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ABSTRACT

One of the limitations of applying machine learning methods in real-world scenar-
ios is the existence of a domain shift between the source (i.e., training) and target
(i.e., test) datasets, which typically entails a significant performance drop. This
is further complicated by the lack of annotated data in the target domain, making
it impossible to quantitatively assess the model performance. As such, there is a
pressing need for methods able to estimate a model’s performance on unlabeled
target data. Most of the existing approaches addressing this train a linear perfor-
mance predictor, taking as input either an activation-based or a performance-based
metric. As we will show, however, the accuracy of such predictors strongly de-
pends on the domain shift. By contrast, we propose to use a weight-based metric as
input to the linear predictor. Specifically, we measure the difference between the
model’s weights before and after fine-tuning it on a self-supervised loss, which we
take to be the entropy of the network’s predictions. This builds on the intuition that
target data close to the source domain will produce more confident predictions,
thus leading to small weight changes during fine-tuning. Our extensive experi-
ments on standard object recognition benchmarks, using diverse network archi-
tectures, demonstrate the benefits of our method, outperforming both activation-
based and performance-based baselines by a large margin. Our code is available in
an anonymous repository: https://anonymous.4open.science/r/79E9/

1 INTRODUCTION

Being able to estimate how well a trained deep network would generalize to new target, unlabeled
datasets would be a key asset in many real-world scenarios, where acquiring labels is too expensive
or unfeasible. When the training and target data follow the same distribution, this can easily be
achieved by setting aside a validation set from the training data. However, such a performance
estimator fails in the presence of a domain shift, i.e., when the target data differs significantly from
the source one.

Recent studies (Deng & Zheng, 2021; Deng et al., 2021) address this by creating a meta-dataset
incorporating multiple variations of the source data obtained by diverse augmentation techniques,
such as background change, color variation, and geometric transformations, so as to mimic different
domain shifts. Target datasets can then be sampled from this meta-dataset, and their ground-truth
performance obtained by evaluating the source-trained network on them. In essence, this provides
data to train a linear performance predictor, which in turn can be applied to the real target data.

The aforementioned studies differ in the quantities they use as input to this linear performance
predictor. Specifically, Deng & Zheng (2021) rely on the Fréchet distance between the network acti-
vations obtained from the source samples and the target ones, whereas Deng et al. (2021) exploit the
performance of the source network on the self-supervised task of rotation prediction. Unfortunately,
while the resulting linear predictors perform well within the meta-dataset, their generalization to
some real target datasets remains unsatisfactory, depending on the gap between the source and real
target data. This is illustrated by the left plot of Fig.1, where the red point indicating the true perfor-
mance on USPS lies far from the activation-based linear predictor shown as a black line.

In this paper, we therefore introduce the use of a completely different type of input to the linear
predictor. Instead of using an activation-based or performance-based metric, we advocate the use of
a weight-based one. This is motivated by recent studies showing that the network weights provide
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Figure 1: Correlation between classification accuracy and different metrics: Pearson correlation
between network weights (right, our method) and Fréchet distance between network activations
(left, (Deng & Zheng, 2021)). Note that our method yields a more reliable performance estimator,
as evidenced by the points corresponding to the target datasets lying closer to the black line. The
light-blue points correspond to sample sets from the meta-dataset.

valuable insights into model uncertainty (Lacombe et al., 2021), model complexity (Rieck et al.,
2019), model compressibility (Barsbey et al., 2021), and in-domain generalization (Birdal et al.,
2021; Franchi et al., 2022; Nagarajan & Kolter, 2019; Simsekli et al., 2020). Here, by contrast, we
demonstrate the relationship between network weights and out-of-domain generalization. Specifi-
cally, we analyze how much the network weights change when fine-tuned on the target data with an
unsupervised loss. This builds on the intuition that, the larger the domain gap between the source
and the target datasets, the more the network will need to change to bridge this gap.

Computing our weight-based metric thus consists of two steps: Fine-tuning the last fully connected
layers of the model with an unsupervised loss, and calculating the distance between the weights of
the original model and those of the fine-tuned one. We use entropy minimization as an unsuper-
vised loss, because of its convergence speed and of its independence from the model architecture;
unlike other self-supervised losses, such as rotation prediction (Gidaris et al., 2018), the entropy is
calculated directly on the model output, not requiring an additional network head.

In our experiments, we study two different weight-based distances: the Euclidean distance and the
Pearson correlation. Our results evidence that both yield more reliable performance estimates than
activation-based and performance-based ones. This is illustrated in the right plot of Fig. 1, where
the points corresponding to the three real target datasets all lie close to the linear predictor. While
alternative, more complex measures may also be viable, our work shows that even a basic norm-
based approach surpasses other methods, which we evidence on several benchmark datasets and
using different network architectures.

2 RELATED WORK

Existing methods can be categorized into activation-based and performance-based.

Activation-based approaches aim to find a criteria for performance estimation based on network
activations. For example, Garg et al. (2022) propose Average Threshold Confidence (ATC) score
based on the negative entropy of networks predictions. The authors acknowledge that ATC re-
turns inconsistent estimates on certain types of distribution shifts. Another approach in this cate-
gory (Schelter et al., 2020) explores various statistics derived from a prediction score. An alterna-
tive entropy-based method by Guillory et al. (2021) connects classification accuracy to the entropy
difference in network activations between source and target data. However, its effectiveness relies
on network calibration. Chen et al. (2021b) employ prior knowledge about the distribution shift to
provide accurate performance estimates.

In contrast with the above-mentioned approaches that focus on the network output, Deng & Zheng
(2021) analyze the feature representations. The authors propose to create a collection of augmented
source datasets. They further learn a linear regression model to predict the accuracy on these sets
based on the Fréchet distance between the source feature representations and the augmented feature
representations. In our experiments, we observed that although there is a strong linear correlation
between accuracy on the augmented source datasets and the Fréchet distance, real target datasets do
not always follow the same pattern, thus leading to unsatisfactory accuracy estimates.
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Performance-based approaches evaluate the classification accuracy of the network using its per-
formance on self-supervised tasks. For instance, Deng et al. (2021) propose to learn a correlation
between the rotation prediction accuracy and the classification accuracy. The works of Jiang et al.
(2022); Chuang et al. (2020) show that the test error can be estimated by performing several train-
ings of the same network on the same source dataset, and measuring the disagreement rate between
these networks on the target dataset. Building on this work, Chen et al. (2021a) learn an ensemble
of models to identify misclassified points from the target dataset based on the disagreement between
the models, and use self-training to improve this ensemble.

