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Abstract—We introduce the Multi-Object Photoreal Simula-
tion (MOPS) dataset, addressing the lack of computer vision
datasets specifically designed for robot manipulation. MOPS pro-
vides photorealistic simulated environments with comprehensive
ground truth annotations, using a zero-shot asset augmentation
pipeline based on large language models. This pipeline annotates
3D assets at the part level and normalizes assets across libraries.
The dataset delivers pixel-level segmentation for critical robotics
tasks including part segmentation and affordance prediction. By
combining detailed annotations with photorealistic simulation,
MOPS generates diverse indoor scenes to accelerate progress in
robot perception, manipulation, and interaction with real-world
environments. The dataset and generation framework will be
made publicly available.

I. INTRODUCTION

Machine learning methods in computer vision rely on task-

specific datasets spanning various applications from affordance

segmentation [16], 3D Part Segmentation [3], Scene Graph

Generation (SGG) [29], to 6D pose estimation [26]. While

these datasets have driven significant advancements, they pre-

dominantly feature static scenes without temporal interaction

sequences. Additionally, the robotics domain remains critically

underrepresented despite embodied agents requiring robust

environmental perception for effective autonomous operation.

Ideally, datasets for learning vision for robotic manipulation

should fulfill several key requirements:

REQ OBJ: Manipulation relevant Objects: Common

household items found in living spaces.

REQ ANN: Manipulation relevant Annotations: High-

resolution labels including part information, affordance labels

6D poses.

REQ REP: Manipulation relevant Representations: Be-

yond images, incorporating other scene representations such

as pointclouds or scene graphs.

REQ ENV: Manipulation relevant and realistic Envi-

ronments: Photorealistic rendering or real-world setups with

natural clutter, beyond controlled laboratory conditions.

REQ INT: Manipulation relevant Interactions: Capturing

agent-agent, agent-object and object-object interactions over

time, ideally supporting direct policy evaluation.

We propose a new dataset generation framework with pixel-

level ground truth for Multi-Objective Photoreal Simulation

(MOPS) addresses all of these requirements, unlike existing

datasets which satisfy only partial subsets (see Table I). The

Zero Shot

Annotations

Zero Shot Asset

Normalization

Simulator: ManiSkill3

MOPS

Fig. 1: MOPS provides labeled, realistic data for robotics and

vision tasks through Large Language Models-enabled zero-

shot annotation and normalization of 3D assets, which are then

used to create new indoor scenarios for data collection.

MOPS dataset generator bridges the gap between interactive

robotics datasets and high-quality vision annotations. MOPS

uses assets from PartNet-Mobility [25] and RoboCasa [17] to

create scenes with articulated household objects (REQ OBJ) in

photorealistically rendered scenes (REQ ENV). MOPS lever-

ages a zero-shot asset augmentation pipeline built on GPT-4o

[18] to normalize assets, and to provide manipulation relevant

annotations such as affordances (REQ ANN). MOPS provides

pixel-level ground truth for class, part and instance segmenta-

tions alongside affordance labels (see Figure 2), geometric in-

formation (normal maps, 6D poses), multiple sensor modalities

(RGB-D, pointclouds) and can generate scene graphs (REQ

REP) with an LLM on demand. MOPS uses the Maniskill3

[22] simulator to enable dynamic, interactive scenes suitable

for evaluating learned robot behavior or recording teleoperated

demonstrations (REQ INT) - making it valuable for both vision

and robotics communities.



Dataset Objects Annotations Representations Environment Interaction Robot Trajectories

Vision Datasets

CUB-200-2011 [23] P* R

CityScapes [4] S+I R

SemanticKITTI [2] S+I R+D+M

Visual Genome [12] A R+G

PSG [27] S+A R+S+G

ScanNet++ [28] ✓ S+I R+D+M ✓

HyperSim [20] ✓ S+I R+D+M ✓

RGB-D Part Aff. [16] ✓ A R+D

3D AffordanceNet [5] ✓ A M

PartNet-Mobility [25] ✓ P M

Robotics Datasets

Open-X [19] ✓ R+D ✓ ✓

DROID [10] ✓ R+D ✓ ✓

AI2-THOR [11] ✓ S+I R+D+M ✓ ✓

OmniGibson [13] ✓ S+I R+D+M ✓ ✓

RoboCasa [17] ✓ S+I R+D+M ✓ ✓ ✓

MOPS (Ours) ✓ S+I+P+A R+D+M+G ✓ ✓ (✓)

TABLE I: Comparison of different computer vision and robotics datasets and their relevance to robot manipulation.

