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ABSTRACT

Deep learning has achieved remarkable success across many domains, but it has also
created a growing demand for interpretability in model predictions. Although many
explainable machine learning methods have been proposed, post-hoc explanations
lack guaranteed fidelity and are sensitive to hyperparameter choices, highlighting
the appeal of inherently interpretable models. For example, linear regression
provides clear feature effects through its coefficients. However, such models
are often outperformed by more complex neural networks (NNs) that usually
lack inherent interpretability. To address this dilemma, we introduce NIMO,
a framework that combines inherent interpretability with the expressive power
of neural networks. Building on the simple linear regression, NIMO is able
to provide flexible and intelligible feature effects. Relevantly, we develop an
optimization method based on parameter elimination, that allows for optimizing
the NN parameters and linear coefficients effectively and efficiently. By relying
on adaptive ridge regression we can easily incorporate sparsity as well. We show
empirically that our model can provide faithful and intelligible feature effects while
maintaining good predictive performance.

1 INTRODUCTION

Over the past decade, neural networks have achieved remarkable success across domains, from
computer vision (Krizhevsky et al.,|2012) to natural language processing (Vaswani et al.,|2017). At the
same time, their deployment in high-stakes domains such as healthcare has created a pressing demand
for interpretability (Esteva et al.l 2017). However, neural networks in general lack interpretability of
the predictions in terms of the input features, hence the term “black-box” models. In contrast, classical
models such as linear regression and decision trees are often considered as highly interpretable
because of their transparent structure and simple decision rules, but they can lack predictive power
on complex, high-dimensional, or highly nonlinear tasks (Hastie et al.,2009; Breiman et al., [2017)).
This tension between accuracy and interpretability has motivated much recent work on models and
methods that combine the expressive power of neural networks with the transparency of simpler
models (Lemhadri et al., [2021; [Thompson et al., [2023; Wu et al., 20175 2021). Meanwhile, many
model-agnostic, post-hoc explainers have been proposed, such as SHAP (Lundberg & Lee}[2017) and
LIME (Ribeiro et al.,|2016)), providing instance-level feature attributions for arbitrary predictors. But
these post-hoc explanations are approximations and may depend on the choices of parameters, such
as the background distribution and kernel width. Among various ways to achieve interpretability,
feature effects (Scholbeck et al.,[2019) provide a direct, quantitative description of how each feature
influences the prediction, something post-hoc methods can approximate but do not guarantee.

We use the term feature effects in a broad sense, referring to how changes in input features influence
model predictions. A common formalization of this idea is through marginal effects (Nguyen, [2020)),
which define feature effects as the direction and magnitude of the change in prediction due to an
infinitesimal change in a feature value. Linear models offer immediately intelligible marginal effects
through their coefficients (Molnar} 2025), but are outperformed by more complex nonlinear models,
particularly neural networks. Unfortunately, these more expressive models typically lose the property
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Figure 1: Comparison of linear models, neural networks, and our method. Linear models offer
straightforward interpretability but limited expressivity while neural networks provide high expres-
sivity but lack interpretability. Our method combines the strengths of both by building on the linear
model and adjusting the global linear coefficients with individual nonlinear corrections.

of providing such inherently intelligible effects. In such models, marginal effects must instead be
obtained by computing derivatives of the fitted function with respect to the inputs, usually through
computationally expensive automatic differentiation (autograd) frameworks (Paszke et al.| 2017).
To bridge this gap, we propose an intrinsically interpretable hybrid model that preserves intelligible
marginal effects while retaining the expressivity of neural networks. Specifically, we start from a
linear model y = 3, x;3;, and adjust each 3; by a multiplicative factor h;, which is the output of a

neural network NN,,; (x) evaluated at the input instance x:
P
Yy = ijﬁjhj(x) with hj(X) ZNNuj (X) . @))
j=1

In Figure[T] we illustrate how the proposed approach retains the high-level structure of a linear model
while integrating per-instance nonlinear corrections through neural networks.

Within this framework, we distinguish between local explanations and global interpretations. Local
explanations describe how changes in a feature influence the prediction for a specific instance, enabled
here by the per-instance corrections 4 ;(x) from the neural network. Global interpretations, in contrast,
summarize the overall influence of a feature across the dataset, which we later formalize through
the marginal effects at the mean (MEM). In our model, these coincide exactly with the global linear
coefficients. To illustrate, consider a medical application where we aim to estimate a patient’s risk
of developing a disease. A local explanation would ask: given this patient’s age, weight, and other
characteristics, how does a small change in age affect their individual risk? A global interpretation
instead asks: if all other variables are held fixed, how does age in general influence disease risk
across the population? For linear models, these two perspectives coincide, but in our framework
they differ due to potential nonlinear feature interactions. Our network is designed so that the model
preserves the classical interpretation of the linear coefficients 3, while simultaneously providing
per-instance corrections through h;(x). This enables us to unify global summaries via MEM with
local explanations at the instance level within a single coherent framework.

Since the network parameters w and the linear coefficients 3 are tightly coupled, jointly optimizing
them is non-trivial. To address this, we develop an optimization method based on parameter elimina-
tion. Specifically, we derive a closed-form expression for the linear coefficients 3 as a function of
the NN parameters w. Substituting this expression back into the objective reduces the problem to
optimizing only over the NN parameters. To further enhance interpretability, we impose sparsity by
formulating the problem as adaptive ridge regression (Grandvalet, |1998)). In the network, we further
apply group /5 regularization (Yuan & Linl, 2006) to the weight matrix of the first fully connected
layer, encouraging feature-level sparsity and clarifying how inputs contribute to predictions.

Overall, the contributions of the present work can be summarized as follows:
* We introduce a nonlinear interpretable model that combines the expressivity of neural net-

works with the interpretability of linear models, providing intelligible global interpretability
via marginal effects at the mean (MEM) and per-instance corrections through the network.
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* We introduce an optimization algorithm via parameter elimination that effectively and
efficiently optimizes the linear coefficients and the neural network parameters .

* We systematically evaluate NIMO on synthetic and real datasets, verifying that it recovers
correct feature effects, achieves accurate per-instance explanations, and offers a favorable
trade-off between interpretability and predictive performance compared to existing methods.

2 RELATED WORK

Interpretability in machine learning. Interpretability refers to the capacity to express what a model
has learned and the factors influencing its outputs in a manner that is clear and understandable
to humans. In the literature, the two terms interpretability and explainability are sometimes used
interchangeably. However, they have subtle yet important differences. Explainability focuses on
providing reasons for the model’s output. Most of the methods, especially in deep learning, provide
post-hoc explanations. The most popular ones include LIME (Ribeiro et al.,|2016)), SHAP (Lundberg
& Leel 2017) and Grad-CAM (Selvaraju et al.,[2020). On the other hand, interpretability focuses on
understanding the inner mechanisms and decision processes of the model, and most of the methods
that claimed to be interpretable involve inherently understandable models, such as decision trees (Wu
et al.| 2017;/2021), Lasso (Tibshirani, |1996) and Explainable Boosting Machines (Lou et al.,[2013).
The literature on interpretable machine learning is vast and we refer readers to |Rudin et al.| (2022)
and [Molnar| (2025) for a more in-depth review.

Linear Models and Input Feature Effects. Coefficients from linear regression models provide
inherently interpretable feature effects, directly quantifying how changes in input features influ-
ence predictions (Nguyen, 2020; [Molnar} 2025)). This transparency makes linear models especially
attractive in domains where interpretability is critical. Regularization methods such as the Lasso (Tib-
shirani, |1996)) further enhance interpretability by selecting the most relevant input features. However,
linear models cannot capture nonlinearities or interactions without complicated feature engineering,
e.g., basis expansion, which limits their ability to reflect complex data-generating processes. This
motivates our approach, which preserves the interpretability of linear coefficients while extending
their expressiveness to capture more complex data patterns.