The aforementioned methods require access to the model during training. For example, in the work
of Deng et al. (2021), the network architecture needs to be upgraded with the second head and
trained on both tasks. The works of Jiang et al. (2022); Chuang et al. (2020); Chen et al. (2021a)
require re-training of the source model to find the samples with disagreement. This might be unde-
sirable for a large source dataset where training is time consuming. Note that our approach requires
neither architecture alterations nor re-training on the source data.

In this work, we focus on analyzing the network weights, which was proven to be useful for various
in-domain and out-of-domain tasks. For example Nagarajan & Kolter (2019) show that the distance
of trained weights from random initialization is implicitly regularized by SGD and has a negative
correlation with the proportion of noisy labels in the data. Hu et al. (2020) further use the distance of
trained weights from random initialization as a regularization method for training with noisy labels.
Yu et al. (2022) introduce a projection norm and show its correlation with out-of-distribution error.

By contrast, here, we study the relationship between a change in weights incurred from self-
supervised fine-tuning and performance on the target data. Our approach compares favorably to
the SOTA accuracy estimation methods from each of the above categories. We emphasize that our
method requires neither prior knowledge of the nature of the distribution shift, nor target labels.

3 METHODOLOGY

Let us now introduce our approach to estimating how well a model trained on a source dataset would
generalize to a target dataset from a different domain, in the absence of target supervision. Instead of
predicting performance from the activation difference between the source and target samples or from
the network performance on a different task, we propose to exploit the model’s weights variations
when fine-tuned with an unsupervised loss. Specifically, we consider the Euclidean distance and
the Pearson correlation coefficient between the weights before and after fine-tuning, and empirically
show that these metrics display a strong linear correlation with the model performance on the target
task. We therefore learn this correlation with a linear regressor trained on augmented versions of the
source data, which we use to predict the target data performance.

3.1 PROBLEM DEFINITION

Let PS and QT be the probability distributions of the source and target domains, respectively, DS :
{xs, ys}ns ∼ PS be a labeled source dataset with ns samples, and DT : {xt}nt ∼ QT be an
unlabeled target dataset with nt samples. A model fθ is trained on the source dataset DS to predict
a correct label: fθ : xi → ŷi;xi ∼ DS . Our goal then is to estimate the accuracy of the trained
model fθ on the unlabeled target dataset DT .

3.2 WEIGHT-BASED PERFORMANCE ESTIMATION

In this paper, we propose to predict model performance on target data based on its weight shift
during unsupervised fine-tuning. This is motivated by the intuition that large domain gaps would
lead to larger weight variations and also to lower accuracy than small domain gaps. Below, we first
introduce our approach to measuring weight changes, and then present our accuracy predictor.

Weight-based distance metrics. Measuring a change in the model weights requires fine-tuning
the model on the target data. In the absence of supervision, we propose to use the Shannon entropy.
Given the model prediction ŷ = fθ(x) encoded as a C-dimensional vector of class probabilities, the
entropy can be written as H(ŷ) = −

∑C
c=1 ŷ

c log(ŷc) , where ŷc is the probability for class c.
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The entropy can be interpreted as an uncertainty of the model: Minimizing the entropy of the predic-
tions encourages the network to produce confident predictions. Intuitively, if the target data is close
to the source one, the model will produce confident predictions and will not significantly change
during fine-tuning. Conversely, in the presence of a large domain shift, optimizing the entropy loss
will result in a large network change.

To perform this comparison, we investigate the use of two distance measures. Specifically, given the
weights θ before fine-tuning, and the weights θ̂ after fine-tuning, we compute the Euclidean distance
and the Pearson correlation coefficient:

deucl(θ, θ̂) =

√√√√ n∑
i=0

(θi − θ̂i)2 , dprs(θ, θ̂) =

∑n
i=0(θi − µ(θ))(θ̂i − µ(θ̂)))√∑n

i=0(θi − µ(θ))2
∑n

i=0(θ̂i − µ(θ̂))2
,

where n is the number of weights considered, µ(θ) is the mean of the weights.

Fine-tuning the last layers for out-of-distribution adaptation. Due to the high-dimensionality of
the network weight space, comparing the network weights is non-trivial and may suffer from the
curse of dimensionality. The impact of fine-tuning is not equally distributed across the network,
with the last layers typically being affected more than the first ones (Kornblith et al., 2020). More
importantly, fine-tuning the whole network distorts pretrained features when the distribution shift is
large and therefore results in the model underperforming on target domains, as shown by Kumar et al.
(2022). Therefore, by only updating the last layers, we expect a better direction for the performance
improvements. As a result, we only fine-tune the classifier part of the network, consisting of all the
fully connected layers at the end of the network, while freezing the feature extractor.

Difference between the weights of fine-tuned and original networks, and its correlation to their
performance gap. Given θ(0) - the weights of the network before fine-tuning; θ(k) - the weights
of the network at step k, S - the number of fine-tuning steps, g(j)i - the gradient of the entropy loss
at step i w.r.t. θ(j), and α- the learning rate, our goal is to evaluate the quality and robustness of the
extracted features w.r.t. the target dataset. Here, we explain how the two main aspects of the model
updates, namely the magnitude and the consistency, are related to model generalizability.

• Magnitude of the network updates: The magnitude of the network modifications required to
optimize an unsupervised loss function is encapsulated in its average gradient w.r.t. θ(0), i.e.,
α
∑S

k∈0 g
(k)
0 . The gradient’s magnitude reflects the flatness of the loss function and can be re-

garded as an indicator of convergence (Zhang et al., 2023).

