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Aegis: Post-Training Attribute Unlearning in Federated
Recommender Systems against Attribute Inference Attacks
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Abstract
As privacy concerns in recommender systems become increas-
ingly prominent, federated recommender systems (FedRecs) have
emerged as a promising distributed training paradigm. FedRecs en-
able the collaborative training of a shared global recommendation
model without requiring the exchange of raw client interaction
data. However, models trained using standard FedRec methods
remain vulnerable to personal information leakage, particularly
through attribute inference attacks, which can expose sensitive
user attributes such as gender and race. In this paper, we address
these user sensitive attributes as targets for federated unlearning.
To protect users’ sensitive information, attribute unlearning aims
to eliminate sensitive attributes from user embeddings, thereby
preventing inference attacks while preserving recommendation
performance. We introduce a novel post-training federated unlearn-
ing framework, Aegis, which performs unlearning based on private
attribute requests after the model has been trained, minimizing
the degradation in recommendation accuracy. Aegis employs an
information-theoretic multi-component loss function to balance
privacy protection and recommendation performance. Additionally,
Aegis adapts to scenarios where training interaction data may be
unavailable, reflecting real-world centralized protection scenarios.
Comprehensive evaluations on various benchmark datasets demon-
strate that our proposed method effectively safeguards user privacy
while maintaining high-quality recommendations.

Keywords
Federated Learning, Recommender System, Attribute Unlearning,
Privacy-preserving.

1 INTRODUCTION
Recommender systems (RS) have become fundamental to modern
web applications, driving personalized user experiences across plat-
forms like e-commerce [5, 33] and streaming services [31, 32] by
utilizing vast amounts of user interaction data. However, traditional
RS often require users’ personal data—such as browsing history
and purchasing behavior—to be centralized on remote servers for
processing, which raises significant privacy risks including the
potential data breaches. To address these concerns, federated rec-
ommender systems (FedRecs) [2, 47, 48] have emerged as a promis-
ing solution that aggregates model updates on the server while
keeping user interaction data local and performing model training
on the client side. Despite this improvement, a critical challenge
persists with stricter privacy requirements: recent privacy regula-
tions such as the GDPR [57] and CCPA [26] emphasizing the "right
to be forgotten" has promoted users’ demand for the forgetting of
personal private attributes in recommender systems, i.e. attribute
unlearning [22]. This concept pertains to the removal of the inher-
ent attributes of user embeddings in the trained model, such as race
and gender, which are not used as training targets.

Attribute unlearning is intuitively important for privacy protec-
tion in recommender systems. Although existing FedRecs avoid
the transmission of raw data, model training based on histori-
cal user behavior may still be vulnerable to attribute inference
attacks (AIAs) [4, 30], which potentially reveal sensitive user at-
tributes [20, 40]. Research [60] has demonstrated that basic ma-
chine learning models can successfully infer user attributes from
user embeddings learned by collaborative filtering models. We con-
ducted attribute inference attacks on FedNCF [51] systems trained
on dataset MovieLens-100K (ML-100K) and MovieLens-1M (ML-
1M) [23]. As shown in Table 1, the accuracy of attribute inference
attackers is consistently higher than that of random attackers, re-
vealing significant privacy leakage risks.

Some existing machine unlearning methods [6, 64] aim to make
the unlearned model as consistent as possible with one retrained
from scratch. However, in the context of attribute unlearning, this
fails to decouple latent attributes from the model, hindering ef-
fective unlearning. Unlike regular machine forgetting, attribute
unlearning cannot simply erase specific attribute traces. Moreover,
most current approaches to attribute privacy protection in rec-
ommender systems operate during training, relying on network
modifications [22, 25, 68, 69] or adversarial training [3, 18, 20, 38].
These in-training attribute-preserving methods are costly, complex,
and require prior knowledge of privacy issues, making them less
suited to dynamic privacy needs. In real-world scenarios, users’
privacy requirements may change over time, and federated clients
may want to adjust their privacy settings after training rather than
determining them beforehand. This calls for a post-training fed-
erated attribute unlearning method that can handle dynamic re-
quests without needing full retraining or redesign of the existing
model structure. Furthermore, attribute unlearning requests are
often unpredictable, and training data or historical updates may be
inaccessible due to privacy regulations or data deletion [11]. Thus,
federated attribute unlearning must work both with and without
access to the interaction training data. In conclusion, a flexible and
efficient post-training framework is essential to address evolving
privacy demands in federated recommender system environments.

Existing methods protect privacy by artificially designed adding
noise to user embeddings, such as through local differential pri-
vacy [1], but this often degrades recommendation performance [40].
Additionally, ensuring unlearning effectiveness is challenging, as
attacks may come from complex machine learning or deep learn-
ingmodels [44], whose mechanisms are not fully understood [29].
In this paper, we focus on protecting trained user embeddings from
potential attacks with two key objectives: i). making private at-
tributes indistinguishable in the embeddings to reduce the success
of inference attacks, and ii). preserving recommendation perfor-
mance, as both users and service providers seek to avoid significant
decline in quality. These objectives guide the design of our system.
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Table 1: FedRec Recommendation Utility and Attribute In-
ference Attack Results on Different Datasets

Dataset Utility Attribute Privacy
NDCG@10 HR@10 Gender Age Occupation

ML-100K 0.708 0.680 0.714 0.280 0.149
ML-1M 0.699 0.684 0.849 0.353 0.119

Random Attacker 0.500 0.143 0.048

To achieve these objectives, we propose the Aegis1 framework,
an innovative approach that seamlessly integrates attribute un-
learning with performance retention. Our method fine-tunes a pre-
trained recommender system to safeguard sensitive user attributes
from attribute inference attacks. It employs a multi-component loss
function grounded in information theory [54] to address the opti-
mization problem. Specifically, it reduces the association between
user embeddings and sensitive attributes while maintaining recom-
mendation performance. Additionally, it includes a regularization
component to ensure stability in user embeddings. Our framework
not only facilitates localized training for attribute unlearning but
also adapts to scenarios where client interaction data is inaccessible
through centralized unlearning methods. We summarize our main
contributions as follows:
• To the best of our knowledge, we are the first to investigate the

post-training attribute unlearning in federated recommender
systems, addressing scenarios both with and without access to
training interaction data. This approach reflects more realistic
privacy-preserving measures.

