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Abstract001

Social bots are automated programs designed002
to spread rumors and misinformation, posing003
significant threats to the security of the net-004
work. Graph Neural Network (GNN)-based005
social bot detection models are limited by006
the over-smoothing and over-squashing prob-007
lems of the message-passing mechanism, mak-008
ing it difficult to effectively extract key high-009
dimensional topological features and model010
complex topological structures across different011
social networks. To address the issue of lim-012
ited topological feature extraction caused by013
over-smoothing and over-squashing in GNN-014
based social bot detection models, we propose015
a topology-aware multi-scale detection method016
for social bots. By leveraging local topolog-017
ical layers and a clustering attention mech-018
anism, the approach effectively incorporates019
topological features into node representations020
and captures multi-level structural patterns at021
both global and local scales. Experimental re-022
sults demonstrate that our model exhibits strong023
competitiveness on three widely used bench-024
mark datasets, effectively addressing existing025
methods’ limitations in capturing local feature026
patterns, while also being capable of capturing027
global features, thereby enhancing the over-028
all modeling of complex structures. We pub-029
licly release our code in https://anonymous.030
4open.science/r/TopoMSG-2C41/031

1 Introduction032

Social bots are automated programs operating on033

social media platforms, where malicious bots sig-034

nificantly threaten network security through mass035

retweeting, rumor dissemination, election interfer-036

ence, and extremist ideology propagation (Berger037

and Morgan, 2015; Deb et al., 2019). Social bot038

detection provides crucial safeguards for maintain-039

ing cyberspace security and enhancing platform040

credibility.041

Influenced by a variety of factors including node042

connectivity patterns, community structures, and043

Figure 1: Topological structure features across datasets,
Relations represent relationships between different enti-
ties, such as followers, friend, comments, retweets, etc.

user interaction behaviors, the topological architec- 044

ture of social networks manifests significant com- 045

plexity and diversity, a characteristic that is espe- 046

cially pronounced in datasets constructed via dif- 047

fering methodologies. Existing social bot detection 048

datasets are primarily constructed based on graph 049

structures. However, the adoption of different sam- 050

pling methods results in significant variations in the 051

topological features of these datasets. As shown in 052

Figure 1, MGTAB (Shi et al., 2023) is constructed 053

as a scale-free dataset based on topic relevance. 054

TwiBot-20 (Feng et al., 2021) is built as a tree- 055

like structured dataset using breadth-first search. 056

TwiBot-22 (Feng et al., 2022b) is developed as 057

a heterogeneous graph dataset through metadata 058

neighborhood expansion. (Ng and Carley, 2025) 059

shows that bots tend to form star-like network struc- 060

tures, while human users are more likely to exhibit 061

tree-like patterns. The high prevalence of tree-like 062

structures in the TwiBot-20 dataset may pose chal- 063

lenges for bot detection tasks. We further analyzed 064

the proportion of users forming cyclic structures un- 065

der different relationship types, as presented in Ta- 066

ble. 1. The results show that in datasets constructed 067

using hierarchical sampling methods (e.g., TwiBot- 068

20 and TwiBot-22), social bots tend to form cyclic 069

structures in the network, mimicking the interaction 070
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patterns of human users. However, in the topic-071

based dataset MGTAB, the proportion of social072

bots forming such cyclic structures is significantly073

lower. This indicates that social bots struggle to074

effectively imitate human behavior when engaging075

in substantive discussions with real users.076

Dataset Relation On Cycle Off Cycle

Users Bots Users Bots

Twibot-20
followers 56.42% 43.58% 44.35% 55.65%
friends 36.98% 63.02% 59.73% 40.27%

All Relations 44.28% 55.72% 44.28% 55.72%

MGTAB

followers 83.51% 16.49% 55.01% 44.99%
friends 83.98% 16.02% 52.86% 47.14%

mention 97.05% 2.95% 69.75% 30.25%
reply 98.93% 1.07% 83.85% 16.15%

quoted 99.60% 0.40% 80.83% 19.17%
URL – – 29.16% 70.84%

hashtag – – 75.41% 24.59%
All Relations 73.06% 26.94% 73.06% 26.94%

TwiBot-22
(subgraph)

followers 88.14% 11.86% 85.91% 14.09%
friends 90.30% 9.70% 91.49% 8.51%

All Relations 88.26% 11.74% 88.26% 11.74%

Table 1: Comparison of Users and Bots Proportions on
and off Cycles. TwiBot-22(subgraph) is a connected
subgraph extracted from the homogeneous graph of user
nodes in the heterogeneous graph TwiBot-22. "–" indi-
cates that no cyclic structures exist under this relation.