S: Semantic Segmentation, I: Instance Segmentation, P: Part Segmentation, P*: Part Center Points, A: Affordance Segmentation,

R: RGB, D: Depth, M: 3D Meshes or Pointclouds, G: Scene Graphs. MOPS is compatible with demonstrations by RoboCasa,

but does not provide new robot trajectories.

II. RELATED WORK

Vision Datasets: The computer vision community has

developed specialized datasets for tasks like image classifica-

tion (CUB-200-2011 [23]), semantic segmentation (Cityscapes

[4], SemanticKITTI [2]), and scene graph generation (Visual

Genome (VG) [12], Panoptic Scene Graphs (PSG) [27]).

However, these datasets are less relevant to robot manipulation

(REQ OBJ). Indoor scene datasets like ScanNet++ [28] and

Hypersim [20] provide RGB-D data with semantic annotations

but lack affordances and 6D poses (REQ ANN). The RGB-

D Part Affordance dataset [16] offers affordance annotations

but lacks environmental realism (REQ ENV) and interactivity

(REQ INT). Our MOPS dataset addresses these issues by

providing procedural, synthetic scenes of cluttered indoor en-

vironments with multiple, pixel-wise ground truth annotations.

3D Datasets: Datasets with 3D models could be used

for creating an interactive simulation. 3D AffordanceNet [5]

provides 3D point clouds with affordance labels (REQ OBJ&

REQ ANN) but lacks material information for photorealistic

rendering (REQ ENV). PartNet-Mobility [25] includes material

information and articulation but lacks affordances. A critical

limitation of these 3D assets is that they are not modeled to a

common reference scale, appearing disproportionate relative to

robotic manipulators. We propose a zero-shot asset augmenta-

tion pipeline based on an LLM to enrich the PartNet-Mobility

assets with affordance annotations and realistic scale ranges

(where 1.0 simulation units equal 1.0 meters) to prepare them

for simulation in ManiSkill3 [22].

Robotics Datasets: Real-world robotics datasets like Open

X-Embodiment [19] and DROID [10] pair sensor inputs with

robot trajectories but exhibit inconsistent data quality and

prohibitive scaling costs. Simulation frameworks like AI2-

THOR [11], OmniGibson [13], and RoboCasa [17] provide

photorealistic environments (REQ ENV) with advanced physics

capabilities. While generative frameworks such as RoboGen

[24] and Genesis [1] generate diverse scenes, they are lim-

ited in generating cluttered environments. Despite simulated

datasets offering ground truth annotations (REQ ANN) and

multiple representations (REQ REP), they generally lack com-

prehensive pixel-wise annotations for affordances, semantic

concepts, and scene graphs.

Our MOPS dataset addresses these limitations by combining

RoboCasa’s scene variety with zero-shot augmented assets

from PartNet-Mobility, providing unlimited realistic scenes

with pixel-wise ground truth annotations (including affor-

dances) in cluttered environments across multiple representa-

tions. Built on ManiSkill3 [22], MOPS improves visual quality

and generation speed through raytracing and GPU paralleliza-

tion. Table I compares current datasets against manipulation-

relevant dataset requirements.
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Fig. 2: MOPS provides multiple, pixelwise ground truth maps in addition to RGB-D perception.

III. ZERO-SHOT 3D ASSET AUGMENTATION

MOPS creates photorealistic indoor environments for robot

manipulation (REQ ENV) using the ManiSkill3 [22] simulator

and renderer. To populate the scenes with realistic and interac-

tive objects (REQ OBJ) MOPS uses 3D assets from RoboCasa

[17] and PartNet-Mobility [25]. However, these assets require

augmentation to address two key issues: inconsistent reference

scales that compromise realism, and the need for affordance

annotations to generate pixel-wise ground truth masks. MOPS

resolves both challenges through a zero-shot augmentation

pipeline powered by GPT-4o [18].