• We propose the Aegis framework for federated attribute un-
learning, formalizing the setting of attribute attacks and identify-
ing two key objectives: attribute indistinguishability and recom-
mendation performance retention. Aegis leverages information-
theoretic principles by introducing a multi-component loss func-
tion that synchronously optimizes both objectives, balancing
privacy and recommendation accuracy.

• We implemented the Aegis system and conducted extensive eval-
uation on benchmark datasets to evaluate our method’s perfor-
mance in terms of attribute unlearning and recommendation
knowledge retention. Results demonstrate that our framework
effectively balances privacy and performance.

2 PRELIMINARIES AND OBJECTIVES
2.1 Federated Recommendation
We first describe the general mathematical formulation of a feder-
ated recommender system. Let 𝑈 represent the set of users with
the total number of users denoted as |𝑈 |, and𝑉 represent the set of
itemswith the total number of items denoted as |𝑉 |. Users across dif-
ferent clients collectively form the𝑈 . Each user𝑢𝑖 ∈ 𝑈 (1 ≤ 𝑖 ≤ |𝑈 |)
owns a local dataset 𝐷𝑖 , which is defined as: 𝐷𝑖 = {(𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑖 𝑗 ) |𝑣 𝑗 ∈
𝑉 }, where 𝑟𝑖 𝑗 = 1 indicates that user 𝑢𝑖 has interacted with item 𝑣 𝑗 ,
and 𝑟𝑖 𝑗 = 0 means no interaction, in which case 𝑣 𝑗 is considered a
negative sample. The goal of the federated recommender system is
to predict the score 𝑟𝑖 𝑗 = 𝑠𝜓 (em𝑖 , emj) of user 𝑢𝑖 on non-interacted
items 𝑣 𝑗 , thereby generating a recommendation list 𝑉𝑖 , satisfying:

�̂�𝑖 = Top-K({𝑟𝑖 𝑗 |𝑣𝑗 ∈ 𝑉 \𝐷𝑖 }), (1)

1From Greek mythology, a powerful shield used by Zeus or Athena to fend off attacks.

where 𝑠𝜓 (·) is a score function, which can be a dot product, a
multi-layer perceptron, etc. em𝑖 = 𝑓𝑝 (𝑓𝜑 (𝑢)) ∈ R𝑑 and em𝑗 =

𝑓𝑝 (𝑓𝜑 ( 𝑗)) ∈ R𝑑 represent the embeddings of users and items, where
𝑑 is the embedding dimension. The function 𝑓𝜑 represents an em-
bedding layer that maps users/items to vectors, and 𝑓𝑝 represents
a propagation layer that captures collaborative signals [63]. Fe-
dRecs train the model across multiple distributed clients, such as
users’ mobile devices or computers. The central server does not
directly access users’ interaction data but instead coordinates multi-
ple rounds of local training on each client and aggregates the model
parameter updates uploaded by each client to form a global model.
Specifically, in each global training round 𝑡 : First, the central server
distributes the global model parameters to each selected user/client
𝑖 , 𝜃0

𝑖,𝑡
= 𝜃𝑔,𝑡 . Each client combines the received global parameters

with their local user embeddings to form a local recommender
model. Then, the local recommender is optimized using the local
dataset as below:

𝜃
𝑡𝑙 +1
𝑖,𝑡

= 𝜃
𝑡𝑙
𝑖,𝑡

− 𝜂∇𝜃𝑖 L(𝜃𝑖,𝑡 , 𝐷𝑖 ), (2)

where 𝜂 is the learning rate, and L is the loss function (e.g., BPR
loss [52]). After 𝑇𝑙 rounds of local training, each client sends the
updated global parameters 𝜃𝑇𝑙

𝑖,𝑡
(or the parameter updates Δ𝜃𝑇𝑙

𝑖,𝑡
=

𝜃
𝑇𝑙
𝑖,𝑡

− 𝜃0
𝑖,𝑡
) back to the server. The server aggregates the received

parameter using a specific aggregation strategy [46], such as:

𝜃𝑔,𝑡+1 = 𝜃𝑔,𝑡 +
1
|𝑈 |

∑︁|𝑈 |
𝑖=1

Δ𝜃
𝑇𝑙
𝑖,𝑡

or 𝜃𝑔,𝑡+1 =
1
|𝑈 |

∑︁|𝑈 |
𝑖=1

𝜃
𝑇𝑙
𝑖,𝑡
. (3)

The above steps are repeated until the convergence condition is met,
i.e., the performance of the model reaches the predefined standard.

2.2 Attribute Inference Attack
In recommender systems, attackers can infer private user attributes
(such as gender, age, or race) based on the embedding data be-
tween users and items, as well as the trained model [20, 40]. This
leads to attribute inference attacks (AIA) [4, 30, 68], which pose a
significant threat to user privacy. A key issue in AIA is the uninten-
tional leakage of information about non-target attributes during
the recommendation process. To mitigate this risk, the concept of
attribute unlearning has been introduced, which allows a system to
"forget" certain sensitive attributes post-training while maintaining
recommendation performance.
Threat Model: The threat model is illustrated in Figure 1: in feder-
ated learning (FL) environments, malicious servers may infer users’
sensitive attributes by accessing user embedding vectors from FL
clients, leading to privacy breaches. In this scenario, we assume the
attacker adopts a grey-box attack strategy, meaning the attacker
cannot access all model parameters but can access some user em-
bedding vectors em𝑖 and corresponding attribute information 𝑧𝑖 .
The threat model’s goal is to infer the private attribute 𝑧𝑖 from
the user embedding em𝑖 . In this paper, this attack is framed as a
classification problem, where the attacker employs a classification
model 𝑔 to predict the private attributes.

During the training phase of the threat model, we assume that the
attacker does not have direct access to the original dataset. Instead,
the attacker uses a shadow dataset 𝐷shadow to train the model. This
shadow dataset can be generated by sampling from the original user
data or from other users within the same distribution [40, 53]. The
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Figure 1: Overview of Post-Training Attribute Unlearning in Federated Recommender Systems.

input to the shadow dataset consists of user embeddings Emshadow,
while the target comprises the attribute labels 𝑍shadow. Although
using a shadow dataset may reduce the overall effectiveness of
the attack, this assumption is reasonable, as assuming access to
the full dataset would be overly idealistic and impractical. During
training, the attacker constructs the threat model 𝑔 by minimizing
the classification loss on the shadow dataset:

min
𝑔

E(Emshadow,𝑍shadow ) [L(𝑍shadow, 𝑔 (Emshadow ) ) ] . (4)

In the inference phase, the attacker uses the trained model 𝑔 to
predict the attribute for a new user embedding em𝑖 . This results are
in the prediction 𝑍𝑖 = 𝑔(Em𝑖 ), where 𝑍𝑖 represents the attacker’s
estimated value of the private attributes of the user set Em𝑖 .

