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Abstract

Though large language models (LLMs) like001
generative pre-trained Transformers (GPTs)002
have achieved superior performance over many003
tasks, they capture and propagate social biases004
and stereotypes that are present in the train-005
ing data. In this paper, we propose a frame-006
work that reformulates the bias detection of007
LLMs as a hypothesis testing problem with the008
null H0 denoting no bias. Our framework is009
designed for contrastive text pairs, and it has010
two schemes: one is based on (log-)likelihood011
and another is based on preference. To this012
end, two public dataset CrowS-Pairs and its013
French version are utilized, both including nine014
categories of bias. Although frequentist meth-015
ods such as Student’s t and Wilcoxon test can016
be employed in our framework, Bayesian test017
(Bayes factors) is preferred for bias detection018
as it allows practitioners to quantify the evi-019
dence for both two competing hypotheses. Our020
framework is suitable for a wide range of large021
language models, and we demonstrate its appli-022
cation to the popular GPT-3 (text-davinci-003)023
and ChatGPT (GPT-3.5-Turbo) in the experi-024
ments. From our experiments, the bias behavior025
of ChatGPT is mostly consistent on both the026
English and French CrowS-pairs datasets, but027
still exhibits some differences due to different028
social norms.029

1 Introduction030

The power of the large language models (LLMs)031

greatly benefits from the increasing quantity and032

quality of real corpora (Gu et al., 2022; Zhang et al.,033

2020; Radford et al., 2018; Bao et al., 2020). How-034

ever, deep neural models can inadvertently acquire035

undesirable knowledge from the corpora, such as036

social biases and stereotypes (Nangia et al., 2020;037

Bolukbasi et al., 2016; Caliskan et al., 2017). For038

instance, Hutson (2021) shows that GPT-3 (Brown039

et al., 2020) can generate biased answers, when040

presented with sensitive prompts related to some041

demographic groups, such as “old people” or “fe- 042

male”. These biases and stereotypes can pose sig- 043

nificant challenges in downstream applications and 044

may cause a great deal of harm (Davidson et al., 045

2019; Kurita et al., 2019). Many researchers have 046

proposed methods to measure the bias and fairness 047

of language models (LMs), and comprehensive re- 048

views can be found in Delobelle et al. (2022) and 049

Gallegos et al. (2023). 050

To assess the bias of LMs, several datasets that 051

consist of contrastive pairs have been constructed 052

with emphases on different types of biases. For 053

instances, Nadeem et al. (2021) introduces Stereo- 054

typeSet, a large-scale natural language dataset de- 055

signed to measure stereotypical biases in four di- 056

mensions: gender, profession, race, and religion. 057

(Nangia et al., 2020) introduces crowdsourced 058

Stereotype Pairs benchmark (CrowS-Pairs), which 059

utilizes crowdsourced generated stereotype pairs 060

to evaluate the bias of models in nine categories. 061

Although the existence of bias can be easily seen 062

from the discrepancy of LM scores on different 063

stereotype groups, the significance of such differ- 064

ence is also important (Kiritchenko and Moham- 065

mad, 2018). Without specifically measuring the 066

significance of bias, the observed discrepancy may 067

be simply attributed to randomness in data selec- 068

tion (Dror et al., 2018), making the conclusions 069

unreliable. Some researchers have applied statis- 070

tical tests to detect biases in supervised machine 071

learning systems (Zhiltsova et al., 2019). However, 072

there still lacks a principled framework to detect 073

biases of LLMs via hypothesis testing. 074

In this paper, we propose a framework that re- 075

formulates the bias detection of LLMs as a prin- 076

cipled statistical significance testing. Our frame- 077

work utilizes pairs of contrastive sentences that 078

comprise a more stereotypical sentence and an anti- 079

stereotypical one. Our framework is able to detect 080

bias for a wide range of LMs and bias types. Our 081

contributions are summarized as follows: 082
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• We propose a principled framework which083

