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Abstract—The process of hardware design space exploration
requires both hardware parameters and mappings from the algo-
rithm onto the target hardware to be discovered and optimized.
Previous work has largely approached this simultaneous opti-
mization problem by separately exploring the hardware design
space and the mapspace—both individually large and highly
nonconvex spaces—independently. The resulting combinatorial
explosion has created significant difficulties for optimizers. We
introduce DOSA, which consists of differentiable latency and
energy models, as well as a gradient descent-based optimization
technique to simultaneously explore both spaces and identify
high-performing design points. Experimental results demonstrate
that DOSA outperforms random search and Bayesian optimiza-
tion by 2.80× and 12.59×, respectively, in improving DNN model
energy-delay product, given a similar number of samples. In
particular, we demonstrate DOSA’s modularity and flexibility
via transfer to a real DNN accelerator setting, where we achieve
a 2.07× improvement in energy-delay product by augmenting
our analytical model with a learned model.

I. INTRODUCTION

To develop efficient and high-performance DNN acceler-
ators in a fast and cost-effective manner, automated design
space exploration (DSE) has emerged as a powerful technique.
The hardware DSE flow [15], [20], [26] involves optimizing
over two search spaces: the hardware design space, which
describes hardware design parameters such as interconnect
topology and buffer and systolic array sizes, and the mapspace,
which describes how applications are executed on the target
hardware and encompasses decisions such as loop tile dimen-
sions, dataflow, and spatio-temporal mapping.

Both the hardware design and mapping spaces are vast,
high-dimensional, and comprised of both categorical and dis-
crete variables. Furthermore, evaluating the performance of a
hardware configuration and a mapping can be computationally
expensive. The size of the combined optimization space and
the cost of evaluating points in it pose formidable challenges
to DSE algorithms.

Much prior work [6], [17], [23], [26], [30], [33] has
approached this problem using hardware-first search. These
methods directly search over the space of possible hardware
configurations. The performance of each hardware config-
uration is calculated by first constraining the mapspace to
mappings that are compatible with the hardware configuration,
then optimizing over the constrained (highly discontinuous)
mapspace. In most cases, the mapspace optimization is done
iteratively, rendering this process a two-loop approach iterating
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Fig. 1. Hardware-first, two-loop (left) and mapping-first, one-loop (right) DSE
approaches.

over both the hardware space and mapspace. As a result, these
approaches must contend with a combinatorial explosion of
possible configurations.

Alternatively, mapping-first approaches, as proposed in [10],
[31], optimize primarily over the mapspace. For each mapping,
optimizing over the hardware design space is a straightforward
process consisting of finding the minimal hardware configu-
ration capable of supporting the mapping. As a result, the
loop for hardware search is eliminated, allowing the entire
DSE process to be encapsulated in a single loop. Furthermore,
the lack of hardware resource constraints also significantly
simplifies the mapspace search problem.

Despite these advantages, mapping-first approaches must
still contend with the size of the mapspace and the noncon-
vexity of the performance over this space. Prior works have
either directly applied black-box optimization methods [10],
[25], which rely on a large number of samples, or pruned the
search space using architecture-specific heuristics [31], leaving
a large set of candidate design points for the architect to select
from.

Rather than optimize a black box, we can leverage the do-
main knowledge provided by white-box performance models
like Timeloop [20], [28], which can provide precise feedback
quickly enough to fully automate the design space exploration
process. This paper follows this approach, using performance
models as an optimization target for mapping-first search.
Specifically:

• We build closed-form differentiable and interpretable
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TABLE I
STATE-OF-THE-ART ACCELERATOR DSE METHODS.

Name Mapspace
Search

Hardware
Search

Two-loop
Searchers

Spotlight [23] BB-BO BB-BO
VAESA [6] ILP [7] VAE+BB-BO/GD
FAST [33] BB-LCS [12] + ILP BB-LCS

HASCO [30] BB-RL BB-BO
NAAS [17] BB-ES BB-ES

MAGNet [26] Heuristics BB-BO

One-loop
Searchers

DiGamma [10] BB-GA
Interstellar [31] Heuristics

Our work: DOSA GD

performance models for latency and energy on DNN
accelerators. Our models are as precise as the program-
based analytical models, while also being amenable to
white-box optimization using gradient descent.

• We introduce a DNN model to predict the variation
between analytical model and real hardware accelera-
tor performance, augmenting our interpretable analytical
models for real hardware DSE.