2.3 Our Objectives
In FedRecs, we collaboratively train a collaborative filtering model
using data distributed across different clients in a privacy-preserving
manner. Notice that users have dynamic privacy preferences, with
the private attribute set𝐴𝑢 . Given a trained global model, we aim to
perform "unlearning" on the private attribute set𝐴𝑢 for all the users
𝑢𝑖 ∈ 𝑈 , i.e., to generate new user embeddings em′

𝑖
from the origi-

nal user embeddings em𝑖 to mask the private attribute. To achieve
this, we need to strike an optimal balance between privacy pro-
tection and recommendation performance. We formalize federated
attribute unlearning as an optimization problem as follows:
# Objective 1: Unlearning Objective

Ensure that the user attribute 𝑎𝑢𝑖 cannot be easily distinguished
from different user embeddings, thereby protecting the privacy
of the attribute information from potential attackers. We define
a function 𝑑𝑔 to evaluate the distinguishability of the attributes:

min
em′

𝑖

∑︁
𝑎𝑢 𝑗 ∈𝐴𝑢

𝐷 (𝑑𝑔 (em′
𝑖 ), 𝑎𝑢 𝑗 ), (5)

where 𝐷 is a measure of attribute distinguishability.
# Objective 2: Recommendation Objective

Ensure the performance of the FedRecs is maintained to avoid
impacting the original recommendation quality. We can measure
the change in recommendation performance as below:

min
em′

𝑖

Dist(𝑀 (em𝑖 ), 𝑀 (em′
𝑖 ) ), (6)

where Dist is a measure of the change in performance.
Additionally, to ensure the efficiency of the unlearning process,
we need to limit the time overhead of unlearning. Combining the
above objectives, we provide a systematic approach to achieve "un-
learning" of user attributes while ensuring a high balance between
privacy protection and recommendation performance.

3 POST-TRAINING FEDERATED ATTRIBUTE
UNLEARNING FOR RECOMMENDATION

In this section, we demonstrate how Aegis achieve attribute indis-
tinguishability through model fine-tuning with a carefully designed
multi-component federated loss function.

3.1 Overview
Our Aegis framework is a complement to common FedRecs and is
applicable to systems based on different training methods. Given
the dynamic private attribute needs of federation clients, Aegis fine-
tunes a trained federated recommender system to protect sensitive
attributes from attribute inference attacks.

Aegis advocates two key properties for effective attribute un-
learning: i) Private Attribute Unlearning, which effectively re-
moves the association between user-marked attributes for deletion
and user embeddings to prevent privacy leakage; and ii) Recom-
mendation Knowledge Retention, which ensures that recom-
mendation performance is maintained post-unlearning. Aegis fol-
lows a client-server architecture in federated learning, where clients
update user embeddings based on unlearning methods using stored
interaction data to eliminate the relationship between sensitive
attributes and embeddings. The updated embeddings and other

3
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model parameters are then uploaded to the server, where FedAvg
gradient aggregation [46] is performed, and the updated global
model is sent back to the clients for iterative optimization. When
post-training attribute unlearning is required but client training
data is unavailable, Aegis also allows centralized unlearning to be
executed solely on the client side.

3.2 Compositional Attribute Unlearning
To achieve attribute unlearning in privacy-sensitive scenarios, we
proposes an information theory [54] based multi-component loss
function, treating it as an optimization problem for user embed-
dings. The core idea is to identify the mutual information between
the embedding distribution and the attributes, effectively captur-
ing their relationship, and then applying forgetting based on the
privacy requirements. Our approach involves designing an appro-
priate loss function and using optimization techniques to obtain
the desired user embeddings, temporarily disregarding interme-
diate operations and transformations. The goal is to ensure that
the model’s embedding em′

𝑖
achieves the following: i) Discard in-

formation related to specific (e.g., sensitive or private) attributes.
ii) Retain information relevant to the recommendation task. This
objective can be formalized as:
• Minimize the mutual information between the user embedding

em′
𝑖
and the attributes to be forgotten 𝑎𝑢 𝑗 ∈ 𝐴𝑢 , defined as:

min
em′

𝑖

∑︁
𝑎𝑢 𝑗 ∈𝐴𝑢

I(em′
𝑖 ;𝑎𝑢 𝑗 ) ; (7)

• Maximize the mutual information between the embedding em′
𝑖

of user 𝑢𝑖 and the primary recommendation task, defined as:
max
em′

𝑖

I(em′
𝑖 ,𝑉𝐸𝑀 ;𝑅𝑖 ) ; (8)

where 𝑉𝐸𝑀 represents the item embeddings of items 𝑉 and 𝑅𝑖 =
[𝑟𝑖, 𝑗 ] |𝑉 |

𝑗=1 represents the interaction matrix between 𝑢𝑖 and 𝑉 .
We propose a multi-component loss function, with each component
specifically designed to address one of the above goals.

3.2.1 Private Attributes Information Loss. Directly comput-
ing mutual information I(em′

𝑖
;𝑎𝑢 𝑗 ), 𝑎𝑢 𝑗 ∈ 𝐴𝑢 is challenging be-

cause it requires estimating joint and marginal probability dis-
tributions, a process that becomes computationally expensive in
high-dimensional embedding spaces. This difficulty arises due to
unknown real distributions, complex non-linear dependencies, and
the curse of dimensionality. Therefore, exact estimation of mutual
information is impractical without the use of approximation tech-
niques. To address this, we approximate the mutual information
using a variational upper bound based on the Kullback–Leibler
(KL) divergence [36], which measures the difference between two
probability distributions. The resulting loss function is as below:

LAU
𝑖,𝑗 = 𝐼 (em𝑖 ;𝑎𝑢 𝑗 )

