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Abstract

Though large language models (LLMs) like
generative pre-trained Transformers (GPTs)
have achieved superior performance over many
tasks, they capture and propagate social biases
and stereotypes that are present in the train-
ing data. In this paper, we propose a frame-
work that reformulates the bias detection of
LLMs as a hypothesis testing problem with the
null Hy denoting no bias. Our framework is
designed for contrastive text pairs, and it has
two schemes: one is based on (log-)likelihood
and another is based on preference. To this
end, two public dataset CrowS-Pairs and its
French version are utilized, both including nine
categories of bias. Although frequentist meth-
ods such as Student’s ¢ and Wilcoxon test can
be employed in our framework, Bayesian test
(Bayes factors) is preferred for bias detection
as it allows practitioners to quantify the evi-
dence for both two competing hypotheses. Our
framework is suitable for a wide range of large
language models, and we demonstrate its appli-
cation to the popular GPT-3 (text-davinci-003)
and ChatGPT (GPT-3.5-Turbo) in the experi-
ments. From our experiments, the bias behavior
of ChatGPT is mostly consistent on both the
English and French CrowS-pairs datasets, but
still exhibits some differences due to different
social norms.

1 Introduction

The power of the large language models (LLMs)
greatly benefits from the increasing quantity and
quality of real corpora (Gu et al., 2022; Zhang et al.,
2020; Radford et al., 2018; Bao et al., 2020). How-
ever, deep neural models can inadvertently acquire
undesirable knowledge from the corpora, such as
social biases and stereotypes (Nangia et al., 2020;
Bolukbasi et al., 2016; Caliskan et al., 2017). For
instance, Hutson (2021) shows that GPT-3 (Brown
et al., 2020) can generate biased answers, when
presented with sensitive prompts related to some

demographic groups, such as “old people” or “fe-
male”. These biases and stereotypes can pose sig-
nificant challenges in downstream applications and
may cause a great deal of harm (Davidson et al.,
2019; Kurita et al., 2019). Many researchers have
proposed methods to measure the bias and fairness
of language models (LMs), and comprehensive re-
views can be found in Delobelle et al. (2022) and
Gallegos et al. (2023).

To assess the bias of LMs, several datasets that
consist of contrastive pairs have been constructed
with emphases on different types of biases. For
instances, Nadeem et al. (2021) introduces Stereo-
typeSet, a large-scale natural language dataset de-
signed to measure stereotypical biases in four di-
mensions: gender, profession, race, and religion.
(Nangia et al., 2020) introduces crowdsourced
Stereotype Pairs benchmark (CrowS-Pairs), which
utilizes crowdsourced generated stereotype pairs
to evaluate the bias of models in nine categories.
Although the existence of bias can be easily seen
from the discrepancy of LM scores on different
stereotype groups, the significance of such differ-
ence is also important (Kiritchenko and Moham-
mad, 2018). Without specifically measuring the
significance of bias, the observed discrepancy may
be simply attributed to randomness in data selec-
tion (Dror et al., 2018), making the conclusions
unreliable. Some researchers have applied statis-
tical tests to detect biases in supervised machine
learning systems (Zhiltsova et al., 2019). However,
there still lacks a principled framework to detect
biases of LLMs via hypothesis testing.

In this paper, we propose a framework that re-
formulates the bias detection of LLMs as a prin-
cipled statistical significance testing. Our frame-
work utilizes pairs of contrastive sentences that
comprise a more stereotypical sentence and an anti-
stereotypical one. Our framework is able to detect
bias for a wide range of LMs and bias types. Our
contributions are summarized as follows:



* We propose a principled framework which
formally reformulates bias detection of LLMs
as a hypothesis testing problem. Depending
on the availability of the LLM’s likelihood for
an input text, our framework has two schemes:
likelihood-based and preference-based.

* Our framework is compatible with both the
frequentist and Bayesian hypothesis testing
methods. However, we argue that Bayesian
method is preferred because it shows to what
degree the data supports both the null and al-
ternative hypotheses. To the best of our knowl-
edge, Bayesian testing is rarely used in the
NLP community, thus this work can promote
this technique as a viable option.

* We illustrate the application of our framework
to two popular GPT models: GPT-3 (text-
davinci-003) and ChatGPT (GPT-3.5-Turbo)
on both the English and French CrowS-Pairs
datasets.