formally reformulates bias detection of LLMs084

as a hypothesis testing problem. Depending085

on the availability of the LLM’s likelihood for086

an input text, our framework has two schemes:087

likelihood-based and preference-based.088

• Our framework is compatible with both the089

frequentist and Bayesian hypothesis testing090

methods. However, we argue that Bayesian091

method is preferred because it shows to what092

degree the data supports both the null and al-093

ternative hypotheses. To the best of our knowl-094

edge, Bayesian testing is rarely used in the095

NLP community, thus this work can promote096

this technique as a viable option.097

• We illustrate the application of our framework098

to two popular GPT models: GPT-3 (text-099

davinci-003) and ChatGPT (GPT-3.5-Turbo)100

on both the English and French CrowS-Pairs101

datasets.102

2 Related Works103

An increasing amount of research (Qian et al.,104

2019; Yeo and Chen, 2020; Liu et al., 2022) has105

studied bias detection for LLMs. Broadly, these106

methods can be grouped into two categories: in-107

trinsic metrics, which includes the contextual-108

ized embedding association test (CEAT) (Guo and109

Caliskan, 2021), discovery of correlation (Webster110

et al., 2020), log probability bias score (LPBS) (Ku-111

rita et al., 2019); and the extrinsic metrics, which112

is based on downstream tasks such as question an-113

swering (Meade et al., 2022; Parrish et al., 2022),114

co-reference resolution (Rudinger et al., 2018) and115

semantic similarity (Dev et al., 2020). These bias116

metrics are usually ad-hoc and depend on differ-117

ent factors such as the specific model, task, and118

dataset, etc. In this paper, we propose a principled119

framework that reformulates bias detection as a120

hypothesis testing problem and our framework is121

compatible with many existing methods. Also our122

framework is able to detect biases for a wide range123

of LMs.124

Most research on evaluating and mitigating bi-125

ases has concentrated on English (Dinan et al.,126

2020; Liu et al., 2020; Barikeri et al., 2021; Cheng127

et al., 2021), while multilingual models and non-128

English languages have received comparatively lit-129

tle attention. Recently the NLP community is in-130

creasingly aware of the bias and fairness in lan-131

guages beyond English. Névéol et al. (2022) builds 132

on the CrowS-Pairs dataset to create a French ver- 133

sion. In this paper, we use both the English and 134

French version datasets to illustrate the application 135

of our framework to popular GPT models. 136

3 Bias Detection via Hypothesis Testing 137

In the literature of bias detection, several datasets 138

consisting of contrastive sentence pairs, such as 139

CrowS-Pairs (Nangia et al., 2020) and its French 140

version (Névéol et al., 2022) have been con- 141

structed. CrowS-Pairs consists of many sentence 142

pairs, where the first sentence is stereotypical about 143

a demographic group and the second sentence is a 144

minimal edit describing a contrasting group. For 145

this kind of datasets, the LM bias can be reflected 146

by the extent to which a LM prefers stereotypical 147

over anti-stereotypical sentences. In principle, a 148

fair LM should exert no (significant) preference to 149

either option. In this paper, we seek to determine 150

whether a significant preference over one group 151

exists via statistical significance tests. 152

Our framework has two schemes, depending on 153

the availability of the (log-) likelihood of input text. 154

The first scheme is based on the evaluation of LLM 155

likelihood of contrastive sentences, whereas the 156

second is based on the preference of LLMs over 157

contrastive sentences. 158

3.1 Likelihood-based Scheme 159

Suppose there exist n pairs of sentences, 160

{(xi,yi)}ni=1, concerning a specific social bias, 161

e.g., gender, race, etc. In such a dataset, each pair 162

is comprised of a stereotypical sentence xi and a 163

minimally modified sentence yi with contrasting 164

anti-stereotypical words. Because the second sen- 165

tence yi is a minimal edit of the first xi, the two 166

sentences exhibit a significant overlap of words. 167

Therefore, the two sentences xi and yi cannot be 168

treated as independent. 169

Before delving into measuring the bias of a 170

LM, it is crucial to evaluate a LM’s inclination 171

or preference towards specific sentences. The like- 172

lihood of a sentence (given a LM) is appropriate 173

for this purpose, as higher probability values in- 174

dicate that the LM favors the sentence given its 175

internal representation. For a sentence of M to- 176

kens, x = (x1, x2, . . . , xM ), autoregressive LMs 177

can evaluate the probability of the sentence as 178

P (x) =
∏

p(xm|x<m). To avoid numerical prob- 179

lems, logarithmic (log) probabilities are employed 180
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instead,181

logP (x) =

M∑
m=1

log p(xm|x<m). (1)182

For the i-th pair of sentences, the difference be-183

tween scores of xi and yi, signifies the bias of184

the LM. Specifically, the log-probability bias score185

(LPBS)(Kurita et al., 2019) can be expressed as186

Di = logP (xi)− logP (yi). (2)187

Besides log probability, normalized log probability188

and perplexity are also fundamental scores used to189

assess the preference of a language model towards190

a particular sentence. The benefit of using normal-191

ized log probabilities is to control the influence of192

sentence length on the log ratio, i.e.,193

Di =
logP (xi)

|xi|
− logP (yi)

|yi|
, (3)194

where |xi|, and |yi| represent the number of tokens195

in xi and yi, respectively.196

Perplexity (PPL) is the exponentiated negative
normalized log probability, i.e.,

PPL(xi) = exp
( logP (xi)

|xi|

)
.

