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ABSTRACT

Reversible architectures have been shown to be capable of performing on par with
their non-reversible architectures, being applied in deep learning for memory sav-
ings and generative modeling. In this work, we show how reversible architectures
can solve challenges in parallelizing deep model training. We introduce PETRA, a
novel alternative to backpropagation for parallelizing gradient computations. PE-
TRA facilitates effective model parallelism by enabling stages (i.e., a set of layers)
to compute independently on different devices, while only needing to communi-
cate activations and gradients between each other. By decoupling the forward
and backward passes and keeping a single updated version of the parameters, the
need for weight stashing is also removed. We develop a custom autograd-like
training framework for PETRA, and we demonstrate its effectiveness on CIFAR-
10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to
backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.

1 INTRODUCTION

First-order methods using stochastic gradients computed via backpropagation on mini-batches are
the de-facto standard for computing parameter updates in Deep Neural Networks (LeCun et al.,
2015). As datasets and models continue to grow (Alabdulmohsin et al., 2022) there is an urgent need
for memory-efficient and scalable parallelization of deep learning training across multiple workers.
Data parallelism via mini-batches (LeCun et al., 2015) has been widely adopted in deep learning
frameworks (Li et al., 2020). This approach computes gradients across model replicas distributed
among workers, yet it requires frequent synchronization to aggregate gradients, leading to high com-
munication costs, as well as substantial memory redundancy. Furthermore, with the increasing size
and scale of models exceeding that of the growth of on-device memory, the forward and backward
passes now often exceed a single device’s memory capacity (Ren et al., 2021). To further address
these issues, methods have attempted to mitigate this memory overhead and to parallelize the sequen-
tial backpropagation steps themselves across devices, while computing exact gradients. Techniques
like optimizer sharding (Rajbhandari et al., 2020), tensor parallelism (Shoeybi et al., 2019), activa-
tion checkpointing (Chen et al., 2016), or pipelining (Huang et al., 2019), have been deployed indi-
vidually or combined, leading for instance to the development of 3D parallelism (Smith et al., 2022),
a popular methodology which improves the efficiency of the backpropagation implementation. On
the other hand, the fundamental inefficiency underlying the parallelization of backpropagation has
not been addressed by these methods.

However, the use of exact gradient restricts algorithmic choices and parallel implementations, as
highlighted by Jaderberg et al. (2017). For instance, backpropagation is backward locked: the in-
puts of each layer must be propagated through the network and preserved until an error signal is
retropropagated to the layer of origin. This requirement enforces a synchronous dependency among
subsequent layers and requires them to systematically store intermediary activations, potentially im-
peding overall resource efficiency as workers must wait for each other to continue their computations
and release memory used for activations. To unlock the potential of backpropagation, inexact back-
propagation procedures have been proposed. These procedures are generally conceptualized within
the context of model parallelism, where a neural network is split into stages that can process their
activations in parallel, potentially on multiple devices. For example, some methods use outdated pa-
rameters or activations, such as double-buffered pipelining (Harlap et al., 2018) or delayed gradient
approaches (Zhuang et al., 2021b). However, these methods introduce significant memory overhead
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a) Backpropagation
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Figure 1: Comparison of PETRA with standard backpropagation. This approach splits the
stages of a model and decouples their forward and backward passes, resulting in a sixfold increase
in parallelization speed in this example.

due to the use of ad hoc buffers for activations, parameters, or both. Following an opposite direction,
local learning methods (Nøkland & Eidnes, 2019; Belilovsky et al., 2020), which estimate inexact
gradients via a local auxiliary neural network, pave the way to parallel gradient computations but
often lead to unrecoverable performance drops (Fournier et al., 2023). This underscores the need for
a robust alternative to backpropagation, with limited memory overhead.

In this work, we introduce PETRA (Parallel End-to-End Training with Reversible Architectures),
a novel method designed to parallelize gradient computations within reversible architectures with
minimal computational overhead. Reversible architectures are an ideal candidate for this task, as
they can significantly reduce memory overhead during standard backpropagation with limited com-
munication costs. Furthermore, reversibility is a minor requirement, as many studies have demon-
strated that standard architectures can be adapted into reversible ones without any performance drops
(Gomez et al., 2017; Jacobsen et al., 2018b; Mangalam et al., 2022; Kitaev et al., 2020). By allow-
ing parameters to evolve in parallel and by computing an approximate inversion during backward,
we propose an effective alternative to backpropagation which allows high model parallelism with
a constant communication overhead and no additional parameter or activation buffers. In fact,
for a constant increase in communication overhead, PETRA achieves a linear speedup compared to
standard backpropagation with respect to the number J of stages the network is split into. We illus-
trate our approach in Fig. 1, by contrasting the evolution of PETRA with a standard backpropagation
pass.

