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ABSTRACT

Reinforcement learning (RL) has proven remarkably effective at improving the
accuracy of language models in verifiable and deterministic domains like math-
ematics. However, it is unclear if current RL methods are similarly effective at
optimizing language models for stochastic settings, such as scientific experimenta-
tion and model uncertainty estimation. Here, we demonstrate that Group Relative
Policy Optimization (GRPO) induces overconfident probability predictions for
categorical stochastic outcomes, while Proximal Policy Optimization (PPO) and
REINFORCE Leave-One-Out (RLOO) yield well-calibrated models. We show
that removing group standard normalization in GRPO fixes its miscalibration and
provide a theoretical explanation for why normalization causes overconfidence.
Our results provide new evidence against the use of standard normalization in
GRPO and help pave the way for applications of RL for reasoning language models
beyond deterministic domains.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success at improving the accuracy of language
models in verifiable domains like mathematics and coding (OpenAI, 2024; Shao et al., 2024; Kimi
Team, 2025). In particular, recent success has been achieved by optimizing language models
to generate chain-of-thought text before responding to a prompt (often called ”reasoning”) with
supervision from a verifier. Current research has focused primarily on domains where proposed
answers are deterministically correct or incorrect.

We posit that an important next step for the reasoning RL paradigm is to expand to domains with
verifiable yet stochastic answers. For example, scientific experiments, which are subject to random
variation, could serve as powerful verifiers for optimizing language models beyond current written
knowledge. Scientific reasoning models trained in this manner could support hypothesis generation,
experimental design, and decision making through both their predictions and generated reasoning
traces. Other potentially impactful settings for training reasoning models with stochastic outcomes
include model alignment, which considers human behaviors and preferences (Ziegler et al., 2020;
Ouyang et al., 2022), and model uncertainty estimation, which is important for high-stakes decision
making and can be framed as modeling the probability that a prediction is correct (Band et al., 2024;
Stangel et al., 2025; Damani et al., 2025).

In this paper, we examine whether three popular algorithms for reasoning RL in deterministic
domains, namely GRPO (Shao et al., 2024), PPO (Schulman et al., 2017), and RLOO (Kool et al.,
2019; Ahmadian et al., 2024), are also effective in settings with binary stochastic outcomes. Through
applications to synthetic data, real-world scientific experiments, and medical question-answering,
we demonstrate that models trained to predict outcome probabilities with a log-likelihood reward
using GRPO make highly overconfident predictions, while models optimized with PPO and RLOO
are relatively well calibrated (Fig. 1 and 2). We find that GRPO can be modified for better calibration
by removing the group standard normalization term and provide a theoretical justification for why
normalization causes overconfidence. In sum, our results provide new evidence against the use of
standard normalization in GRPO, highlight the value of unbiasedness as a design principle for policy
gradients, and help support future applications of reasoning RL beyond deterministic domains.
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Figure 1: Group standard normalization in GRPO induces overconfident predictions of stochastic
outcome probabilities. Top: Probability prediction task. Bottom: Synthetic data experiment results.
Models trained with PPO, RLOO, and GRPO with no standard normalization are well calibrated,
while models trained with GRPO are extremely overconfident.

2 PRELIMINARIES

RL with Language Models Reinforcement learning methods cast autoregressive language models
as stochastic policies πθ that specify actions (selecting new tokens) based on the current state (the
prompt and prior generated tokens). We consider a setting with outcome supervision, where the goal
is to maximize the expected reward received from a verifier that scores the correctness of a response
given the ground-truth answer. While current work focuses primarily on settings with deterministic
answers, we consider answers that may be stochastic conditional on the prompt.

Value and Advantage Functions The state value function V π(s) is defined as the expected reward
from following policy π from state s, and the state-action value function Qπ(s, a) is defined as the
expected reward of following policy π from state s when the next action is set to be a. The advantage
function Aπ(s, a) = Qπ(s, a) − V π(s) is the expected increase in reward from selecting a as the
next action from state s relative to an action sampled from π.