≈ 1
|𝑈𝑎𝑢 𝑗

|
∑︁|𝑈𝑎𝑢𝑗 |

𝑘=1
𝐷KL (𝑞𝜙 (em𝑖 |𝑋𝑎𝑢 𝑗=𝐶𝑘

) ∥𝑝 (em𝑖 |𝑋 ) ),
(9)

where |𝑈𝑎𝑢 𝑗
| represents the number of different labels in attribute

𝑎𝑢 𝑗 , and𝑋𝑎𝑢 𝑗=𝐶𝑘
represents the input𝑋 where the label of attribute

𝑎𝑢 𝑗 is 𝐶𝑘 . 𝐷KL (𝑞∥𝑝) denotes the Kullback–Leibler divergence be-
tween the variational distribution 𝑞𝜙 (em𝑖 |𝑋𝑎𝑢 𝑗=𝐶𝑘

), which approx-
imates the embedding distribution conditioned on the attribute

𝑎𝑢 𝑗 = 𝐶𝑘 , and the prior distribution 𝑝 (em𝑖 |𝑋 ), which represents
the embedding distribution conditioned only on the input 𝑋 . By
minimizing this KL divergence, we effectively reduce the informa-
tion in the embedding em𝑖 that is related to the attribute 𝑎𝑢 𝑗 , thus
achieving the goal of unlearning the attribute. Intuitively, we aim
to compute the distribution of different attribute classes 𝑎𝑢 𝑗 and
minimize their KL divergence from the same global distribution,
ensuring that the embedding data of users across different classes
cannot be identified. To efficiently compute the distribution of user
embeddings for the |𝑈𝑎𝑢 𝑗

| distinct classes within 𝑎𝑢 𝑗 and subse-
quently calculate the KL divergence, we perform the following
operations on each client:

First, we compute the user embedding distribution for each class.
Since Aegis is a post-training method, the user embedding data
is already available before the unlearning process begins, with
each class having an associated set of user embeddings. The proba-
bility distribution of embeddings for each class can be estimated,
for instance, by fitting a Gaussian distribution or another suitable
model [14, 17, 24, 59]. In this work, as our user embeddings are
represented in a continuous vector space, we fit a Gaussian distri-
bution to each class’s embedding distribution. For each attribute
class 𝐶𝑘 ∈ 𝑎𝑢 𝑗 , the mean vector 𝜇 𝑗,𝑘 is computed as below:

𝜇 𝑗,𝑘 =
1

|𝑆𝑎𝑢 𝑗=𝐶𝑘
|
∑︁

em𝑖 ∈𝑆𝑎𝑢𝑗 =𝐶𝑘

em𝑖 , (10)

where 𝑆𝑎𝑢 𝑗=𝐶𝑘
= {em𝑖 | 𝑎𝑢 𝑗 (em𝑖 ) = 𝐶𝑘 } represents the set of

user embeddings where the attribute 𝑎𝑢 𝑗 belongs to class 𝐶𝑘 , and
|𝑆𝑎𝑢 𝑗=𝐶𝑘

| denotes the number of embeddings in this set. We com-
pute the covariance matrix Σ𝑖 of the Gaussian distribution as below:

Σ 𝑗,𝑘 =
1

|𝑆𝑎𝑢 𝑗=𝐶𝑘
|
∑︁

em𝑖 ∈𝑆𝑎𝑢𝑗 =𝐶𝑘

(em𝑖 − 𝜇 𝑗,𝑘 ) (em𝑖 − 𝜇 𝑗,𝑘 )𝑇 . (11)

Second, we compute the user embedding distribution for the
global set of embeddings by aggregating all the embeddings across
classes. The global mean vector 𝜇global is computed as:

𝜇global =
|𝑆𝑎𝑢 𝑗=𝐶𝑘

|
𝑁

∑︁𝑁

𝑘=1
𝜇 𝑗,𝑘 , (12)

where 𝑁 is the total number of user embeddings across all classes.
Similarly, the global covariance matrix Σglobal is computed as:

Σglobal =
1
𝑁

∑︁𝑁

𝑖=1
(em𝑖 − 𝜇global ) (em𝑖 − 𝜇global )𝑇 . (13)

This global Gaussian distribution captures the overall structure of
the user embeddings across all attribute classes.

Finally, we calculate the KL divergence between each class em-
bedding distribution and the global embedding distribution. No-
tably, there is an analytical solution for computing the KL di-
vergence between two multivariate Gaussian distributions. For
a class 𝐶𝑘 and the global Gaussian distributions N(𝜇 𝑗,𝑘 , Σ 𝑗,𝑘 ) and
N(𝜇global, Σglobal), the formula for the KL divergence is:

𝐷KL (N(𝜇 𝑗,𝑘 , Σ 𝑗,𝑘 ) ∥N(𝜇global, Σglobal ) ) =
1
2

(
log

det(Σglobal )
det(Σ 𝑗,𝑘 )

− 𝑑

)
+ 1
2

(
Tr(Σ−1

globalΣ 𝑗,𝑘 ) + (𝜇global − 𝜇 𝑗,𝑘 )𝑇 Σ−1
global (𝜇global − 𝜇 𝑗,𝑘 )

)
,

(14)

where 𝑑 is the dimensionality of the user embeddings, det(Σ) is
the determinant of the covariance matrix, and Tr denotes the trace
operation. By fitting a Gaussian distribution to the embeddings,
we compute the mean and covariance matrix for each class, and
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then use the KL divergence to minimize the difference between the
user embedding distributions of different classes. This allows us to
calculate the unlearning loss function L𝐴𝑈

𝑗
for 𝑎𝑢 𝑗 as below:

L𝐴𝑈
𝑗 =

1
|𝑈𝑎𝑢 𝑗

|
∑︁|𝑈𝑎𝑢𝑗 |

𝑘=1
𝐷KL (N(𝜇 𝑗,𝑘 , Σ 𝑗,𝑘 ) ∥N(𝜇global, Σglobal ) ) . (15)

Minimizing the loss function 𝐿𝐴𝑈
𝑗

enables the unlearning of the
private attribute 𝑎𝑢 𝑗 , thereby providing protection against AIAs.

3.2.2 Recommendation Knowledge Retention Loss. Since
performing unlearning may lead to a degradation in recommen-
dation performance, additional design is necessary to achieve ob-
jective 2. An intuitive approach is to directly use the recommenda-
tion loss function from the federated training phase (e.g., binary
cross-entropy (BCE) [65], root mean squared error (RMSE) [27], or
Bayesian personalized ranking (BPR) [52] loss) as the optimization
objective to maintain recommendation quality. This recommenda-
tion loss L𝑅𝑒𝑐 can be defined as:

L𝑅𝑒𝑐 = L𝐵𝐶𝐸/𝐵𝑃𝑅,... (𝑠𝜓 (𝑓𝜑,𝑝 (𝑢 ), 𝑓𝜑,𝑝 (𝑖 ) ),R), (16)

where R is the interaction matrix, and each element 𝑟𝑖, 𝑗 ∈ R repre-
sents the interaction between user 𝑢𝑖 and item 𝑣 𝑗 .