Contributions. Our contributions are as follows: (1) We introduce PETRA, a streamlined ap-
proach for parallelizing the training of reversible architectures. This method leverages a delayed,
approximate inversion of activations during the backward pass, allowing for enhanced computa-
tional efficiency. (2) Our technique significantly reduces memory overhead by minimizing the ne-
cessity to store extensive computational graphs. (3) It enables the parallelization of forward and
backward pass computations across multiple devices, effectively distributing the workload and re-
ducing training time. (4) We validate the efficacy of PETRA through rigorous testing on benchmark
datasets such as CIFAR-10, ImageNet-32, and ImageNet, where it demonstrates robust performance
with minimal impact on accuracy. (5) We observe a significant empirical throughput increase when
using PETRA. (6) Additionally, we will provide a flexible reimplementation of the autograd system
in PyTorch at the time of publication.

2 RELATED WORK

Reversible architectures. Reversible DNNs are composed of layers that are invertible, meaning
that the input of a layer can be computed from its output. This approach allows to avoid the need to
store intermediary activations during the forward pass by reconstructing them progressively during
the backward pass (Gomez et al., 2017), at the cost of an extra computation per layer. Invertible net-
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works further improve this method by removing dimensionality reduction steps such as downsam-
plings, making the networks fully invertible (Jacobsen et al., 2018a). Reversibility is not restricted
to a type of architecture or tasks and has been extensively used for generative models (Dinh et al.,
2014), for ResNets (Gomez et al., 2017), and Transformers (Mangalam et al., 2022). However, as
far as we know, reversible architectures have never been used to enhance parallelization capabilities.

Alternatives to backpropagation. Multiple alternatives to backpropagation have been proposed
previously to improve over its computational efficiency. For instance, DNI (Jaderberg et al., 2017)
is the first to mention the backpropagation inefficiency and its inherent synchronization locks. How-
ever, they address those locks with a method non-competitive with simple baselines. Local (or
greedy) learning (Nøkland & Eidnes, 2019; Belilovsky et al., 2019) propose to use layerwise losses
to decouple the training of layers, allowing them to train in parallel (Belilovsky et al., 2021). Local
learning in videos (Malinowski et al., 2021) notably uses the similarity between successive tempo-
ral features to remove buffer memory. However, the difference in training dynamics between local
training and backpropagation still limits such approaches (Fournier et al., 2023; Wang et al., 2021).

Pipeline parallelism. Pipelining encompasses a range of model parallel techniques that divide the
components of a network into stages that compute in parallel, while avoiding idle workers. Initially
popularized by Huang et al. (2019), a batch of data is divided into micro-batches that are processed
independently at each stage. Although more efficient pipelining schedules have been proposed (Fan
et al., 2021), notably to mitigate the peak memory overhead, keeping an exact batch gradient compu-
tation requires leaving a bubble of idle workers. By alternating one forward and one backward pass
for each worker, PipeDream (Narayanan et al., 2019) can allow to get rid of idleness bubbles, but
at the expense of introducing staleness in the gradients used. Narayanan et al. (2021) mitigates this
staleness to only one optimization step by accumulating gradients, thus also reducing the parameter
memory overhead to only two versions of the parameters. Nevertheless, these approaches still suffer
from a quadratic activation memory overhead with regard to the number of stages, as micro-batch
activations pile up in buffers, especially for early layers. Some implementations propose to limit
this overhead by combining activation checkpointing (Chen et al., 2016) with pipelining (Kim et al.,
2020; Liu et al., 2023), although the memory overhead still scales with the number of stages.

Delayed gradient. By allowing stale gradients in the update process, these previous methods
provide the context for our approach. Delayed gradient optimization methods are model parallel
techniques that aim to decouple and process layers in parallel during backpropagation. In these ap-
proaches, delays occur stage-wise: the backward pass may be computed with outdated parameters or
activations compared to the forward pass. For instance, Huo et al. (2018a) proposes a feature replay
approach, where a forward pass first stores intermediary activations, which are then ”replayed” to
compute the backward pass in parallel. This method still requires heavy synchronization between
layers, yielding a lock on computations. In Zhuang et al. (2020) and Zhuang et al. (2021a), stale
gradients are computed from older parameter versions differing from the parameters used during the
update. This staleness can be mitigated: Zhuang et al. (2021a) ’shrinks’ the gradient by the delay
value, but more advanced techniques also exist (Yang et al., 2021; Kosson et al., 2021). Still, these
methods are limited like previous pipelining methods by their memory overhead as the computa-
tional graph is fully stored. A first step to reduce this, as proposed in Diversely Stale Parameters
(DSP) (Xu et al., 2019), PipeMare (Yang et al., 2021) and (Kosson et al., 2021), is to keep a single set
of parameters and approximate the gradients computed during the backward pass with the updated
parameters, which differ from the ones used in the forward pass. This requires, like in activation
checkpointing, an additional reconstruction of the computational graph. Furthermore, the quadratic
activation memory overhead still limits the scalability of these methods for a large number of stages.