Policy Gradients Policy gradient methods optimize policy πθ by directly estimating the gradient
of the expected reward with respect to policy parameters. Let q be a prompt, a be the true answer,
o = (o1, ..., ot) be a sequence of response tokens, and r(o, a) be the final reward received from the
verifier. From the policy gradient theorem (Sutton et al., 1999)

ĝPG = Êq∼p(Q), a∼p(A|q),
o∼πθ(O|q)

 |o|∑
t=1

∇θ log πθ(ot|st) (r(o, a)− b(st))

 (1)

is an unbiased estimate of the policy gradient, where Ê is an empirical sample mean, st := (q, o<t) is
the state at step t (the prompt and prior tokens), and baseline b(st) is a function of the current state. A
common choice is b(st) = V̂ (st), which makes the baselined reward equivalent to an estimate of the
advantage Â(st, ot). The policy gradient estimator can be interpreted as as increasing the probability
of actions with above average expected rewards and decreasing the probability of actions with below
average expected rewards.

Each of the three algorithms considered in this paper (GRPO, PPO, and RLOO) are policy gradient
methods. We discuss the different strategies these methods take for advantage estimation and
deviations from the policy gradient estimator ĝPG below.
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Advantage Estimation for Policy Gradients Consider sampling G responses from a single prompt,
and let r = (r1, ..., rG) be the rewards for these responses. Let Âi,t be the estimated advantage for
token t in response i. PPO, RLOO, and GRPO then have the following advantage estimators:

Algorithm Advantage estimator Âi,t Unbiased PG?

PPO ri − V̂ψ(si,t) Yes
RLOO ri −mean(rj ̸=i) Yes
GRPO ri−mean(r)

std(r)+ϵ No
GRPO (No Std Norm) ri −mean(r) No (proportional)

PPO uses Generalized Advantage Estimation (GAE) (Schulman et al., 2018) and learns an explicit
model of the value function V̂ψ as a baseline (we focus on the unbiased variant of GAE). To avoid
the computational costs associated with learning an explicit value model, RLOO and GRPO instead
compute a Monte Carlo estimate of the value using multiple responses generated from the same
prompt. Specifically, RLOO subtracts the mean reward from the other sampled responses, yielding an
unbiased advantage estimate, while GRPO subtracts the mean reward from all responses and divides
by the standard deviation, which is biased. We also consider a variant of GRPO without standard
normalization which yields a policy gradient estimate that is proportional to an unbiased estimate
(this modification was proposed as part of the Dr. GRPO algorithm (Liu et al., 2025)). We note that
RLOO and GRPO uses the same advantage estimate for each token, which can be interpreted as
casting question answering as a bandit problem where generating the full response corresponds to a
single action.

Clipped Policy Gradients The primary contribution of PPO was to introduce a clipped policy
gradient estimator to stabilize training when performing multiple gradient updates on a single batch
of rollouts (at the cost of introducing bias). The clipped estimator is

ĝclip
t = ∇θÊ q∼p(Q)

o∼πθold
(O|q)

min
[
πθ(ot|q, o<t)
πθold(ot|q, o<t)

Ât, clip
(

πθ(ot|q, o<t)
πθold(ot|q, o<t)

, 1− ϵ, 1 + ϵ

)
Ât

]

When applied on-policy, πθ = πθold and the clipped estimator reduces to the vanilla policy gradient.
The clipped policy gradient is also used in GRPO and can be applied with any of the advantage
estimators discussed above.

3 EXPERIMENTS

3.1 PROBLEM STATEMENT

We consider the following probability prediction task: for prompt q and categorical answer
a ∈ {1, ...,K}, predict the probability distribution over possible values for a. Training data consists
of question-answer pairs (qi, ai)|Ni=1, where observed answers ai are sampled from some unknown
probability distribution ai ∼ p(A|qi). We compare the performance of RL algorithms on this task
using the log-likelihood of the observed answer under the model predicted probability as the reward
function.