The difference between perplexity scores of two197

sentences in a pair also evaluates the bias of LMs198

(Barikeri et al., 2021), i.e.,199

Di = PPL(xi)− PPL(yi). (4)200

A straightforward measure for biases of LMs is the201

mean difference over all sentence pairs using (2),202

(3), and (4). Due to the heterogeneity of paired203

sentences, it may be hard to tell whether the mean204

difference D̄ =
∑

Di/n is significantly away from205

zero. Thus, we propose to address this issue by206

resorting to statistical hypothesis tests.207

Suppose δ is the population mean of the score208

differences of paired sentences, i.e., δ is the expec-209

tation of Di. The null and alternative hypotheses210

are:211

H0 : δ = 0 ↔ H1 : δ ̸= 0. (5)212

The null hypothesis indicates that the LM has213

no preference between the stereotypical and anti-214

stereotypical sentences, i.e., the LM is not biased.215

In contrast, the alternative hypothesis indicates that216

the LM is biased in the context of the dataset of217

paired sentences.218

There are a few well-established methods to test 219

the hypothesis in (5), such as the parametric Stu- 220

dent’s t and the nonparametric Wilcoxon signed- 221

rank tests. These methods yield a p-value, which re- 222

flects the probability that the observed sample data 223

occurred by chance, given that H0 is true.Lastly, we 224

compare p-values with a preset significance level 225

(α, usually set to 0.05) to make decisions whether 226

to reject the null hypothesis H0. Specifically, if 227

the p-value falls below α, then the data exhibits 228

significant evidence to reject H0, thus the LM is 229

deemed to be biased. 230

3.2 Preference-based Scheme 231

The method in Section 3.1 requires the evaluation 232

of likelihood of LMs over each input text. How- 233

ever, many LLMs such as ChatGPT-3.5 and GPT-4 234

do not provide the likelihood of input texts. There- 235

fore, the likelihood-based method is subject to the 236

availability of likelihood of LLMs. To overcome 237

this constraint, we propose the preference-based 238

scheme. 239

The null hypothesis (H0) for this scheme is that 240

the LLM has no preference over either the stereo- 241

typical or anti-stereotypical statement. For the 242

dataset like CrowS-Pairs that have two sentences in 243

each pair, the null and alternative hypotheses are: 244

H0 : π = 0.5 ↔ H1 : π ̸= 0.5, (6) 245

where π represents the probability that the LM 246

prefers the stereotypical sentence over the anti- 247

stereotypical one in each pair of sentences, and 248

π = 0.5 means no preference over stereotypes, 249

e.g., no bias. 250

For n pairs of sentences, {(xi,yi)}ni=1, we ob-
tain the preferred ones via prompting (Radford
et al., 2019). For the i-th pair, we denote

Xi =

{
1, if stereotypical
0, anti-stereotypical

so the bias of a LM can be measured by how fre-
quently the model prefers the stereotypical sen-
tence in each pair over the anti-stereotypical sen-
tence. This is called Stereotype score, in Meade
et al. (2022), defined by

∑n
i=1Xi/n. For sim-

plicity, we assume each contrastive pair inde-
pendent and identically distribution with Xi ∼
Bernoulli(π). Therefore, the sum follows bi-
nomial distribution, i.e., Sn =

∑n
i=1Xi ∼

Binomial(n, π). We can evaluate the p-value of
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H0 of Eq. 6 with the exact binomial test, shown in
the following formula:

P-value = P (Sn ≤ LB) + P (Sn ≥ UB),

where LB = min{sobs, n − sobs} and LB =251

max{sobs, n−sobs} with the sum of observed sam-252

ple, sobs.253

Traditional hypothesis testing in the frequentist254

framework is based on p-values, and the conclusion255

is whether the evidence is strong enough to reject256

the null hypothesis. Alternatively, no conclusion257

can be made in terms of whether or to what extent258

the evidence favors the null hypothesis. Strictly259

speaking, we cannot accept the null hypothesis in260

the frequentist way of testing.261

3.3 The Bayes Factor262

The Bayes factor offers an advantage over p-values263

because it allows practitioners to quantify the evi-264

dence for and against two competing hypotheses.265

However, this is not possible using a p-value from a266

single frequentist hypothesis test. Bayes factors are267

interpreted as the ratio of the likelihoods of the ob-268

served data occurring under the alternative and null269

hypotheses, H1 and H0, respectively. Formally, the270

Bayes factor for observed data D = (D1, . . . , Dn)271

is denoted as:272

BF10 =
p(D|H1)