2 Related Works

An increasing amount of research (Qian et al.,
2019; Yeo and Chen, 2020; Liu et al., 2022) has
studied bias detection for LLMs. Broadly, these
methods can be grouped into two categories: in-
trinsic metrics, which includes the contextual-
ized embedding association test (CEAT) (Guo and
Caliskan, 2021), discovery of correlation (Webster
et al., 2020), log probability bias score (LPBS) (Ku-
rita et al., 2019); and the extrinsic metrics, which
is based on downstream tasks such as question an-
swering (Meade et al., 2022; Parrish et al., 2022),
co-reference resolution (Rudinger et al., 2018) and
semantic similarity (Dev et al., 2020). These bias
metrics are usually ad-hoc and depend on differ-
ent factors such as the specific model, task, and
dataset, efc. In this paper, we propose a principled
framework that reformulates bias detection as a
hypothesis testing problem and our framework is
compatible with many existing methods. Also our
framework is able to detect biases for a wide range
of LMs.

Most research on evaluating and mitigating bi-
ases has concentrated on English (Dinan et al.,
2020; Liu et al., 2020; Barikeri et al., 2021; Cheng
et al., 2021), while multilingual models and non-
English languages have received comparatively lit-
tle attention. Recently the NLP community is in-
creasingly aware of the bias and fairness in lan-

guages beyond English. Névéol et al. (2022) builds
on the CrowS-Pairs dataset to create a French ver-
sion. In this paper, we use both the English and
French version datasets to illustrate the application
of our framework to popular GPT models.

3 Bias Detection via Hypothesis Testing

In the literature of bias detection, several datasets
consisting of contrastive sentence pairs, such as
CrowS-Pairs (Nangia et al., 2020) and its French
version (Névéol et al., 2022) have been con-
structed. CrowS-Pairs consists of many sentence
pairs, where the first sentence is stereotypical about
a demographic group and the second sentence is a
minimal edit describing a contrasting group. For
this kind of datasets, the LM bias can be reflected
by the extent to which a LM prefers stereotypical
over anti-stereotypical sentences. In principle, a
fair LM should exert no (significant) preference to
either option. In this paper, we seek to determine
whether a significant preference over one group
exists via statistical significance tests.

Our framework has two schemes, depending on
the availability of the (log-) likelihood of input text.
The first scheme is based on the evaluation of LLM
likelihood of contrastive sentences, whereas the
second is based on the preference of LLMs over
contrastive sentences.

3.1 Likelihood-based Scheme

Suppose there exist m pairs of sentences,
{(xi,y:)}",, concerning a specific social bias,
e.g., gender, race, efc. In such a dataset, each pair
is comprised of a stereotypical sentence x; and a
minimally modified sentence y; with contrasting
anti-stereotypical words. Because the second sen-
tence y; is a minimal edit of the first x;, the two
sentences exhibit a significant overlap of words.
Therefore, the two sentences x; and y; cannot be
treated as independent.

Before delving into measuring the bias of a
LM, it is crucial to evaluate a LM’s inclination
or preference towards specific sentences. The like-
lihood of a sentence (given a LM) is appropriate
for this purpose, as higher probability values in-
dicate that the LM favors the sentence given its
internal representation. For a sentence of M to-
kens, x = (1, x2,...,x)), autoregressive LMs
can evaluate the probability of the sentence as
P(x) = [[ p(#m|z<m). To avoid numerical prob-
lems, logarithmic (log) probabilities are employed



instead,

M
log P(x) = Z log p(Tm|T<m)- (1

m=1

For the i-th pair of sentences, the difference be-
tween scores of x; and y;, signifies the bias of
the LM. Specifically, the log-probability bias score
(LPBS)(Kurita et al., 2019) can be expressed as

D; = log P(x;) — log P(y;). ()

Besides log probability, normalized log probability
and perplexity are also fundamental scores used to
assess the preference of a language model towards
a particular sentence. The benefit of using normal-
ized log probabilities is to control the influence of
sentence length on the log ratio, i.e.,

o logP(x) logP(y)
Tk i)

; 3

where |x;|, and |y;| represent the number of tokens
in x; and y;, respectively.