3.2 METRICS

We evaluate model predictions for both calibration and classification performance. To measure
calibration, we visualize reliability plots and compute the Expected Calibration Error (ECE). ECE is
computed by binning predicted probabilities (we use 10 bins) and computing the average difference
between the frequency of positive instances and mean predicted probability in each bin, weighted by
the number of points. We measure classification performance with both the Area Under the Receiver
Operator Characteristic (AUROC) and accuracy of the maximum likelihood choice.
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Dataset Algorithm ECE (↓) AUROC (↑) Acc. (↑)

Synthetic Data

GRPO 0.239 0.75 0.75
GRPO (No Std.) 0.002 0.82 0.75
RLOO 0.002 0.82 0.75
PPO 0.005 0.82 0.75

CRISPR Screen

GRPO 0.292 0.69 0.67
GRPO (No Std.) 0.036 0.72 0.68
RLOO 0.040 0.72 0.68
PPO 0.038 0.72 0.67

MedMCQA

GRPO 0.117 0.80 0.58
GRPO (No Std.) 0.013 0.81 0.59
RLOO 0.009 0.81 0.59
PPO 0.020 0.80 0.58

Table 1: Evaluation metrics from probability prediction experiments. Across applications to synthetic
data and real-world biological experiments, we find that GRPO achieves poor ECE and AUROC
relative to GRPO without standard normalization, RLOO, and PPO. All algorithms perform nearly
identically on accuracy with predicted probabilities thresholded at 0.5, which does not require well-
calibrated predictions.

3.3 EXPERIMENT 1: SYNTHETIC DATA

We begin by characterizing the behavior of each RL algorithm in a synthetic data experiment with
known ground-truth probabilities.

Data We simulate a dataset of 10,000 (qi, ci, ai) triples, representing questions, categories, and binary
answers. Questions are randomly assigned to one of 20 random categories. For each category, a true
category answer rate is sampled from a uniform distribution: p1, ..., p20 ∼ Uniform(0, 1). Answers
are then sampled from the true answer rate for the question category: ai|qi, ci ∼ Bernoulli(pci).

Model We define a minimal “language model” that enables us to examine the behavior of each
RL algorithm in a simplified setting (we verify that these behaviors generalize to real language
models in the next two experiments). Specifically, the minimal model samples a single token
representing the predicted probability given a question, parameterized as a categorical distribution
pθ(ai = 1|qi) = pθ(ai = 1|ci) using a learnable parameter for each category / probability token pair.
We use a vocabulary of 99 tokens representing probabilities between 0.01 and 0.99. For experiments
with PPO, we define a value model that predicts V̂ (qi) = ψci , where ψc is a learnable parameter for
each category.

Optimization We optimize models using PPO, RLOO, GRPO, and GRPO without standard normal-
ization both on-policy and off-policy (1 and 10 gradient updates per rollout, respectively). Off-policy
models are optimized with the clipped policy gradient estimator, and we consider clipping thresholds
of 0.2 and 0.001 to assess the effects of different clipping rates.

Results Across all settings, we find that GRPO yields highly overconfident probability predictions:
models optimized with GRPO converge to predict the minimum available probability for categories
with true probability< 0.5 and the maximum available probability for categories with true probability
> 0.5 (Fig. 1). In contrast, GRPO without standard normalization, PPO, and RLOO all yield well-
calibrated predictions (Fig. 1). These observations are reflected GRPO’s poor ECE (0.24 vs <0.01)
and AUROC (0.75 vs 0.82) relative to the other algorithms (Tbl. 1). We observe that all considered
algorithms perform equivalently on thresolded accuracy, which does not require calibrated predictions.
We also obtain nearly identical results when training on-policy and off-policy, even when introducing
high clipping rates, which suggests that the clipped policy gradient estimator does not introduce a
systematic bias for probability prediction (Appendix Tbl. 2 and Fig. 6).
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Figure 2: Predictions from the CRISPR screen and MedMCQA experiments after reinforcement
learning with Qwen3-4B. In both settings, we observe that models optimized with PPO, RLOO, and
GRPO without standard normalization achieve fairly well-calibrated predictions for held-out queries,
while models optimized with GRPO make highly overconfident probability predictions. Error bars
represent 95% confidence intervals.

3.4 EXPERIMENT 2: SCIENTIFIC EXPERIMENT PREIDCTION (CRISPR SCREEN)

Next, we evaluate if the conclusions from the synthetic data experiments hold when optimizing a
large language model, Qwen3-4B (Yang et al., 2025), to predict outcome probabilities in real-world
biological experiments.