• Consistency of the network updates. The consistency of network updates across batches of the
target dataset can be expressed through the coherence of gradients. We can quantify the con-
sistency of the gradients between batch i and j by the derivative of their inner product, i.e.,
▽θ(g

(i)
0 · g(j)0 ), i ̸= j. This inner product indicates the level of gradient alignment as well as

the variance of the learned features for the target dataset (Guiroy et al., 2019). Specifically, if the
inner product between the gradients is positive (g(i)0 ·g(j)0 ) ≥ 0, then updating the network weights
along the direction of g(i)0 would enhance the performance on batch j, and vice versa. This means
that strong gradient directions are indicative of training stability and, consequently, of the model’s
generalizability (Chatterjee, 2020).

Since computing ▽θ(g
(i)
0 · g(j)0 ) requires calculating second-order derivatives, making it computa-

tionally prohibitive, we propose to approximate it in terms of the difference in weights before and
after k updates. As shown by Nichol et al. (2018) and Shi et al. (2022),

E(θ(0) − θ(k)) = α

S∑
k∈1

g
(k)
0 − α2

s(s− 1)

i̸=j∑
i,j∈S

▽θ(g
(i)
0 · g(j)0 ) . (1)

In the light of above discussion, we argue that the difference between the weights captures both the
consistency and the magnitude of the network updates. Let us now further discuss the importance
of consistent updates.
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(a) Input Image.
Label: Bottle.

(b) Original net.
Prediction: Bottle.

(c) Original net.
Prediction: Bottle.

(d) Pascal-adapted.
Prediction: Bottle.

(e) Pascal-adapted.
Prediction: Bottle.

(f) Input Image.
Label: Bottle.

(g) Original net.
Prediction: Bottle.

(h) Original net.
Prediction: Bottle.

(i) Pascal-adapted.
Prediction: Person.

(j) Pascal-adapted.
Prediction: Person.

Figure 2: Class Activation Maps before and after fine-tuning. Top: Same predictions for the original
and fine-tuned models. Bottom: The fine-tuned model’s prediction differs from the original model.

Our underlying assumption is that the importance of the robust features contributing to each class
should remain consistent across domains. We illustrate this by projecting the weights from the
last layer onto the convolutional feature maps and generating the class activation maps (CAMs), as
introduced by Zhou et al. (2015). CAMs highlight the discriminative regions of the image relevant
to the prediction. For instance, for image I1 in Fig.2a, the saliency map stays consistent after fine-
tuning, with the network correctly identifying the class by focusing on the same region. However,
for I2 (Fig.2f), “Person” features dominate “Bottle” features, causing the network to shift attention
to the background, as shown in Fig.2i.

The relationship between performance and weight changes becomes evident when examining the
Hadamard product of activations and weights, shown in Figures 2c, 2h, 2e, and 2j. For images I1
and I2, the representations A1 and A2 are identical before and after fine-tuning due to the feature
extractor being frozen. Thus, the robustness of the features w.r.t. the predicted classes is reflected in
the change of θ̂ in relation to θ.

Accuracy predictor. As illustrated by the right plot of Fig.1 and further evidenced by our exper-
iments, there is a linear correlation between the network weight change after fine-tuning and the
accuracy. In other words, the accuracy for a target dataset can be estimated using a linear regressor:

acc(fθ) = w1 · d(θ, θ̂) + w0 , (2)

where d is either the Euclidean distance deucl or the Pearson correlation dprs, and w0 and w1 are the
trainable parameters of the linear regressor.

To train these parameters, we follow Deng & Zheng (2021) and create a meta-dataset consisting of
a collection of datasets obtained by performing different augmentations of the source data. Specif-
ically, a sample set D̂j

s in the meta-dataset is built as follows. First, a set of m possible transfor-
mations T = {T1, T2, .., Tm}, corresponding to background change, geometric transformations, or
color variations, is created. Then, l images are randomly selected from the validation set {vs} of the
source data, leading to a set {vjs}l ⊂ {vs}. A random selection of t transformations τ = {Ti}ti=1

is then applied to these images, resulting in the sample set D̂j
s = τ [vjs]. By repeating this process k

times, we create a collection of sample sets, which form the meta-dataset.

As each sample set originally comes from the source data, we can compute its true performance
under model fθ. Similarly, we can fine-tune the model on each sample set using the entropy, and
then compute the distance between the weights before and after fine-tuning. Altogether, this gives us
supervised data, consisting of pairs of weight distance and true accuracy, from which we can learn
the weights w0 and w1 of the linear regressor of Eq. 2.
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3.3 ACCURACY PREDICTION ON TARGET DATA

We can use the trained linear regressor to estimate the network performance on any unlabeled target
dataset. Specifically, given a target dataset DT : {xt}nt , we first split it into k subsets of size l,

Dt = {D1
t ,D2

t , ...,Dk
t }, k =

⌊nt

l

⌋
,

so that the size of each subset matches the size of the validation sample sets.

Then, we fine-tune the network fθ on Dj
t , ∀j ∈ [1, .., k] with our unsupervised entropy loss, and

estimate the weight change using a distance measure. Given the obtained weight-based metric d,
we use the trained linear regressor to predict the accuracy of Dj

t as accj = w1 · d + w0. The final
accuracy for the target dataset is calculated as the average accuracy of its subsets.

4 EXPERIMENTS

We conduct extensive experiments on three benchmark datasets, Digits, COCO, and CIFAR10.
For each dataset, we visualize the correlation between the accuracy and different metrics: The
performance-based metric exploiting rotation prediction accuracy as in (Deng et al., 2021), the FID
activation-based metric of Deng & Zheng (2021) that uses the Fréchet distance between the network
activations, and our proposed weight-based metric. We further report the results of a linear regressor
trained on either one of these metrics.

4.1 DATASETS

Digits consists of a source domain, MNIST (LeCun et al., 2010), which contains 60K training
and 10K test images, depicting grayscale handwritten digits distributed between 10 classes, and
three target datasets: USPS (Denker et al., 1989), SVHN (Netzer et al., 2011), and SYNTH (Ganin
& Lempitsky, 2015). The target datasets are also comprised of digit images of 10 classes, but
with different colors, styles, and backgrounds. For this dataset, accuracy prediction is evaluated on
two network architectures: LeNet (Lecun et al., 1998) and MiniVGG (aka VGG-7 (Simonyan &
Zisserman, 2015)). Note that our results for the LeNet model differ from those reported in (Deng
& Zheng, 2021), as we obtain significantly higher ground-truth accuracies with LeNet on all three
target datasets.