3 METHOD

3.1 STANDARD BACKPROPAGATION

We consider a DNN composed of J stages (e.g., a layer or a set of layers). An input x0 is propagated
through the network, recursively defined by

xj ≜ Fj(xj−1, θj) , (1)

3
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Figure 2: Differences between the residual block of a ResNet and its reversible counterpart. (a)
Forward of a residual block. (b) Forward and (c) Reverse forward of a reversible residual block. For
reversible blocks, as in Gomez et al. (2017), the input xj is doubled in size and split equally into
{x1

j , x
2
j} along its channels. The function Fj includes a skip-connection while F̃j does not.

where Fj is the j-th stage parameterized by θj . The backpropagation algorithm is the ubiquitous
algorithm to compute parameter gradients. First, an input is propagated through the network with
a forward pass, while storing its intermediate activations. A scalar loss L is then deduced from
the corresponding output xJ . Parameter gradients are then computed during the backward pass by
taking advantage of the chain rule: starting from the last stage with δJ = ∇xJ

L, the gradients with
regard to the activations are given by

δj ≜ ∇xj−1
L = ∂xFj(xj−1, θj)

Tδj+1 , (2)

and the gradients with regard to the parameters are defined as

∆j ≜ ∇θjL = ∂θFj(xj−1, θj)
Tδj+1 . (3)

Note that these computations follow a synchronous and sequential order. The parameters θj can
then be updated given their gradient estimate ∆j , using any optimizer.

3.2 REVERSIBLE ARCHITECTURES

We focus on the reversible neural networks presented in Gomez et al. (2017), although our method
is not dependent on this architecture. Note that this is a weak restriction as many architectures are
adaptable to reversible ones Mangalam et al. (2022). In practice, only a few stages which do not
preserve feature dimensionality are not reversible and correspond to the downsampling blocks in
the ResNet. Fig. 2 highlights how reversible residual blocks Fj differ from their standard counter-
part. The input is split into two equal-size inputs, along the channel dimension, that are propagated
forward according to Fig. 2b using an ad-hoc operator F̃j . It can be reconstructed by reverse prop-
agating the output according to Fig. 2c, by subtracting the output of F̃j rather than adding it like in
the previous forward.

Reversible stages. In order to compute the exact gradients during the backpropagation phase, each
reversible stage needs to retrieve its output from the stage above. We note F−1

j the reverse stage
function, which reconstructs the input from the output. We recursively apply the reconstruction to
the final activation xJ , such that

[
xj−1

δj

]
=

[ F−1
j (xj , θj)

∂xFj(F−1
j (xj , θj), θj)

Tδj+1

]
. (4)

Note that reconstructing the input in our procedure is computationally equivalent to recomputing
the activations in activation checkpointing, meaning it is equivalent to a single forward pass. Thus,
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Table 1: Comparisons with other methods in an ideal setting for one stage. We compare several
methods to compute a gradient estimate in a model parallel setting: classical backpropagation, its
reversible counterpart (Gomez et al., 2017), the Delayed gradients approach of Zhuang et al. (2020)
and its improvements using checkpointing by Xu et al. (2019), and our proposed approach. Here, J
is the total number of stages while j is the stage index. For the sake of simplicity, we assume that a
backward pass requires approximately 2 times more FLOPs than a forward pass. Full Graph indi-
cates that it is required to store the full computational graph of a local forward pass. With a limited
increase in communication volume and FLOPs, PETRA requires the least storage of all methods
while being linearly faster than backpropagation. We assume that the forward and backward passes
can be executed in parallel for PETRA or delayed gradients, making the backward pass responsible
for most of the computation time in parallelizable approaches.

Storage Comm. FLOPs Mean time
Methods Activations Params. Volume per batch

Backpropagation Full Graph (FG) 1 1 3J 3J

Reversible backprop. 0 1 4 4J 4J

Delayed gradients 2(J − j)× FG 2(J−j)
k 1 3J 2

+ Checkpointing 2(J − j) 1 1 4J 3

PETRA (ours) 0 1 4 4J 3

this augmented backward procedure is equivalent to one regular forward call and backward call.
However, one should observe that since the input xj−1 must be sent to the reversible stages, this
doubles the cost of backward communications.

Non-reversible stages. In practice, a reversible architecture includes layers that reduce dimen-
sionality for computational efficiency, which thus correspond to non-invertible functions. For those
very few stages, we employ a buffer mechanism to store activations and, like activation checkpoint-
ing, we recompute the computational graph with a forward pass during the backward pass. Note
that this would not be the case when using invertible (i.e., bijective) architectures (Jacobsen et al.,
2018a), which use an invertible downsampling.

