-token mixing more accurately captures 532

the teacher distribution. 533

6 Conclusion 534

We present ToDi, a novel token-wise distillation 535

method that dynamically balances FKL and RKL 536

based on per-token prediction discrepancies. Our 537

gradient analysis shows that FKL corrects un- 538

derestimation while RKL suppresses overestima- 539

tion, and ToDi leverages this by using a sigmoid- 540

based weight per token. Experiments on multiple 541

instruction-following benchmarks demonstrate that 542

ToDi consistently outperforms existing baselines, 543

and GPT-4 pairwise preference evaluations con- 544

firm its superiority. Finally, we introduce a unified 545

weighting framework and validate its effectiveness 546

via extensive ablations. 547

8



Limitations548

ToDi precisely captures token-level prediction dis-549

crepancies between the teacher and student models,550

thereby enabling effective distribution alignment.551

However, ToDi assumes that the teacher and stu-552

dent share an identical vocabulary, which limits its553

direct applicability when the two models employ554

different vocabularies. Moreover, ToDi requires ac-555

cess to the full token probability distribution of the556

teacher model, restricting its use to open-source557

LLMs that expose per-token logits.558

Experiments on extremely large-scale models559

were not conducted due to computational resource560

constraints. Nevertheless, ToDi consistently outper-561

forms existing methods across a diverse range of562

models, including GPT2-120M and TinyLLaMA-563

1.1B, demonstrating its practicality and efficiency.564
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A Gradient Derivations755

A.1 Derivation of FKL Gradient756

We consider the forward KL divergence term at757

time step t and vocabulary token vi, defined as:758

D
(t,i)
FKL(p, qθ) = pi log

pi
qi

(12)759

where:760

pi := p(vi | y<t,x), qi := qθ(vi | y<t,x)
(13)761

To compute the gradient with respect to qi, we762

apply the product rule:763

∂

∂qi
D

(t,i)
FKL(p, qθ) =

∂

∂qi

[
pi log

pi
qi

]
(14)764

Since pi is independent of qi, we treat it as a con-765

stant:766

= pi ·
∂

∂qi
(log pi − log qi) = −pi ·

1

qi
(15)767

Thus, the gradient becomes:768

∂

∂qθ(vi | y<t,x)
D

(t,i)
FKL(p, qθ) = − p(vi | y<t,x)

qθ(vi | y<t,x)
(16)769

A.2 Derivation of RKL Gradient770

We now derive the gradient for the reverse KL di-771

vergence, defined as:772

D
(t,i)
RKL(p, qθ) = qi log

qi
pi

(17)773

where the same definitions apply:774

pi := p(vi | y<t,x), qi := qθ(vi | y<t,x)
(18)775

Applying the product rule:776

∂

∂qi
D

(t,i)
RKL(p, qθ) =

∂

∂qi

[
qi log

qi
pi

]
777

=
∂

∂qi
(qi log qi − qi log pi)

(19)

778

Since log pi is constant w.r.t. qi, the derivative sim-779

plifies to:780

∂

∂qi
D

(t,i)
RKL(p, qθ) = (log qi + 1)− log pi781

= log
qi
pi

+ 1 (20)782

Hence, the final gradient expression is:783

∂

∂qθ(vi | y<t,x)
D

(t,i)
RKL(p, qθ) (21)784

= log
qθ(vi | y<t,x)

p(vi | y<t,x)
+ 1785

B Proof of Sigmoid Weight-Function 786

Properties 787

For the ToDi weight function 788

αt,i = σ

(
log

p
(
vi | y<t,x

)
qθ
(
vi | y<t,x

)) (22) 789

we prove the following: 790

• If p(vi | y<t,x) > qθ(vi | y<t,x), then 791

log p(vi|y<t,x)
qθ(vi|y<t,x)

> 0 ⇒ αt,i > 0.5, which 792

increases the contribution of FKL. 793

• If qθ(vi | y<t,x) > p(vi | y<t,x), then 794

log p(vi|y<t,x)
qθ(vi|y<t,x)

< 0 ⇒ αt,i < 0.5, which 795

increases the contribution of RKL. 796

• Let r = p(vi | y<t,x)/qθ(vi | y<t,x), so 797

that αt,i = σ(log r). Then 798

dαt,i

dr
=

σ(log r)
(
1− σ(log r)