COCO. Following Peng et al. (2018), we select a subset of the COCO dataset (Lin et al., 2014a)
to build a source domain, with roughly 7K training and 6K validation samples, distributed in 12
categories. Our goal is to predict the accuracy of the models on 3 target datasets: Caltech (Griffin
et al., 2007), Pascal (Everingham et al., 2010) and ImageNet (Deng et al., 2009), each sharing
the same 12 classes with the source dataset. For this dataset, we use two network architectures:
AlexNet (Krizhevsky et al., 2012) and ResNet50 (He et al., 2016). Given the COCO dataset’s
limited size, we employ pre-trained ImageNet weights and fine-tune the network on COCO.

CIFAR10 contains one source domain, CIFAR10 (Krizhevsky & Hinton, 2009), with natural images
from 10 classes, divided between 50K training samples and 10K test samples, and one target domain,
CIFAR10.1 (Recht et al., 2018) with 2K test images. For this dataset, we employ a DenseNet(L=40,
k=12) (Huang et al., 2017) architecture, where L is the number of layers, and k is the growth rate.

4.2 BASELINES AND METRICS

As mentioned before, we compare our approach to (Deng et al., 2021) and (Deng & Zheng, 2021).
Additionally, we evaluate a baseline relying on the entropy score, which considers the prediction to
be correct if its entropy is smaller than a certain threshold τ ∈ [0, 1]. In other words, the prediction
ŷ is considered to be correct if H(ŷ) ≤ τ ∗ log(C), where C is the number of classes.

The last selected baselines are ATC (Garg et al., 2022) and COT (Lu et al., 2023). ATC improves the
entropy score-based method by estimating the threshold from the validation set of the source data;
COT employs the Earth Mover’s Distance between labels from the source domain and predictions
from the target domain.
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Table 1: Results on Digits. MAE: Mean Absolute Error.

LeNet MiniVGG
Metric Type USPS SVHN SYNTH MAE ↓ USPS SVHN SYNTH MAE ↓

Ground Truth Accuracy 81.46 41.59 50.66 84.55 38.16 48.38
Entropy Score τ=0.1 A 53.61 1.77 20.19 32.71 47.33 2.05 17.66 34.68
Entropy Score τ=0.3 A 74.04 4.77 34.72 20.05 73.09 5.71 31.69 20.24
ATCval A 69.11 3.89 30.8 23.30 72.70 5.54 31.06 20.60
ATCmeta A 99.25 30.87 86.1 21.34 93.82 18.04 61.46 14.16
FID A 55.2 27.65 52.42 14.04 53.86 29.34 49.77 13.63
COT A 74.14 26.38 54.39 8.76 73.91 31.09 54.54 7.96
Rotation accuracy P 53.01 29.31 31.46 20.09 60.45 29.48 31.43 16.58
Euclidean Distance W 73.44 44.64 51.75 4.06 76.23 37.13 52.83 4.60
Pearson Correlation W 73.65 43.48 52.58 3.87 76.24 31.36 53.12 6.62

Figure 3: Correlation between the classification accuracy of LeNet and various metrics:
P: Performance-based (left), A: Activation-based (middle), W: Weight-based (right, our method).

For a fair comparison, we estimate the ATC threshold from either the validation data (ATCval (Garg
et al., 2022)) or the meta-dataset (ATCmeta). Our experiments show that COTval (Lu et al., 2023)
outperforms COTmeta across all datasets; hence, we omit the latter in our analysis.

For each dataset, we report the true accuracy obtained on the target data, the accuracy predicted by
a performance prediction method, and the mean absolute error (MAE) between these two values,
averaged over the different target sets in each dataset.

4.3 EXPERIMENTAL RESULTS

Results on Digits. Let us start with the discussion of the criteria for assessing the effectiveness
of accuracy prediction. In particular, we discovered that it is not sufficient to evaluate accuracy
prediction based on the correlation between the input metric (performance-based, activation-based,
or weight-based) and the accuracy only within the meta-dataset, as it does not necessarily reflect the
correlation with the target datasets. We illustrate this with the plots in Figure 3.

Specifically, the plots reveal that, within the meta-dataset, the performance-based metric exhibits
the largest correlation with classification accuracy. However, all three target datasets are located far
from the main trend of the meta-dataset. Consequently, the performance of the linear regression
model trained with rotation prediction accuracy as input is unsatisfactory for this setup, with more
than 28% gap between the ground-truth accuracy and the predicted accuracy for the USPS target
dataset, as shown in Table 1.

While the Fréchet distance between activations has a smaller correlation with the classification ac-
curacy within the meta-dataset, it yields more accurate predictions on the target datasets. It is es-
pecially evident when predicting the performance of both LeNet and MiniVGG for SYNTH dataset
(see FID in Table 1). This evidences that there is a trade-off between a high correlation withing the
meta-dataset and generalizing to diverse target domains.

Our proposed weight-based approach satisfies this requirement. As shown in Figure 3, the Euclidean
distance between the weights of pre-trained and fine-tuned models is correlated with the classifica-
tion accuracy not only within the meta-dataset, but also for the target ones. This is also evidenced by
the numbers in Table 1, showing that the predictions produced by our linear regressor for the target
datasets are more precise than those of the other approaches, with only 4.06% average absolute error
for LeNet, and 4.6% for MiniVGG. A similar trend can be observed when using the Pearson correla-
tion to estimate the difference between fine-tuned and pre-trained models; this metric can therefore
be used as an alternative to the Euclidean distance.
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Table 2: Results on COCO. MAE: Mean Absolute Error.

AlexNet ResNet50
Metric Type Caltech Pascal ImageNet MAE ↓ Caltech Pascal ImageNet MAE ↓

Ground Truth Accuracy 86.89 71.87 78.00 94.10 85.92 92.77
Entropy Score (τ = 0.1) A 60.23 50.76 53.0 24.26 60.49 47.33 56.17 36.27
Entropy Score (τ = 0.3) A 81.65 71.55 73.33 3.41 86.75 73.03 80.83 10.73
ATCval A 88.86 79.82 80.67 3.66 90.74 80.23 82.33 6.50
ATCmeta A 89.57 81.18 81.9 4.20 92.25 82.00 84.20 4.77
FID A 57.63 63.97 67.85 15.77 78.12 82.45 85.88 8.77
COT A 58.98 68.30 77.38 10.70 62.60 69.61 85.70 18.11
Rotation accuracy P 100.00 83.48 90.55 12.42 92.40 90.20 90.48 3.16
Euclidean Distance W 87.11 79.0 79.65 3.00 91.55 85.81 93.68 1.19
Pearson Correlation W 84.25 78.31 78.87 3.32 88.70 85.78 89.92 2.79

Figure 4: Correlation between the classification accuracy of AlexNet and various metrics:
P: Performance-based (left), A: Activation-based (middle), W: Weight-based (right, our method).