To accelerate the execution process, we only update user embed-
dings during unlearning, so we additionally propose the use of a
regularization loss L𝑅𝑒𝑔 to restrict the range of user embedding
updates, preventing drastic changes in user embeddings and thus
leveraging the prior learning. The L2-regularization [21, 40] term
is defined as below:

L𝑅𝑒𝑔 =
∑︁|𝑈 |

𝑖=1
∥em𝑖 − em′

𝑖 ∥22 =
∑︁|𝑈 |

𝑖=1

∑︁𝑑

𝑗=1
(𝑒𝑚𝑖,𝑗 − 𝑒𝑚′

𝑖,𝑗 )2, (17)

where em𝑖 and em′
𝑖
represent the user embeddings before and after

unlearning, respectively. Since the interaction data may be inacces-
sible due to privacy restrictions or data modifications after training,
the loss L𝑅𝑒𝑐 might no longer be applicable. In such scenarios, the
regularization term L𝑅𝑒𝑔 will help preserve recommendation per-
formance. The underlying rationale is that closer model parameters
typically lead to more consistent model performance.

3.2.3 Summary. Eq. (15), (16), and (17) in Aegis represent two
sub-objectives corresponding to the motivations: Eq. (15) focuses on
the elimination of sensitive attribute information, and Eq. (16) and
Eq. (17) aim to enhance recommendation performance. For each
user, we achieve private user embedding training for each client
through a federated training process. In each unlearning round, we
sample a set of users and their historical interaction data from𝑈 .
By jointly learning L𝐴𝑈 , L𝑅𝑒𝑐 , and L𝑅𝑒𝑔 , the private embedding
unlearning objective for clients can be formulated as:

𝜑, 𝑝 = argmin
𝜑,𝑝

L𝐴𝑙𝑙 = argmin
𝜑,𝑝

L𝑅𝑒𝑐 + 𝛽L𝑅𝑒𝑔 + 𝛾
∑︁

𝑗 ∈𝐴𝑢
L𝐴𝑈

𝑗 , (18)

where 𝛽 , and 𝛾 are hyperparameters that balance the trade-off be-
tween recommendation utility and privacy protection. A larger 𝛾
indicates stronger protection of attribute privacy, while larger 𝛽 en-
hance recommendation accuracy. It is worth noting that the weight
for the privacy loss of each attribute can be adjusted; for simplicity,
we assume users weigh all private attributes equally. When the
training interaction data is unavailable and the recommendation
loss cannot be applied, we only use the regularization term to pre-
vent excessive degradation of recommendation performance. The

Algorithm 1 Aegis Attribute Unlearning Process
Input: Trained model parameters 𝜃0 = {𝜑0, 𝑝0},𝜓0, private attributes 𝐴𝑢 ,

number of local iterations 𝐿𝑙 , server aggregation rounds𝑇 , Hyperpa-
rameters 𝛽,𝛾 , threshold 𝜖 , learning rate 𝜂.

Output: Updated user embeddings 𝑓𝜃 (𝑢 ) and model parameters 𝜃
1: The client submits an unlearning request for the attribute set 𝐴𝑢 ;
2: Initialize global parameter with trained model 𝜃0 = {𝜑0, 𝑝0},𝜓0;
3: Server: Distribute the attribute unlearning request of 𝐴𝑢 to clients;
4: if The clients can participate in unlearning with available data then
5: for each global round 𝑡 = 0, 1 . . . ,𝑇 − 1 do
6: sampling a fraction of clients C𝑡 ⊆ 𝑈

7: for each client 𝑐𝑖 ∈ C𝑡 in parallel do
8: for each local iteration 𝑙 = 1, 2, . . . , 𝐿𝑙 do
9: Compute the private attribute unlearning loss L𝐴𝑈

𝑡 =∑
𝑗 ∈𝐴𝑢

L𝐴𝑈
𝑗,𝑡

using Eq. (15)
10: Compute the recommendation knowledge retention loss

L𝑅𝑒𝑐
𝑡 and regularization loss L𝑅𝑒𝑔

𝑡 using Eq. (16) and (17)
11: Update model parameters 𝜃𝑡,𝑖 = {𝜑𝑡,𝑖 , 𝑝𝑡,𝑖 } by minimizing

L𝐴𝑙𝑙 in Eq. (18): 𝜃𝑡,𝑖 = 𝜃𝑡,𝑖 −𝜂∇𝜃 (L𝑅𝑒𝑐
𝑡 +𝛽L𝑅𝑒𝑔

𝑡 +𝛾L𝐴𝑈
𝑡 )

12: end for
13: Upload updated unlearning gradients to server
14: end for
15: Server: Aggregate the gradients and update the global model,

𝜃𝑡+1 = 1∑
𝑐 𝑗 ∈C𝑡 |𝐷𝑐 𝑗 |

∑
𝑐𝑖 ∈C𝑡 |𝐷𝑐𝑖 |𝜃𝑡,𝑖

16: if The update in embeddings: ∥ 𝑓𝜃𝑡+1 (𝑢 ) − 𝑓𝜃𝑡 (𝑢 ) ∥ < 𝜖 then
17: Break: End training early as updates are below the threshold
18: end if
19: Server: Distribute 𝜃𝑡+1 to all clients, 𝜃𝑡+1,𝑖 = 𝜃𝑡+1, ∀𝑖 ∈ 𝑈

20: end for
21: else
22: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 on Client making request do
23: Compute the private attribute unlearning loss L𝐴𝑈

𝑡 =∑
𝑗 ∈𝐴𝑢

L𝐴𝑈
𝑗,𝑡

using Eq. (15)

24: Compute the regularization loss L𝑅𝑒𝑔
𝑡 using Eq. (17)

25: Update model parameters 𝜃 = {𝜑, 𝑝 } by minimizing L𝐴𝑙𝑙 ′ in
Eq. (19): 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃 (𝛽L

𝑅𝑒𝑔
𝑡 + 𝛾L𝐴𝑈

𝑡 )
26: if The update in embeddings: ∥ 𝑓𝜃𝑡+1 (𝑢 ) − 𝑓𝜃𝑡 (𝑢 ) ∥ < 𝜖 then
27: Break: End training early as updates are below the threshold
28: end if
29: end for
30: end if

training objective in this data-free case is:

𝜑, 𝑝 = argmin
𝜑,𝑝

L𝐴𝑙𝑙 ′ = argmin
𝜑,𝑝

𝛽L𝑅𝑒𝑔 + 𝛾
∑︁

𝑗 ∈𝐴𝑢
L𝐴𝑈

𝑗 . (19)

Finally, we use stochastic gradient descent (SGD) [34] on each client
to optimize the total loss function L𝐴𝑙𝑙 or L𝐴𝑙𝑙 ′ .