Perplexity (PPL) is the exponentiated negative
normalized log probability, i.e.,

log Plx))

PPL(x;) = exp ( ]

The difference between perplexity scores of two
sentences in a pair also evaluates the bias of LMs
(Barikeri et al., 2021), i.e.,

D; = PPL(x;) — PPL(y;). “4)

A straightforward measure for biases of LMs is the
mean difference over all sentence pairs using (2),
(3), and (4). Due to the heterogeneity of paired
sentences, it may be hard to tell whether the mean
difference D = Y D;/n is significantly away from
zero. Thus, we propose to address this issue by
resorting to statistical hypothesis tests.

Suppose 4 is the population mean of the score
differences of paired sentences, i.e., J is the expec-
tation of D;. The null and alternative hypotheses
are:

Ho:(S:OHHl:(S?éO. ®))

The null hypothesis indicates that the LM has
no preference between the stereotypical and anti-
stereotypical sentences, i.e., the LM is not biased.
In contrast, the alternative hypothesis indicates that
the LM is biased in the context of the dataset of
paired sentences.

There are a few well-established methods to test
the hypothesis in (5), such as the parametric Stu-
dent’s ¢ and the nonparametric Wilcoxon signed-
rank tests. These methods yield a p-value, which re-
flects the probability that the observed sample data
occurred by chance, given that Hy is true.Lastly, we
compare p-values with a preset significance level
(v, usually set to 0.05) to make decisions whether
to reject the null hypothesis Hy. Specifically, if
the p-value falls below «, then the data exhibits
significant evidence to reject Hy, thus the LM is
deemed to be biased.

3.2 Preference-based Scheme

The method in Section 3.1 requires the evaluation
of likelihood of LMs over each input text. How-
ever, many LLMs such as ChatGPT-3.5 and GPT-4
do not provide the likelihood of input texts. There-
fore, the likelihood-based method is subject to the
availability of likelihood of LL.Ms. To overcome
this constraint, we propose the preference-based
scheme.

The null hypothesis (Hy) for this scheme is that
the LLLM has no preference over either the stereo-
typical or anti-stereotypical statement. For the
dataset like CrowS-Pairs that have two sentences in
each pair, the null and alternative hypotheses are:

Hy: m=0.5 < Hy: w+# 0.5, (6)

where 7 represents the probability that the LM
prefers the stereotypical sentence over the anti-
stereotypical one in each pair of sentences, and
7 = 0.5 means no preference over stereotypes,
e.g., no bias.

For n pairs of sentences, {(x;,y;)}I",, we ob-
tain the preferred ones via prompting (Radford
et al., 2019). For the ¢-th pair, we denote

1
-
0,

so the bias of a LM can be measured by how fre-
quently the model prefers the stereotypical sen-
tence in each pair over the anti-stereotypical sen-
tence. This is called Stereotype score, in Meade
et al. (2022), defined by > . | X;/n. For sim-
plicity, we assume each contrastive pair inde-
pendent and identically distribution with X; ~
Bernoulli(m). Therefore, the sum follows bi-
nomial distribution, ie., S, = >, X; ~
Binomial(n, ). We can evaluate the p-value of

if stereotypical

anti-stereotypical



Hy of Eq. 6 with the exact binomial test, shown in
the following formula:

P-value = P(S, < LB) + P(S, > UB),

where LB = min{sgs,n — Sops} and LB =
max{Sops, N — Sobs } With the sum of observed sam-
ple, sops-

Traditional hypothesis testing in the frequentist
framework is based on p-values, and the conclusion
is whether the evidence is strong enough to reject
the null hypothesis. Alternatively, no conclusion
can be made in terms of whether or to what extent
the evidence favors the null hypothesis. Strictly
speaking, we cannot accept the null hypothesis in
the frequentist way of testing.

3.3 The Bayes Factor

The Bayes factor offers an advantage over p-values
because it allows practitioners to quantify the evi-
dence for and against two competing hypotheses.
However, this is not possible using a p-value from a
single frequentist hypothesis test. Bayes factors are
interpreted as the ratio of the likelihoods of the ob-
served data occurring under the alternative and null
hypotheses, H, and Hy, respectively. Formally, the

Bayes factor for observed data D = (D, ..., Dy,)
is denoted as:
p(D|H))
BF1g = ==, )
p(D|Ho)

The higher the value of B Fjg, the more (Bayesian)
evidence the data D gives in favor of H; and
against Hy. More specifically, hypotheses Hg and
H; are set to be probability (parametric) distribu-
tions estimated from data and marginalized and
over prior distributions.