Results on COCO. Here, we focus on predicting the performance of deeper networks, e.g., AlexNet
and ResNet50, on 3 target datasets: Caltech, Pascal, and ImageNet.

The plots from Figure 4 reveal a similar trend to the Digits dataset for the linear correlation of
the activation- and performance-based metrics within the meta-dataset, which does not necessarily
persist for the target domains. Caltech is the most segregated domain, with both baselines predicting
accuracy with more than a 10% absolute error. Interestingly, the Entropy-Score based method with
τ = 0.3 outperforms the other baselines for AlexNet, yet selecting the right τ is not a trivial task.
For example, the same criterion on ResNet50 produces unsatisfactory results on all target datasets.

Differently from the Digits setup, the ATC-based approach for the COCO setup yields a substantial
improvement over the entropy score-based one and even outperforms FID. Note that both networks
generalize well on the target domains (e.g., the lowest ground-truth accuracy is 71.9% for Digits
vs 38.16% for COCO), which results in more confident predictions, and therefore more precise
entropy-based estimation. However, the ATC performance remains inferior to ours. Finally, we
discover that COT yields poor predictions, with the mean error reaching 18% for ResNet.

Unlike other metrics, our approach generalizes well across all target datasets. Our linear regressor
outperforms the other approaches by a large margin, with an MAE of 3% for AlexNet and 2, 79%
for ResNet. Additionally, our method can successfully predict performance for the Caltech dataset,
where the baseline metrics fail, with an MAE of just 0.21% for AlexNet, and 2.54% for ResNet50.

Results on CIFAR10. We conclude our analysis with experiments on the CIFAR10 dataset. The
resulting prediction accuracies are shown in Table 3. We first note that, for the CIFAR10 setup, the
best fixed entropy score is defined by τ = 0.1, while for the COCO setup, the best prediction was
achieved with τ = 0.3. This observation confirms that the optimal entropy threshold varies depend-
ing on the domain. In comparison, the ATC-based method provides more accurate predictions on
both setups, with just 1.5% MAE for CIFAR10.1.

The other activation-based method FID gives worse accuracy prediction than the entropy-based
methods. Similarly to the previous setups, we observe the issue of the FID for the target dataset
lying away from the main trend of the augmented source datasets. Notably, the last activation-
based method COT provides almost exact performance prediction for the CIFAR10.1 dataset. This
accuracy is attributed to the calibration of the model, facilitated by the resemblance between the
validation set and the target set. However, as was stated by the authors (Lu et al., 2023) and con-
firmed by our experiments in the previous sections, for more complex natural distribution shifts COT
overestimates the error due to the model providing less confident predictions on OOD samples.

8
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Figure 5: Correlation between the classification accuracy of DenseNet and various metrics:
Performance-based (left), Activation-based (middle), Weight-based (right, our method).

CIFAR10, DenseNet
CIFAR10.1 MAE

Ground Truth Acc 88.65
Entropy (τ = 0.1) 85.50 3.25
Entropy (τ = 0.3) 99.55 10.90
ATCval 87.15 1.50
ATCmeta 90.80 2.15
FID 97.55 8.90
COT 88.75 0.10
Rotation 91.43 2.78
Euclidean Distance 89.63 0.98
Pearson Correlation 85.50 3.15

Table 3: Results on CIFAR10.
Figure 6: Sensitivity of our predictor to the target
set size for Digits setup, evaluated on LeNet.

The performance-based approach demonstrates that the linear correlation between the rotation pre-
diction accuracy and the classification accuracy persists for the target dataset, with a resulting accu-
racy estimate achieving 2.78% MAE.

Finally, we show that for the CIFAR10 setup, our weight-based method using the Euclidean distance
outperforms most of the baselines, with less than 1% MAE from the ground-truth. The Pearson
correlation metric, however, does not perform as well to predict the accuracy of CIFAR10.1, due
to its non-linear distribution with respect to the classification accuracy. Across all experiments, we
notice that the Euclidean distance is generally more stable than the Pearson correlation.

Sensitivity to the Target Set Size. Finally, we show that our method scales to scenarios with
limited access to the test data, where only a small number of unlabeled test samples is available for
evaluation. To confirm this, we use the Digits setting with the LeNet backbone. We split the target
datasets of into chunks of size k, with k ∈ [200, 500, 1000], and use our approach to predict the
accuracy for each split.

The barplot in Figure 6 shows that the predicted accuracy for all the target datasets does not sig-
nificantly change when using only 500 samples, with the average MAE over the target datasets
marginally increasing from 4.06% to 4.32%. However, further reducing the dataset size negatively
affects the performance of our method and further increases the MAE to 5.3%. Nevertheless, even
with the smallest sample size of 200, our accuracy predictor outperforms the baselines that use the
complete target datasets.

For a comprehensive ablation analysis on every stage of our pipeline, encompassing the impact of
the unsupervised task, the metric, and the representative layer, we direct the readers to the Appendix.

5 CONCLUSION

In this work, we have tackled the problem of predicting the performance of a network on unlabeled
target data whose distribution differs from that of the source training data. To this end, we have pro-
posed a new weight-based approach that estimates the performance of the network from the degree
of weight changes incurred by fine-tuning the network on the target dataset with an unsupervised
loss. Our extensive experiments have shown that our approach effectively predicts the accuracy
across a variety of domain shifts and network architectures. Note that, as performance-based pre-
dictors, our approach requires fine-tuning on the target data. In the future, we will investigate if this
process can be sped up by restricting the number of iterations or of fine-tuned weights.

9
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Filliat. Latent discriminant deterministic uncertainty. ArXiv, abs/2207.10130, 2022.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International Conference of Machine Learning (ICML), 2015.

Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase Lipton, Behnam Neyshabur, and Hanie
Sedghi. Leveraging unlabeled data to predict out-of-distribution performance. In International
Conference on Learning Representations, ICLR, 2022. URL https://arxiv.org/abs/
2201.04234.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, ICLR.
OpenReview.net, 2018. URL https://openreview.net/forum?id=S1v4N2l0-.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt. Predicting
with confidence on unseen distributions. IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 1114–1124, 2021.

Simon Guiroy, Vikas Verma, and Chris Pal. Towards understanding generalization in gradient-based
meta-learning. ArXiv, abs/1907.07287, 2019. URL https://api.semanticscholar.
org/CorpusID:197430930.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016. doi: 10.1109/CVPR.2016.90.

Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on
noisily labeled data with generalization guarantee. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=Hke3gyHYwH.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely con-
nected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2261–2269, 2017. doi: 10.1109/CVPR.2017.243.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J. Zico Kolter. Assessing generalization of
sgd via disagreement. ArXiv, abs/2106.13799, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure
Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
Wilds: A benchmark of in-the-wild distribution shifts. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 5637–5664. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/koh21a.html.

Simon Kornblith, Ting Chen, Honglak Lee, and Mohammad Norouzi. Why do better loss functions
lead to less transferable features? In NeurIPS, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

11

https://arxiv.org/abs/2201.04234
https://arxiv.org/abs/2201.04234
https://openreview.net/forum?id=S1v4N2l0-
https://api.semanticscholar.org/CorpusID:197430930
https://api.semanticscholar.org/CorpusID:197430930
https://openreview.net/forum?id=Hke3gyHYwH
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


Under review as a conference paper at ICLR 2024

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=UYneFzXSJWh.
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APPENDIX

A UNDERSTANDING WEIGHT DIFFERENCES THROUGH GRADIENTS

In this section, we provide a detailed analysis of weight differences from the perspective of gradients.

We assume the following notations: θ(0) - the weights of the network before fine-tuning, θ(k) - the
weights of the network at step k, S - the number of fine-tuning steps, g(j)i = ▽L(i)(θ(j)) - the
gradient of the unsupervised entropy loss at step i w.r.t. θ(j), H(i)

j = ▽2
θL

(i)(θ(j)) - the Hessian at
step i w.r.t. θ(j), and α- the learning rate.

After one step of gradient descent, the difference between the weights is a gradient at step 0:

θ(0) − θ(1) = α▽θL
(0)(θ(0)) = αg

(0)
0 (3)

After the second gradient descent step, the distance between the weights has an additional gradient
g
(1)
1 , calculated at step 1 w.r.t. the updated weights θ(1) :

θ(0) − θ(2) = αg
(0)
0 + αg

(1)
1 (4)

Following the works of Nichol et al. (2018) and Shi et al. (2022), we can approximate g
(1)
1 using

First-order Taylor series as follows : g(1)1 = g
(1)
0 − αH

(1)
0 g

(0)
0 +O(α2). Plugging it back into 4:

θ(0) − θ(2) = α(g
(0)
0 + g

(1)
0 )− α2H

(1)
0 g

(0)
0 +O(α3) (5)

Since the batches are drawn randomly,

E0,1(H
(1)
0 g

(0)
0 ) =

1

2
E0,1(H

(1)
0 g

(0)
0 +H

(0)
0 g

(1)
0 ) =

1

2
E0,1(▽θ(g

(0)
0 · g(1)0 ))

Plugging it back into 5:

θ(0) − θ(2) = α(g
(0)
0 + g

(1)
0 )− α2

2
▽θ(g

(0)
0 · g(1)0 ) +O(α3) (6)

Here the first term represents the average gradient of the unsupervised entropy loss L. The sec-
ond term contains the dot product between gradients of two batches, which summarizes gradient
alignment and shows the invariance of the learned features for the target dataset.

After k gradient descent steps:

E(θ(0) − θ(k)) = α

S∑
k∈1

g
(k)
0 − α2

S(S − 1)

i ̸=j∑
i,j∈S

▽θ(g
(i)
0 · g(j)0 ) (7)

Therefore, the norm of the difference between original and fine-tuned weights encapsulates both the
extent of the network change (average gradient) and the consistency of this change within the target
dataset (the degree of gradient alignment between batches).

B ABLATION STUDY

In this paper, we propose an approach for estimating the performance of a model on unlabeled target
domains in the presence of domain shift. The main steps of the proposed pipeline are summarized
in Figure 7. We first study the robustness of our method to the size of the target dataset. Next, we
closely examine each step of the proposed pipeline, and explain the choice of the selected methods
and metrics.
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Figure 7: Weight-based performance estimation. We first construct a meta-dataset by augmenting
the validation subset of the source data. The model is then fine-tuned on the meta-dataset with an
unsupervised entropy loss. We compute the difference in weights between the fine-tuned model and
the source pre-trained one. Finally, we train a linear regression model to predict the accuracy of the
meta-dataset from the weight-based distance.

Table 4: Results on Wilds Benchmark. MAE: Mean Absolute Error

Camelyon IWildCam FMoW MAE
Ground Truth Accuracy 72.91 67.69 52.90
Entropy Score (τ = 0.1) 18.39 66.75 27.56 26.94
Entropy Score (τ = 0.3) 53.6 89.1 52.46 13.72

ATCval 84.22 66.03 55.27 5.11
FID 71.22 76.08 57.79 4.92
COT 75.86 56.01 52.59 4.98

Euclidean Distance 74.35 71.57 52.3 1.97

B.1 ADDITIONAL EXPERIMENTS: WILDS BENCHMARK

To address a broaderspectrum of distribution shifts, we incorporate three additional datasets from
the Wilds benchmark (Koh et al., 2021) into our experimental setup, namely Camelyon17 (Bándi
et al., 2019), iWildCam (Beery et al., 2020) and fMoW (Christie et al., 2018).

• The Camelyon17 dataset contains patches from Whole-Slide images (WSI) potentially indicating
metastatic breast cancer. The training set comprises 30 WSIs from three hospitals, while the test
split consists of 10 WSIs from another hospital. The shift in this dataset reflects variations in data
collection and processing between hospitals.