3.3 A PARALLELIZABLE APPROACH: PETRA

As with any model parallel training technique, PETRA requires to partition the network architecture
into stages Fj that are distributed across distinct devices. Each device j needs only to communicate
with its neighboring devices j − 1 and j + 1. The pseudo-code in Alg. 1 details the operations
performed by each device, and the whole algorithm execution can be summarized as follows. The
first device sequentially accesses mini-batches, initiating the data propagation process. When re-
ceiving its input xt

j−1 from the previous stage, each stage processes it in forward mode and passes
it to the next stage, until the final stage is reached. The final stage evaluates the loss and computes
the gradients with regard to its input and parameters, thus initiating the backward process, which is
performed in parallel of the forward process. In it, each stage processes the input and its associated
gradient from the next stage. This means first reconstructing the computational graph, either while
reconstructing the input x̃t

j−1 for reversible stages or with a forward pass as in activation check-
pointing otherwise. Then, the parameter gradient approximation ∆t+1

j and the input gradient are
computed before passing the latter to the previous stage. For intermediary reversible stages, this
translates into the following equations, where t corresponds to the current time step of the training,

xt+1
j = Fj(x

t
j−1, θ

t
j)

x̃t+1
j−1 = F−1

j (x̃t
j , θ

t
j)

δt+1
j = ∂xFj(x̃

t+1
j−1, θ

t
j)

Tδtj+1

∆t+1
j = ∂θFj(x̃

t+1
j−1, θ

t
j)

Tδtj+1

θt+1
j = Optimizertj(θ

t
j ,∆

t+1
j ) .

(5)
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Figure 3: Comparison of memory use between PETRA and a standard Delayed Gradient
method (Zhuang et al., 2020). By avoiding weight stashing and reversing the output into the in-
put during the backward phase, we are able to fully decouple the forward and backward phases in
all reversible stages, with no memory overhead, compared to standard delayed gradient approaches.

Note that this complete set of equations effectively decouples communications, computations, and
parameter updates between independent devices. Indeed, reversible stages are able to operate with-
out maintaining any state between the forward and corresponding backward phase by simply avoid-
ing weight stashing, similarly to Xu et al. (2019), and by reversing the output into the input during
the backward phase, removing the need for an input buffer. As parameters are updated between the
forward and backward phases, the reversible stage produces an approximate input reconstruction,
thus evaluating gradients with an approximate set of inputs and parameters during the backward
phase. We illustrate in Fig. 3 the mechanism of PETRA compared to standard delayed gradient
approaches that rely on additional buffers (Zhuang et al., 2021b; 2020).

Complexity analysis. We now discuss the benefits of our method, which are summarized in Tab.
1. In this discussion, we assume a homogeneous setting in which almost identical stages are dis-
tributed across J devices uniformly. First, we consider the backpropagation setting, assuming a
model parallelism strategy: a standard backpropagation pass requires storing locally both the pa-
rameters and the computational graph and due to the update lock of backpropagation (Jaderberg
et al., 2017), requires synchronization between subsequent layers which impede the speed of com-
putations. Standard Delayed Gradients strategies as implemented in Zhuang et al. (2021b; 2020)
allow to unlock this barrier, but they require buffers for storing both the computational graph and
parameters which can become impractical when using large models. In Xu et al. (2019), an activation
checkpointing strategy removes the need for storing parameters, yet it requires a small computational
overhead of 33% (assuming a backward pass is approximatively two times slower than a forward
pass, see Fig. 6 of Huo et al. (2018b) and Mizutani & Dreyfus (2001)). To avoid storing activations,
we rely on reversible architectures (Gomez et al., 2017) which increases the amount of forward
communications by a factor of 2 and backward communication by a factor of 4 – activations sizes
double and one has to pass both activations and gradients at the same time during backward. None
of the aforementioned methods scale with the depth J : PETRA combines all the advantages of the
previous methods, allowing an efficient parallelization scaling linearly with no memory overhead,
while leading to a limited and constant overhead in computations and communications.

4 NUMERICAL EXPERIMENTS

4.1 CLASSIFICATION ACCURACY

We now describe our experimental setup on CIFAR-10 (Krizhevsky, 2009), ImageNet-
32 (Chrabaszcz et al., 2017), and ImageNet (Deng et al., 2009).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Worker perspective for training in parallel with PETRA, on a stage j, assuming initial-
ized parameters θj and time step t, as well as an accumulation factor k > 1.