• We then introduce DOSA, a mapping-first one-loop DSE
flow that uses gradient descent to find the most efficient
hardware parameters and mappings for target multi-layer
DNNs; to the best of our knowledge, this is the first work
to perform mapping-first DSE to multi-layer neural nets.
DOSA converges at least 40% faster than state-of-the-art
DSE approaches.

• We benchmark our results on the Gemmini accelerator,
showing a 2.07× EDP improvement over hand-designed
configurations.

II. BACKGROUND

Hardware DSE typically includes two key optimizations:
the mapping search and the hardware search. To address the
mapping complexity for DNNs, many DNN compilers [1]–
[3], [13], [19], [21], [22] and accelerator-aware mapping
techniques [5], [7], [8], [16], [20], [31] have been developed.
In addition, there has been extensive research in the area of
hardware parameter search [14], [32].

A. Optimization Techniques

In recent years, there has been a growing body of research
focused on tackling the compounding search space of mapping
and hardware designs with the goal of achieving higher
hardware efficiency and lower development costs.

Optimization techniques used in this search process can
be broadly categorized into three types: heuristics, black-
box optimization (BB), and white-box optimization. Heuristics
involve using domain-specific knowledge and experience to
guide the search process and reduce the size of design space.
In contrast, BB relies on sampling and machine learning tech-
niques to leverage the characteristics of the problem derived
from sampled data in order to find the optimal solution. In
white-box optimization, the relationship between the opti-
mization variables and the objectives is known and captured
in mathematical models. Numerical optimization techniques

like linear programming (LP) and mixed-integer programming
(MIP) can be used if the relationship can be expressed in
specific frameworks. Gradient descent (GD) techniques can be
applied if the relationship can be expressed in a differentiable
expression. Compared to black-box optimization, white-box
(WB) optimization is generally more efficient as it can exploit
the known objective model to guide the optimization process,
resulting in faster convergence. However, it requires the ob-
jective model to be known and accurately specified.

B. Co-exploration Frameworks

As shown in Table I, most prior work [6], [17], [23], [26],
[30], [31], [33] treats the mapping and hardware co-search
as a two-loop process and applied a combination of various
optimization techniques to address each search space indepen-
dently. While independently applying optimization techniques
to the mapspace and hardware space can be effective, the two-
loop searchers can be susceptible to combinatorial explosion,
as the vast search space multiplies the number of potential
options for mappings and hardware parameters together.

To reduce the size of the compounding search space,
one-loop searchers, such as DiGamma [10] and Interstel-
lar [31] have been proposed. Single-loop search tackles the co-
search problem from a mapping-first approach that infers the
minimal hardware requirement from hardware-agnostic high-
performance mappings found in single-loop mapping search.
In such approaches, the hardware DSE space is similar in
size to the mapping space. However, DiGamma employs BB-
GA which treats the mapping performance as a black-box
and needs to evaluate many unique hardware and mapping
configurations iteratively to achieve a good mapping and
hardware design. Interstellar, on the other hand, only explores
a limited space of pre-selected mappings and as a result only
a limited space of hardware design is evaluated.

Unlike previous one-loop approaches that rely on black-
box optimizations or heuristics, DOSA takes a novel approach
by formulating the analytical performance and energy model
in [20] as a differentiable white-box model. DOSA uses
gradient descent to optimize the mapping variables in the
direction of steepest descent of the EDP objective function
on the mathematical model. This allows DOSA to explore a
comprehensive set of mappings and efficiently generate high-
quality hardware and mapping configurations without the need
for sampling from simulators extensively.

III. DOSA OVERVIEW

This paper presents DOSA, a one-loop differentiable-model-
based DSE framework to optimize the mappings and hardware
simultaneously for target DNN models. DOSA captures key
relations between DNN mapping factors and performance
objectives in a differentiable analytical model. In addition,
DOSA introduces a data-driven DNN model to capture the
performance variations between analytical model and real
hardware. By applying white-box optimization to the model
and calculating the hardware parameters using minimal pa-
rameterization, DOSA achieves high-performance accelerator
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Fig. 2. An architecture diagram of DOSA.
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// Layer: 
// N=1, R=1, S=1, P=56, Q=56, C=64, K=64 

// DRAM (Weights: 4096 Inputs: 200704 Outputs: 
200704)
for p3 in [0:56):
  for q3 in [0:4):
    // Scratchpad (Weights:4096, Inputs: 896)
    spatial_for k2 in [0:64):
      // Accumulator (Outputs:896)
      spatial_for c1 in [0:64):
        // Registers (Weights: 4096)
        for q0 in [0:14):

PEs: 
64x64

Accumulator: 
896 words
x 4 B/word
≈ 4 KB

Scratchpad: 
(4096 + 896) words
x 1 B/word
≈ 5 KB

Gemmini

max ( · )
Fig. 3. Mapping to hardware parameters conversion in DOSA.

design and mapping while significantly reducing the time and
costs associated with DNN accelerator DSE.