)
r

> 0 799

implying that αt,i is monotonically increasing 800

in r. 801

• Since ∀z, σ(z) ∈ (0, 1), it follows that αt,i ∈ 802

(0, 1). 803

C Jeffreys-Inspired Weighting with 804

Stop-Gradient 805

The token-wise weight αt,i in ToDi is inspired 806

by Jeffreys divergence. In this section, we outline 807

this connection and, in particular, show analyti- 808

cally how applying a stop-gradient (detach) to αt,i 809

yields gradients that differ from those of standard 810

Jeffreys divergence. 811

At time step t for token vi ∈ V , the Jeffreys 812

divergence can be written using Equation 1 and 813

Equation 2 as: 814

D
(t,i)
Jeffreys(p, qθ) = D

(t,i)
FKL(p, qθ) +D

(t,i)
RKL(p, qθ)

(23) 815

The ToDi weighting function αt,i can then be 816
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derived from Jeffreys divergence as:817

pi log
pi
qi

+ qi log
qi
pi

= pi log
pi
qi

− qi log
pi
qi

= (pi − qi) log
pi
qi

=
p2i − q2i
pi + qi

log
pi
qi

=
p2i

pi + qi
log

pi
qi

− q2i
pi + qi

log
pi
qi

=
p2i

pi + qi
log

pi
qi

+
q2i

pi + qi
log

qi
pi

=
pi

pi + qi

(
pi log

pi
qi

)
+

qi
pi + qi

(
qi log

qi
pi

)
= σ

(
log

pi
qi

) (
pi log

pi
qi

)
+
(
1− σ

(
log

pi
qi

))(
qi log

qi
pi

)
(24)818

where, for brevity, we denote pi := p(vi |819

y<t,x) and qi := qθ(vi | y<t,x). In ToDi,820

σ(log pi
qi
) is detached so that no gradient flows821

through it. As a result, αt,i acts purely as a constant822

weight, leading to an optimization behavior that823

diverges from Jeffreys divergence.824

To clarify this difference, we compare deriva-825

tives with respect to qθ(vi | y<t,x):826

• Jeffreys divergence derivative:827

∂

∂qθ

[
p log

p

qθ
+ qθ log

qθ
p

]
= − p

qθ
+ log

qθ
p

+ 1

(25)828

• ToDi derivative (αt,i is detached, so treated829
as constant):830

∂

∂qθ

[
αt,i · p log

p

qθ
+ (1− αt,i) · qθ log

qθ
p

]
= αt,i

(
− p

qθ

)
+ (1− αt,i)

(
log

qθ
p

+ 1

) (26)831

Using the detached weight αt,i, ToDi increases832

the weight on D
(t,i)
FKL(p, qθ) when p > qθ, elevating833

the student probability, and increases the weight on834

D
(t,i)
RKL(p, qθ) when qθ > p, suppressing the student835

probability. Unlike Jeffreys divergence, which ap-836

plies divergence uniformly across the vocabulary,837

ToDi adaptively refines divergence intensity at the838

token level.839

Settings GPT2 TinyLLaMA LLaMA2

Epoch 20 10 10
Learning Rate 5e-4 1e-3 1e-3

Batch Size 32 32 32
Fine-Tuning Method Full LoRA LoRA

LoRA Rank - 256 256
LoRA Alpha - 8 8

LoRA Dropout - 0.1 0.1

Table 5: Hyperparameter settings for KD.