Both message-passing-based (Gilmer et al.,077

2017) and attention-based (Vaswani et al., 2017)078

detection methods face distinct challenges in prac-079

tice. Graph Neural Networks (GNNs) leverage080

message passing to aggregate features from neigh-081

boring nodes and capture structural information (Fu082

et al., 2023; Huang et al., 2024; Liu et al., 2024).083

However, they are prone to the problems of over-084

smoothing (Yang et al., 2020; Rusch et al., 2023)085

and over-squashing (Topping et al., 2021; Di Gio-086

vanni et al., 2023), which hinder the model’s abil-087

ity to learn long-range dependencies. Addition-088

ally, aggregation functions are typically designed089

to aggregate node attribute features while largely090

ignoring the topological structure attributes of net-091

works, such as connected components, cycles, and092

holes (Bouritsas et al., 2022). In contrast, attention-093

based Graph Transformers excel at modeling long-094

range dependencies. However, they suffer from the095

local-global chaos problem (Wang et al., 2024) dur-096

ing the integration of local and global information,097

leading to overfitting and over-globalization (Xing098

et al., 2024), which negatively impacts model gen-099

eralization.100

Therefore, social bot detection faces two key101

challenges: (a) How to utilize high-dimensional102

topological features under different relationships 103

to address the incomplete topological structures 104

caused by sampling. (b) How to separate global 105

and local features to alleviate the impact of local- 106

global chaos. To address these issues, we propose 107

a topology-aware multi-scale social bot detection 108

method. 109

First, for local feature extraction, we introduce 110

Persistent Homology (Edelsbrunner et al., 2008), a 111

method from topological data analysis, to encode 112

structural features of nodes based on different types 113

of edge relationships, thereby capturing rich topo- 114

logical properties. Persistent Homology has shown 115

strong potential in deep learning (Zia et al., 2024), 116

showcasing its effectiveness especially in graph 117

classification tasks (Aktas et al., 2019). Besides, re- 118

cent research has also reported significant progress 119

in leveraging Persistent Homology for node classi- 120

fication tasks (Immonen et al., 2023). Second, for 121

global feature extraction, we employ a clustered 122

global attention mechanism to alleviate information 123

imbalance caused by over-globalization. Finally, 124

we adopt a global-local collaborative training strat- 125

egy to automatically adjust the importance weights 126

of global and local features. Our model integrates 127

global attention mechanisms with message-passing 128

mechanisms, achieving collaborative optimization 129

between global and local features, which enhances 130

detection accuracy and robustness. 131

Our main contributions are summarized as fol- 132

lows: 133

• This study is the first to apply Persistent Ho- 134

mology to the task of social bot detection, 135

enhancing node representation by capturing 136

high-dimensional topological features under 137

heterogeneous node relationships. 138

• We propose a clustered global attention mech- 139

anism, which effectively reduces the over- 140

reliance of Graph Transformers on global 141

attention and alleviates local-global chaos 142

caused by over-globalization. 143

• A collaborative training strategy is employed 144

to automatically balance and optimize the 145

learning process of global and local features. 146

• Experimental results demonstrate that our 147

method achieves performance comparable to 148

state-of-the-art approaches across multiple 149

datasets, showcasing its strong competitive- 150

ness and broad application potential. 151
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2 Related Work152