Data In recent years, Perturb-seq (Dixit et al., 2016) has emerged as a powerful experimental
technique for identifying causal effects on cells, a key question in drug discovery, cell engineering,
and basic biology research. CRISPR perturb-seq experiments involve perturbing genes with CRISPR
and measuring the effect of those perturbations on gene expression counts for each gene in individual
cells (which can be interpreted as a broad measurement of cell state). For this experiment, we convert
a large perturb-seq dataset from Replogle et al. (2022) into a binary task: for a given perturbed gene
and target gene expression phenotype, predict the probability that the perturbed gene has a strong
effect on the phenotype (full preprocessing details in Appendix A.5). We sample a balanced dataset
of positive and negative instances for the final dataset and generate validation and test splits with
held-out perturbations.

Model We optimize Qwen3-4B to predict the probability that a perturbed gene has a strong effect on
a target phenotype. The model is prompted to predict the probability as a percentage between 1 and
99 (full prompt in Appendix A.6).

Optimization We optimize models with PPO, RLOO, GRPO, and GRPO without standard normal-
ization using Verl (Sheng et al., 2024). Each algorithm is applied off-policy (8 updates per sampled
training batch) with the clipped policy gradient estimator. Models are trained for 16 epochs with train
batch size 512 and 4 rollouts per sample (details in Appendix A.7).

Results Consistent with the synthetic data experiment, we find that optimization with GRPO re-
sults in highly overconfident probability predictions (ECE=0.29), while GRPO with no standard
normalization, PPO, and RLOO yield well-calibrated models (ECE≤0.04, Fig. 2 and Tbl. 1). GRPO
again performs poorly on AUROC (0.69 vs 0.72 from the other algorithms) and all models are
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similarly accurate. We also find that the clipped policy gradient, which was used for all models in
this experiment, did not cause biased probability predictions.

3.5 EXPERIMENT 3: QUESTION ANSWERING UNCERTAINTY ESTIMATION (MED-MCQA)

Next, we analyze the performance of RL algorithms under a multi-class uncertainty estimation task
with a multiple choice QA dataset.

Data: We use the MedMCQA dataset (Pal et al.), which consists of exam questions pulled from
medical entrance exams in India. There are four possible answers provided for each question.

Model and Optimization: We optimize Qwen3-4B to predict the probability that each multiple-
choice option is correct using GRPO, GRPO without standard normalization, RLOO, and PPO (full
prompt and experiment details in Appendix A.8 and A.9).

Results: Consistent with the prior experiments, we find that GRPO yields poorly calibrated and
overconfident probability predictions in the multi-class uncertainty estimation setting (ECE=0.117)
while the other algorithms are relatively well calibrated (ECE ≤ 0.02) (Tbl. 1, Fig. 2).

4 THEORETICAL ANALYSIS

Finally, we analyze why standard normalization in GRPO induces overconfident predictions. Recall
that GRPO reinforces actions based on their estimated advantage: actions that have large advantages
are made more likely, while actions with negative advantages are made less likely. We will show that
standard normalization causes GRPO to overestimate the advantage of overconfident predictions,
resulting in overconfident policies (Fig. 3).

In Appendix A.1, we derive expressions for the expected advantage estimates from GRPO with and
without standard normalization. Let q be a prompt with stochastic answers a ∼ Categorical(p),
where p = (p1, ..., pk) are the true answer probabilities. Let p̂ = (p̂1, ..., p̂k) be the predicted
answer probabilities, and let r(p̂, a) be a reward function such as the log-likelihood reward r(p̂, a) =∑k
i=1 1[a = i] log p̂i. The true advantage for prediction p̂ is then

A(q, p̂) =

k∑
i=1

pi(r(p̂, i)− µi)

where µi = Ep̂′∼πθ(q) [r(p̂
′, i)] is the expected reward under predictions sampled from the policy

if the answer is i. We show that the expected advantage estimate for GRPO without standard
normalization is

E
[
ÂNO-STD(q, p̂)

]
=
G− 1

G
A(q, p̂) ∝ A(q, p̂)

This means that the policy gradients using GRPO without standard normalization are approximately
unbiased (up to a constant factor), consistent with the calibrated predictions we observed experimen-
tally. In contrast, the advantage estimate for GRPO is approximately

E
[
ÂSTD(q, p̂)

]
≈

k∑
i=1

1

σi + ϵ
pi(r(p̂, i))− µi)

where σi = Ep̂(1),...,p̂(G)

[
std(r(p̂(1), i), ..., r(p̂(G), i))

]
is the expected standard deviation of the G

group rewards sampled from the prompt if the true answer is i. We observe that the approximate GRPO
advantage expression closely resembles the true advantage with the addition of 1

σi+ϵ
coefficients,

which introduce a policy-dependent bias that we analyze empirically.