Hybrid models. Several works have proposed combining linear models with neural networks to
improve interpretability. Neural Additive Models (NAMs) (Agarwal et al.,[2021)) extend generalized
additive models (GAMs) by learning one neural network per feature, whose outputs are summed
to form the prediction. This design preserves interpretability at the feature level but does not
have the ability to capture feature interactions. NODE-GAM (Chang et al.,|2021)) is also a neural
generalized additive model that uses differentiable tree ensembles to learn interpretable univariate
and pairwise shape functions. However, similar to NAM, both of their interpretability comes from
the shape function, which is input dependent, and cannot provide a global population-level summary.
LassoNet (Lemhadri et al.l [2021) integrates a neural network with Lasso regression by enforcing
that a feature can be used in the nonlinear part only if its corresponding linear coefficient is nonzero.
Interpretable Mesomorphic Networks (IMN) (Kadra et al., 2024) use a hypernetwork to predict linear
coefficients on a per-instance basis. While this increases flexibility, it sacrifices global interpretability
of the coefficients, making it difficult to recover clear baseline effects. Interpretable Mixture of
Experts (IME) (Ismail et al.|[2022) routes each sample to an interpretable expert (e.g., a linear model),
ensuring that for that sample the entire decision process is an exact and transparent explanation of
which expert was chosen and why. While IME can maintain high accuracy and provide faithful local
explanations, its global interpretability remains limited. In contrast, our proposed model (NIMO)
preserves the global interpretability of linear coefficients while augmenting them with nonlinear
corrections. This unifies global summaries via MEM with instance-level explanations within a single
coherent framework.

3 PROPOSED APPROACH

3.1 A NONLINEAR INTERPRETABLE MODEL

Model definition Let X € R™*? be n observations with d dimensions and let y € R" be the
targets. In the following, we assume the data X to be standardized, i.e. that each feature has zero mean
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Figure 2: NIMO architecture. The model consists of global linear coefficients 3; modulated by the
individual data point x through h;. In particular, h; depends on x_j, i.e. all features except the j-th.

and unit standard deviation. A linear regression model is simply defined as y = 5y + Z?Zl x;jf;.
In linear models the coefficient 3; can be interpreted as the additive effect of the j-th feature on
the output when all other feature values remain fixed. The idea of our model is to maintain the
intelligible global interpretation at the population level while allowing for local explanations at the
per-instance level. To do so, we define our approach starting from a linear model and multiplying
the linear coefficients 3; by a nonlinear correction term h; that depends on the data point x:

d
F&x)=Bo+ > 2B (1+ gu, (x_5)) st gu,(0)=0, )
=1 _}Lj—/

where x_; is the vector x without the j-th component and g, (-) are d different scalar-valued func-
tions defined by neural networks, each parametrized by u ;. We provide an illustration of the proposed
approach in Figure 2| Due to the specific design of our model, it exhibits the following properties.
First, by explicitly excluding the j-th feature as input of the neural network, i.e. g, (x_;), z; con-
tributes to the prediction only through the linear term 3;, preserving the behavior and interpretation
of the coefficient 3;. Second, as we assume the data is standardized, the mean value of the features
is zero. Therefore, since by construction Ju, (0) = 0, when all other features are fixed at the mean
value (i.e. at zero), the model reduces to a linear model. In other words, the marginal effect of feature
J is exactly f3;, as in a purely linear model. This ensures that the nonlinear correction term does not
alter the global interpretability of the linear coefficients.

Implementation details A naive implementation of Eq. [2| requires d separate neural networks,
which is impractical in high-dimensional settings. To address this, we use a single shared network g,,
and provide it with positional information to distinguish between features. Concretely, we append a
positional encoding of the index j to the masked input vector x_j, where the j-th component of x is
set to zero. This way, g,, can learn feature-specific corrections while reusing parameters across all
features. Finally, to enforce the interpretability constraint ¢,,(0) = 0, we simply subtract the mean
prediction in each forward pass: gy, (X—j) = gu(X—j) — gu(0).

3.2 INTERPRETABILITY VIA MARGINAL EFFECTS

Following Nguyen| (2020), the marginal effect (ME) of feature j at input x is defined as

9f(x)
ME, = , 3
J 833 yi ( )
for any model f(x). By definition, ME; measures the instantaneous change in prediction when
varying x;. However, marginal effects in nonlinear models are not constant, as they depend on the
other input features. One way to summarize them is by computing marginal effects at the mean
(MEM), which estimates marginal effects at the average values of the input features:

“
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Based on the definition, we can compute the marginal effects for NIMO as below:

OGu,; (X—i
ME; = 5]'(1 +guj(x—j)) +sz,&% 7
J

i#]
MEM; = §; .

Note that the mean value of input features x = 0 after standardization. Due to the design of our
model, MEM; coincides with the linear coefficient. In principle, such marginal effects can also be
computed via automatic differentiation for other differentiable models, but these do not necessarily
yield interpretable results. In contrast, for NIMO, the MEMs directly correspond to the linear
coefficients 3, capturing the additive population-level contribution of each feature.

While MEM is widely used as a global effect measure in statistics, it is important to acknowledge its
general limitations, as discussed in|Scholbeck et al.| (2024)). MEM is meaningful and interpretable
in models that include an explicit global linear component, but for highly nonlinear functions the
MEM may fail to reflect the true relevance of individual features. However, NIMO is explicitly
designed to avoid such cases: its architecture explicitly separates a global linear component (captured
by ) from local, per-instance nonlinear adjustments. This structural constraint ensures that the
global linear contribution remains identifiable and stable. Consequently, MEM remains appropriate
and interpretable within NIMO’s model class, even though it may be unsuitable as a universal
feature-importance metric for fully unconstrained nonlinear functions.

3.3 TRAINING VIA PARAMETER ELIMINATION

For illustrative purposes, in this section we provide a high-level description of the optimization
algorithm used to train NIMO. More detailed training procedure can be found in Appendix [B]

Optimization for sparse regression Consider the data X € R™*¢ and targets y € R™. As argued
before, we can model the d networks with one network g,, and represent its outputs in a matrix
Gu = gu(X) € R™*4. The model in Eq. can then be re-written in matrix form as f(X) = B, /3,
where B, = X + X o G, and “o” denotes element-wise multiplication. Let us first consider the
standard ridge regression setting: £(3,u) = |ly — Bu3||*> + A||B||*. To separate the optimization
over (3 and u, we take inspiration from the profile likelihood approach (Venzon & Moolgavkar, |1988;
Murphy & Van der Vaart, 2000). The key idea is to eliminate 3 by first solving for its closed-form
expression in terms of w, and then substituting it back into the objective. This reduces the problem to
an optimization over u only:

rginﬁ(ﬁ,u) — m&nﬁ(,@(u),u), where B(u) = (BLB, + A\I)"'Bly. Q)

We can then efficiently optimize the objective with gradient descent over u only. Furthermore, within
this framework we can incorporate sparsity by replacing the ¢ penalty with the ¢; penalty:

min ||y — BuB|® + A8 . (©6)
B,u

Unlike ridge regression, Lasso does not admit a closed-form solution for 3. To eliminate 3 in this
setting, we use adaptive ridge regression, which admits at each step a closed-form expression for
B in terms of w and is equivalent to Lasso at the optimum (Grandvalet, [1998)); see Appendix
for a detailed proof. This enables us to efficiently optimize the problem using gradient descent
while still enforcing sparsity. The full procedure is summarized in Algorithm I]in the Appendix. A
well-known limitation of Lasso is the over-shrinkage effect, where large coefficients are excessively
penalized (Fan & Li, [2001). In some applications, this can lead to significant bias and degrade
model performance. To mitigate this issue, we can extend the /1 norm regularization to a sub-¢{;
pseudo-norm, which penalizes large coefficients less aggressively while still promoting sparsity. A
detailed introduction to this approach is provided in Appendix

Extension to generalized linear models The same idea can be extended to any generalized linear
model of the form: f(E[Y|x]) = By + Bix1 + -+ + Bpzp = XL 3, where f is a link function.
For simplicity, consider logistic regression with /1 penalty. As before, we first get a closed-form
expression for B in terms of w and then substitute it back to optimize over the neural network
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Toy example: y = 3 - z1(1 + tanh(10z3)) — 3 - z2(1 + sin(—2z1)) +0-z3 + €

Figure 3: Illustrative toy example. Left: NIMO learns the GT coefficients and also finds the correct
sparsity. Middle: the learned nonlinearities coincide with the GT. Right: the first £c layer of the NN
learns the correct sparsity: only features x; and x5 have non-zero weights, while x5 is ignored.

parameters uw. What is different is that in each optimization step we use the iteratively reweighted
least squares (IRLS) surrogate (Green, |1984; McCullagh & Nelder, [1989), which is a weighted
least-squares approximation of the original problem:

min 3[|W"/2(z ~ Bup)|” + MBI - ™

where W;; = o(n;) [1 — o(n;)| and n = B, 3. The so-called working response z is computed as
z=n+W-1 (y — a(n)). Eq. is also a Lasso problem and we can employ adaptive ridge regression

to find a closed form expression for B(w). Then, we substitute 3(w) back and optimize over the
neural networks parameters u via gradient descent. Appendix [B.2)includes a detailed derivation.