1: In parallel on the j-th stage, 1 ≤ j < J , perform:
2: Forward Communications and Computations:
3: If j = 1 then
4: x0 ← Readdataset
5: Else
6: xj−1 ←Wait and Receive from j−1

7: If stage j is not reversible :
8: Bufferj ← xj

9: xj ← Fj(xj−1, θj)
10: Send to j+1(xj)
11: Backward Communications and Computations:
12: (x̃j , δj+1)←Wait and Receive from j+1

13: If stage j is reversible:
14: x̃j−1 ← F−1

j (x̃j , θj) and keep computational graph in memory
15: Else :
16: x̃j−1 ← Bufferj
17: xj ← Fj(x̃j−1, θj) to recompute the computational graph
18: δj ← ∂xFj(x̃j−1, θj)

T δj+1

19: ∆j ← ∆j +
1
k∂θFj(x̃j−1, θj)

T δj+1

20: If t mod k = 0 then:
21: Update parameters θj with ∆j

22: ∆j ← 0
23: t← t+ 1
24: Send to j−1(xj , δj)
25:
26: In parallel on the final stage J , perform:
27: xJ−1 ←Wait and Receive from J−1

28: L ← FJ(xJ−1, θJ)
29: δJ ← ∇xJ

L
30: ∆J ← ∆J + 1

k∇θJL
31: If t mod k = 0 then:
32: Update parameters θJ with ∆J

33: ∆J ← 0
34: t← t+ 1
35: Send to J−1(xJ−1, δJ)

Experimental setup. All our experiments use a standard SGD optimizer with a Nesterov momen-
tum factor of 0.9. We train all models for 300 epochs on CIFAR-10 and 90 epochs on ImageNet32
and ImageNet. We apply standard data augmentation, including horizontal flip, random cropping,
and standard normalization but we do not follow the more involved training settings of Wightman
et al. (2021), which potentially leads to higher accuracy. We perform a warm-up of 5 epochs where
the learning rate linearly increases from 0 to 0.1, following Goyal et al. (2017). Then, the learning
rate is decayed by a factor of 0.1 at epochs 30, 60, and 80 for ImageNet32 and ImageNet – it is
decayed at epochs 150 and 225 for CIFAR-10. We use a weight decay of 5e-4 for CIFAR-10 and
1e-4 for ImageNet32 and ImageNet. As suggested in Goyal et al. (2017), we do not apply weight
decay on the batch norm learnable parameters and biases of affine and convolutional layers. For our
standard backpropagation experiments, we follow the standard practice and use a batch size of 128
on ImageNet32 and CIFAR-10, and 256 on ImageNet32. However, we made a few adaptations to
train our models with PETRA. As suggested by Zhuang et al. (2020; 2021a), we employ an accumu-
lation factor k and a batch size of 64, which allows to reduce the effective staleness during training:
in this case, k batches of data must be successively processed before updating the parameters of a
stage (see Alg. 1). Such gradient accumulation however also increases the effective batch size, and
we apply the training recipe used in Goyal et al. (2017) to adjust the learning rate; note that we use
the average of the accumulated gradients instead of the sum. The base learning rate is thus given by
the formula lr = 0.1 64k

256 , with k the accumulation factor.
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Table 2: Classification accuracies using our PETRA method with RevNets, compared to stan-
dard backpropagation on ResNets and RevNets on CIFAR-10, ImageNet32, and ImageNet. Our
method delivers competitive results with backpropagation, even on ImageNet.

Method Model Param. count CIFAR-10 ImNet32 ImNet
Backprop ResNet18 (PyTorch) 11.7M - - 69.8
Backprop ResNet18 (Ours) 11.7M 95.0 54.0 70.8
Backprop RevNet18 (Ours) 12.2M 94.9 54.6 70.8
PETRA RevNet18 (Ours) 12.2M 94.9 54.6 71.0

Backprop ResNet34 (PyTorch) 21.8M - - 73.3
Backprop ResNet34 (Ours) 21.8M 95.5 56.5 74.0
Backprop RevNet34 (Ours) 22.3M 95.3 56.4 73.2
PETRA RevNet34 (Ours) 22.3M 94.8 56.1 73.5

Backprop ResNet50 (PyTorch) 25.6M - - 76.1
Backprop ResNet50 (Ours) 25.6M 94.8 58.8 75.6
Backprop RevNet50 (Ours) 30.4M 95.2 59.7 75.4
PETRA RevNet50 (Ours) 30.4M 94.5 59.6 74.8

Model adaptations. For designing our RevNet architectures, we adopt a methodology similar to
Gomez et al. (2017): the number of channels in each stage is multiplied by 2 to account for the
second data stream according to Fig. 2. However, as the stage function F̃j operates only on one of
the two streams, the number of parameters stays almost the same between a residual block and its
revertible counterpart. Consequently, the DNNs are split to preserve each residual block, resulting
in 10 stages for RevNet18, and 18 stages for RevNet34 and RevNet50; thus varying the level of
staleness between configurations. On CIFAR-10, the input layer uses 3x3 convolutions instead of
7x7 convolutions and does not perform max-pooling. The running statistics of batch normalization
layers are updated when recomputing the activations during the backward pass and are then used
during model evaluation – the running statistics are not updated during the forward pass.