Social networks are essentially complex graph153

structures constituted by massive user interactions,154

excelling in capturing collective behaviors and155

propagation patterns compared to text analysis156

methods. The advent of attention mechanisms157

has significantly advanced graph neural networks158

(GNNs). Existing graph transformers approaches159

can be categorized into two main types: message-160

passing-based and global-attention-based.161

2.1 Message Passing Neural Networks162

Graph Attention Networks (GATs) (Veličković163

et al., 2017) demonstrate unique advantages in so-164

cial bot detection. The classic GAT adaptively as-165

signs inter-node weights through attention mecha-166

nisms to capture the most relevant interaction pat-167

terns. Inspired by this, the Relational Graph Trans-168

former (RGT) (Feng et al., 2022a) introduces multi-169

relational attention mechanisms that dynamically170

adjust weights across semantically distinct relation-171

ships, enhancing modeling capacity for complex172

social networks. The Heterogeneous Graph Trans-173

former (HGT) (Wang et al., 2019) further designs174

specialized attention mechanisms for diverse user175

types and interaction patterns in social networks176

through explicit modeling of the heterogeneity of177

nodes and edges. These message-passing-based178

GNNs not only enable flexible node aggregation179

but also capture diverse structural features, achiev-180

ing state-of-the-art performance in bot detection181

tasks.182

2.2 Global Attention Neural Networks183

Transformers provide theoretical foundations for184

GNNs to capture global features through learnable185

fully-connected attention graphs (Waswani et al.,186

2017). NodeFormer (Wu et al., 2022) proposes187

an all-pair message passing paradigm that reduces188

computational complexity to linear scale via kernel-189

ized Gumbel-Softmax operators, enabling efficient190

signal propagation on large graphs. SGFormer (Wu191

et al., 2024) introduces a simplified graph trans-192

former architecture that resolves quadratic over-193

head through single-layer attention modeling. De-194

spite their demonstrated potential in capturing long-195

range dependencies, global attention mechanisms196

remain underexplored in social bot detection.197

3 Preliminaries 198

This section formally introduces key concepts em- 199

ployed in our work. 200

Persistent Homology: Topological structures 201

are defined as features invariant under continuous 202

deformations (Zia et al., 2024). Persistent homol- 203

ogy identifies multi-scale topological signatures by 204

tracking homology group evolution across filtration 205

scales. Different homology orders represent dimen- 206

sional features: 0-order (connected components), 207

1-order (cycles), and 2-order (cavities). 208

For a k-dimensional simplicial complex C (com- 209

posed of simplices: 0-simplices as vertices, 1- 210

simplices as edges, 2-simplices as triangles) with 211

filtration values a0 ≤ a1 ≤ · · · ≤ an, we define 212

a filtration process via a filtration function f that 213

generates nested complexes: 214

∅ ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn (1) 215

This filtration induces birth/death events of topo- 216

logical structures (connected components, cycles, 217

voids). Each structure is associated with a birth- 218

death pair (ai, aj), visualized in persistence dia- 219

grams where x- and y-axes represent birth/death 220

times. Diagonal points denote short-lived local fea- 221

tures or noise, while off-diagonal points correspond 222

to persistent global structures. 223

4 Methodology 224

We propose a topology-aware multi-scale detection 225

model. As shown in Figure 2, the TopoMSG frame- 226

work integrates persistent homology-based topo- 227

logical learning with multi-head global attention 228

through co-training, enabling joint optimization of 229

global-local feature awareness. 230

4.1 Local Topo Relational Graph 231

Transformer 232

Inspired by Feng et al. (Feng et al., 2022a), we 233

adopted the architecture of RGT and utilized the 234

attention mechanism to learn diverse node repre- 235

sentations under each relation. Given user feature 236

vectors xi and feature matrix X , we first apply 237

linear transformation: 238

x(0) = LeakyReLU(W · x+ b) (2) 239

where W ∈ Rd×d and b are learnable parameters. 240

The message-passing mechanism and multi-head 241

attention self-attention mechanisms have demon- 242

strated outstanding performance in the field of 243
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Figure 2: Topology-aware multi-scale Graph Network framework

graph neural networks. Consequently, we employ244

Graph Transformer layers (GTLayer) to extract245

shallow topological representations of nodes. The246

hidden representations x
(l−1)
j are fed into Graph247

Transformer:248

(q, k, v)
r(l)
c,i = x

(l−1)
j W l

c,(q,k,v) + blc,(q,k,v) (3)249

where q, k, v denote query,key,value vectors, re-250

spectively; W l
c,(q,k,v) and blc,(q,k,v) are learnable pa-251

rameters with regard to relation r and head c ; l252

denotes the l-th layer of Graph Transformer. Then,253

we leverage the message-passing mechanism to254

learn the neighborhood unit structure for each node255

and capture the graph structural information.256

u
r(l)
i =

1

C

C∑
c=1

∑
j∈Nr(i)

α
r(l)
c,i,jv

r(l)
c,j (4)257

where α represents the attention scores under dif-258

ferent relations and attention heads:259

αr
c,i,j(l) =

⟨qrc,i(l), krc,j(l)⟩∑
u∈Nr(i)⟨qrc,i(l), krc,u(l)⟩

(5)260

where ⟨·, ·⟩ denotes exponential-scaled dot-product;261

N r(i) represents neighbors under relation r.262

We employ persistent homology to capture topo-263

logical features under different relationship types264

and design the TopoLayer (Horn et al., 2021) to ef- 265

fectively integrate the continuously evolving topo- 266

logical features of nodes into their vector represen- 267

tations. Further details are provided in Section 4.2: 268

269

u
r(l)
Topo,i = TopoLayer(ur(l)i ) (6) 270

At least, using semantic aggregation net- 271

works (Feng et al., 2022a) to aggregate node repre- 272

sentations across relations while preserving the re- 273

lation heterogeneity entailed in the social networks: 274

275

wr
d =

1

|V |
∑
i∈V

q
(l)
d

T
· tanh(W (l)

d,s · u
r(l)
Topo,i + b

(l)
d,s)

(7) 276

where q
(l)
d , W (l)

d,s, and b
(l)
d,s are semantic attention 277

parameters. Normalized weights are obtained via: 278

β
r(l)
d =

exp(w
r(l)
d )∑

k∈R exp(w
k(l)
d )