Toolflow. Figure 2 shows how DOSA simultaneously opti-
mizes mappings and hardware for a given workload consisting
of a set of layers. DOSA iteratively updates mappings using
gradient descent, finding minimal hardware requirements at
each step. Specifically:

1) Initialize the search. We first select a random valid
hardware parameters and use CoSA [7], a one-shot
optimization-based mapper, to map our set of target
DNN layers onto it.

2) Find minimal hardware parameters. We compute the
hardware resource requirements of each layer-wise map-
pings and set hardware parameters to support all map-
pings.

3) Compute EDP cost from current mapping and hardware
parameters. We first compute the number of accesses
made by each mapping to each memory level in the
accelerator using the differentiable model in DOSA.
These access counts are combined with our current set of
hardware parameters to generate roofline-based latency
predictions and event-based energy predictions for each
layer’s mapping, from which we derive a single EDP
prediction.

4) Update all mappings in parallel using gradient descent.
5) Repeat from Step 2.
The components that make up this flow are detailed in the

following sections.

IV. DOSA DIFFERENTIABLE MODEL

Given the absence of a differentiable, analytical model
for DNN accelerators in current literature, we present our
approach for constructing such a model that achieves accuracy
on par with Timeloop in our problem space. To account for
performance variations in real hardware that are difficult to
capture and express in analytical models, we additionally train
a differentiable DNN model to futher improve the accuracy of
the performance model.

We target the open-source DNN accelerator Gemmini [4],
whose most notable architectural components are 1) a systolic
array of processing elements (PEs), 2) accumulator SRAM, 3)
scratchpad SRAM, and 4) DRAM. Specifically, we target the
weight-stationary (WS) configuration of Gemmini.

We evaluate Gemmini at two levels of fidelity: Timeloop and
RTL. We use Gemmini-TL to refer to the Timeloop definition
of an accelerator analogous to Gemmini, evaluated with an
architectural model, and Gemmini-RTL to refer to the RTL im-
plementation of Gemmini available at https://github.com/ucb-
bar/gemmini, evaluated using cycle-accurate RTL simulation.

A. Computing Hardware Resource Requirements

As depicted in Figure 3, the capacity requirements at each
level are first computed. Then, we take a parameter-wise max
to generate a design that will support all current mappings. The
exact formulas used are not enumerated here, but its accuracy
relative to Timeloop is demonstrated in Section IV-E.

1) PE Capacity Requirements: Gemmini supports only
square arrays of processing elements. In its WS (weight
stationary) configuration, it can parallelize the input channel
and output channel dimensions, each along one side of the
array. Hence, we need to configure a square PE array that is
large enough to accommodate the square of the larger of these
two spatial factors.

2) Buffer Capacity Requirements: Buffer capacities re-
quired at a given level for the weight (W ), input (I), and
output (O) tensors are computed from the spatial and temporal
tiling factors at and inner to that level. The total buffer capacity
requirement at a given memory level is the sum of sizes of
each tensor stored at that level.

B. Traffic Estimation

To capture the performance of the accelerator, we utilize
differentiable, but non-convex functions to model the writes,
updates, and reads to each buffer level. These values are
computed per mapping.

C. Latency Modeling

We calculate the latency cycles required for compute by
dividing the total number of multiply-accumulate (MAC)
operations in a layer by the product of all spatial factors in
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Fig. 4. Correlation of DOSA differentiable model
with Gemmini-TL.
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Fig. 5. Accuracy of Gemmini-RTL latency modeling with and without DNN augmentation.
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Fig. 6. DOSA EDP optimization of Gemmini-TL on 4 distinct workloads, versus baselines. Each line represents the mean (across 5 runs) best point found
after x model evaluations. The shaded regions represent a 95% confidence interval across the 5 runs.

a mapping (i.e., the number of parallel processing elements
utilized). To compute memory access latency, we divide the
total number of memory accesses by the memory bandwidth.
We calculate the memory latency for each memory level i
utilized in Gemmini, including accumulator SRAM, scratch-
pad SRAM, and DRAM. We consider the maximum latency
among all memory levels and the compute as the final latency
since performance is limited either by memory or compute.
The latency formulations are provided below:

Compute Latency =
# of MACs in Layer∏

(Spatial Factors)
Accesses(i) = Reads(i) + Updates(i) + Writes(i)

Mem Latency(i) =
Accesses(i)

Bandwidth(i)
Mem Latency = max

i
(Mem Latency(i))

Latency = max(Compute Latency
,Mem Latency)

D. Energy Modeling

Energy is modeled via data collected for a 40nm process
using Accelergy [28] and CACTI [18]. In our model, compute,
register access, and DRAM access energy are constant per
word, whereas SRAM access energy per word scales with the

number of SRAM rows and columns.

Energy(i) = Accesses(i)× EPA(i)

Energy = MACs × EPAPE +
∑
i∈M

Energy(i)

E. Modeling Gemmini-TL

To demonstrate that our differentiable performance model
does not compromise accuracy relative to other analytical
models, we conducted experiments to show that DOSA has
equivalent accuracy to Timeloop [20] for an accelerator analo-
gous to Gemmini. We compare 100 random Gemmini configu-
rations, 73 matrix multiplication and convolutional layers, and
10 random mappings per layer. Figure 4 demonstrates that the
latency, energy, and EDP results from our differentiable model
correlate almost perfectly with the results from Timeloop.

F. Modeling Gemmini-RTL

In general, analytical models do not completely capture
hardware performance [27], [29]. Variations caused by spe-
cific implementation details and complex hardware-software
interactions may be unknown to the designer or difficult to
capture mathematically. One potential solution is to augment
analytical models with learned surrogate models. Since many
learned models, such as deep neural networks or polynomial
regression models, are differentiable, DOSA is particularly
well-suited to work with such models.
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In this case, we train a deep neural network to predict the
difference between our analytical model’s latency predictions
for a layer and the real latency of Gemmini-RTL, evaluated
using FireSim [11]. The model’s inputs include the layer’s
dimensions, a mapping, and a hardware configuration. The
inputs are also augmented with the roofline latencies computed
in the analytical model. The model’s architecture is similar to
the that of the model used in Mind Mappings [5]. It contains 7
hidden fully-connected layers and a total of 5737 parameters.

V. DOSA OPTIMIZATION

Constructing a differentiable performance model allows
DOSA to optimize hundreds of parameters (tens per layer,
times tens of layers) at once using gradient descent (GD).
Differentiability is implemented using PyTorch automatic dif-
ferentiation. GD start points are generated via random hard-
ware configuration, plus CoSA [7] mappings. The GD loss
term is the total performance metric, for example energy-
delay product (EDP). We compute the EDP of a full model
by summing each mapping’s latencies and energies, then
multiplying the resulting sums.

Loop Ordering. Notably, the loop ordering term of the
mapping is not differentiated in our formulation. The loop
ordering of each layer is shuffled every time mappings are
rounded to the nearest valid mapping, and the best differen-
tiable model-predicted loop ordering is selected. We select be-
tween 3 loop orderings per layer, per level: weight-stationary,
output-stationary, and input-stationary. As noted by works such
as AIRCHITECT [24], it is possible to accurately analyze
problem dimensions and buffer sizing to select the optimal
dataflow. Others have noted that dataflow and loop ordering
are much less impactful than tiling parameters in the mapping
problem [9], [31]. This makes the hardware-mapping co-
design problem more amenable to gradient descent. Another
way to optimize non-differentiable terms is to add a neural
network-based surrogate model that can propagate a gradient
to these terms, as shown later in this work.

Start Point Rejection. In subsequent iterations of start point
generation, a start points is rejected, and a new hardware
configuration is selected, if its differentiable model-predicted
performance is more than 10× that of the best start point seen
thus far.

Rounding. Since gradient descent may result in non-integer
tiling factors, before any mapping is evaluated, it is rounded
to the nearest valid mapping by rounding each tiling factor to
the nearest divisor of its corresponding problem dimension,
subject to the constraint that the rounding process does not
cause the product of tiling factors for that dimension to exceed
the total problem size. This process iterates from the innermost
to outermost memory level.

Preventing Exploration of Invalid Mappings. We do
not include tiling factors at the outermost (DRAM) level as
optimization targets, and instead infer them by dividing the
total problem size at each dimension by the product of the
rest of the tiling factors for that dimension. In order to prevent

exploration outside the space of valid mappings, we add a loss
term for DRAM tiling factors less than 1.