• The iWildCam dataset focuses on domain generalization in wildlife monitoring, utilizing camera
traps to classify 182 animal species in photos from various traps. The shift in this dataset encom-
passes variations in illumination, angle, background, vegetation, color, and animal frequencies
across traps. The division into train and test splits is determined based on the trap locations.

• The fMoW dataset includes satellite images categorized into 62 building or land classes. The sepa-
ration into train and test sets is based on the years the images were taken, with training comprising
images taken before 2012 and testing including images captured after 2016.

The results are presented in Table 4. Note that we omit the results for Rotation Prediction, as it
proves ineffective in realistic shifts. For instance, predicting rotation in WSIs within the Camelyon
dataset is unfeasible. The results show the superiority of our approach over the other baselines and
prove its viability for a diverse range of natural distribution types.
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B.2 SENSITIVITY TO THE TARGET SET SIZE

In this section, we examine the sensitivity of our accuracy predictor to the target size for the
COCO (Lin et al., 2014b) and CIFAR10 (Krizhevsky & Hinton, 2009) target datasets. In com-
parison with the Digits dataset (LeCun et al., 2010), presented in Section 4.7 of the main paper, the
source classifiers of COCO and CIFAR10 generalize better on the target domains, with accuracies
for all the target datasets exceeding 75%.

To create scenarios where only a limited number of target samples is available, we split the target
datasets into batches of size s, and predict the accuracy for each batch. The accuracy prediction
for each target dataset, averaged across all the batches, is displayed in Figure 8. According to the
results, decreasing the size of the target set to 500 samples does not significantly change the accuracy
prediction: for all the target datasets in both setups, the predictions for s ≥ 500 do not vary by more
than 2%. This means that our method is able to accurately estimate the classification performance
for a domain with only 500 samples.

However, further decreasing the size of the target dataset leads to a deterioration of the prediction
accuracy, with an MAE of 5.15% for the COCO target datasets and of 3.63% for CIFAR10.1. We
therefore suggest to use our approach for datasets with at least 500 samples.

Figure 8: Predicted accuracy for target datasets from AlexNet trained on COCO (left) and DenseNet
trained on CIFAR10 (right)

B.3 CHOICE OF THE UNSUPERVISED TASK

In the proposed approach, the unsupervised loss was chosen to be entropy minimization. In this
section, we discuss its advantages over other unsupervised tasks. We first show that the entropy
value is a fair estimator of the model’s accuracy, and without fine-tuning, the entropy value exhibits
a correlation with the performance of the model. Intuitively, the model that is trained on the source
data should be more uncertain on the target data when the domain shift is large, which corresponds
to a large entropy value.

To validate this hypothesis, we perform the following experiment: We first create a meta-dataset by
augmenting the source dataset, similarly to the first step of our proposed approach. Then, we plot
the value of the entropy against the classification accuracy for the meta-dataset and for each target
dataset. The resulting plots for each experimental setup (Digits, COCO and CIFAR10) are summa-
rized in Figure 9 (top). The plots reveal a strong linear correlation between the entropy value and
the classification accuracy within the meta-dataset. Therefore, similarly to the main experiments, a
linear regressor can be trained to predict the performance on the target domains.

The results in Table 5 show that for most target domains, the entropy value is more representative of
the classification performance than the rotation prediction accuracy. Additionally, choosing entropy
minimization exempts us from modifying the training process of the model on the source data. These
results confirm our choice of entropy minimization over rotation prediction.

However, using only the entropy as a base for performance prediction on diverse domains does not
provide satisfactory results, with only 7.64 % MAE for Digits with MiniVGG, and 8.8 % MAE for
COCO with AlexNet. Our weight-based metric yields significantly better results.
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Figure 9: Correlation between the classification accuracy with the entropy (top) and the entropy dif-
ference before and after fine-tuning (bottom) for Digits with MiniVGG (left), COCO with AlexNet
(middle), and CIFAR10 with DenseNet (right).

Table 5: Ablation Study: Metric choice. We report the Absolute Error between the predicted accu-
racy and the ground-truth accuracy. MAE-Mean Absolute Error.

Digits, MiniVGG COCO, AlexNet CIFAR10
USPS SVHN SYNTH MAE ↓ Caltech Pascal ImageNet MAE ↓ CIFAR10.1

Entropy Value 7.26 10.02 5.63 7.64 7.09 11.47 7.83 8.8 3.41
Rotation Prediction 24.24 8.68 16.92 16.61 13.09 11.61 10.97 11.89 2.75
Entropy Difference 13.92 1.77 8.59 8.09 12.68 0.04 2.39 5.04 2.47
Euclidean Distance 8.32 1.03 4.45 4.60 0.22 7.13 1.65 3.00 0.98

B.4 CHOICE OF THE METRIC

To improve the performance of the accuracy predictor, we propose to fine-tune the network with the
selected unsupervised loss, and estimate the domain gap by analyzing the degree of model change.
In our approach, we focus on the difference between the weights of the source model and those of
the fine-tuned model.

An alternative metric to the weight difference might be the entropy difference: seeing that the en-
tropy value before fine-tuning is correlated with the accuracy (as shown in the previous section), it is
natural to assume that after fine-tuning on the target dataset, the degree of the entropy change might
be correlated with the classification performance. In other words, if the entropy difference is small,
it implies that the fine-tuning did not cause significant change in the model predictions.

To validate this, we fine-tune the network for 2 epochs and study the degree of the entropy change
before and after fine-tuning. The experimental results in Figure 9 (bottom) confirm the existence
of a correlation between the entropy difference and the classification accuracy; however, it does
not have the same linear trend as the entropy value. As a result, the linear regressor trained on the
entropy difference, does not provide accurate performance estimates on all target datasets, as shown
in Table 5.

Unlike entropy difference, the weight difference satisfies both desired criteria: it has a linear corre-
lation with the classification accuracy within the meta-dataset; and it exhibits a similar behavior on
the target datasets.
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Table 6: Ablation Study: Layer choice. We report the Absolute Error between the predicted accuracy
and the ground-truth accuracy. MAE-Mean Absolute Error.