3.4 PROOF-OF-CONCEPT: A TOY EXAMPLE

We illustrate NIMO on a simple three-dimensional toy example. The data is generated as:

y=3-x1- (14 tanh(10x2)) + (=3) - 2 - (1 +sin(—2x1)) +0-z3 + €, 8)
where € ~ N(0,0.12) is Gaussian noise. This example involves three features {x1, z2, 3}, but 3 is
inactive since it is multiplied by a zero coefficient. We generate 400 samples and use a 200-100-100
train-validation-test split. As a baseline, we compare against Lasso regression. We further apply
group /{5 regularization to the weight matrix of the first fully connected layer in the neural network
to enhance interpretability. Further implementation details are given in Appendix [C.2] The results
are shown in Figure E[ On the left, we see that the estimated coefficients 3, which also represent
the marginal effects at the mean, learned by NIMO align with the ground truth; in particular, NIMO
correctly identifies 53 = 0, i.e. that x5 is uninformative. In the middle, the nonlinear corrections
gj(x_;) recover the true underlying interactions for both z; and x. This highlights an important
interpretability aspect: while 51 = 3 and 83 = —3 represent the global population-level effects, the
neural network outputs vary across individual inputs, providing per-instance corrections. Therefore,
NIMO not only preserves the global interpretability of the coefficients but also captures the correct
local deviations at the per-instance level. Finally, the right panel shows that neurons connected to x3
in the first fully connected layer are sparse, permitting an additional layer of interpretability: x3 does
not contribute to nonlinear interactions.

4 EXPERIMENTS

In this section, we experimentally evaluate the proposed NIMO, focusing on interpretability through
marginal effects. We first introduce the baseline methods and the experimental protocol used for
comparison. Next, we formulate three hypotheses and present empirical results that examine both the
interpretability and predictive performance of NIMO. Additional results are provided in Appendix [D]

4.1 METHODS AND PROTOCOL

Methods: In this paper, we compare our method against Lasso (Tibshirani, [1996), a vanilla
neural network (NN) (Goodfellow et al.l 2016), and several state of the art interpretable ap-
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proaches, namely LassoNet (Lemhadri et al., [2021)), Neural Additive Models (NAMs) (Agar+
wal et al,, |2021) and Interpretable Mesomorphic Networks (IMNs) (Kadra et al., [2024).
LassoNet encourages the network to use only

a subset of the avgilable input featpres by en- Table 1: MSE loss for synthetic regression settings.
forcing sparsity with a novel objective. NAMs

learn a linear combination of neural networks Method Setting I Setting 2 Setting 3
that each attend to a single input feature. IMNs  (#features) 3) (10) (50)
optimize deep hypernetworks to generate ex- Lasso 3.164 3340 13.122
plainable linear models on a per-instance basis. NN 1.109 1.482 13.718
NAM 3.427 5.126 16.543
Protocol: We conduct experiments on both IMN 0.137 1.188 6.308
synthetic and real datasets to verify the inter-  LassoNet 0.078 2.612 1.738
pretability and performance of our model. For NIMO 0.024 0.197 0.380

synthetic datasets, we create them by explicitly

controlling the linear coefficients and the nonlin-

earities, similarly to Eq.[8] We explore multiple

nonlinearities, different dimensionalities and also use several uninformative features (i.e. with zero
coefficient) to test if we can recover sparse signals. The details about the exact data generating process
are provided in the Appendix [D.2] For real datasets, we choose several popular and well-studied
datasets from UCI Machine Learning Repository ﬂ

4.2 HYPOTHESES AND EXPERIMENT RESULTS

Hypothesis 1: NIMO outperforms other methods on synthetic datasets and remains robust in
low-data regime.

We compare NIMO with the above methods on the synthetic datasets and evaluate predictive perfor-
mance using mean squared error (MSE). The results are presented in Table[T] In each setting, we use
200 samples for training. In this low-data regime, the naive neural network tends to overfit even with
a relatively shallow MLP, while the linear model is too simple to capture the complex underlying
nonlinearities. NAM, which assigns a separate MLP to each feature component, is even more prone to
overfitting than the naive neural network. Overall, the results show that NIMO not only outperforms
the other methods by effectively capturing complex nonlinear feature interactions, but also remains
robust in low-data settings due to the regularization and optimization strategies employed.

Hypothesis 2: NIMO accurately estimates the marginal effects at the mean (MEM), preserving the
additive contribution of each feature at the population-level.

Vanilla regression Setting 1 Setting 2 Setting 3
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Figure 4: Learned 3 coefficients on synthetic regression datasets and comparison with Lasso regres-
sion and Ground truth. Vanilla regression (leff) is purely linear while Settings 1, 2, 3 (right) have
different nonlinearities. Both NIMO and Lasso recover the correct nonzero coefficients (informative
features) but only NIMO recovers the correct sparsity of the zero coefficients (uninformative features).

This experiment evaluates whether NIMO can recover population-level interpretability in terms of
marginal effects at the mean. For the other methods that rely on automatic differentiation, MEM can
certainly be computed, but they do not yield meaningful interpretations. They reduce to arbitrary

"https://archive.ics.uci.edu/datasets
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Figure 6: MEMs for Lasso and NIMO on the diabetes (leff) and Boston housing dataset (right).

numerical values that neither explain the prediction for an instance nor capture population-level effects.
In contrast, the specific structure of NIMO ensures that the marginal effects at the mean coincide
with the linear coefficients, as in the linear models, providing a clear and intelligible interpretation.
Therefore, we restrict the comparison to Lasso only, which directly yields globally interpretable
coefficients. As a sanity check, we first test NIMO on a Vanilla regression dataset with purely linear
coefficients in {—5,—4,...,3,4} and no nonlinearities. This verifies whether the neural network
component of NIMO interferes with the linear part when no nonlinear effects are present. As shown
in Figure [ (left), NIMO perfectly recovers the ground truth coefficients, confirming that the neural
network does not distort the linear coefficients, maintaining the intelligibility of MEM. We then
extend the analysis to three additional regression settings (Setting 1, 2, 3) with varying nonlinearities
and sparsity levels (see Appendix [D.2]for details). Unlike Lasso, NIMO not only recovers the true
coefficients but also correctly identifies the sparsity pattern, i.e., which features are uninformative
(Figure E|, bottom-right). Based on these results, we conclude that NIMO estimates the accurate
marginal effects at the mean and preserves the additive population-level contribution of each feature.

Hypothesis 3: NIMO achieves a favorable trade-off between interpretability and predictive perfor-
mance in practice.