p(D|H0)
, (7)273

The higher the value of BF10, the more (Bayesian)274

evidence the data D gives in favor of H1 and275

against H0. More specifically, hypotheses H0 and276

H1 are set to be probability (parametric) distribu-277

tions estimated from data and marginalized and278

over prior distributions.279

After the evaluation of Bayes factor BF10, we280

draw decisions based on its value. One commonly281

used interpretation of BF10 is presented in Ta-282

ble 1, following (Andraszewicz et al., 2015). If283

BF10 > 10, then the data present strong evidence284

in favor of H1 (the LM is biased given D), while285

if BF10 < 1/10 the data yield strong evidence286

supporting H0 (the LM is fair given D). Table 1287

displays the specific interpretation to what extent288

the data supports H0 or H1.289

3.3.1 Likelihood-based Bayes Factors290

As the Student’s t test, we assume the score dif-291

ference between sentences in the i-th pair follow292

a normal distribution, i.e., Di ∼ N(δ, σ2) for293

Table 1: Evidence categories for the Bayes factor.

BF10 (Bayes Factor) Interpretation
> 100 Extreme evidence for H1

30 – 100 Very strong evidence for H1

10 – 30 Strong evidence for H1

3 – 10 Moderate evidence for H1

1 – 3 Anecdotal evidence for H1

1 No evidence
1/3 – 1 Anecdotal evidence for H0

1/3 – 1/10 Moderate evidence for H0

1/10 – 1/30 Strong evidence for H0

1/30 – 1/100 Very strong evidence for H0

< 1/100 Extreme evidence for H0

i = 1, 2, . . . , n. In Bayesian statistics, prior dis- 294

tributions are specified for the unknown parame- 295

ters. Because both the population mean (δ) and 296

population variance (σ2) are unknown, we spec- 297

ify prior distributions over these two parameters. 298

For the null hypothesis (H0), δ is fixed at 0. For 299

other parameters in H0 and H1, we choose the de- 300

fault objective prior distributions recommended in 301

Rouder et al. (2009); Morey and Rouder (2011); 302

Wetzels and Wagenmakers (2012). Specifically, 303

the variance σ2 under H0 takes the Jeffreys prior 304

p0(σ
2) = 1/σ2 (Jeffreys, 1961). The joint dis- 305

tribution of δ and σ2 utilizes the Jeffreys-Zeller- 306

Siow prior, i.e., a Cauchy prior on the mean (effect 307

size) and a Jeffreys prior on the variance, p1(δ, σ2). 308

Therefore, the Bayes factor in (7) under this speci- 309

fication is: 310

BF10 =

∫ ∫
p(D|δ, σ2)p1(δ, σ

2)dδdσ2∫
p(D|0, σ2)p0(σ2)dσ2

, (8) 311

which can be computed via asymptotic approxima- 312

tion or other numerical methods (Kass and Raftery, 313

1995; DiCiccio et al., 1997; Han and Carlin, 2001). 314

3.3.2 Preference-based Bayes Factors 315

To evaluate the Bayes factor (BF10) for the hypoth- 316

esis in Eq. 6, the prior distribution for π under H1, 317

p1(π), is required. Then we have 318

BF10 =

∫
p(X1, . . . , Xn|π)p1(π)dπ
p(X1, . . . , Xn|π = 0.5)

, (9) 319

where the p1(π) is set to be uniform on the interval 320

[0, 1] which is suggested by this paper (Geisser, 321

1984). 322

4 Experiments 323

We detect the biases of two GPT models, GPT-3 324

(text-davinci-003) and ChatGPT (GPT-3.5-Turbo), 325

to illustrate the application of our methods. Due 326
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to the relative higher expense, we did not obtain327