After the evaluation of Bayes factor BFg, we
draw decisions based on its value. One commonly
used interpretation of BFjg is presented in Ta-
ble 1, following (Andraszewicz et al., 2015). If
BFig > 10, then the data present strong evidence
in favor of H; (the LM is biased given D), while
if BFyp < 1/10 the data yield strong evidence
supporting Hy (the LM is fair given D). Table 1
displays the specific interpretation to what extent
the data supports Hy or H;.

3.3.1 Likelihood-based Bayes Factors

As the Student’s t test, we assume the score dif-
ference between sentences in the ¢-th pair follow
a normal distribution, i.e., D; ~ N(d,0?) for

Table 1: Evidence categories for the Bayes factor.

BFio (Bayes Factor) Interpretation

> 100 Extreme evidence for H;
30-100 Very strong evidence for H,
10-30 Strong evidence for H;
3-10 Moderate evidence for H;
1-3 Anecdotal evidence for H;

1 No evidence

1/3-1 Anecdotal evidence for Ho
1/3-1/10 Moderate evidence for Hy
1/10 - 1/30 Strong evidence for Hg
1/30 — 1/100 Very strong evidence for Hy
< 1/100 Extreme evidence for Hy
1 = 1,2,...,n. In Bayesian statistics, prior dis-

tributions are specified for the unknown parame-
ters. Because both the population mean (§) and
population variance (0%) are unknown, we spec-
ify prior distributions over these two parameters.
For the null hypothesis (Hy), ¢ is fixed at 0. For
other parameters in Hy and H, we choose the de-
fault objective prior distributions recommended in
Rouder et al. (2009); Morey and Rouder (2011);
Wetzels and Wagenmakers (2012). Specifically,
the variance o under H takes the Jeffreys prior
po(c?) = 1/0? (Jeffreys, 1961). The joint dis-
tribution of § and o utilizes the Jeffreys-Zeller-
Siow prior, i.e., a Cauchy prior on the mean (effect
size) and a Jeffreys prior on the variance, p1 (6, 02).
Therefore, the Bayes factor in (7) under this speci-
fication is:

[ | p(DI8,02)p1(8,0?)dddo?
BFyy = 7
[ p(DI0,0%)po(c?)do?
which can be computed via asymptotic approxima-

tion or other numerical methods (Kass and Raftery,
1995; DiCiccio et al., 1997; Han and Carlin, 2001).

(®)

3.3.2 Preference-based Bayes Factors

To evaluate the Bayes factor (B F}g) for the hypoth-
esis in Eq. 6, the prior distribution for 7 under Hi,
p1(m), is required. Then we have

fp(Xla <o ,Xn|7T)p1(7T)d7T
p(X1,..., Xp|lmr=05)

where the p (7) is set to be uniform on the interval
[0, 1] which is suggested by this paper (Geisser,
1984).

BF)y = 9

4 Experiments

We detect the biases of two GPT models, GPT-3
(text-davinci-003) and ChatGPT (GPT-3.5-Turbo),
to illustrate the application of our methods. Due



to the relative higher expense, we did not obtain
the results of GPT-4. However, we have verified
that our preference-based method is applicable to
GPT-4 in the same way as ChatGPT.

4.1 Datasets

Here we briefly introduce the datasets used in our
experiments. The first dataset is the open-sourced
CrowS-Pairs (Nangia et al., 2020), and the second
one is the French version of CrowS-Pairs (Névéol
et al., 2022).

CrowS-Pairs Dataset: The CrowS-Pairs dataset
is a collection of data that covers nine types of bi-
ases: age, disability, gender, nationality, physical
appearance, race color, religion, sexual orientation,
and socioeconomic status. It was created through
crowdsourcing, gathering viewpoints and impres-
sions from a large number of Americans, in order
to form general opinions or stereotypes about spe-
cific demographic groups. The original dataset
has 1,508 examples, each of which consists of a
more stereotypical and a less stereotypical sentence
(Nangia et al., 2020).