3.3 Training Process
Aegis operates after federated learning, focusing on fine-tuning to
ensure privacy by unlearning specific attributes. Two models are
involved in our framework: the embedding network for recommen-
dation 𝑓𝑝,𝜑 and the recommendation score function 𝑠𝜓 .

3.3.1 Federated Learning (Pre-Unlearning Stage). We adopt
the standard FedRec model for training the recommender system. In
each training round, the central server begins by sampling a group
of users and distributing the model parameters. The clients then
perform local training, iterating over mini-batches to compute the
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loss and update the weights of 𝑓𝑝,𝜑 and 𝑠𝜓 . After 𝐿𝑙 local iterations,
the clients upload the weights to the server. Finally, the server
aggregates the weights using FedAvg [46] and updates the model.

3.3.2 Attribute Unlearning Fine-tuning. As users’ privacy pref-
erences may change over time, when attributes that were previously
considered non-sensitive become sensitive, Aegis needs to promptly
provide protection. Based on the set of private attributes that need
protection, we perform post-training fine-tuning of the trained rec-
ommender system, as shown in Algorithm 1. Aegis operates in two
protection modes as below:
i) Aegis-Fed (federated protection): When clients are willing
to participate in the fine-tuning process and provide the relevant
recommendation data for unlearning, we use LAll from Eq. (18)
as the local loss function and perform local training updates. The
server handles aggregation and model distribution, following the
usual federated training process.
ii) Aegis-CS (centralized protection):When clients are unwilling
to participate in the fine-tuning process or are unable to provide
the necessary recommendation data due to privacy concerns or
data changes, we use L𝐴𝑙𝑙 ′ from Eq. (19) as the loss function to con-
duct fine-tuning on the client making the unlearning request. We
iteratively update the user embeddings until the update difference
is less than a threshold 𝜖 , i.e., ∥𝑒𝑢,𝑘+1 − 𝑒𝑢,𝑘 ∥ ≤ 𝜖 .

4 Evaluation
Weevaluated our Aegismethod on four benchmark datasets, demon-
strating its performance in attribute unlearning.

4.1 Evaluation Setup
Testbed.We implemented Aegis using Python 3.8.0 and PyTorch
2.2.0, and run all experiments on NVIDIA A100 Tensor Core GPUs.
Datasets. The experiments were conducted on four publicly accessi-
ble datasets as detailed in Table 2, each representative of variousweb
applications. These include the movie rating datasets MovieLens-
100K and MovieLens-1M [23] used in media streaming platforms,
the clothing sales dataset ModCloth [58] relevant to e-commerce
applications, and the music listening behavior dataset [7] employed
in music recommendation services. The datasets encompass user-
item interactions as input data, along with user attributes such
as gender and age, making them well-suited for RS research. The
private attribute ‘Age’ is divided into seven age groups following
the method used in the MovieLens-1M. For location labels, we use
continent tags based on the countries from the Last.FM-1K dataset.
FedRec Models and Hyperparameters. We use FedNCF [51] as
our foundational FedRecs and employ dot product as the scoring
function. We set the dimensions of user and item embeddings to
128 and use SGD [34] as the optimization algorithm with a learning
rate of 0.01. For the base training loss function L𝑅𝑒𝑐 , we use BPR
loss [53] to train the recommendation model. We use 10 federated
clients, with default hyperparameters set to 𝛽 = 0.1, and 𝛾 = 10.
Attacker Seeting. For selecting the attribute inference model
for user embedding attacker, we utilize easily implementable and
powerful machine learning models, including a three-layer MLP
model [49] and the XGBoost model [16]. Both models are employed
as private attribute classifiers and trained on shadow datasets.

Table 2: Summary of Datasets

Dataset Users Items Ratings Density
MovieLens-100K 943 1,682 100,000 6.30%
MovieLens-1M 6,040 3,952 1,000,209 4.19%
ModCloth 44,784 1,020 99,893 0.22%
Last.FM-1K 992 176,948 19,150,868 10.91%

Evaluation Metrics. In evaluating recommendation performance,
we employ metrics widely used in recommender systems, report-
ing recommendation utility by calculating the average hit ratio
(HR) [12] and normalized discounted cumulative gain (NDCG) [28]
across the ranked item lists of all test users. We truncate the ranked
lists for both metrics at positions 5 and 10. For privacy-preserving
performance evaluation, we assess information leakage in user em-
beddings using the accuracy of attribute classifiers. The AIA’s goal
is high attack accuracy, but excessively low accuracy could trigger
the “Streisand Effect" [10, 11, 19], inadvertently leading to privacy
exposure. Our goal is to protect against AIAs, where scores closer
to those of a random attacker indicate better privacy preservation.
Unlearning Methods. There are numerous studies on federated
unlearning, but most of they are not applicable to the attribute
unlearning problem. To the best of our knowledge, we are the first
to study post-training federated attribute unlearning. We introduce
two versions of Aegis: Aegis-Fed and Aegis-CS. The key difference
lies in whether client interaction training data is involved during
the unlearning process, corresponding to data-dependent (DD) and
data-free (DF) settings, respectively. We compare our methods with
existing defenses against attribute inference attacks:
• UC-FedRec [25]: A federated AIA defense method performed

during training. It modifies the original federated recommender
system by training attribute filters for each client, minimizing the
attribute classification loss during training to achieve attribute
unlearning. Although the background setting differs from our
post-training approach, the comparison aids in a comprehensive
understanding of the attribute unlearning problem.

• U2U-R and D2D-R [40]: The post-training attribute unlearning
methods exclude training data, using user-to-user (U2U) loss
and distribution-to-distribution (D2D) distance loss as attribute
distinguishability losses to achieve unlearning, respectively. We
extend it to the federated setting with multiple attribute labels.