A. Zero-Shot Asset Normalization (REQ OBJ)

Most 3D assets, even from a singular collection like Partnet-

Mobility [25], are not modeled on the same reference scale,

thus creating unrealistic size relationships between objects

or with simulated robots (see Figure 3). We address this

through zero-shot asset normalization. First we confirm the

simulations reference scale of 1.0 simulation units equaling 1.0

meters by verifying the Franka Emika 7-DoF arm’s Denavit-

Hartenberg parameters [6]. For each PartNet-Mobility asset

(which includes XYZ-bounding boxes and category labels),

we leverage GPT-4o’s common-sense knowledge to obtain

realistic minimum and maximum Width × Height × Depth

dimensions. Since asset orientation is unknown, we calculate

scaling factors by dividing the largest bounding box dimension

by the largest WHD dimension. When loading assets, we ran-

domly sample from a uniform distribution within the realistic

range, increasing object variety.

B. Zero-Shot Affordance Annotation (REQ ANN)

MOPS again leverages LLM common-sense reasoning to

generate multi-label affordances at both part and object lev-

els. GPT-4o outputs affordance lists for each object and, if

available, object part (see Figure 3). To improve label quality,

we cluster the affordance lists using sentence embeddings to

eliminate duplicates (e.g., closable / close) and align semantic

clusters (e.g., heatable / warmup-able). While future work

could extend this to region-level affordances similar to the

manually labeled 3D AffordanceNet [5], our zero-shot anno-

tation approach already significantly reduces human labeling

efforts while also providing one of the largest affordance

datasets with a total of 56 affordance labels for 23,048 3D parts

of 2,346 objects across 46 object categories (PartNet-Mobility

[25]) and additional object level annotations for 1,008 objects

from 101 categories (RoboCasa [17]).

Fig. 3: MOPS uses an LLM to generate part-level and object-

level affordances for 3D assets. The assets are not normalized

in scale for better visibility.

IV. MOPS DATASET GENERATION

MOPS generates virtually unlimited simulation scenes by

combining RoboCasa’s 120 realistic indoor environments with

2,300 PartNet-Mobility articulated objects and zero-shot asset

augmentations. To increase the relevance for robot manipula-

tion, MOPS provides the following technical enhancements.

A. MOPS Ground Truth Masks (REQ ANN)

MOPS provides multiple scene representations for robot

manipulation vision tasks. Various camera positions include



birdseye views for SLAM reconstruction. External over-the-

shoulder, ego, and in-hand cameras mimick typical robot

setups. The virtual cameras deliver standard image modalities:

raytraced RGB for realism or rasterized rendering for speed,

depth images in millimeters for RGB-D inputs or depth estima-

tion training, surface normal maps and part-level segmentation.

Additional ground truth includes 6D object poses, instance

and semantic segmentation masks (generated via look-up

tables populated during scene creation), and pixel-perfect

affordance annotations derived from the zero-shot asset aug-

mentation pipeline. Figure 2 presents the different camera

modalities from an ego camera in a RoboCasa scene.

B. MOPS Extended Representations (REQ REP)

MOPS generates scene graphs on demand via LLM queries,

leveraging pixel-wise affordance annotations and object data.

The ManiSkill3 simulation also creates point clouds by

merging multi-camera 2.5D images. Camera parameters and

lighting configurations are fully customizable. The SAPIEN

renderer in ManiSkill3 provides realistic stereo depth sensors

with active IR lighting and simulated noise [21]. Though not

yet available in the current ManiSkill3 release1, integrating

these sensors into MOPS will be straightforward based on

experience with ManiSkill2.

C. MOPS Realistic Environments (REQ ENV)

MOPS generates a vision dataset of realistic environments

relevant to robot manipulation using RoboCasa assets and

ManiSkill3’s photorealistic raytraced rendering. To create clut-

tered scenes with object overlap and distractors (see Figure 4),

MOPS procedurally places augmented PartNet-Mobility assets

in kitchen scenes by: (1) identifying countertop locations,

(2) computing available space from collision mesh bound-

ing boxes, and (3) randomly positioning objects within this

space. While more heuristic than trained approaches such as

ClutterGen [8], this method can be easily applied to novel

environments without requiring any training.