This experiment aims to evaluate whether NIMO can achieve strong predictive performance on real
datasets and how the results can be interpreted. We select several widely used datasets from the
UCI Machine Learning Repository: the diabetes dataset [2004), the Boston housing
dataset (Belsley et al.| [2005)), and the superconductivity dataset 2018)). Each dataset is
randomly shuffled and split multiple times with different seeds (9 seeds for the diabetes dataset and the
Boston housing dataset, 5 seeds for the superconductivity dataset), and the experiments are performed
once on each split using identical model settings. We first examine the predictive performance
of NIMO. The box plot of the mean squared error for each method is shown in Figure 5] NIMO
generally achieves performance compatible with the other methods and attains the best performance
on the superconductivity dataset. To assess interpretability, we first visualize the marginal effects
at the mean (MEM) obtained from Lasso and NIMO for the diabetes and Boston housing datasets
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in Figure[6] Recall that MEM estimates marginal effects at the average values of the input features,
reflecting the additive population-level contribution of each feature. We observe that the MEM
profiles of Lasso and NIMO differ across several features. These differences do not necessarily
imply the presence of nonlinear feature interactions; rather, both datasets contain groups of strongly
correlated predictors, making feature selection inherently unstable. Consequently, Lasso and NIMO
may highlight different features within the same correlated group, even if their predictive roles are
similar. In Appendix we experimentally showcase the degree of nonlinearities in each dataset.
For the superconductivity dataset, which involves a much larger set of features, the corresponding
MEM visualization is provided in the Appendix in Figure |4}

We then use MEM to rank the features on the diabetes and Boston housing datasets. For comparison,
we also apply the post-hoc explainer SHAP (Lundberg & Lee}, |2017) to our model and rank features
according to the global SHAP values. The results are shown in Table[2] On the diabetes dataset, all
methods behave similarly in identifying the most important features, which is expected since the
data lacks complex nonlinear interactions. This is further supported by the comparable predictive
performance across methods, as shown in Figure 5] (leff). Notably, SHAP produces identical feature
rankings to MEM for NIMO. In contrast, for the Boston housing dataset, the methods yield inconsis-
tent feature rankings, suggesting that nonlinear interactions play a crucial role in explaining the data.
Although MEM can also be computed for other nonlinear methods, they do not provide the same level
of intelligible interpretability as our model. For NIMO, SHAP rankings are largely consistent with
MEM, though not perfectly aligned. The most pronounced difference appears with LassoNet, which
assigns high importance to features considered least relevant by other methods, such as INDUS. We
attribute this to how LassoNet handles nonlinearities.

Table 2: Feature rankings according to MEMs on the diabetes and Boston housing datasets. A lower
ranking is associated with a higher feature importance. Features whose rankings are consistently
similar across multiple methods are highlighted in yellow.

Boston Housing Dataset
Diabetes Dataset

Feature SHAP | NIMO LassoNet NAM IMN Lasso
Feature | SHAP | NIMO LassoNet NAM IMN Lasso CRIM 10 9 3 5 8 9
age = = 5 5 9 0 ZN 13 13 10 11 12 8
o 5 5 5 5 5 s INDUS 11 12 2 12 13 13
. CHAS 12 8 5 8 10 11
bmi 1 1 2 2 2 2
NOX 8 11 9 10 9 7
bp 3 3 3 3 3 4
RM 2 2 8 6 1 3
sl 10 10 7 10 8 3
AGE 6 7 6 9 5 12
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4.3 ABLATION STUDY

To verify the effectiveness of masking out the j-th component of an instance when passing it through
the neural network, we conducted an ablation study. Specifically, we examined the effect of masking
out the j-th component as well as the effect of removing position encoding. From the ablation results
across the three settings (Figure[7] Figure[I5] and Figure [I6)), we observe several consistent patterns:

» Without masking the j-th component, the first £ c layer of the neural network can still exhibit
sparsity patterns, but they are less distinct than when masking is applied. We attribute this to
the position encoding, which enables the network to identify the feature index.

» Without masking the j-th component, the MEMs are confounded by nonlinear interactions,
so their interpretation as additive regression coefficients and the meaning of their magnitudes
are lost.

* Further removing the position encoding distorts the sparsity patterns in the first £c layer
and alters the magnitude of the coefficients, undermining interpretability.
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Figure 7: The effect of feature masking and position encoding on the linear coefficients and the
sparsity of the first £c layer on setting 1.

4.4 LIMITATIONS

The proposed approach is designed to preserve the global, population-level interpretability inherited
from linear models while simultaneously learning nonlinear corrections to linear predictions through
neural networks, thereby enhancing the expressive capacity of linear models. Thus, the underlying
assumption is that the data can be well described by adding nonlinear refinements on top of a linear
model. In settings dominated by strong self-interactions or highly nonlinear regimes, NIMO cannot
fully capture the underlying relationships in an interpretable manner. Assume the data-generating
process contains a self-interacting term of the form «; f(x;), where f is a linear or nonlinear function
(e.g. ¥ sin(x) or 2%). To maintain interpretability of the linear coefficients, we imposed the constraint
that g, (x_;) does not depend on x;, which prevents NIMO from learning such self-interacting
nonlinearities.

However, if such a feature is known to play an important role in the dataset, simple feature engineering
can resolve the issue. To experimentally and explicitly illustrate both the limitation of NIMO and a
straightforward remedy, we conduct an ablation study on a synthetic dataset. The data are generated
as

y=a7+25+22 e ©)
Empirically, we demonstrate that naively applying NIMO to this dataset results in poor performance.
However, after applying a polynomial basis expansion of degree 2, NIMO can perfectly solve the
problem while still providing global, population-level interpretability through the linear coefficients
3. More detailed experimental results can be found in Appendix [D.6]

5 CONCLUSIONS

In this paper, we propose a nonlinear interpretable model (NIMO). Unlike other hybrid approaches,
our model preserves the interpretability of linear coefficients, capturing the additive contribution of
each feature to the prediction, while also accommodating nonlinear interactions. Interpretability is
formalized through marginal effects, with the marginal effects at the mean (MEM) providing global,
population-level summaries that align directly with the linear coefficients. To enable effective training,
we introduce an optimization algorithm based on parameter elimination, and enforce sparsity through
adaptive ridge regularization. We demonstrate the effectiveness of the proposed approach on both
synthetic and real datasets, showing competitive predictive performance while delivering meaningful
and globally consistent interpretations.

10
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A EQUIVALENCE OF ADAPTIVE RIDGE REGRESSION AND LASSO

The equivalence in the solution of Adaptive ridge regression and Lasso regression is a well-known
fact (Tibshirani, |1996; |Grandvalet, |1998; (Grandvalet & Canul, |1998)). Since both our model relies on
this fact both in the regression and classification settings, we report its proof below.

Proof. Let X € R™*? be n d-dimensional observations and y € R™ be the targets. In a linear model
the relationship between target and data is assumed to be linear:

y=XB+e¢, (10)
where B € R is the coefficient vector and ¢ ~ A(0,1) is standard Gaussian noise. In Ridge
Regression a penalized version of the objective is minimized:

d
min [ XB-yl3+ A 67 (1)
j=1
where A weighs the penalty term. In Adaptive Ridge regression, instead of a single A, a set of
feature-specific penalties {r;}¢_, are introduced. The objective then reads as
d

d
. 1 d
%?HXﬁny+§:wﬁ sty == (12)

- . v; A ’
=1 =1

where v; > 0 Vj and A is a predefined value. One can solve the above constrained optimization
through the method of Lagrange multipliers:

d d
1

L =|X8 - yl|? ;B2 -, 13
(v.p) = X8 YH+g;V@+uZ;W (13)
where 1 is the Lagrangian multiplier and v := [vy, . .., v4)T. The stationary points can be found by

taking the gradients with respect to v, as follows:

oL(v, _

#:ﬁ,ﬁﬂwﬁzo = Vkﬂizu/yk or Vk|ﬁk\:u1/2 (14)

If we now substitute vg|Bx| = ©'/? in the Adaptive Ridge objective in Eq. we get the Lasso
objective:

d
FBv)=IXB-y?+ > vp?

i=1

d
= XB-yl*+ ZV1‘|51‘| - |Bil
i=1

(15)
d
= XB -yl + > w5

i=1

d
— X8-I+ u 2 Y 8
i=1
which gives the relationship between adaptive ridge regression and Lasso regression, with the Lasso
penalty parameter at optimum to be p'/? = % >k 1Bkl

equation d
wbBi = plve = Zukﬁﬁzzyﬂk qa @%
k k
A A equation A
= MZEZVM%:EZW@WH'WH "= @EZWMHUQ (16)
k k k

A
= u1/2=32|ﬁk|
2
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B TRAINING VIA PARAMETER ELIMINATION

The proposed model in Eq. [2|has two sets of parameters: the linear coefficients 3 and the neural
network parameters u. Since these two sets of parameters are tightly entangled, jointly optimizing
them via gradient descent is not straightforward in practice. Furthermore, to increase the interpretabil-
ity of the model, we also aim to achieve sparsity in the learned coefficients. In this section, we
show how to achieve these optimization goals via parameter elimination. Specifically, we eliminate
3 by expressing it in terms of the neural network parameters « and substituting it back into the
optimization objective. The resulting problem can then be optimized effectively and efficiently using
gradient descent. Sparsity is achieved by reformulating the problem as an adaptive ridge regression.
We further show that this approach can be extended to generalized linear models, and we illustrate it
in detail for logistic regression.