the results of GPT-4. However, we have verified328

that our preference-based method is applicable to329

GPT-4 in the same way as ChatGPT.330

4.1 Datasets331

Here we briefly introduce the datasets used in our332

experiments. The first dataset is the open-sourced333

CrowS-Pairs (Nangia et al., 2020), and the second334

one is the French version of CrowS-Pairs (Névéol335

et al., 2022).336

CrowS-Pairs Dataset: The CrowS-Pairs dataset337

is a collection of data that covers nine types of bi-338

ases: age, disability, gender, nationality, physical339

appearance, race color, religion, sexual orientation,340

and socioeconomic status. It was created through341

crowdsourcing, gathering viewpoints and impres-342

sions from a large number of Americans, in order343

to form general opinions or stereotypes about spe-344

cific demographic groups. The original dataset345

has 1,508 examples, each of which consists of a346

more stereotypical and a less stereotypical sentence347

(Nangia et al., 2020).348

The researchers of Névéol et al. (2022) translate,349

enrich and extend the original CrowS-pairs dataset350

with 1,677 additional contrastive pairs in French351

and 210 pairs in English. During the process of352

translation, the authors created a revised version353

of CrowS-pairs where cases of non minimal pairs,354

double switch and bias mismatch are replaced with355

variants of the original sentences that do not display356

the limitations. They adapted the crowdsourcing357

method described by Nangia et al. (2020) to collect358

210 sentence pairs expressing a stereotype relevant359

to the French socio-cultural environment, which360

are translated into English.361

4.2 Baselines and Metrics for Bias Detection362

Here we describe the baseline methods and metrics363

for bias detection, utilizing datasets of contrastive364

pairs. We classify methods into two categories:365

likelihood-based and preference-based.366

Likelihood-based methods: For models like367

GPT-3 that have accessible log-likelihood for in-368

put texts, we can use the likelihood-based scheme369

for bias detection. To assess the preference of a370

language model towards a particular sentence, we371

leverage two scores: normalized log probability372

(Norm. LogP) and perplexity. For the i-th sen-373

tence pair we compute the difference in scores be-374

tween the two sentences, Di. Based on the (log-375

)likelihood of input texts, bias detection methods376

are presented as follows. 377

• Average difference (AD) of scores between 378

the more stereotypical sentences and their less 379

stereotypical counterparts. If normalized log 380

probability is used as the score of sentences, 381

then this method is basically LPBS (Kurita 382

et al., 2019). If perplexity is employed, then 383

this method is perplexity-based bias (PPB) 384

(Barikeri et al., 2021). The equations are 385

shown as follows: 386

LPBS =
1

n

n∑
i=1

( logP (xi)

|xi|
− logP (yi)

|yi|

)
, 387

PPB =
1

n

n∑
i=1

(
PPL(xi)− PPL(yi)

)
. 388

• Student’s t test (TT): This test is a pop- 389

ular approach to check whether LPBS or 390

PPB is significantly non-zero, which assumes 391

the normality and independence of Di, for 392

i = 1, . . . , n. This test yields a p-value and a 393

smaller p-value indicates stronger evidence to 394

reject the null hypothesis(Czarnowska et al., 395

2021). 396

• Wilcoxon test (WT): To relax the normal- 397

ity assumption, the Wilcoxon signed-rank test 398

(Lam and Longnecker, 1983) is the nonpara- 399

metric alternative of Student’s t test. 400

• Bayes Factor (BF): As discussed in Section 401

3.3, frequentist methods like TT and WT can- 402

not accept the null hypothesis, but Bayes fac- 403

tors can quantify to what extent the evidence 404

supports both the null and alternative hypothe- 405

ses. If B10 > 1.0, then the data supports H1, 406

larger values meaning stronger evidence for 407

H1. Otherwise, smaller B10 < 1.0 means 408

stronger evidence for H0. 409

Preference-based methods: For models like 410

ChatGPT that we cannot access the evaluation 411

of log-likelihood for input texts, we leverage the 412

preference-based scheme for bias detection. Utiliz- 413

ing the preference of a LLM, X1, . . . , Xn, methods 414

are shown as follows: 415

• Stereotype score (SS): the percentage of
examples for which a model prefers the
stereotypical or anti-stereotypical association
(Meade et al., 2022). The score is defined by:

SS = max{
n∑

i=1

Xi/n, 1−
n∑

i=1

Xi/n}.
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If SS is equal to 0.5, it means that the model416

is perfectly fair, and larger value indicates417

stronger bias.418

• Exact binomial test (EBT): This method419

assumes that Xi, i = 1, . . . , n are indepen-420

dent and identically distributed, following421

Bernoulli distribution with parameter π. This422

test checks the null hypothesis π = 0.5, i.e.,423

no bias, yielding a p-value.424

• Bayes Factor (BF): This is the same as in the425

likelihood-based methods, but for preference426

data, X1, . . . , Xn.427

4.3 Implementation Details428

For convenience, we utilize the OpenAI module429

in Python to evaluate the log probability of an in-430

put sentence for GPT-3 (text-davinci-03) for the431

likelihood-based methods. To collect the prefer-432

ence of ChatGPT between each pair of sentences,433

we use zero-shot prompting to feed each pair to434

ChatGPT, and record the preferred sentence. The435

prompt template is: “Which sentence is more436

likely? Please return 0 for the first, return 1 for437

the second. Please just output 0 or 1 with nothing438

else. [First sentence]. [Second sentence].”439

It is also worth to note that ChatGPT may refuse440

to answer the query rarely. Fig. 1 displays the441

statistics of bias types that chatGPT refused to reply.442

Basically, 10 of 14 queries are on race, which is443

a sensitive issue, so ChatGPT avoids providing its444

preference. The other two types are religion and445

sexual orientation, which are also quite sensitive,446

so the model chooses to not answer.