Performance comparison. Tab. 2 reports our numerical accuracy on several vision datasets,
comparing a backpropagation performance from an official PyTorch implementation of ResNets
(the numbers can be found as v1 of https://pytorch.org/hub/pytorch_vision_
resnet/), for our own implementation of ResNets and RevNets in our custom computational
framework, and our proposed method, PETRA. For PETRA, we report the best classification accu-
racy after the last learning rate drop, using the best value (picked on the training set) of accumulation
steps within {1, 2, 4, 8, 16, 32}. Our CIFAR-10 accuracies are averaged over 3 runs, with a vari-
ance smaller than 0.1. We observe that while our reversible models have about the same parameter
count, they all perform in the same range of accuracy as their non-reversible counterparts. Only the
RevNet-50 leads to a small drop in accuracy on ImageNet of about 0.6%: using different downsam-
pling layers removes this gap at the expense of a substantial increase in the parameter count (30.4M
to 50M). For the stake of comparison with the original ResNets, we did not include this result.

Impact of the accumulation k. We test the impact of the accumulation on a RevNet-18 trained via
PETRA for various values of accumulations k ∈ {1, 2, 4, 8, 16, 32} on the ImageNet dataset. Fig. 4
indicates that our method can benefit from large accumulation factors, with the well-known trade-off
of large batches mentioned in Goyal et al. (2017). Increasing the accumulation factor reduces the
effective staleness during training, and closes the performance gap with standard backpropagation
with perfect matching for k = 32. This confirms that this large-batch training recipe derived for
synchronous data parallelism is also particularly suited for our model parallel approach.

4.2 TECHNICAL DETAILS

A note on the implementation. We shortly describe our implementation details. We base our
method on PyTorch (Ansel et al., 2024), although we require significant modifications to the Au-
tograd framework in order to manage delayed first-order quantities consistently with PETRA. We
rely heavily on the Vector Jacobian Product of PyTorch to compute gradients during the backward
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Figure 4: Validation accuracy of PETRA and backpropagation for a various number of accu-
mulation steps, for a RevNet18 trained on ImageNet with k ∈ {1, 2, 4, 8, 16, 32}. The validation
accuracies are averaged over the last 10 epochs. As the number of accumulation steps increases, the
effective staleness in PETRA decreases, closing the gap with standard backpropagation.

Table 3: Memory savings for RevNet50 on ImageNet with our method for different configura-
tions. We indicate the use of memory buffers for inputs or parameters. The savings are computed
with respect to the first configuration, where inputs and buffers are stored. Our method achieves
54.3% memory reduction over the base configuration of Delayed Gradients.

Buffer Memory (GB) Saving (%)
Input Params.
√ √

44.5 0.0√ × 43.6 2.0
× √

21.2 52.3
× × 20.3 54.3

pass of each stage, but other backends could be used. The backward pass for reversible stages only
necessitates a reconstruction step and a backward step – a naive implementation would use a recon-
struction step, followed by a forward and a backward step. This is because we only need the output
gradient as well as the computational graph of F̃j to compute the input and parameter gradients at
line 12 and 13 of Alg. 1, which can be obtained during the input reconstruction phase. For non-
reversible stages, we reconstruct the computational graph with a forward pass on the input retrieved
from the buffer during the backward pass. Our models can run on a single A100, 80GB to easily
compare training dynamics, or distributed over 10 or 18 GPUs when training with a RevNet-18 or a
RevNet-34 or 50.

Memory benefits and training time. Here, we discuss the practical memory savings and through-
put speedup. To better understand the advantage of our method compared to other delayed gradient
approaches (Harlap et al., 2018; Xu et al., 2019; Kosson et al., 2021), we emphasize the practical
memory savings associated with different methods in Tab. 3. We estimate the memory needed in
gigabytes, as the sum of the size of the model, the input and parameter buffers (excluding the input
buffer of the first stage, which uses retrievable dataset inputs). Here we do not include the effect of
gradient accumulation, which depends on k and would only affect the parameter buffer size, which
is small in our case. Note that the batch size also affects the memory savings, and we set it to 64
for consistency with Tab. 2. Storing both inputs and parameters into a buffer corresponds to the
PipeDream approach (Harlap et al., 2018), while only storing inputs would correspond to the ap-
proach in Xu et al. (2019); Kosson et al. (2021). Not storing inputs (lines 3 and 4) is only applicable
to reversible architectures. The input buffer has the biggest impact on the total memory, being re-
sponsible for 52.3% of the memory footprint. Dropping the parameter buffer with PETRA pushes
the savings further up to 54.3% for a RevNet50 on ImageNet. We report on-device stage memory
in Tab. 6, where we note that non-reversible stages account for the majority of total memory use,
indicating that savings would be much higher when using fully invertible architectures.
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Table 4: Performance on CIFAR-100 with our method for different configurations, for different
RevNets. Here, we use no accumulation (k = 1) to better pinpoint the effect of the staleness.
We indicate the use of memory buffers for inputs or parameters and whether using exact reversible
backpropagation or using delayed gradients. We note that using the loss of both of the buffers does
not have a particular effect on performance compared to the delay, further justifying our approach.