B.1 REGRESSION SETTING: ADAPTIVE RIDGE REGRESSION
We already showed that the proposed model in Eq. 2] can be re-written in matrix form as:
f(X)=BuB with B, =X+ Xo0G, (17)

where 3 € R? are the linear coefficients, G,, € R™*? is the neural network output with inputs
X € R™*? and “o” denotes element-wise multiplication. The linear model part is then expressed as:

y =BuB +e, (18)

where y € R" denotes the targets. Adaptive Ridge regression minimizes the following objective:

| —

d
: d
IglgnBuﬁ—yn? +Y v st Y —= B (19)

i=1 i=1

S

where v; > 0 are the penalty parameters for each coefficient 5;, and A > 0 is a predefined param-
eter. To avoid divergent solutions we use the re-parameterization employed in |Grandvalet| (1998));
Grandvalet & Canu| (1998):

¥i = Wi/ V2B, i = (M) (20)

If we substitute 3; and v; into the Adaptive Ridge regression objective, we get the following opti-
mization problem:

min |y — BuDey[* + AlV|? st > =d, ¢ >0, (21)
ven i=1
where D, is a diagonal matrix whose diagonal elements are given by the vector ¢ := [c1,. .., cq]”.

Applying the parameter elimination trick, if we fix ¢ and u, «y can be expressed in a closed-form in
terms of ¢ and u:

F(e,u) = (DeBL BuDe+ M) DBy, (22)
We can now substitute 4(c¢, u) back into the original problem and take the constraint into consid-
eration. This leads us to a Lagrangian minimization problem in the scaling variable ¢ and neural

network parameters u:

min|ly — BuDe (e u)|> + A(e, w)|? + pllel]®, 3)

where p is the Lagrangian multiplier introduced for ¢, and we can optimize ¢, u together through
gradient descent. The training algorithm for this re-parameterized adaptive ridge regression is
summarized in Alg.
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Algorithm 1 Training of Re-parameterized Adaptive Ridge Regression

Require: Training data X € R"*<, training target y € R™, neural network g, (-), regularization
parameter A and p, learning rate 7, maximum iterations 7'.

1: Initialize network parameters u and scaling coefficients ¢ (with ¢; > 0).
2: fort=1,...,T do
30 By =X+ Xo0Gy, // Compute modified design matrix
4. D, = diag(c) // Form diagonal scaling matrix
5. 4= (DeBIB,De+ M) 'D.BLy // Solve for #
6 ,é:c0’7 // Compute regression coefficients
7. L=y — BuB|? + M| + plel? // Compute loss function
8 c+—c—nV.L, u+u—nV,L // Gradient descent updates
9: end for _
10: Return 3, c,u // Output final parameters

B.2 LOGISTIC REGRESSION: ITERATIVELY REWEIGHTED LEAST SQUARES

The procedure followed in the previous section can be extended to generalized linear models. Here
we showcase how to do it for logistic regression. Logistic regression is a classification model that
describes the probability that a binary outcome y € {0, 1} occurs given a feature vector x € R%:

Py =1x) =o(x"B) (24)

where o(z) = H-% is the sigmoid function. The model can then be trained by minimizing the

negative log-likelihood. Similarly to the regression case discussed in the previous section, we add an
adaptive ridge regression penalty to the objective:

n

d d
L(B) == [yilogo(x] B)+(1—y)log(l—o(x] B)]+ > viB] s.t. Z} f<25>

i=1 j=1 j=1"7

Now we can use the same re-parameterization used in the previous section for regression. We get the
following standard ridge-penalized logistic regression:

min — Z yilogo ((x; @ ¢)") + (1 = y;)log (1 — o ((x; © ¢)"))] + AllvII?

(26)
s.t. Zc? =d, ¢ >0,
Jj=1
where ¢ := [cq, ..., cd]T, © is element-wise multiplication. The same as what we done for regression,

we can eliminate v by expressing it in a closed-form with respect to c¢. To get this closed-form
expression of =y, we use the iteratively reweighted least squares (IRLS) algorithm. The associated
update reads as:

~ () = (XTWOX 4 A1) XTWw®z® 27)

where X is the modified design matrix with entries #;; = c;z;;, W) is a diagonal weight matrix

with entries wgt) = pl(.t) (1-— pgt)) (t) = %(t), and z(® is the the vector of working response
1+e

with entries zz( ) = =gl 4 ¥ i . We then substitute v(**+1)(¢) back into the original problem,

resulting the optimization over c only. Note that in our model, our design matrix X contains the
nonlinear term as well, so we would need to replace X with B, = X + X o G,. The rest goes the
same as the case for regression.
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B.3 EXTENSION TO SUB-{; PSEUDO-NORMS

In some cases sparsity is a crucial aspect in the learning process. One of the limitations of lasso is
the well-known over-shrinkage effect, which means that shrinkage of uninformative features could
be achieved at the expense of shrinking the retained features as well. One way to avoid this is to
use sub-/; pseudo-norms, which in the limits of the ¢y pseudo-norm achieve sparsity without any
shrinkage. The main challenge with sub-¢; pseudo-norm is that the resulting objective function
becomes non-convex and harder to optimize. However, recent work has successfully used sub-¢;
norms as a prior on regression problems (Negri et al., [ 2023)), which is similar to our setting.

We now show how to use a sub-¢; prior in our Adaptive Ridge regression objective, which we report
below for completeness:

d
m1n||XB y||2+ZVZB2 s.t. leg (28)

U
i=1 i=1 A

In order to generalize to sub-¢; pseudo-norms, we need the following simple modification on v;:

1
Z == 0<d<1. (29)
— U
i=1
We now apply the same re-parameterization:
= Wi/ NY28;, = (\v)Y2. (30)
The objective function then reads as
d
min |ly — XDvy|I> + A7|? st Zc?‘s =X\C, ¢>0. (31)
v.e ,

Fixing ¢, we can eliminate « by expressing it in a closed-form in terms of ¢:
4(c) = (DeXTXDe+ M)~ DXTy. (32)

Substituting it back into the original optimization problem and taking the constraint into consideration
lead us to a Lagrangian minimization problem in the scaling variable ¢ only:

min [ly — XDA(e)|* + A5(c)]| +ch (33)
Cc

and we can optimize it through gradient descent.

To verify that this constraint leads sub-¢; pseudo-norm to the original 3, first we reformulate the
original objective with the method of Lagrangian multipliers:

Lv,p) =X - yll”ZmB +uZ i (34)

i=1
Then, we find stationary points for v; by taking the gradients and setting them to zero:
0L, p) _ N Y 1o

152 @ B 612
1 (35)

The penalty in the original adaptive ridge regression can be rewritten as:
d d

> vt = Z (52> Zﬁz(l =), (36)

i=1
Note that when § = 1, we recover the Lasso £; norm. When § — 0, it approaches the ¢ pseudo-norm,
which basically counts the number of nonzero entries.
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C NIMO: IMPLEMENTATION DETAILS

In this section, we provide a detailed introduction to the structure of NIMO, along with the strategies
we used to improve training.

C.1 MODEL DEFINITION

We define NIMO as follow:

d
Fx) =B+ > 2;Bi(1+ gu,(x—;)) st gu,(0)=0. 37)

j=1

The architecture of our model consists of two components, as illustrated in Fig.[2] The left component
is a nonlinear neural network that operates on the input features x_;, where the j-th element has
been masked out. The right component is a linear model, in which coefficients 3; are multiplied by
the corresponding neural network outputs and subsequently summed.