Figure 1: Pie plot of bias types that ChatGPT failed to
provide answers for contrastive sentences in the English
CrowS-pairs.

447

For the likelihood-based methods, we employed 448

the Python module, PINGOUIN (Vallat, 2018), 449

to conduct paired t tests, Wilcoxon signed-rank 450

tests and to compute the Bayes factors. For the 451

preference-based methods, we utilized the SCIPY 452

(Virtanen et al., 2020) to conduct binomial test. For 453

both the English and French CrowS-Pairs datasets, 454

we split the whole dataset into nine parts, each of 455

which is only associated with one specific bias. 456

5 Results and Analysis 457

Leveraging the CrowS-Pairs datasets as testbeds, 458

we utilize various methods to detect biases of 459

GPT-3 (text-davinci-003) and ChatGPT (GPT-3.5- 460

Turbo). Here we present the results and analysis 461

from our experiments. 462

5.1 Bias Detection for GPT-3 with 463

Likelihood-based Methods 464

Table 2 shows the bias detection results of GPT- 465

3 using the English CrowS-Pairs dataset. In this 466

table, each column-name represents a category of 467

demographic bias, and each row presents the results 468

from a bias detection method. The abbreviations in 469

the table header, namely,“Nationa.”, “Phy. App.”, 470

“Sex. Ori.” and “Socioeco.” denote nationality, 471

physical appearance, sexual orientation and socioe- 472

conomic status, respectively. The body of Table 473

2 is divided into two parts by row according to 474

the bias detection methods: likelihood-based and 475

preference-based. 476

For the likelihood-based methods, the results 477

from LPBS and PPB show the average difference 478

in log-probability and perplexity scores between 479

contrastive sentences. The closer these values to 480

zero, less biased GPT-3 is on specific bias types. 481

For LPBS, GPT-3 achieves least bias on nationality 482

(8.16e-3) and sexual orientation (-8.34e-3), but ex- 483

hibits largest bias on physical appearance (6.35e-2). 484

The results from PPB is mostly consistent to LPBS, 485

with largest magnitude on physical appearance (- 486

1.83e-1) and smallest on nationality (-1.54e-2). 487

Although values of LPBS and PPB show the 488

fairness of GPT-3 over nine bias types, these dif- 489

ferences might be caused by random noise. There- 490

fore, statistical significance tests are necessary. For 491

each p-value from the t or Wilcoxon signed-rank 492

test in rows that start with “TT” and “WT”, sin- 493

gle star (*) and double stars (**) indicate that it is 494

significant under significance level 0.05 and 0.01, 495

respectively. From the marked stars, the statistical 496
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Table 2: Results of various likelihood-based bias detection methods for nine biase types in the GPT-3 (text-davinci-
003) model on the English CrowS-Pairs data. In the table header, abbreviations “Nationa.”, “Phy. App.”, “Sex. Ori.”
and “Socioeco.” denote nationality, physical appearance, sexual orientation and socioeconomic status, respectively.
For the p-values from the t (TT), Wilcoxon (WT) and exact binomial tests (EBT), single star (*) and double stars
(**) indicate it is significant at the 0.05 and 0.01 level, respectively. For Bayes factors (BF), underlined values show
moderate evidence for one of the two hypotheses (1/10 < BF10 < 1/3 or 3 < BF10 < 10), while bold values
present strong evidence for one of the two hypotheses (BF10 > 10 or BF10 < 1/10).

PPPPPPPPPMethod
Bias

Age Disability Gender Nationa. Phy. App. Race Religion Sex. Ori. Socioeco.