Delayed Buffer Accuracy
gradients Input Params. RevNet-18 RevNet-34 RevNet-50
× √ √

77.5 78.1 78.5√ √ √
76.5 76.3 77.7√ √ × 76.4 75.5 76.7√ × √
75.4 76.4 78.3√ × × 75.9 75.2 77.2

Table 5: Mean iteration time of one micro-batch of size 256 of CIFAR-10 data, when training with
PETRA or Reversible backpropagation. Training is distributed in both cases on 10 (for the RevNet-
18) or 18 GPUs (for the RevNet-34/50). We observe a significant speed-up for the 3 models.

Model Rev. backprop. PETRA Speed-up
RevNet-18 160.3ms 53.4ms 3.0×
RevNet-34 235.6ms 97.1ms 2.4×

We also measure the effective throughput of training with PETRA a ResNet-18 on 10 GPUs and
a ResNet-34 on 18 GPUs, and compare it with basic model parallelism, where batch computations
are not overlapped between stages. After letting a warm-up period of 500 iterations, we report the
effective throughput by measuring the processing time of 50 mini-batches and averaging it. As can
be seen in Tab. 5, our method achieves wall-clock time speedup compared to basic model paral-
lelism. While our main objective is to show the empirical effectiveness of our training procedure for
convergence, we also observe a significant speed-up, despite using relatively unbalanced stages. A
more efficient implementation in the future will allow further training speed improvements.

Impact of the buffers on gradient estimation Three different approximations in gradient esti-
mation are used in PETRA which may affect our performances, and we investigate in Tab. 4 their
impact on CIFAR-100. The use of a gradient computed on previous iterations of the parameters is
necessary to speed-up computations. This has the most impact on performances (line 2), but note
that using accumulation vanishes this performance drop as shown in Fig. 4. Line 4 should corre-
sponds to reversible backpropagation with delays, which is equivalent to line 2, but we choose to
reconstruct the input using the latest parameters in the memory buffer, to better characterize the im-
pact of reconstructing inputs with the latest parameters, as done in PETRA. Lines 4 and 5 indicate
that approximating the input affects the learning dynamics more than approximating the weights.

5 CONCLUSION

In this work, we introduce PETRA, a novel model parallel training technique for reversible ar-
chitectures which is a novel promising alternative to backpropagation. It achieves a significant
parallelization with a limited overhead compared to standard backpropagation or other competitive
alternatives to end-to-end training, like delayed gradients approaches. Our method has the potential
to achieve linear speedup compared to standard backpropagation and allows reversible layers to op-
erate without any parameter or activation buffers, effectively decoupling the forward and backward
phases. Despite using an approximate delayed gradient estimate, our method delivers competitive
performances compared to standard backpropagation on standard computer vision datasets.

In future work, we aim to implement and optimize PETRA for Large Language Models (LLMs),
with a first baseline being Reformers (Kitaev et al., 2020), invertible transformers that have been
shown to scale. This will validate further PETRA’s effectiveness and robustness on fully-reversible
architectures, solidifying its potential as a cutting-edge training technique.
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Table 6: Memory usage of each stage when training with PETRA on CIFAR-10 with a batch size
of 256. Stages with the same memory usage are grouped together for ease of read.

RevNet-18 Stage(s) index(es) 0 1-2 3 4 5 6 7 8 9
Memory (GB) 1,15 1,01 2,67 0,52 1,13 0,31 0,57 0,25 0,11

RevNet-34 Stage(s) index(es) 0 1-4 5 6-8 9 10-12 13 14-16 17
Memory (GB) 1,15 1,01 4,2 0,52 1,66 0,31 0,71 0,25 0,11

A MEMORY USAGE BY STAGE

In Tab. 6, we report the memory usage with PETRA of each stage of the networks trained. Note
that some stages have a much higher memory footprint than others, which is due to the presence of
non-reversible stages in RevNets, which requires activation buffers.

B QUALITY OF GRADIENT APPROXIMATION AND DELAYS IN DEPTH

PETRA gradient approximations The PETRA optimization procedure estimates gradients with
two approximations. First, PETRA estimates delayed gradients, with a delay τj = 2(J− j) for each
block j of a network partitioned into J blocks. According to Eq. 5, for the j-th layer, this would
mean that ∆t+1

j = ∂θFj(x
t−τj
j , θ

t−τj
j ). The implicit underlying hypothesis is that the delayed

gradients can serve as an approximation of the end-to-end gradient, or, more largely, as a descent
direction. Note that this is the gradient computed by standard approaches like Zhuang et al. (2020).
Then, PETRA makes further approximations on this delayed gradient. First, having no parameter
buffers, each layer will only use the latest available in memory weights θtj , which will differ from
those used in the forward pass θt−τj

j . Second, the input used for gradient computations is not stored
in a buffer for reversible layers, but reconstructed. For both the input reconstruction and the Jacobian
computations, the layers use the ”up-to-date” parameters θtj .