In Fig. 3, we visualize empirical estimates of the expected advantage for GRPO with and without
standard normalization with binary answers and a log-likelihood reward (estimation details in A.2).
The predicted probability on the x-axis is defined as the predicted probability that a = 1. Under a
uniform policy, the advantage estimates from both methods closely approximate the true advantage
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Figure 3: Bias in GRPO advantage estimates explains overconfident predictions. Advantages are
computed with a log-likelihood reward. Left: Under a uniform policy, both GRPO and GRPO
without standard normalization closely approximate the true advantages. Middle: Under a policy
concentrated on the true probability, GRPO overestimates the advantage of overconfident predictions.
Right: As the policy becomes increasingly overconfident, GRPO increasingly overestimates the
advantage of more overconfident predictions. This pattern creates a positive feedback loop towards
increasingly overconfident predictions consistent with our experimental observations.

(left column). As the policy begins to concentrate around the true probability, we observe that GRPO
starts to overestimate the advantage of overconfident predictions, while the unnormalized estimates
remains accurate (center column). This will cause GRPO to reinforce overconfident predictions more
strongly than the true probability, resulting in overconfident policies. Finally, we observe that under a
very overconfident policy, GRPO’s advantage estimates will have an even more extreme bias towards
overconfident predictions, while GRPO without standard normalization remains approximately
unbiased (right column). These observations are consistent with our approximate GRPO advantage
expression: as the policy concentrates above 0.5, σ0 becomes larger than σ1, resulting in a reduced
weight on the penalty for overconfident predictions (Appendix Fig. 5).

To summarize, group standard normalization in GRPO’s advantage estimates creates a policy-
dependent bias that pushes policies towards overconfident predictions. While our analysis focused
on a log-likelihood reward, we also consider rewards based on other strictly proper scoring rules in
Appendix A.3.

5 DISCUSSION

Many important tasks, from scientific experimentation to uncertainty estimation, require reasoning
about the likelihood of stochastic outcomes. We showed that reasoning language models optimized
to predict the probability of binary stochastic outcomes from samples with GRPO are highly overcon-
fident, while models optimized with PPO and RLOO are well calibrated (all using a log-likelihood
reward). We identified a bias in GRPO’s advantage estimate due to group standard normalization
as the relevant difference between these algorithms and provided a theoretical explanation for why
normalization causes overconfidence. We also found that using the clipped policy gradient introduced
by PPO did not impact calibration in our experiments.

Our results fit into a broader set of findings that biased policy gradients can lead to unexpected
behavior for reasoning language models. For example, Liu et al. (2025) introduce Dr. GRPO, a
modification of GRPO designed to eliminate terms that introduce bias. They propose to remove
length normalization, which they find biases models to longer outputs, and to remove group standard
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normalization, which they interpret as a question-level difficulty bias. Our work identifies a novel
negative impact of standard normalization in GRPO and supports unbiasedness as a useful design
principle for policy gradient methods in reasoning RL.

We note that there are other possible framings of the outcome probability task explored in this paper.
For example, one could directly estimate the probability of stochastic outcomes and train models
to accurately predict these continuous values. While summarizing uncertainty can be useful, this
approach requires having robust probability estimates ahead of time, which may be unavailable or
model dependent, and limits the opportunity for the reasoning model to learn to make more precise
estimates. Alternatively, one can train only on deterministic tasks and hope for transfer to stochastic
settings (for example, we observe better than random zero-shot predictions on the CRISPR task in
Appendix Fig. 8), though this limits the available data and tasks for training models. Overall, we
believe that modeling stochastic outcomes from observed samples is an important capability for
reasoning RL and that it is useful to characterize algorithms for this setting.