VI. EVALUATION

A. Experimental Setup

We compare the performance of DSE algorithms on a
variety of target DNN models that can handle a diverse
set of tasks, such as natural language processing, image
classification, object detection, and image segmentation. The
hardware parameters we select using the capacity requirement
calculations in Section IV are PE dimensions, accumulator
SRAM sizing, and scratchpad SRAM sizing. PE dimensions
come from spatial tiling factors, which can be directly used as
they are always positive integers. PE array size is capped at
128x128. SRAM sizes are rounded up to increments of 1 KB.
For these experiments, the specific descent algorithm DOSA
uses is Adam, an optimizer similar to gradient descent with
momentum. Rounding happens every 500 steps and GD is run
for 1490 steps on each start point, unless otherwise noted.

We set up CoSA with equally partitioned scratchpad for in-
puts and weights. Our Bayesian optimization-based hardware-
mapping optimizer baseline is similar to Spotlight [23]. This
is a two-loop method which trains a Gaussian process model
with 100 hardware designs and 100 mappings per layer per
hardware design, and uses this model to selected the hardware
design and mappings with the best predicted performance from
10000 candidates per problem.

B. Hardware-Mapping Co-Search Performance

Our evaluation finds that DOSA is able to identify signif-
icantly more performant co-design points than either random
search or Bayesian optimization with a similar number of
samples. BB-BO uses Timeloop simulation as a black-box
optimization metric for Gemmini-TL. The random search- and
DOSA-generated co-design points are also evaluated under
this setup. After around 10,000 model evaluations, the geo-
metric mean of EDP improvements for DOSA versus random
search is 2.80×, and 12.59× versus BO. Evaluations done
using Timeloop are considered equivalent to evaluations done
using DOSA’s differentiable model.

C. Gemmini-RTL Optimization with DOSA

In this section, we assess the efficacy of our one-loop
differentiable-model-based gradient descent approach for real
hardware design. We also enhance the analytical model with a
DNN model to narrow the performance gap between analytical
model predictions and actual hardware performance.

After modifying DOSA latency predictors to include the
learned latency model, we run gradient descent and generate
a predicted optimal set of mappings and buffer sizes for 16x16
PE Gemmini-RTL, fixing PE dimensions and adjust only
buffer sizing and mappings. We compare the performance of
DOSA-generated mappings to the mappings generated by the
Gemmini-RTL default heuristic-based mapper, and the default
scratchpad and accumulator sizings of 128 KB and 32 KB
respectively. We run DOSA in two settings. First, we utilize the
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analytical model only (”DOSA Analytical”).

original formulation from Section IV to generate scratchpad
and accumulator sizings, along with corresponding mappings,
for each workload. Second, we replace the original analyti-
cal model-based latency predictor with the DNN-augmented
version. We initialize gradient descent with Gemmini-RTL
default buffer sizings, plus CoSA mappings. Over the four
test workloads, which are not included in the training data
for the latency predictor, the analytical-only version of DOSA
achieves a 1.35× EDP improvement, and the Gemmini-RTL
trained version of DOSA yields a 2.07× improvement, as
shown in Figure 7.

VII. CONCLUSION

In this paper, we present DOSA, a model-based approach
mapping-first DSE. By constructing a differentiable analytical
performance model for a DNN accelerator, we can use gradient
descent to perform an efficient one-loop co-search of both the
hardware and mapping spaces. This enables us to to perform
DSE targeting multi-layer neural net workloads, attaining an
EDP 2.80× better than random search and 12.59× better
than Bayesian optimization, while using a similar number of
samples.

DOSA demonstrates that interpretable, designer-trusted ar-
chitectural modeling and ML-based optimization methods are
not necessarily mutually exclusive, and in fact can be com-
bined to improve the accuracy of performance models and
the convergence of DSE. The modular construction of our
performance model enables DOSA to be more easily extended
to different performance objectives than existing performance
modeling and optimization methodologies. We demonstrate
this principle by pairing our analytical latency model with one
experimentally trained on a RTL simulation and event-based
energy analysis of Gemmini, improving EDP by 2.07× over
the default Gemmini configuration.

This modular approach to building and combining perfor-
mance models and using different sources of performance
data for DSE suggests an avenue of attack for optimizing

objectives that are expensive to compute (e.g. fine-grained
performance simulations) where prior black-box approaches
may face challenges. With this work, we move one step closer
to bridging the gap between architectural models and real
silicon.
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