Framework To investigate the quality of these approximations empirically, we trained a RevNet18
on CIFAR-10, divided into 10 stages, while tracking approximation quality metrics for each layer
throughout training. These metrics are computed 15 times per epoch and averaged at the end of the
epoch. The optimization procedure is the same as the one used to obtain Tab. 2, without gradient
accumulation to emphasize the impact of delay. Note that the network has non-reversible stages, and
thus input buffers, at stages {3, 5, 7}; the first stage is not reversible but can retrieve its input from
the dataset. Our model is trained via PETRA, and we compare, at given snapshots throughout the
training, gradients following PETRA, standard delayed gradient approaches Zhuang et al. (2020),
and standard backprop gradients at various depths.

To compare two different gradients, the two metrics we record are their cosine similarity and their
norm ratio:

Cos-Sim(x, y) =
⟨x, y⟩
||x|| · ||y|| , Norm-Ratio(x, y) =

||x||
||y||

Approximation with the standard delayed gradient We report these metrics throughout training
in Fig. 5. We observe several tendencies. First, in Fig. 5a, we observe that the gradient computed
by PETRA is indeed a good approximation of the standard delayed gradient, as predicted. The
alignment improves during training, with a particular jump at the last learning rate drop. This
is expected as the discrepancy between θj and θ

t−τj
j becomes negligible as the model converges.

Similarly, the alignment improves for later layers, where fewer delayed parameters are used, and
with a smaller delay. The reconstruction error is also lower, although this error ”resets” after each
input buffer. Note also that the ratio of the norms of the gradients, in Fig. 5c, follows a similar trend,
and stays consistently close to 1.

Approximation with the end-to-end gradient Then, in Fig.5b, we also compare the alignment
of the PETRA gradient with the end-to-end one and the alignment of the delayed gradient with
the end-to-end one. These values are much lower for early layers, where the gradient computed
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(a) Cosine similarity between PETRA and stan-
dard Delayed Gradients.
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(b) Cosine similarities between PETRA and end-
to-end gradients (full line), and between the stan-
dard delayed gradients (dashed line) and end-to-
end ones.
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(c) Norm ratio between PETRA (numerator) and
standard delayed gradients (denominator).
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(d) Norm ratios between PETRA and end-to-end
gradients (full line) and the standard delayed gra-
dient and end-to-end gradient (dashed line).

Figure 5: Cosine similarities and norm ratios between gradients throughout training. Each point rep-
resents the average of 15 measurements during 1 epoch. Values are smoothed with a rolling window
of size 10. Color corresponds to the stage index. The approximation is noticeably better after the
last learning rate drop, and for later stages. Although PETRA approximates well the standard delay
gradient, it also approximates better the end-to-end gradient compared to standard delay gradient
approaches.
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by both methods depends much more on the delay, and is thus less aligned with the end-to-end
gradient. However, we surprisingly observe that the gradient computed by PETRA shows a better
alignment with the end-to-end gradient compared to the delayed one. Although surprising, this can
be explained by the fact that PETRA does not use delayed parameters during the backward pass, for
both the input reconstruction and the Jacobian computations. Although reducing the alignment with
the delayed gradient, this increases the alignment with the end-to-end one. The norm ratio between
the delayed and PETRA gradients and the end-to-end ones is also quite high early in training, before
coming close to 1 at convergence. Here again, the ratio is smaller for the PETRA gradient.

(a) Cosine similarities at epoch 25, i.e. 10 epoch
after warm-up phase.

(b) Cosine similarities at epoch 125, i.e. 25 epoch
before the first learning rate drop.

(c) Cosine similarities at epoch 175, i.e. 25 epoch
after the first learning rate drop.

(d) Cosine similarities at epoch 125, i.e. 25 epoch
after the second learning rate drop.

Figure 6: Cosine similarities against stage index of RevNet18 on CIFAR-10 at epochs 25, 125,
175 and 250. Approximations degrades between epoch 25 and 125, consistently with Fig. 5, but
improves noticeably after each learning rate drop.

For a clearer comparison, we also provide in Fig. 6 cosine similarities values between the three
gradients depending on the layer index, at different training epochs. We once again observe that
the similarities improve as layer indexes increase and that the discrepancies between the gradients
decrease across stages as the learning rate becomes smaller. We also observe that the similarity
between PETRA and end-to-end is sometimes higher than for the delayed gradient, suggesting that
using the up-to-date weights for the Jacobian computations and input reconstructions might help to
mitigate the staleness.
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