1ManiSkill v3.0.0b20, retrieved 2025-04-28 from GitHub, Commit 256343

Fig. 4: A RoboCasa kitchen filled with PartNet-Mobility

clutter.

D. Interactive Simulation (REQ INT)

MOPS leverages the ManiSkill3 simulation to provide full

interactivity for testing robot policies. New demonstrations can

be recorded using a teleoperation interfaces based on key-

board and mouse, or rudimentary tracking of VR controllers

using the Meta Quest 3 (see Figure 5). To further increase

compatibility with the existing RoboCasa demonstrations, we

added the same augmentations to the RoboSuite / MuJoCo

Simulation underlying RoboCasa [17].

Fig. 5: MOPS offers mouse-and-keyboard and a simple VR

controller teleoperation interface. The semitransparent robot

arm indicates to the user the new target position.

V. CONCLUSION

We introduce MOPS, a dataset generation pipeline for

robot vision learning that provides photorealistic renderings of

household objects with comprehensive pixel-level annotations

for robotics-relevant tasks (segmentation, affordances, 6D

poses). By combining PartNet-Mobility and RoboCasa assets,

MOPS generates cluttered objects in realistic kitchen scenes

with full ManiSkill3 interaction capabilities. This combination

of high-quality visual data and rich annotations bridges the gap

between computer vision datasets and robotics requirements.

Our zero-shot asset augmentation pipeline leverages GPT-

4o to create one of the most diverse affordance datasets

(50+ labels across 100+ object categories), easily extendable

to new assets or semantic labels. This automated approach

significantly reduces the manual annotation burden typically

associated with creating robotics-relevant datasets, enabling

rapid scaling to new domains and tasks.

Limitations. MOPS inherits ManiSkill3’s constraints, no-

tably the inability to use raytraced rendering with GPU par-

allelization. Future work could adapt MOPS to frameworks

like Isaac Lab [14], Genesis [1] or RoboVerse [7] for further

improved rendering and parallelization.

Future Work. Extending our augmentation pipeline to

generate materials and textures would enable utilization of

additinal asset libraries such as PartNet [15] and ShapeNet

[3]. Additionally, future work will explore full teleoperation

interfaces like IRIS [9] for recording new robot trajectories in

AR/VR.
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APPENDIX: EXAMPLE SINGLE OBJECT IMAGES

Figure 6 shows example observations from the single object configuration, which mimics single object datasets with uniform

backgrounds like RGB-D Part Affordance [16].

Fig. 6: Single Object images. From Left to Right: RGB Image, Normal Map, Depth Image, Part Segmentation, Affordance

Segmentation. Please note that the colors for Affordance Segmentation visualizaton only provide contrast and do not share

meaning across images.



APPENDIX: EXAMPLE TABLETOP CLUTTER IMAGES

Figure 7 shows example observations from randomly generated, cluttered tabletop scenes. These images show interactive

scenes including the robot base, ready for learning robot behavior. For a purely vision-based dataset, the environment geometry

with table, floor, robot and background could be easily disabled.

Fig. 7: Cluttered Tabletop. From Left to Right: RGB Image, Normal Map, Depth Image, Part Segmentation, Class Segmentation,

Affordance Segmentation. Please note that the colors for segmentation visualizations only provide contrast and do not share

meaning across images. The depth images lack visual detail in this illustration, due to the floor in the background going towards

infinity.



APPENDIX: EXAMPLE CLUTTERED KITCHEN IMAGES

Figure 8 shows example observations from the cluttered RoboCasa kitchen configuration.

Fig. 8: RoboCasa Kitchens with clutter. From Left to Right: RGB Image, Normal Map, Depth Image, Class Segmentation,

Affordance Segmentation. Please note that the colors for Affordance Segmentation visualizaton only provide contrast and do

not share meaning across images.
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