Likelihood-based Methods
LPBS 3.03e-2 5.63e-2 2.83e-2 8.16e-3 6.35e-2 1.25e-2 1.79e-2 -8.34e-3 5.49e-2
PPB -7.08e-2 -1.78e-1 -9.20e-2 -1.54e-2 -1.83e-1 -4.20e-2 -6.35e-2 4.29e-2 -1.66e-1
TT (LPBS) 8.31e-3** 1.20e-3** 2.08e-4** 2.53e-1 5.89e-5** 6.49e-3** 1.21e-1 5.21e-1 3.47e-10**
TT (PPB) 4.65e-2* 2.66e-3** 3.85e-3** 5.06e-1 3.30e-4** 8.03e-3** 1.45e-1 3.41e-1 1.04e-9**
WT (LPBS) 5.75e-4** 1.31e-4** 3.80e-7** 2.01e-1 1.79e-4** 1.64e-3** 4.76e-1 4.82e-1 4.36e-10**
WT (PPB) 8.72e-4** 1.71e-4** 7.09e-7** 2.49e-1 2.75e-4** 2.23e-3** 5.82e-1 3.69e-1 4.58e-10**
BF (LPBS) (Ours) 3.55e+0 2.28e+1 6.34e+1 1.74e-1 3.69e+2 2.06e+0 3.32e-1 1.47e-1 2.41e+7
BF (PPB) (Ours) 8.19e-1 1.12e+1 4.34e+0 1.14e-1 7.64e+1 1.70e+0 3.06e-1 1.87e-1 8.39e+6

Table 3: Results of preference-based bias detection methods for nine biase types in ChatGPT on both the English
and French version of CrowS-Pairs. The abbreviations and notations are set in the same manner as Table 2.

PPPPPPPPPMethod
Bias

Age Disability Gender Nationa. Phy. App. Race Religion Sex. Ori. Socioeco.

English CrowS-pairs
SS 59.34% 58.46% 52.50% 60.65% 61.11% 57.83% 71.56% 56.04% 58.42%
EBT 9.29e-2 2.15e-1 4.02e-1 2.13e-3** 7.64e-2 5.47e-4** 7.73e-6** 2.94e-1 2.43e-2*
BF (Ours) 6.32e-1 2.67e-19 1.04e-1 1.16e+1 8.56e-1 2.55e+2 3.80e+3 2.52e-1 1.34e+0

French CrowS-pairs
SS 68.89% 56.06% 54.52% 57.71% 55.56% 61.74% 66.09% 51.65% 56.41%
EBT 4.38e-4** 3.89e-1 1.18e-1 1.67e-2* 4.10e-1 5.42e-7** 7.17e-4** 8.34e-1 8.54e-2
BF (Ours) 8.78e+1 2.46e-1 2.58e-1 1.59e+0 2.27e-1 2.04e+4 4.71e+1 1.37e-1 4.42e-1

significance results from t and Wilcoxon tests are497

consistent with respect to both normalized log prob-498

ability score (LPBS) and perplexity score (PPB).499

They convey the same message that GPT-3 is sig-500

nificantly biased on age, disability, gender, phys-501

ical appearance, race, and socioeconomic status.502

Strictly speaking, however, we cannot claim that503

GPT-3 shows no bias on other categories like na-504

tionality, religion and sexual orientation. This is505

because we cannot accept the null hypothesis in506

the frequentist framework. Bayes factor can ad-507

dress this challenge, complementing frequentist508

hypothesis testing methods.509

For BF on LPBS and PPB in the bottom two510

rows of Table 2, underlined values show moder-511

ate evidence in favor of either the null or alter-512

native hypothesis (with 1/10 < BF10 < 1/3 or513

3 < BF10 < 10), while bold values present strong514

evidence in favor of one of the two competing515

hypothesis (with BF10 > 10 or BF10 < 1/10).516

From the BF of this table, the result on LPBS is517

mostly consistent to that on PPB, except the slight518

differences on age and gender, which requires fur-519

ther investigation of the distribution of perplexity 520

bias of each sentence pair. The inconsistency be- 521

tween these two sets of Bayes factors is out of the 522

scope of this paper. From the BF values, the data 523

present extremely strong evidence for H1, i.e.,GPT- 524

3 (text-davinci-003) has bias on socioeconomic 525

status (2.41e+7 for LPBS). We also have strong 526

evidence with BF10 > 10 that GPT-3 has bias on 527

disability and physical appearance. For national- 528

ity, religion and sexual orientation, the frequentist 529

methods like TT and WT fail to reject the null 530

hypothesis, while BF presents moderately strong 531

evidence for H0, i.e., no bias on these three types. 532

5.2 Bias Detection for ChatGPT with 533

Preference-based Methods 534

Table 3 illustrates the bias detection results for 535

ChatGPT on both the English and French CrowS- 536

pairs datasets using preference-based methods. 537

Stereotype score (SS) measures the extent to which 538

the model prefers the stereotypical sentences, vary- 539

ing over nine bias types across two languages. With 540

the English CrowS-pairs, ChatGPT exhibits the 541

7



Figure 2: The visualization of preference-based Bayes factors of ChatGPT on both the English and French CrowS-
pairs datasets. The dotted dashed horizontal line is at 1, with dotted horizontal lines above and below are at 10 and
0.1, respectively.