The researchers of Névéol et al. (2022) translate,
enrich and extend the original CrowS-pairs dataset
with 1,677 additional contrastive pairs in French
and 210 pairs in English. During the process of
translation, the authors created a revised version
of CrowS-pairs where cases of non minimal pairs,
double switch and bias mismatch are replaced with
variants of the original sentences that do not display
the limitations. They adapted the crowdsourcing
method described by Nangia et al. (2020) to collect
210 sentence pairs expressing a stereotype relevant
to the French socio-cultural environment, which
are translated into English.

4.2 Baselines and Metrics for Bias Detection

Here we describe the baseline methods and metrics
for bias detection, utilizing datasets of contrastive
pairs. We classify methods into two categories:
likelihood-based and preference-based.
Likelihood-based methods: For models like
GPT-3 that have accessible log-likelihood for in-
put texts, we can use the likelihood-based scheme
for bias detection. To assess the preference of a
language model towards a particular sentence, we
leverage two scores: normalized log probability
(Norm. LogP) and perplexity. For the ¢-th sen-
tence pair we compute the difference in scores be-
tween the two sentences, ID;. Based on the (log-
)likelihood of input texts, bias detection methods

are presented as follows.

* Average difference (AD) of scores between
the more stereotypical sentences and their less
stereotypical counterparts. If normalized log
probability is used as the score of sentences,
then this method is basically LPBS (Kurita
et al., 2019). If perplexity is employed, then
this method is perplexity-based bias (PPB)
(Barikeri et al., 2021). The equations are
shown as follows:

1~ /log P(x;)  log P(y;)
LPBS = — - :
n ; ( x| |yl )

PPB — izn: (PPL(xi) - PPL(yi)>.
=1

* Student’s ¢ test (TT): This test is a pop-
ular approach to check whether LPBS or
PPB is significantly non-zero, which assumes
the normality and independence of D;, for
1 =1,...,n. This test yields a p-value and a
smaller p-value indicates stronger evidence to
reject the null hypothesis(Czarnowska et al.,
2021).

e Wilcoxon test (WT): To relax the normal-
ity assumption, the Wilcoxon signed-rank test
(Lam and Longnecker, 1983) is the nonpara-
metric alternative of Student’s ¢ test.

* Bayes Factor (BF): As discussed in Section
3.3, frequentist methods like TT and WT can-
not accept the null hypothesis, but Bayes fac-
tors can quantify to what extent the evidence
supports both the null and alternative hypothe-
ses. If Byg > 1.0, then the data supports H,
larger values meaning stronger evidence for
H,. Otherwise, smaller B;g < 1.0 means
stronger evidence for Hy.

Preference-based methods: For models like
ChatGPT that we cannot access the evaluation
of log-likelihood for input texts, we leverage the
preference-based scheme for bias detection. Utiliz-
ing the preference of a LLM, X7, ..., X,,, methods
are shown as follows:

* Stereotype score (SS): the percentage of
examples for which a model prefers the
stereotypical or anti-stereotypical association
(Meade et al., 2022). The score is defined by:

n n
SS =max{)_ Xi/n, 1-> X;/n}.
=1 =1



If SS is equal to 0.5, it means that the model
is perfectly fair, and larger value indicates
stronger bias.

¢ Exact binomial test (EBT): This method
assumes that X;,7 = 1,...,n are indepen-
dent and identically distributed, following
Bernoulli distribution with parameter 7. This
test checks the null hypothesis 7 = 0.5, i.e.,
no bias, yielding a p-value.

¢ Bayes Factor (BF): This is the same as in the
likelihood-based methods, but for preference
data, Xq,...,X,.

4.3 Implementation Details

For convenience, we utilize the OpenAl module
in Python to evaluate the log probability of an in-
put sentence for GPT-3 (text-davinci-03) for the
likelihood-based methods. To collect the prefer-
ence of ChatGPT between each pair of sentences,
we use zero-shot prompting to feed each pair to
ChatGPT, and record the preferred sentence. The
prompt template is: “Which sentence is more
likely? Please return O for the first, return 1 for
the second. Please just output O or 1 with nothing
else. [First sentence]. [Second sentence].”