In practice, for each feature component x; of the input vector x, the value is temporarily masked to
form x_;, which is then passed through a neural network g,,,. The output of this network is added
to a constant 1 and multiplied by the original feature value x;, resulting in a rescaled version of the
feature:

Tj=x; (14 gu,(x-;)) (38)
This rescaling can be interpreted as an element-wise modulation of the input features based on
context. The rescaled features are then linearly combined using fixed coefficients 3 to produce the
final prediction:

d
y="0F+> ;B

j=1

C.2 PRACTICAL IMPLEMENTATION

We implement our model with PyTorch Lightning (Falcon & The PyTorch Lightning team, [2019)).
While the model definition is simple, in practice, several strategies are needed to make the training
more efficient and effective.

Positional Encoding In principle each feature x; could have its own dedicated network g., ;, but
this can be computationally expensive for high-dimensional inputs. To reduce overhead, we instead
use a shared neural network g,, across all components. To ensure the network remains aware of which
feature is currently masked out, we append a positional encoding to x_; before passing it through the
shared network. We assign each masked input feature x_; a unique binary vector corresponding to
its index j, represented in fixed-length binary form using |log, d| + 1 bits. This compact encoding
allows the shared neural network to remain index-aware with minimal overhead.

Group Penalty and Noise Injection In the main paper we showed that linear coefficients 3 in
NIMO are interpretable as in a linear model. Even though the neural network contribution is not
interpretable per se, we can still identify relevant nonlinear interactions by means of sparsity. The
idea is to force the first layer of the neural network to be sparse, hence to use only relevant features.
To do so, we apply a group penalty on the weight matrix W € RP*< of the first fully-connected (fc)
layer, where d is the number of input features and p is the hidden dimension of the first £c layer. In
order to obtain sparsity at the input feature level, we need to consider neurons connected to the same
input feature and penalize them as a group:

d
Egroup = /\group Z ||W]||2 , 39)

j=1

where w; = W[:, j] € RP is the weight vector acting on the j-th feature. With this penalty on the
first £ ¢ layer, we encourage it to select only certain input features. However, since an MLP computes
a composition of functions, the subsequent fc layers can still compensate for the sparsity induced
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by the regularization in the first layer. Specifically, even if the first layer produces sparse outputs,
subsequent layers can reweigh and transform these outputs to restore their influence on the final
prediction. To mitigate this compensation effect, we inject noise into the output of the first layer. By
doing so, we disrupt the deterministic signal path, making it harder for the subsequent layers to simply
exploit the resulting weak, regularized, and noisy signal. As a result, the network is encouraged to
focus on strong and robust signals associated with informative input features. This approach works
very well in practice and allows to easily achieve sparsity in the neural network.

Other Details After the second fc layer, a sin activation function is applied to capture potentially
repeating or high-frequency cyclic patterns in the data (Sitzmann et al., 2020). The learning rate
is 1e—3 for synthetic experiments, and 5e-3 for real-world datasets. We choose Adam (Kingma,
2014) as the default optimizer. In all experiments, the lasso and group penalties are selected by
performing a grid search over a predefined set of candidate values.

D EXPERIMENTS

We conduct experiments on both synthetic and real-world datasets. All experiments are conducted on
a workstation equipped with a single user-grade NVIDIA GeForce RTX 5080 GPU. The methods we
compare with are linear model (Lasso for regression, Logistic Regression for classification), a vanilla
neural network (NN) (Goodfellow et al.,[2016), and several state of the art interpretable approaches,
namely LassoNet (Lemhadri et al., 2021, Neural Additive Models (NAMs) (Agarwal et al., 2021)
and Interpretable Mesomorphic Networks (IMNs) (Kadra et al., [2024).

D.1 METHODS IMPLEMENTATION

Linear Model We use scikit-learn (Pedregosa et al.,[2011) to implement the Lasso and Logistic
regression model. More specifically, we use LassoCV and LogisticRegressionCV with
default 5-fold cross validation to select the best model. For LogisticRegressionCV, the /;
penalty is applied.

Neural Network We implement the naive neural network (NN) with PyTorch Lightning (Falcon
& The PyTorch Lightning team, 2019). For a fair comparison, the NN has the same structure as
the nonlinear part in our NIMO model, except no positional encoding. We use Adam (Kingmal
2014) as the default optimizer. The learning rate is 1e—3 for synthetic experiments, and 5e—-3 for
real-world datasets. Strong dropout regularization (p=0. 6) is used to avoid overfitting for small
scale datasets (including synthetic datasets, diabetes and Bostong housing datasets). For the relatively
large superconductivity dataset, small dropout rate (p=0. 1) is used.

LassoNet We use the original implementation of LassoNet from their GitHub repository[| Using
the same API as shown in the LassoNet document, we configure the model to have a structure and
number of parameters comparable to our model. All other hyperparameters are kept at their default
values. The best model is automatically selected along the entire regularization path, as demonstrated
in their paper. The one with the smallest validation loss is chosen.

NAM The official NAM implementation was in Tensorflow. We chose a well-maintained PyTorch
implementation from the GitHub repository ﬂ This implementation provides a scikit-learn style
interface, which can be easily used.

IMN We use the original PyTorch implementation of IMN from their GitHub repository ﬂ All the
arguments are kept at their default values except modifying the data loading logic to fit our datasets.

For all the methods above, we tried our best to make sure that they achieve reasonably good and
consistent performance on all the datasets.

Zhttps://github.com/lasso-net/lassonet
3https://github.com/lemeln/nam
*https://github.com/ArlindKadra/IMN
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D.2 SYNTHETIC EXPERIMENTS: SETUP

We create the synthetic datasets by first sampling the features, and then compute the targets according
to different nonlinear patterns. Random Gaussian noises are added to the targets. The feature values
are sampled uniformly between —2 and 2. For logistic regression, we pass the targets through a
logistic (sigmoid) function to get probabilities between 0 and 1, and then sample the final binary
labels using a Bernoulli distribution with those probabilities. In all the settings, we use 200 training
samples and 100 samples each for validation and test.

Settings for regression All features are indexed starting from 1. € ~ A(0,0.1%) is a Gaussian
noise.

* Setting O (toy example), n = 200,p = 3
y= +3-z1-[1+ tanh(10z2)]
— 3 g [1 + sin(—2z1)] (40)
+e€
e Setting 1,n = 200,p =5
y=+3-21-[14 (20(xex3) — 1))
-2 X2
+ 2- T3
+e€

(41)

* Setting 2, n = 200,p = 10

y= +1-z1-[1+ tanh(xexs + sin(z4))]
+ 2z - [1 + sin(221)]
—1-25- [1 + iarctan(xgm)} *2)
+ €
e Setting 3, n = 200, p = 50

y= —2-x1 - [l + tanh(zozy)]

2
+2-x2q- [1 + —arctan(zy4 — LC5):|
s

+ 324 - [1+ tanh(zz + sin(zs))] )

— 125 [14 (20(x124) — 1)]
+e€

e Setting 4 (vanilla regression), n = 200,p = 10

y=-5bx1—4-22—-3-23—---+0-z¢
+1-27+2 28+ ---+4-2x19 (44)
+ €

Settings for classification In order to create data for synthetic classification we follow a similar
procedure as in the regression cases, where we directly control the linear coefficients and the nonlinear
interactions. The only difference is that we further apply a link function and binarize the output and
get the labels. Note that this way we loose information about the original linear coefficients, which
cannot be recovered exactly anymore. The sparsity in the coefficients still remains crucial. For all the
settings, we generate y first, and then generate labels through the following procedure:

1

—— label ~ Bernoulli(7)
14ev

mw =
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Table 3: Classification accuracy for synthetic classification settings. We compare with logistic
regression, NN and LassoNet. In each setting we use 200 samples.