4.2 Results and Analysis
4.2.1 Attribute Unlearning Performance. The classification
accuracy of attackers across different datasets reflects Aegis’s per-
formance of attribute unlearning, with results shown in Table 3. We
treat the gender, age groups, and occupation of users in MovieLens-
100K and MovieLens-1M, the body shape of users in ModCloth, and
the gender, age groups, and country location of users in Last.FM-
1K as sensitive attributes. We can draw the following conclusions:
First, for FedRec without any protective measures, the XGBoost
attack on the original user embedding achieves an average improve-
ment of 21.54%, and the MLP attack improves by 21.15% compared
to a random attacker. This indicates that private information in
user embeddings can be leaked to attackers. Second, in the data-
dependent DD scenario, for MLP attackers, both Aegis-Fed and
UC-FedRec methods reduce MLP attack performance, with a re-
duction of 14.53% and 14.63%, respectively. For XGBoost attackers,
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Table 3: Results of Unlearning Performance (Attack Accuracy of XGBoost/MLP Attackers), where DD Indicates the Unlearning
Process is Dependent on the Training Interaction Data, and DF Indicates that the Unlearning Process is Interaction Data-free.

Dataset MovieLens-100K MovieLens-1M ModCloth Last.FM-1K
Sensitive Attributes Gender Age Occupation Gender Age Occupation Body Shape Gender Age Location

X
G
B
oo

st
A
tt
ac
ke

r Original 0.7143 0.2804 0.1490 0.8487 0.3526 0.1192 0.7419 0.5989 0.4828 0.5604

D
D Aegis-Fed 0.5703 0.2222 0.1058 0.5968 0.1798 0.0589 0.5316 0.4798 0.2778 0.3586

UC-FedRec 0.6772 0.2857 0.2011 0.7280 0.3220 0.1543 0.7325 0.5606 0.2980 0.4899

D
F

Aegis-CS 0.5450 0.2116 0.0794 0.6450 0.2064 0.0766 0.5709 0.4506 0.2929 0.3766
U2U-R 0.9921 0.5947 0.6980 0.9997 0.9998 0.9940 0.9999 0.9999 0.8690 0.9518
D2D-R 0.5834 0.2464 0.1020 0.6821 0.2941 0.0923 0.7799 0.4746 0.4585 0.4876

M
LP

A
tt
ac
ke

r Original 0.7105 0.3386 0.0954 0.7310 0.3470 0.1159 0.7654 0.6102 0.5350 0.5604

D
D Aegis-Fed 0.6541 0.1376 0.0794 0.5625 0.1598 0.0762 0.6602 0.5556 0.1162 0.2828

UC-FedRec 0.6085 0.1640 0.0582 0.3654 0.1836 0.0263 0.6784 0.4242 0.1364 0.2171

D
F

Aegis-CS 0.6224 0.1693 0.0688 0.6032 0.1821 0.0389 0.6462 0.5253 0.0690 0.2677
U2U-R 0.6931 0.2646 0.0370 0.7193 0.0704 0.0985 0.7107 0.5650 0.3536 0.4088
D2D-R 0.6720 0.2434 0.0529 0.6987 0.2359 0.0298 0.6728 0.5480 0.3103 0.2802

Random Attacker 0.5000 0.1429 0.0476 0.5000 0.1429 0.0476 0.5000 0.5000 0.1469 0.1667

Table 4: Utility Results of Recommendation Performance.

Datasets Methods
Utility Metrics

NDCG@5 NDCG@10 HR@5 HR@10

M
ov

ie
Le

ns
-1
00

K Original 0.7452 0.7080 0.7234 0.6804

D
D Aegis-Fed 0.7632 0.6905 0.7321 0.6959

UC-FedRec 0.6959 0.6452 0.7032 0.6698

D
F

Aegis-CS 0.7209 0.6891 0.6944 0.6571
U2U-R 0.7151 0.6854 0.7040 0.6663
D2D-R 0.7194 0.6862 0.7129 0.6693

M
ov

ie
Le

ns
-1
M Original 0.6992 0.6901 0.6958 0.6843

D
D Aegis-Fed 0.6332 0.6262 0.6292 0.6211

UC-FedRec 0.6320 0.6525 0.6280 0.6204

D
F

Aegis-CS 0.6631 0.6707 0.6641 0.6604
U2U-R 0.6481 0.6156 0.6420 0.5965
D2D-R 0.6928 0.6623 0.6388 0.6929

M
od

C
lo
th

Original 0.6077 0.6079 0.6047 0.6115

D
D Aegis-Fed 0.6044 0.6071 0.6352 0.6386

UC-FedRec 0.5664 0.5551 0.5622 0.5542

D
F

Aegis-CS 0.5969 0.5814 0.5563 0.5530
U2U-R 0.5605 0.5437 0.5482 0.5319
D2D-R 0.5854 0.5694 0.5653 0.5561

La
st
.F
M
-1
K

Original 0.5724 0.5665 0.5806 0.5680

D
D Aegis-Fed 0.5888 0.5939 0.5962 0.5999

UC-FedRec 0.5182 0.5190 0.5243 0.5229

D
F

Aegis-CS 0.5446 0.5726 0.5442 0.5052
U2U-R 0.5182 0.5190 0.5244 0.5229
D2D-R 0.5282 0.5975 0.5362 0.5490

Aegis-Fed performs better than UC-FedRec, reducing attack per-
formance by 14.26% and 3.99%, respectively. This is because UC-
FedRec’s reliance on the MLP-based attribute filter limits its defense
against XGBoost attackers. Moreover, Aegis, as a post-training pri-
vacy protection method, offers more flexibility without the need to
modify the model modules. Third, in the data-free DF centralized
protection scenario, Aegis-CS outperforms U2U-R and D2D-R. For
MLP attackers, Aegis-CS reduces attack performance by 14.43%,
compared to 7.22% and 10.30% reductions for U2U-R and D2D-R,
respectively. For XGBoost attackers, U2U-R fails to deceive attack-
ers and instead significantly increases attack performance, with
an average increase of 90.99%. In contrast, Aegis-CS and D2D-R
reduce attack performance by 12.94% and 5.96%, respectively.