It is also worth to note that ChatGPT may refuse
to answer the query rarely. Fig. 1 displays the
statistics of bias types that chatGPT refused to reply.
Basically, 10 of 14 queries are on race, which is
a sensitive issue, so ChatGPT avoids providing its
preference. The other two types are religion and
sexual orientation, which are also quite sensitive,
so the model chooses to not answer.

B Race
B Religion
B Sex. Orien.

Figure 1: Pie plot of bias types that ChatGPT failed to
provide answers for contrastive sentences in the English
CrowS-pairs.

For the likelihood-based methods, we employed
the Python module, PINGOUIN (Vallat, 2018),
to conduct paired ¢ tests, Wilcoxon signed-rank
tests and to compute the Bayes factors. For the
preference-based methods, we utilized the SCIPY
(Virtanen et al., 2020) to conduct binomial test. For
both the English and French CrowS-Pairs datasets,
we split the whole dataset into nine parts, each of
which is only associated with one specific bias.

5 Results and Analysis

Leveraging the CrowS-Pairs datasets as testbeds,
we utilize various methods to detect biases of
GPT-3 (text-davinci-003) and ChatGPT (GPT-3.5-
Turbo). Here we present the results and analysis
from our experiments.

5.1 Bias Detection for GPT-3 with
Likelihood-based Methods

Table 2 shows the bias detection results of GPT-
3 using the English CrowS-Pairs dataset. In this
table, each column-name represents a category of
demographic bias, and each row presents the results
from a bias detection method. The abbreviations in
the table header, namely, Nationa.”, “Phy. App.”,
“Sex. Ori.” and “Socioeco.” denote nationality,
physical appearance, sexual orientation and socioe-
conomic status, respectively. The body of Table
2 is divided into two parts by row according to
the bias detection methods: likelihood-based and
preference-based.

For the likelihood-based methods, the results
from LPBS and PPB show the average difference
in log-probability and perplexity scores between
contrastive sentences. The closer these values to
zero, less biased GPT-3 is on specific bias types.
For LPBS, GPT-3 achieves least bias on nationality
(8.16e-3) and sexual orientation (-8.34e-3), but ex-
hibits largest bias on physical appearance (6.35¢e-2).
The results from PPB is mostly consistent to LPBS,
with largest magnitude on physical appearance (-
1.83e-1) and smallest on nationality (-1.54e-2).

Although values of LPBS and PPB show the
fairness of GPT-3 over nine bias types, these dif-
ferences might be caused by random noise. There-
fore, statistical significance tests are necessary. For
each p-value from the ¢ or Wilcoxon signed-rank
test in rows that start with “TT” and “WT”, sin-
gle star (*) and double stars (**) indicate that it is
significant under significance level 0.05 and 0.01,
respectively. From the marked stars, the statistical



Table 2: Results of various likelihood-based bias detection methods for nine biase types in the GPT-3 (text-davinci-
003) model on the English CrowS-Pairs data. In the table header, abbreviations “Nationa.”, “Phy. App.”, “Sex. Ori.”
and “Socioeco.” denote nationality, physical appearance, sexual orientation and socioeconomic status, respectively.
For the p-values from the ¢ (TT), Wilcoxon (WT) and exact binomial tests (EBT), single star (*) and double stars
(**) indicate it is significant at the 0.05 and 0.01 level, respectively. For Bayes factors (BF), underlined values show
moderate evidence for one of the two hypotheses (1/10 < BFyy < 1/3 or 3 < BFjy < 10), while bold values

present strong evidence for one of the two hypotheses (BFyy > 10 or BFyo < 1/10).

Method Bias Age Disability  Gender Nationa. Phy. App. Race Religion Sex. Ori. Socioeco.
Likelihood-based Methods