D Experimental Details 840

D.1 Training details 841

Training was conducted based on the setup of 842

Zhang et al. (2024c). For GPT2-1.5B, we employed 843

the publicly released model from Gu et al. (2024), 844

while GPT2-120M was trained for 20 epochs with 845

a learning rate of 5× 10−4. The TinyLLaMA and 846

LLaMA2 models were trained for 10 epochs with 847

a learning rate of 1× 10−3. All experiments were 848

carried out on a single RTX A6000 GPU. The train- 849

ing loss was composed by combining the KD loss 850

and the cross-entropy loss in equal proportions 851

(0.5:0.5). Detailed hyperparameter settings for each 852

model are summarized in Table 5. 853

D.2 Evaluation details 854

All test sets were processed following Gu et al. 855

(2024). The number of samples in each test set is 856

as follows: DollyEval contains 500 examples; S- 857

NI includes 1,694 examples with response lengths 858

exceeding 11 tokens; UnNI comprises 10,000 ex- 859

amples with response lengths exceeding 11 tokens; 860

SelfInst has 242 examples; and VicunaEval con- 861

sists of 80 examples. For response generation, we 862

used random seeds {10, 20, 30, 40, 50} and report 863

the average ROUGE-L score across these seeds. 864

E Experiments on Additional Models 865

We further evaluated ToDi’s performance across 866

diverse teacher–student configurations. As shown 867

in Table 6, ToDi consistently outperforms existing 868

baselines under these configurations. This demon- 869

strates that ToDi can transfer knowledge robustly 870

and effectively across different teacher–student se- 871

tups. 872

F Details of GPT-4 Evaluation 873

Pairwise comparison of model responses was per- 874

formed using the gpt-4o-2024-11-20 API, with 875
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[System]
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants
to the user question displayed below. You should choose the assistant that follows the user’s instructions
and answers the user’s question better. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by
comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that
the order in which the responses were presented does not influence your decision. Do not allow the length
of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective
as possible. After providing your explanation, output your final verdict by strictly following this format:
"[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.

[Question]
{}

[The Start of Assistant A’s Answer]
{}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{}
[The End of Assistant B’s Answer]

Figure 7: Prompt for GPT-4 Evaluation.

Methods OLMo2 Qwen2.5 Gemma3

Teacher 30.24±0.48 27.42±0.63 30.60±0.42
SFT 24.53±0.41 24.89±0.25 24.12±0.37
FKL 26.88±0.57 26.71±0.56 26.88±0.35
RKL 25.98±0.46 27.14±0.32 28.69±0.14
JS 25.39±0.59 26.82±0.12 25.10±0.40
TVD 25.60±0.34 26.78±0.52 26.06±0.21
SKL 25.86±0.31 27.04±0.17 26.16±0.35
SRKL 26.03±0.12 26.74±0.54 25.90±0.59
AKL 25.97±0.13 26.66±0.22 28.53±0.37
ToDi (Ours) 26.94±0.41 27.20±0.34 29.03±0.43

Table 6: ROUGE-L scores on the DollyEval benchmark
across diverse distillation settings with varying teacher-
student model pairs, including OLMo2-7B → OLMo2-
1B (OLMo et al., 2025), Qwen2.5-1.5B → Qwen2.5-
0.5B (Qwen et al., 2025) and Gemma3-4B → Gemma3-
1B (Team et al., 2025). The best result is shown in bold.

response order randomized in the prompt to mit-876

igate position bias. We followed the LLM-as-a-877

Judge evaluation protocol of Zheng et al. (2023),878

employing the pairwise comparison prompt shown879

in Figure 7.880

G Sensitivity Study for β881

Table 7 reports ROUGE-L scores as a function of882

the scaling parameter β ∈ {0.6, 0.8, 1.0, 1.2,∞}.883

The experiments show that β = 1.0 achieves the884

highest average score of 18.66. Two key trends are885

observed:886

β Dolly S-NI UnNI Self Vicuna Average

0.6 24.44 18.17 22.44 10.88 16.09 18.40
0.8 24.50 19.15 22.04 10.76 15.74 18.44
1 24.81 19.42 22.16 11.30 15.61 18.66

1.2 24.29 18.85 21.86 11.15 15.69 18.37

∞ 24.30 18.96 21.89 10.93 15.11 18.24

Table 7: Comparison of ROUGE-L scores of GPT-2
student models under different values of the scaling
parameter β.

• Low-sensitivity regime (β < 1): As β de- 887

creases, the sigmoid’s slope becomes shal- 888

lower, causing the weight αt,i to converge 889

toward 0.5. This nearly fixed combination 890

of FKL and RKL reduces responsiveness to 891

token-level prediction discrepancies, degrad- 892

ing training effectiveness. Indeed, at β = 0.6, 893

the average performance drops to 18.40. 894

• High-sensitivity regime (β → ∞): As β 895
grows large, the sigmoid approaches a step 896
function and the weight αt,i becomes discrete: 897

αt,i
β→∞−−−−→ 1

[
p
(
vi | y<t,x

)
> qθ

(
vi | y<t,x

)]
. 898

This fully separates the application of FKL 899

and RKL, introducing discontinuities in the 900

learning signal near the boundary p ≈ qθ. 901

Such abrupt transitions undermine training sta- 902

bility, and the average performance declines 903

to 18.24. 904
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