Finally, we presented an initial application of RL to train reasoning models directly from noisy
biological experiments. While we found that RL can yield calibrated predictions for held-out
experiments, these predictions do not necessarily reflect rigorous reasoning about uncertainty in the
model’s chain-of-thought. The development of new methods to train models to reason rigorously
about uncertainty in science is an exciting future direction.

6 REPRODUCIBILITY STATEMENT

The code and data required to reproduce experiments and figures are provided in supplementary
materials.
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A APPENDIX

A.1 ANALYSIS OF BIAS IN GRPO ADVANTAGE ESTIMATES

Let q be a prompt with stochastic answers a ∼ Categorical(p), where p = (p1, ..., pk) are the
true answer probabilities. Let p̂ = (p̂1, ..., p̂k) be the predicted answer probabilities from policy
πθ. Let r(p̂, a) be a reward function from a proper scoring rule such as the log-likelihood reward
r(p̂, a) =

∑k
i=1 1[a = i] log p̂i or Brier score r(p̂, a) =

∑k
i=1(1[a = i]− p̂i)

2. Proper scoring rules
have the property that the expected value is maximized by the true probability and have been shown
to be effective rewards for training calibrated classifiers (Band et al., 2024).

The true advantage estimate for prompt q and prediction p̂ is

A(q, p̂) = Qπ(q, p̂)− V π(q)

= Ea∼p(A|q)[r(p̂, a)]− Ea∼p(A|q),p̂′∼πθ(q)[r(p̂
′, a)]

=

k∑
i=1

pir(p̂, i)− Ep̂′∼πθ(q)

k∑
i=1

pir(p̂
′, i)

=

k∑
i=1

pi(r(p̂, i)− µi)

where µi = Ep̂′∼πθ(q) [r(p̂
′, i)] is the expected reward under predictions sampled from the policy if

the answer is i.

Next, we compare the advantage estimates from GRPO (Shao et al., 2024) to the true advantage to
characterize any biases. Let p̂(1), ..., p̂(G) ∼ πθ(q) be a group of G predictions sampled from the
same prompt. Without loss of generality, we will set the index of the prediction whose advantage we
are estimating to be 1. We see that the expected advantage for GRPO without standard normalization
is

E a∼p(A|q),
p̂(2),...,p̂(G)∼πθ(q)

[
ÂNO-STD(q, p̂)

]
= Ea,p̂(2),...,p̂(G)

[
r(p̂(1), a)− mean(r(p̂(1), a), ..., r(p̂(G), a))

]

= Ea,p̂(2),...,p̂(G)

r(p̂(1), a)− 1

G

r(p̂(1), a) +

G∑
j=2

r(p̂(j), a)


= Ea

[(
r(p̂(1), a)− 1

G
r(p̂(1), a)

)
− G− 1

G
Ep̂′∼πθ(q)r(p̂

′, a)

]
=
G− 1

G
Ea

[
r(p̂(1), a)− Ep̂′ [r(p̂′, a)]

]
=
G− 1

G
A(q, p̂)

We see that the estimate is proportional to the true advantage, though it is attenuated by a factor of 1
G .

A fully unbiased estimate can be achieved with the advantage from RLOO (Kool et al., 2019), which
excludes p̂i from the mean baseline.

Finally, we consider the expected GRPO advantage estimate with standard normalization. We
define σi = Ep̂(1),...,p̂(G)

[
std(r(p̂(1), i), ..., r(p̂(G), i))

]
as the expected standard deviation of the

G group rewards sampled from the prompt if the true answer is i. We make the following sim-
plifying assumptions in our approximation of the advantage: we assume that G is large so that
Ep̂(2),...,p̂(G)∼πθ(q)

[
std(r(p̂(1), i))

]
≈ σi and ignore the dependency between the mean and standard

deviation of group rewards. With these simplifications, we have:
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E a∼p(A|q),
p̂(2),...,p̂(G)∼πθ(q)

[
ÂSTD(q, p̂)

]
= Ea,p̂(2),...,p̂(G)

[
r(p̂(1), a)− mean

(
r(p̂(1), a), ..., r(p̂(G), a)

)
std

(
r(p̂(1), a), ..., r(p̂(G), a)

)
+ ϵ

]

≈ p1
r(p̂(1), 1)− µ1

σ1 + ϵ
+ ...+ pk

r(p̂, k)− µk
σk + ϵ

=

k∑
i=1

1

σi + ϵ
pi(r(p̂, i))− µi)

We see that the approximate expected advantage estimate from GRPO has the same weighted reward
terms as the true advantage with the addition of new 1

σi+ϵ
coefficients. These coefficients make the

GRPO advantage estimate biased in a policy-dependent manner, which is analyzed in Figures 3, 4,
and 5.