LPBS 3.03e-2 5.63e-2 2.83e-2 8.16e-3  6.35e-2 1.25e-2 1.79¢-2  -8.34e-3  5.49¢-2
PPB -7.08e-2  -1.78e-1 -9.20e-2  -1.54e-2 -1.83e-1 -4.20e-2  -6.35e-2 4.29%-2  -1.66e-1
TT (LPBS) 8.31e-3** 1.20e-3** 2.08e-4** 253e-1 5.89e-5%* 6.49e-3*%* 12le-1 5.2le-1  3.47e-10%**
TT (PPB) 4.65e-2*  2.66e-3** 3.85e-3** 5.06e-1  3.30e-4** 8.03e-3** 1.45e-1 3.4le-1 1.04e-9%*
WT (LPBS) 5.75e-4*%*% 131e-4** 3.80e-7** 2.0le-1 1.79e-4** 1.64e-3** 4.76e-1 4.82e-1  4.36e-10%*
WT (PPB) 8.72e-4** 1.71e-4** 7.09e-7** 249e-1  2.75e-4** 223e-3%* 582e-1 3.69e-1  4.58e-10%*
BF (LPBS) (Ours) | 3.55e+0 2.28e+1 6.34e+1 1.74e-1  3.69e+2 2.06e+0 3321 1.47e-1 2.4le+7
BF (PPB) (Ours) | 8.19-1 1.12e+1 4.34e+0 1.14e-1  7.64e+1 1.70e+0 3.06e-1 1.87e-1  8.39e+6

Table 3: Results of preference-based bias detection methods for nine biase types in ChatGPT on both the English
and French version of CrowS-Pairs. The abbreviations and notations are set in the same manner as Table 2.

Method Bias Age Disability Gender Nationa.  Phy. App. Race Religion ~ Sex. Ori.  Socioeco.
English CrowS-pairs

SS 59.34% 58.46% 52.50% 60.65% 61.11% 57.83% 71.56% 56.04%  58.42%

EBT 9.2%e-2 2.15e-1 4.02e-1 2.13e-3** 7.64e-2 5.47e-4%* 7.73e-6%* 2.94e-1  2.43e-2%

BF (Ours) 6.32e-1 2.67e-19 1.04e-1 1.16e+1 8.56e-1 2.55e+2 3.80e+3 2.52e-1 1.34e+0
French CrowS-pairs

SS 68.89% 56.06% 54.52% 57.71% 55.56% 61.74% 66.09% 51.65%  56.41%

EBT 4.38e-4** 3.89%-1 1.18e-1 1.67e-2*  4.10e-1 5.42e-7**  T7.17e-4%* 834e-1  8.54e-2

BF (Ours) 8.78e+1 2.46e-1 2.58e-1 1.59e+0 2.27e-1 2.04e+4 4.71e+1 1.37e-1  4.42e-1

significance results from ¢ and Wilcoxon tests are
consistent with respect to both normalized log prob-
ability score (LPBS) and perplexity score (PPB).
They convey the same message that GPT-3 is sig-
nificantly biased on age, disability, gender, phys-
ical appearance, race, and socioeconomic status.
Strictly speaking, however, we cannot claim that
GPT-3 shows no bias on other categories like na-
tionality, religion and sexual orientation. This is
because we cannot accept the null hypothesis in
the frequentist framework. Bayes factor can ad-
dress this challenge, complementing frequentist
hypothesis testing methods.

For BF on LPBS and PPB in the bottom two
rows of Table 2, underlined values show moder-
ate evidence in favor of either the null or alter-
native hypothesis (with 1/10 < BFjp < 1/3 or
3 < BFyg < 10), while bold values present strong
evidence in favor of one of the two competing
hypothesis (with BFyg > 10 or BFyy < 1/10).
From the BF of this table, the result on LPBS is
mostly consistent to that on PPB, except the slight
differences on age and gender, which requires fur-

ther investigation of the distribution of perplexity
bias of each sentence pair. The inconsistency be-
tween these two sets of Bayes factors is out of the
scope of this paper. From the BF values, the data
present extremely strong evidence for Hy, i.e.,GPT-
3 (text-davinci-003) has bias on socioeconomic
status (2.41e+7 for LPBS). We also have strong
evidence with BF'y > 10 that GPT-3 has bias on
disability and physical appearance. For national-
ity, religion and sexual orientation, the frequentist
methods like TT and WT fail to reject the null
hypothesis, while BF presents moderately strong
evidence for Hy, i.e., no bias on these three types.