4.2.2 Recommendation Performance. The recommendation
performance evaluation based on Normalized Discounted Cumu-
lative Gain (NDCG) and Hit Rate (HR) is shown in Table 4. We
find that attribute unlearning methods can impact recommenda-
tion performance to varying degrees. Specifically, in the data-free
DF centralized protection scenario, Aegis-CS results in an average
reduction of 2.48% and 1.48% for NDCG@5 and NDCG@10, and
a 3.63% and 4.21% decrease in HR@5 and HR@10, respectively.
U2U-R exhibits larger declines across these four metrics, averaging
4.57%, 5.22%, 4.65%, and 5.67%. In contrast, D2D-R shows compa-
rable performance to Aegis-CS, with average decreases of 2.47%,
1.43%, 3.78%, and 1.92%, respectively, outperforming U2U-R. In the
DD scenario, Aegis-Fed achieves better recommendation perfor-
mance than Aegis-CS, with average declines of only 0.87%, 1.37%,
0.30%, and 0.28% across the four metrics, and even improves perfor-
mance in some instances. This improvement might be attributed
to the reduction of attribute bias, leading to a more balanced data
distribution. In comparison, UC-FedRec shows over a 4% average
decrease across all recommendation performance metrics.

4.2.3 Visualization. To visually analyze the results, we employ
t-SNE [56] method to reduce the dimensionality of user embeddings
to 2 for display. Figures 2a and 2b illustrate the gender distribution
of users in the MovieLens-100K dataset before and after attribute
unlearning, respectively, while Figures 2c and 2d present the occu-
pational distribution of users in the MovieLens-1M dataset before
and after unlearning. Since the goal of attribute unlearning is to
make different categories of private attributes indistinguishable, the
visualizations reveal a more diffused and less distinct distribution
of privacy categories after unlearning, which reduces the likelihood
of user embeddings being identifiable by attackers.

4.2.4 Efficiency. We recorded the runtime of the unlearning
methods for the gender attribute on theMovieLens-100K,MovieLens-
1M, and Last.FM-1M datasets, as well as the body shape attribute on
the ModCloth dataset, to reflect the different efficiency. The results
are presented in Table 5. We observe that in the data-dependent DD
scenario, Aegis demonstrates superior efficiency compared to the
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Figure 2: t-SNE Visualization of User Embeddings.

Table 5: Running TimeConsumption of UnlearningMethods.
Time(s) Aegis-Fed UC-FedRec Aegis-CS U2U-R D2D-R
ML-100K 392.04 941.74 10.91 9.80 5.43
ML-1M 4742.96 8223.53 37.66 109.68 54.45

ModCloth 571.22 981.43 165.18 167.37 87.35
Last.FM-1K 65085.79 163129.51 8.88 12.15 5.68

UC-FedRec. This efficiency advantage arises from Aegis’s ability to
perform federated fine-tuning on the existing trained global model
without introducing additional MLP-based attribute filtering mod-
ules. In the data-free DF scenario, Aegis-CS significantly accelerates
the unlearning process by eliminating the need for interactive data,
achieving comparable efficiency to U2U-R and D2D-R. Our methods
provide new insights into rapid attribute unlearning.

4.2.5 Ablation Study. To evaluate the robustness of our pro-
posed multi-component loss function, we analyzed the effects of
the trade-off parameters 𝛽 and 𝛾 . By fixing one parameter at its
default setting and varying the other, we measured recommen-
dation performance using HR@10 and unlearning effectiveness
using attack accuracy, as shown in Figure 3. The results reveal that
increasing 𝛽 leads to a slight improvement in recommendation per-
formance and a minor decrease in unlearning effectiveness for both
Aegis-Fed and Aegis-CS. In contrast, the sensitivity analysis of 𝛾
shows the opposite effect. Overall, both Aegis-Fed and Aegis-CS
demonstrate robustness across different parameter settings, with
minimal variation in recommendation and unlearning performance.

5 RELATEDWORK
Recommendation Unlearning.Machine unlearning has recently
emerged as a method to quickly remove the impact of specific data
on trained models [64]. Exact unlearning, exemplified by the SISA
method [6], uses dataset partitioning and sub-model aggregation
for fast retraining. Approximate unlearning manipulates model
parameters, using techniques such as boundary learning [10] and
knowledge distillation [35, 62]. Attribute unlearning is a type of
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Figure 3: Impact of 𝛽,𝛾 on Unlearning (Attack Accuracy) and
Recommendation (HR@10) Performance on ML-100K.

machine unlearning. Early research on attribute unlearning [22]
tackled privacy in facial recognition by adding network modules. In
recommender systems, methods like [67] adjust gradient updates,
while others [9, 39] apply SISA-based data grouping for unlearning.
However, most recommender system unlearning has focused on
the sample level [37, 43], with limited work on federated attribute
unlearning. While [40] explored attribute unlearning with a custom
loss function, it hasn’t been extended to federated settings. There’s
a need for a more robust federated attribute unlearning framework
that works with or without access to training data.
Privacy-preserving Recommender Systems. Federated learn-
ing (FL) [46] has been applied in recommender systems to en-
hance user privacy by avoiding direct data sharing. However, fed-
erated recommender systems (FedRec) [47, 48] are still vulnerable
to privacy risks, as central servers can infer private information
from user parameters [55], such as user interactions, ratings, or
attributes [8, 25, 61]. To mitigate these risks, privacy preservation
mechanisms such as fake items, homomorphic encryption, and dif-
ferential privacy (DP) have been employed. For example, [41, 42] use
randomly sampled fake items to obscure user interactions, while ho-
momorphic encryption [50, 66] ensures secure mathematical opera-
tions on encrypted data. Local differential privacy (LDP) [13, 15, 45]
enables statistical computations and ensures the privacy of individ-
ual participants. However, encryption-based methods significantly
increase communication costs, and DP primarily focuses on the
transmission of model weights or updates, which is less effective
in addressing inference attacks and privacy leakage in the learned
federated recommender models [25, 55].

6 CONCLUSIONS
In this paper, we present Aegis, the first recommendation frame-
work to address post-training attribute unlearning in a federated
setting to our knowledge. Aegis enhances the privacy of FedRecs
by selectively unlearning private user attributes while preserv-
ing recommendation quality. The framework balances private at-
tribute unlearning and recommendation knowledge retention using
a multi-component loss function based on information theory. Our
approach minimizes the mutual information between user embed-
dings and sensitive attributes, combining this with regularization
and recommendation losses to maintain performance. Aegis sup-
ports both interaction data-dependent and data-free unlearning,
making it adaptable to different levels of data access.
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