A.2 ADVANTAGE EMPIRICAL ESTIMATE DETAILS

We compute the empirical GRPO advantage estimates in Fig. 3 with binary outcomes for a log-
likelihood reward using group size G = 1000, true probability p = 0.7, and 100,000 sam-
ples of (p̂1, ..., p̂G) ∼ πθ. Policies are categorical distributions over predicted probabilities
(0.01, 0.02, ..., 0.99), where categorical log probs are set by discretizing Beta distributions (Beta(1, 1),
Beta(5.7, 3), Beta(50, 1)). Empirical advantage estimates are plotted for predictions with at least
1,000 observed samples. True advantages are computed exactly.

A.3 GRPO BIAS WITH OTHER REWARDS

While our analysis in the main text focused on a log-likelihood reward, prior work has found that
optimization based on other proper scoring rules (which are maximized in expectation by the true
probability) can yield well-calibrated classifiers (Band et al., 2024). We show a similar pattern of
GRPO advantage estimate biases with binary outcomes using a reward based on the Brier score
r(p̂, a) = −(a − p̂)2 in Fig. 4. We hypothesize that GRPO will yield overconfident predictions
for rewards based on strictly proper scoring rules more generally because they are strictly concave,
which should lead to similar changes in σ1 and σ2 as the policy changes, but we leave a formal
characterization as out of scope for this paper.

Figure 4: Analysis of advantage estimates with a reward based on the Brier score. We observe
a similar pattern of overestimated advantages for overconfident probabilities as observed with a
log-likelihood in Fig. 3

.
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Figure 5: Empirical estimates of σ0 and σ1 (standard deviation of rewards within groups for answers
0 and 1) for the three policies in Figures 3 and 4. As the policies concentrate on predictions greater
than 0.5, σ0 becomes larger than σ1.

A.4 SYNTHETIC DATA EXPERIMENT EXTENDED RESULTS

Algorithm Grad Steps / Rollout ϵclip ECE AUROC Accuracy

GRPO 1 NA 0.239 0.750 0.751
GRPO 10 0.200 0.239 0.751 0.751
GRPO 10 0.001 0.239 0.751 0.751

GRPO (No Std) 1 NA 0.002 0.823 0.751
GRPO (No Std) 10 0.200 0.005 0.823 0.751
GRPO (No Std) 10 0.001 0.005 0.823 0.751

PPO 1 NA 0.005 0.823 0.751
PPO 10 0.200 0.008 0.823 0.751
PPO 10 0.001 0.008 0.823 0.751

RLOO 1 NA 0.002 0.823 0.751
RLOO 10 0.200 0.004 0.823 0.751
RLOO 10 0.001 0.004 0.823 0.751

Table 2: Extended results from synthetic data experiments. We observe that results are consistent
between experiments with a single update per rollout and multiple updates per rollout with a clipped
policy gradient estimates, even with low clipping thresholds that encourage high clipping rates.
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Figure 6: Synthetic data training metrics.