Digits, MiniVGG COCO, AlexNet
USPS SVHN SYNTH MAE ↓ Caltech Pascal ImageNet MAE ↓

Euclidean Distance, 1-st layer 8.32 1.03 4.45 4.38 0.22 7.13 1.65 3.00
Euclidean Distance, 2-d layer 8.68 1.69 2.84 4.40 1.93 6.14 1.72 3.26
Euclidean Distance, 3-d layer 10.70 7.54 4.10 7.45 3.16 4.68 15.19 7.68

B.5 CHOICE OF THE LAYER

To conclude our ablation study, we examine the choice of a representative layer, which would best
reflect how the model changes from fine-tuning on the target dataset. Based on our proposed ap-
proach, all the layers of the classification head should be updated during fine-tuning. Then, if the
classification head consists of several layers, one layer is selected for comparison; the final accuracy
is estimated based on the weight change of this representative layer. In this section, we show that
the first few layers of the classification head can be used for representing the model evolution during
fine-tuning.

We select two models from our experimental setup, having more that one layer in their classification
heads: MiniVGG for the Digits dataset and AlexNet for the COCO dataset. The classification head
is first fine-tuned on the target datasets. Then, we separately select each layer as a representative
layer to predict the performance of the source classifier. The results, summarized in Table 6, show
that choosing the first fully-connected layer of the classifier as a representative layer results in better
accuracy prediction for some datasets, e.g., USPS in Digits, and Caltech in COCO, whereas choosing
the second fully-connected layer leads to more accurate predictions on other datasets, e.g., SYNTH
in Digits and Pascal in COCO. However, overall, the Mean Absolute Error across the target datasets
does not significantly vary when choosing the first or the second layer, with 0.02% MAE difference
for Digits and 0.26% MAE difference for COCO. Choosing the last layer, however, results in the
worst performance for both setups, with 7.45 % MAE for Digits and 7.68% for COCO.

Table 7: Ablation Study: Projection Norm vs Entropy Minimization. We report the Absolute Error
between the predicted accuracy and the ground-truth accuracy. MAE-Mean Absolute Error.

Digits, LeNet COCO, AlexNet
USPS SVHN SYNTH MAE ↓ Caltech Pascal ImageNet MAE ↓

Our approach 8.03 3.06 1.09 4.06 0.22 7.13 1.65 3.00
Projection Norm (Yu et al., 2022) 10.35 8.31 6.31 8.32 13.30 15.53 23.90 17.57

Finally, we compare our method to a weight-based approach of Projection Norm (Yu et al., 2022),
applied on analyzing out-of-distribution (OOD) error. Our method deviates from (Yu et al., 2022)
in a sense that our method tackles a more complex task of performance prediction, while the work
of Yu et al. (2022) studies the correlation of their measure with the OOD test error. However, we
can adapt Projection Norm to our problem by adding a meta-dataset creation and training a linear
regression steps. The results, outlined in Table 7, show that Projection norm is inefficient in the
presence of a large domain shifts due to the inaccuracy of generated pseudo-labels and a slow speed
of convergence.

C TRAINING HYPER-PARAMETERS

In this section, we summarize the hyperparameters used in our experiments.

Source training hyper-parameters: LeNet and MiniVGG are trained from scratch on MNIST for
30 epochs, using the Adam optimizer with a learning rate of 0.001.

AlexNet and ResNet50 are pre-trained on ImageNet and fine-tuned on the COCO dataset. AlexNet
is fine-tuned for 30 epochs with the Adam optimizer and a learning rate of 0.001; ResNet50 is
fine-tuned for 50 epochs with SGD with a Nesterov momentum of 0.9 and a learning rate of 0.001.
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DenseNet is trained on CIFAR10 with SGD with a Nesterov momentum of 0.9 and a learning rate
of 0.1. The network is trained from scratch for 200 epochs.

We use Densenet-121 (Huang et al., 2017) for the fMoW and Camelyon17 datasets, and
ResNet50 (He et al., 2016) for the iWildCam dataset, and follow the ERM training procedure from
the WILDs benchmark (Koh et al., 2021) for the main training. We use in-distribution validation
splits as the validation data for each experiment, and out-of-distribution test split for performance
prediction.

Fine-Tuning hyperparameters: During fine-tuning, for all the networks, we use SGD with a Nes-
terov momentum of 0.9, a weight decay of 0.0001 and a batch size of 64. Additionally, LeNet,
MiniVGG and DenseNet are fine-tuned for 2 epochs with a learning rate of 0.01; AlexNet is fine-
tuned with a learning rate of 0.001. For Wilds benchmark, the classifier part of each network is
fine-tuned for 2 epochs, using SGD with lr= 0.0001 for fMoW and iWildCam, and lr= 0.01 for
Camelyon.

Based on the size of target data available, we adapt the subset size l, described in Section 3.3,
as follows: l = 1000 for the Digits dataset, l = 600 for the COCO dataset, and l = 2000 for
CIFAR10. Note that we also provide an ablation study for the sensitivity of our method to the size l
in Section 4.7 of the main paper and in Section 1.1 of the Appendix.

Meta-Dataset Augmentations: As MNIST contains grayscale images, we perform diverse back-
ground changes to generate a wide range of augmentations. Specifically, we create binary masks
from the MNIST samples. We then select a test sample from the COCO dataset, and mine patches
to match the size of the binary masks. Finally, we invert the values of the patches in the location of
the MNIST binary masks. A sample of MNIST augmentations can be found in Figure 10.

For the COCO and CIFAR10 datasets, we use the RandAugment (Cubuk et al., 2020)
automated augmentation strategy. For each sample set, we randomly select an aug-
mentation magnitude and three transformations from the following pool of transfor-
mation types: cutout, auto contrast, contrast, brightness, equalize,
sharpness, solarize, color, posterize, translate x, translate y. A
sample of the described augmentations can be found in Figure 11. Note that RandAugment in-
cludes both geometric and color transformations, and is fully automated. Differently from (Deng &
Zheng, 2021), we do not apply a computationally expensive background replacement on the COCO
dataset. In fact, we show that even with these simple transformations, our approach is able to capture
a variety of domain shifts.
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Figure 10: Meta-Dataset Digits.
Each row represent images from the same Sample Set.

Figure 11: Meta-Dataset COCO.
Each row represent images from the same Sample Set.
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