Features Log. Regr. | NN NIMO LassoNet
Setting 1 3 0.59 0.90  0.92 0.89
Setting 2 10 0.68 0.83 0.85 0.82
Setting 3 50 0.74 0.69 0.84 0.90

* Setting 1, n = 200,p =3
y= 42 -z -[1+ 2tanh(xs)]
— 229 [1 4 3sin(2z1) + tanh(2z)] 45)
+14e€
* Setting 2, n = 200,p = 10

y= +10- 21 - [1 4+ 2 - tanh(2x2) + sin(z4)]
+20- 2o [1+42-cos(2z1)]

—20-x3 - [1+2-arctan(zaz4)] (46)
+ 10 - 24
—10+¢€
 Setting 3, n = 200,p = 50
y= —20-21 - [1+ tanh(xsx4)]

2
+20-x9- |1+ —arctan(zy — xs5)
7r

+ 30 x4 - [1 + tanh(xs + sin(zs))]
— 1025 [1 + (20(z124) — 1))
+e€

(47)

D.3 SYNTHETIC EXPERIMENTS: ADDITIONAL RESULTS

Below, we present additional experimental results for the synthetic settings described above.

Regression As we mentioned in the main paper, we further apply group ¢ regularization to the
weight matrix of the first fully connected (£ c) layer, encouraging feature-level sparsity and clarifying
how inputs contribute to predictions. We provide the details in Appendix Here, we show the
sparse features selected by the neural network in Figure[§] We observe that even though all features
are input to the neural network, only a small subset of features are selected. Moreover, these selected
features align with those involved in the nonlinearity computation in our settings, which demonstrates
the model’s ability to effectively identify and focus on the most relevant features for the task.

Classification Our method can be extended to generalized linear models and here we showcase it for
logistic regression. Also in this case we show various settings for different dimensionality, nonlinear
terms and different number of uninformative features. In Table 3] we report the classification accuracy
on the test set for all methods. Overall, our model significantly outperforms logistic regression
on all settings. When analyzing the learned coefficient, we can see that only NIMO recovers the
correct sparsity patterns. As argued before, this allows to learn the correct nonlinear interactions.
Other nonlinear models and hybrid approaches perform similarly to NIMO but fail to provide the
interpretability of the coefficients as in a linear model.

In classification, the presence of the link function can obscure the underlying signal, so while a linear
decision boundary may suffice, recovering the true generative coefficients is more difficult than in
regression, where the model directly learns to approximate the target surface. Across all settings, the
goal is not to recover the precise magnitudes of the ground truth coefficients, but to accurately identify
their sparsity pattern and directional effects (i.e., signs). We compare the recovered coefficients from
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Figure 8: Sparsity and feature selection in the first £c layer of NIMO for regression settings. Left:
Setting 1. Middle: Setting 2. Right: Setting 3.

logistic regression and our model across three classification settings, as shown in Figure[d] Since
recovering the exact magnitudes of the coefficients is not feasible, we normalize all coefficients,
including the ground truth, by dividing them by the maximum absolute value among the coefficients,
to enable a fair comparison.

Setting 1 Setting 2 Setting 3

1.04 1 1
0.0 1 “ 1 —-
—-0.51 B 1 BN Log. Reg.
s NIMO
4 4 4 mmm Ground Truth
> X > ™ °

Norm.. Coeff. Value

-1.0

@ ¥ % SIS T SR N

Figure 9: Learned coefficients for synthetic classification settings. We compare NIMO and Logistic
regression with the ground truth. Since we use binarized labels it is impossible to retrieve the exact
coefficients. Instead, we compare normalized coefficients, such that the maximum is always 1.

We observe that logistic regression struggles to identify the relevant features and their correct signs.
In contrast, our model generally succeeds in selecting the correct features, and the neural network
component effectively captures sparse but important features that contribute to nonlinearity. It is
worth noting that NIMO also selects some noisy features, especially in Setting 3. However, our
experiments are primarily intended as a proof of concept to demonstrate that our model can be easily
extended to generalized linear models. With careful hyperparameter tuning, NIMO is capable of
selecting more accurate features. The sparse features selected by the neural network are shown in

Figure[10]

D.4 REAL-DATASET EXPERIMENTS

We conduct experiments on three real-world datasets: the diabetes dataset (Efron et al,[2004)), the
Boston housing dataset (Belsley et al.l 2005) and the superconductivity dataset (Hamidieh, [2018).

Each dataset is randomly split into training (60%), validation (20%), and test (20%) sets, repeated
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Figure 10: Sparsity and feature selection in the first £c layer of NIMO for classification settings.
Left: Setting 1. Middle: Setting 2. Right: Setting 3.

over 5 independent runs. For each split, we perform a grid search to select the optimal penalty
parameter based on the validation loss (or validation accuracy for classification tasks). Error bars and
confidence intervals are reported across these different splits. The main results are shown in Figure[3]

Diabetes dataset The diabetes dataset is a classic regression dataset consisting of 442 patients,
each with 10 numeric features, and the target measures disease progression one year after baseline.
As shown in Figurel];fl (left), we observe that all methods achieve similar MSE losses and the neural
network (also the hybird methods) shows no clear advantage on this dataset. Since the diabetes
dataset is commonly used for linear regression tasks, it is not surprising that the data does not exhibit
complex nonlinear interactions among features. We can verify this claim by looking at the weight
sparsity of the first £c layer in NIMO, shown in Figure[TT] (right). Relevantly, NIMO achieves a
significantly sparser solution than Lasso regression, see Figure [IT] (middle). This is particularly
evident by looking at the coefficients associated with the feature “s1”, “s2” and “s4”.

0.65

Method
. Lasso
s NIMO

0.60 03

:H'.i_iﬁi
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apnyubep Jybiam

Test MSE
il
Coefficient Value
°
g
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Lasso NN NAM IMN LassoNetNIMO e o

& r & & & 2 &> & & SFLRSF2 PSS

Figure 11: Diabetes datasets results. Left: MSE loss on test set. All methods achieve comparable
results. Middle: Learned linear coefficients by Lasso and NIMO. NIMO selects sparser coefficients
(“s1, “s2”, “s4”). Right: the first £c layer of NIMO is very sparse; few nonlinearities are relevant.

Boston dataset The Boston housing dataset contains 506 instances, each with 13 features, and
the target is the median value of owner-occupied homes. As shown in Figure[I2](left), our method
performs significantly better than Lasso regression and shows compatible MSE test loss with the other
nonlinear and hybrid approaches. This suggests that nonlinear interactions are crucial to explain the
data. While the other methods are able to capture those nonlinearities, they lack the interpretability
provided by our model. It is important to note that the Boston housing dataset has been criticized
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for containing controversial features El The feature of interest is termed “B”. From the coefficient
plot in Figure [I2](middle), we observe that the significance of the feature “B” is greatly reduced in
our model compared to Lasso regression. This surprising result suggests that the role of the feature
“B” towards the prediction might be irrelevant. Note that the feature “B” is also not relevant for the
nonlinear terms, as shown in Figure (right).
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Figure 12: Boston datasets results. Left: Comparison of MSE losses. NIMO performs on par with
other methods and significantly outperforms Lasso, suggesting nonlinear interactions are crucial.
Middle: Learned linear coefficients by Lasso and NIMO. The two models learn coefficient with a
comparable sparsity. Relevantly, the feature “B” is almost irrelevant for NIMO. Right: sparsity in the
first £c layer of NIMO.

Superconductivity The superconductivity dataset contains 21,263 instances, each with 81 features.
The target is to predict the critical temperature based on the features extracted. In Figure [13] we
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Figure 13: Superconductivity dataset results. Left: Comparison of MSE losses. Right: sparsity in the
first £c layer of NIMO.

observe that NIMO achieves the best performance comparable to general neural network. With
respect to sparsity in the first £c layer, the presence of strong correlations among several of the 81
features makes it challenging to obtain clear sparsity patterns. Nevertheless, certain patterns can still
be discerned (Figure[T3] right). Figure [T4]shows the coefficients for Lasso and NIMO on this dataset.

D.5 ABLATION STUDY OF FEATURE MASKING

To verify the effectiveness of masking out the j-th component of an instance when passing it through
the neural network, we conducted an ablation study. Specifically, we examined the effect of masking
out the j-th component as well as the effect of removing position encoding. From the ablation results
across the three settings (Figure[7} Figure[T5] and Figure[I6)), we observe several consistent patterns:

>https://fairlearn.org/main/user_guide/datasets/boston_housing_data.html
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Figure 14: Coefficients (also MEMs) for Lasso and NIMO on superconductivity dataset.