A.5 CRISPR EXPERIMENT DATA PROCESSING

CRISPR perturb-seq screens involve perturbing individual genes with CRISPR (which modulates the
expression of a target gene) and measuring the effect of the perturbation on RNA transcript counts
for all genes in individual cells cell. We use the essential gene CRISPRi (CRISPR interference)
perturb-seq screen in K562 cells from Replogle et al. (2022) for our experiment. The dataset contains
CRISPRi perturbations, which lower gene expression, that target approximately 2,000 unique genes.
We apply consensus non-negative matrix factorization (cNMF) (Kotliar et al., 2019) to infer 50
aggregate transcriptional target phenotypes and select the top 15 marker genes for each phenotype
as defined by the cNMF method to describe each phenotype. We estimate the effect size of each
perturbation on each phenotype as the difference in mean phenotype values for cells that received the
perturbation and control cells. To define perturbations with strong effects (”hits”), we fit a cluster
model on the perturbation effect sizes for each phenotype and select perturbations that are highly
unlikely in the control cluster. Specifically, we fit a Gaussian Mixture Model on the effect sizes for
each phenotype (number of clusters between 1-4, selected based on Bayesian Information Criterion)
and select perturbations with <1% chance under the cluster closest to zero as strong effects. To
construct a balanced dataset, we select an equal number of perturbations that are most likely under the
control cluster as non-hits. We note that the dataset is naturally very imbalanced (hits are relatively
rare for most phenotypes) but choose to work with a balanced dataset for simplicity as our primary
focus is understanding the behavior of RL algorithms with stochastic outcomes.

A.6 CRISPR TASK PROMPT

Experiment Prediction Prompt

I am planning a perturb-seq screen and plan to assess effects of
perturbations on a phenotype with the following marker genes:
```{pheno_markers}```.

↪→
↪→

How likely is a CRISPRi perturbation applied to {pert} to have a
strong effect on this phenotype? Respond with probability from
1-99, representing 1% to 99% chance of a strong effect. Enclose
your answer in <answer> </answer> tags.

↪→
↪→
↪→
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pheno markers is a list of 15 marker genes for the phenotype, and pert is the gene perturbed by
the CRISPR perturbation. We also considered prompts that specified the overall frequency of hits in
the dataset, but found that this reduced the zero-shot model performance.

A.7 CRISPR EXPERIMENT DETAILS

Models were trained with a log-likelihood reward, with a minimum reward of log 0.01 for outputs
that do not match the required format (corresponding to the worst possible reward given the prediction
range of 0.01-0.99). Each model was trained with batch size 512, group size 4, max response length
2048, mini-batch size (batches for gradient updates within each rollout) of 64, learning rate 1e-6, and
KL loss coefficient of 0.001. For PPO, the critic is trained with mini-batch size 64 and learning rate
1e-5. We train all models without length normalization as discussed in Liu et al. (2025) to avoid a
length bias. Models were trained for 16 epochs with Verl (Sheng et al., 2024). For PPO, RLOO, and
GRPO with no standard normalization, we select the checkpoint with the best validation reward for
evaluation (epoch 15 / step 180 for all three). We use the same checkpoing from the GRPO run for
consistency (validation reward begins dropping early and we want to understand what predictions it
converges to) (Fig. 7). We generate 4 samples per prompt for test set evaluation and drop samples
with no valid prediction (at most one sample of 5608 predictions for each trained models).

Figure 7: CRISPR experiment prediction task validation set rewards during training.

Figure 8: Zero shot predictions on CRISPR task test set with Qwen3-4B.

A.8 MEDMCQA TASK PROMPT

Experiment Prediction Prompt

Predict the probability that each answer to the following multiple
choice question is correct. Reason carefully about the
probability of each answer, and make sure to be preciseif
possible, predict the exact probability.

↪→
↪→
↪→
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Formatting: Enclose your answer with <answer> <\answer> tags. Write
each probability with up to two decimal places. None of your
predictions can have value exactly equal to 0 or 1. Format your
answer as a comma separated list for the probability of options
A,B,C,D. For example, a valid answer is
`<answer>0.28,0.61,0.04,0.07</answer>`.

↪→
↪→
↪→
↪→
↪→

Reminders: Your probabilities must sum to 1, and 0.00 and 1.00 are
not valid responses!↪→

Question: {question}

A: {opa}
B: {opb}
C: {opc}
D: {opd}

A.9 MEDMCQA EXPERIMENT DETAILS

Models were trained with a log-likelihood reward, with a minimum reward of log 0.001 for outputs
that do not match the required format. We reuse the training setup from the CRISPR experiment A.7,
with the changes of using a smaller batch size (256) in order to reduce the computational cost. Each
model was trained for 204 steps before evaluation on the validation set.

B LLM USAGE

The most prominent usage of LLM’s in writing this paper was to search for related literature (request
ChatGPT to find papers related to specific topics). ChatGPT was also used to as a general purpose
search and question-answering tool, for example to for latex formatting and to refine mathematical
notation.
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