largest bias on religion (71.56%) and smallest on542

gender (52.5%). However, with the French ver-543

sion, it shows the largest bias on age (68.89%) and544

smallest on sexual orientation (51.65%).545

Despite the SS varies significantly across two546

languages, the p-values from exact binomial test547

(EBT) display similar patterns in both the English548

and French, except age and socioeconomic status.549

For both languages, the Bayes factors (BF) with at550

least strong evidence (BF10 > 10) are consistent to551

EBT under the significance level 0.01. For the bias552

type disability, the p-values from EBT, 2.15e-1 for553

English and 3.89e-1 for French, are not significant,554

so we cannot reject the null hypothesis. However,555

frequentist methods like EBT fail to quantify the556

degree to which the data supports the null hypothe-557

sis. BF provides the remedy, displaying extremely558

strong support for H0 with 2.67e-19 in English559

dataset and moderately strong support for H0 with560

2.46e-1 in French dataset.561

Comparative Bias Detection for ChatGPT in562

English and French: The visualization of BF563

over nine bias types using both the English and564

French CrowS-pairs datasets is shown in Fig. 2.565

In this figure, the dotted dash horizontal line is566

fixed at 1, with BF values above and below this line567

supporting H1 (model is biased) and H0 (model568

is fair), respectively. The two dotted horizontal569

lines above and below y = 1 are fixed at 10 and570

1/10, respectively, which indicate strong support571

for the two competing hypotheses. From Fig. 2,572

the Bayes factors of ChatGPT on both the English 573

(red line) and French (blue line) show similar pat- 574

terns: (1.) the values lying between the two dotted 575

lines (1/10 < BF10 < 10) for five bias types 576

(gender, nationality, appearance, sexual orientation 577

and socioeconomic status); (2.) the values greater 578

than 10 for race and religion, i.e., strong support 579

for ChatGPT being biased. This can be explained 580

by the fact that the French version of CrowS-pairs 581

is translated from the original English dataset, so 582

they have a large amount of overlapping. ChatGPT 583

also present some significant variations in BF on 584

these two datasets, which is due to the differences 585

between American and French social norms. 586

6 Conclusion 587

In this paper, we formulate the bias detection of 588

LMs as a hypothesis testing problem, and propose 589

to utilize a Bayesian testing to quantify relative ev- 590

idence for both competing hypotheses. Bayesian 591

testing has benefits over classical tests when the p- 592

value greater than the predefined significance level, 593

but it is rarely found in the natural language pro- 594

cessing literature. Therefore, our work promotes 595

the application of Bayesian testing. We demon- 596

strate the application of our framework to popular 597

GPT models by leveraging both the English and 598

French CrowS-Pairs as testbeds. We believe our 599

framework holds promising potential for bias de- 600

tection across a diverse range of LLMs. 601
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7 Limitations602

Despite the valuable insights gained from this study,603

it is important to acknowledge several limitations604

that may influence the interpretation and generaliz-605

ability of the results. Firstly, due to the nature of the606

experimental design, we lacked ground-truth for607

our experiments. This means that we were unable608

to compare our findings with an objective standard609

to validate the accuracy of the results.610

Furthermore, it is important to recognize that the611

datasets (both the English and French CrowS-Pairs)612

used in this study were relatively small and may613

not be fully representative of the wider population614

(Blodgett et al., 2021). Expanding the dataset size615

could potentially yield distinct findings, but it also616

requires significant amount of financial investment.617

Additionally, while we utilized Bayes factor pri-618

ors in our analysis, it is important to note that619

different researchers or practitioners may have al-620

ternative preferences for prior specification (An-621

draszewicz et al., 2015). This subjectivity can in-622

troduce variability in the results and their interpre-623

tation. It is crucial for future studies to explore624

alternative priors to assess the robustness and con-625

sistency of the findings.626

Lastly, in situations where different statistical627

tests yield conflicting or inconsistent answers, it628

becomes challenging to derive straightforward con-629

clusions. This ambiguity highlights the need for630

further exploration and replication to better under-631

stand the factors contributing to these discrepan-632

cies.633

Considering these limitations, our findings634

should be interpreted with caution. Future studies635

should aim to address these limitations and further636

validate and extend our conclusions.637
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