» Without masking the j-th component, the first £ c layer of the neural network can still exhibit
sparsity patterns, but they are less distinct than when masking is applied. We attribute this to
the position encoding, which enables the network to identify the feature index.

» Without masking the j-th component, the magnitudes of the linear coefficients are distorted,
reducing the interpretability of the marginal effects at the mean (MEM).

* Further removing the position encoding distorts the sparsity patterns in the first £c layer
and substantially alters the magnitude of the linear coefficients, thereby undermining inter-
pretability.

Linear Coefficients

- Wasked W] Pos.Enc.

Figure 15: The effect of feature masking and position encoding on the linear coefficients and the
sparsity of the first f£c layer on setting 2.

Linear Coefficients of the First 10 Features

Figure 16: The effect of feature masking and position encoding on the linear coefficients and the
sparsity of the first £c layer on setting 3. Coefficients are displayed for the first 10 features.

D.6 LIMITATIONS OF NIMO

To clearly and explicitly illustrate the limitations of our model, we conduct an additional set of
ablation studies in this subsection. As discussed above, due to its architectural constraints, NIMO is
not able to capture datasets with strong nonlinearity or purely self-interacting features. To demonstrate
this, we create the following synthetic dataset:

yzm%—&—x%—i—x%—i—e, (48)

where the feature values are sampled uniformly from [—2, 2] and € ~ A/(0, 1) is a Gaussian noise. We
compare the predictive performance of Lasso, NIMO, and LassoNet in Table[d] As expected, NIMO
performs similarly poor to Lasso, while LassoNet is still able to model this dataset effectively. From
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Figure [T7] (left), we observe that the coefficients learned by NIMO closely resemble those of Lasso,
and NIMO effectively learns only a constant intercept 3. In addition, we plot the weight matrix of
the first £c layer of the neural network and observe that all weights are close to zero. This further
confirms that, in this setting, NIMO reduces to a purely linear model without contributing additional
nonlinear modeling capacity. This outcome is fully consistent with our expectations and illustrates a
known limitation of NIMO: it cannot recover self-nonlinearities such as 2 due to its interpretability-
preserving architectural design. Although LassoNet is able to model this type of nonlinearity, it does
not offer the same ability as NIMO or linear models to provide global, population-level interpretability
through stable and directly interpretable learned coefficients.

Table 4: Predictive performance on the synthetic self-interaction dataset. NIMO performs similarly
to Lasso in the original feature space but succeeds after basis expansion, where quadratic terms are
explicitly included.

Method Original Basis Expansion
(#features) 3) )]

Lasso 5.307 1.009
LassoNet 1.027 1.012

NIMO 5.340 1.009
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Figure 17: Learned coefficients and first-layer weights on the self-interaction dataset. (Left) In the
original feature space, NIMO collapses to a constant model, matching Lasso. (Right) With basis
expansion, NIMO recovers the quadratic effects.

However, if we know or suspect that certain feature interactions play a role in the dataset,
we can model them explicitly through feature engineering. In this experiment, we apply a
second-order polynomial basis expansion, transforming the original feature space [z, 22, x3] into
[#1, ¥a, 23, T3, X122, T123, T3, Tow3, ¥3). From Table we can see that after basis expansion,
both NIMO and Lasso achieve performance comparable to LassoNet. In Figure[T7] (right), NIMO
also correctly recovers the linear coefficients associated with the quadratic terms w%, x%, and x%,
demonstrating that NIMO can model self-nonlinearities once they are explicitly included in the
feature representation. In summary, while NIMO cannot capture self-interactions in the raw feature
space due to its interpretability-preserving architecture, simple basis expansions allow it to model
such nonlinearities effectively while retaining global interpretability.

D.7 LOCAL EXPLANATIONS

NIMO provides intelligible global interpretability through the marginal effects at the mean (MEM)
and per-instance adjustments via the correction networks. In the sections above, we have demonstrated
the effectiveness of NIMO’s global interpretation. Here, we briefly showcase its ability to provide
meaningful local, per-instance explanations.

Local Explanation on Synthetic Dataset. For local explanations, NIMO defines a local coefficient

for each feature,
5j(x) = B (1 + gu, (x-;)), (49)

which represents how the global effect §; is modulated by the specific input context. Based on this,
we compute the local contribution
¢j(%) =z 55(x) (50)
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for each feature at each instance. The scatter plots in Figure[I8]compare the ground-truth contribution
term for feature j with NIMO’s estimated local contribution ¢;(x) for synthetic setting 1. In this
setting, the dataset contains five features, but only the first three have nonzero linear coefficients in
the data-generating process. As shown in the figure, the first three features exhibit scatter points that
align closely with the identity line, while the remaining two features produce scatter distributions
centered near the origin. These results indicate that NIMO’s local explanations faithfully capture the
underlying structure of the data.

True vs Learned Effect 0 True vs Learned Effect 1 True vs Learned Effect 2 True vs Learned Effect 3 True vs Learned Effect 4
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Figure 18: Local explanations for each feature on the synthetic setting 1.

Local Explanation on Real Dataset. For real datasets, where ground-truth local contributions are
unavailable, we compare NIMO’s local contributions c; (x) with SHAP values. As shown in Figure
the scatter plots for most features align closely with the identity line, indicating that NIMO’s local
explanations are consistent with widely used post-hoc explanation tools while remaining intrinsic to
the model. Due to the sparsity constraint, some coefficients learned by NIMO are exactly zero, which
forces the corresponding local contributions to be zero as well. In such cases, the scatter plot reflects
this behavior clearly. For example, the local contributions for the feature NOX collapse to zero for all
instances.
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Figure 19: Local explanations for each feature on the Boston housing dataset.

D.8 COMPARISON OF THE DEGREE OF NONLINEARITY

In the main paper (Sec.[d] Figure[5)), we observed a substantial difference in predictive performance
between the Diabetes and Boston Housing datasets, and attributed this phenomena to the relatively
low level of nonlinearity present in the Diabetes dataset. To experimentally and quantitatively verify
this claim, we compute the absolute magnitude of the nonlinear correction for each feature,

nj(x) = [1+ gu, (x—;)|, (51)

and then average these values over all test samples for each feature. Figure 20 shows the resulting
mean nonlinearity levels for both datasets. The Boston Housing dataset exhibits noticeably larger
deviations from 1 across many features, indicating stronger nonlinear interactions. In contrast, the
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Diabetes dataset shows values much closer to 1 for all features, confirming that its underlying structure
is primarily linear. These results support our interpretation of the performance differences observed
in the main experiments.
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Figure 20: Comparison of the degree of nonlinearity in the Diabetes and Boston Housing datasets.

D.9 ABLATION STUDY OF THE SPARSE PENALTY ON THE FIRST FC LAYER

To verify whether applying the group penalty to the first £c layer of the neural network is beneficial,
we conduct an ablation study on the synthetic dataset (setting 1). From Figure 21] we can see that
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Figure 21: Ablation study of the group penalty on the first £c layer.

removing the group penalty on the first £c layer leads to worse final performance. Furthermore,
comparing the learned coefficients shows that they deviate more from the ground truth. Inspecting
the weight matrix of the first £c layer, we also observe that the neural network begins to use the
two redundant features, feature3 and feature4, even though they were not used in the data
generation process for setting 1 (see[D.2).

D.10 EXTRA RESULTS ON PMLB BENCHMARK

We conduct a more extensive evaluation of prediction performance using the PMLB benchmark [Ro{
mano et al.|(2021). We filter out datasets that were either too small (less than 1,000) or too large
(more than 16,000), resulting in a total of 10 regression datasets. For each dataset, we compare the
performance of Lasso, LassoNet, a standard Neural Network, and NIMO. Hyperparameters for all
models are selected via grid search. The results are presented in Figure 22]

As discussed in the limitations of NIMO (Sec. [D.6), some datasets require additional feature engi-
neering for NIMO to perform well. Within the PMLB benchmark, we indeed identified such a case.
The 225_puma8NH dataset cannot be well fitted by NIMO directly (yielding an MSE of around 0.4).
However, after applying a polynomial basis expansion, NIMO achieves performance comparable to
LassoNet and Neural Networks.
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Figure 22: Comparison of prediction performance on PMLB.
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