5.2 Bias Detection for ChatGPT with
Preference-based Methods

Table 3 illustrates the bias detection results for
ChatGPT on both the English and French CrowS-
pairs datasets using preference-based methods.
Stereotype score (SS) measures the extent to which
the model prefers the stereotypical sentences, vary-
ing over nine bias types across two languages. With
the English CrowS-pairs, ChatGPT exhibits the
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Figure 2: The visualization of preference-based Bayes factors of ChatGPT on both the English and French CrowS-
pairs datasets. The dotted dashed horizontal line is at 1, with dotted horizontal lines above and below are at 10 and

0.1, respectively.

largest bias on religion (71.56%) and smallest on
gender (52.5%). However, with the French ver-
sion, it shows the largest bias on age (68.89%) and
smallest on sexual orientation (51.65%).

Despite the SS varies significantly across two
languages, the p-values from exact binomial test
(EBT) display similar patterns in both the English
and French, except age and socioeconomic status.
For both languages, the Bayes factors (BF) with at
least strong evidence (B F1g > 10) are consistent to
EBT under the significance level 0.01. For the bias
type disability, the p-values from EBT, 2.15e-1 for
English and 3.89e-1 for French, are not significant,
so we cannot reject the null hypothesis. However,
frequentist methods like EBT fail to quantify the
degree to which the data supports the null hypothe-
sis. BF provides the remedy, displaying extremely
strong support for Hy with 2.67e-19 in English
dataset and moderately strong support for Hy with
2.46e-1 in French dataset.

Comparative Bias Detection for ChatGPT in
English and French: The visualization of BF
over nine bias types using both the English and
French CrowS-pairs datasets is shown in Fig. 2.
In this figure, the dotted dash horizontal line is
fixed at 1, with BF values above and below this line
supporting H; (model is biased) and Hy (model
is fair), respectively. The two dotted horizontal
lines above and below y = 1 are fixed at 10 and
1/10, respectively, which indicate strong support
for the two competing hypotheses. From Fig. 2,

the Bayes factors of ChatGPT on both the English
(red line) and French (blue line) show similar pat-
terns: (1.) the values lying between the two dotted
lines (1/10 < BFjp < 10) for five bias types
(gender, nationality, appearance, sexual orientation
and socioeconomic status); (2.) the values greater
than 10 for race and religion, i.e., strong support
for ChatGPT being biased. This can be explained
by the fact that the French version of CrowS-pairs
is translated from the original English dataset, so
they have a large amount of overlapping. ChatGPT
also present some significant variations in BF on
these two datasets, which is due to the differences
between American and French social norms.

6 Conclusion

In this paper, we formulate the bias detection of
LMs as a hypothesis testing problem, and propose
to utilize a Bayesian testing to quantify relative ev-
idence for both competing hypotheses. Bayesian
testing has benefits over classical tests when the p-
value greater than the predefined significance level,
but it is rarely found in the natural language pro-
cessing literature. Therefore, our work promotes
the application of Bayesian testing. We demon-
strate the application of our framework to popular
GPT models by leveraging both the English and
French CrowS-Pairs as testbeds. We believe our
framework holds promising potential for bias de-
tection across a diverse range of LLMs.



7 Limitations

Despite the valuable insights gained from this study,
it is important to acknowledge several limitations
that may influence the interpretation and generaliz-
ability of the results. Firstly, due to the nature of the
experimental design, we lacked ground-truth for
our experiments. This means that we were unable
to compare our findings with an objective standard
to validate the accuracy of the results.

Furthermore, it is important to recognize that the
datasets (both the English and French CrowS-Pairs)
used in this study were relatively small and may
not be fully representative of the wider population
(Blodgett et al., 2021). Expanding the dataset size
could potentially yield distinct findings, but it also
requires significant amount of financial investment.

Additionally, while we utilized Bayes factor pri-
ors in our analysis, it is important to note that
different researchers or practitioners may have al-
ternative preferences for prior specification (An-
draszewicz et al., 2015). This subjectivity can in-
troduce variability in the results and their interpre-
tation. It is crucial for future studies to explore
alternative priors to assess the robustness and con-
sistency of the findings.

Lastly, in situations where different statistical
tests yield conflicting or inconsistent answers, it
becomes challenging to derive straightforward con-
clusions. This ambiguity highlights the need for
further exploration and replication to better under-
stand the factors contributing to these discrepan-
cies.

Considering these limitations, our findings
should be interpreted with caution. Future studies
should aim to address these limitations and further
validate and extend our conclusions.
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