(8) 279

leading to the final node representation: 280

xL,i =
1

D

D∑
d=1

[∑
r∈R

β
r(l)
d · ur(l)Topo,i

]
(9) 281

where xL,i denotes the local topology-aware node 282

embedding. 283
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4.2 TopoLayer284

In this subsection, we describe the architecture of285

TopoLayer in detail. We employ persistent homol-286

ogy from topological data analysis to reveal multi-287

scale hidden shape features (e.g., 0-dimensional288

connected components, 1-dimensional cycles, 2-289

dimensional voids). Specifically, we take GNN290

hidden layer representations as input and main-291

tain identical input-output dimensions, enabling292

seamless integration with arbitrary GNN layers.293

First, we map nodes to k distinct real-valued groups294

through k filtration functions to capture multi-scale295

topological features. We implement Multilayer Per-296

ceptrons (MLPs) as persistent homology filtration297

functions:298

u
r(l)
i,j = fj(u

r(l)
i ), j ∈ (1, k) (10)299

where u
r(l)
i,j denotes the filtration value of node300

i, generating k filtration groups. The filtration301

function fj is instantiated as an MLP. Each filtra-302

tion group captures distinct graph attributes. For303

node filtration values ur(l)0,j , u
r(l)
1,j , . . . , u

r(l)
n,j , we fil-304

ter graph G through nested complexes:305

Gi,j = (Vi,j , Ei,j), i ∈ (1, n), j ∈ (1, k), (11)306

307

V
r(l)
j = {v ∈ V | vr(l)i,j ≤ u

r(l)
i,j } (12)308

309

Ei
j = {(v, w) ∈ E | max{vr(l)i,j , w

r(l)
i,j } ≤ f i

j}
(13)310

This process generates persistence diagrams:311

ph(Gj ,MLPj) = {D0
j , D

1
j , . . . , D

m
j } (14)312

where ph(Gj ,MLPj) denotes persistence diagrams313

under filtration function MLPj , and Dm
j represents314

diagrams across topological dimensions. We then315

map persistence diagrams to d-dimensional node316

embeddings via linear projection:317

t
r(l)
i,j =

m∑
p=0

Linear(Dm
j ) (15)318

Aggregating k-scale features with residual connec-319

tions yields:320

u
r(l)
Topo,i = u

r(l)
i,j +

k∑
j=1

t
r(l)
i,j (16)321

where ur(l)Topo,i denotes topology-enhanced neighbor-322

hood features.323

4.3 Global Cluster Attention 324

Global-Attention-Based Graph Transformers excel 325

in capturing long-range dependencies, surpassing 326

the capabilities of message-passing mechanisms. 327

However, they suffer from over-globalization, 328

where attention weights disproportionately focus 329

on higher-order neighbors, often neglecting criti- 330

cal information residing in lower-hop neighbors. 331

Our Global Cluster Attention restricts model fo- 332

cus within clusters to address this issue. Using 333

Metis(Karypis and Kumar, 1998), we partition the 334

graph into m non-overlapping clusters and remove 335

edges enabling the nodes to focus more on intra- 336

cluster information. 337

Ĥk
P = Muti-head Attention (XP ) (17) 338

where XP represent the k-th cluster node embed- 339

dings, and Ĥk
P is the output of multi-head Attention. 340

Then we apply mean pooling to Ĥk
P to obtain clus- 341

ter representation P . Next, we apply mean pooling 342

to Ĥk
P in order to obtain a unified representation for 343

clusters: 344

P = [Mean(Hk
P ),Mean(Hk

Q), ...] (18) 345

And then, we feed the cluster representations P 346

into MHA: 347

P̂ = Muti-head Attention (P ) (19) 348

At least, we concat intra-cluster and inter-cluster 349

node representation: 350

XG = concat((Ĥk
P , 1

N
P · p̂T )Wf ) (20) 351

where Wf ∈ R2d×d are learnable parameters and 352

1
N
P denotes all-ones vector with a dimensional of 353

N
P . 354

4.4 Co-training 355

We implement co-training to dynamically balance 356

local-global feature importance. Sequentially, we 357

feed the output of Local Topo Graph Transformer 358

xL,i and the Global Cluster Attention xg,i into the 359

classifier to obtain soft labels.: 360

ŷl,i = softmax (Linear(xL,i)) (21) 361

362

ŷg,i = softmax (Linear(xG,i)) (22) 363

Finally, by utilizing the collaborative training loss 364

function, we not only enhance the model’s ability 365
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Table 2: Comparison of ACC and F1 scores across different models on multiple datasets. Bold values indicate the
best results, "-" represents cases where the model failed due to out-of-memory errors.

Method Global Local MGTAB Twibot-20 Twibot-22(subgraph)
Attention Attention ACC F1 ACC F1 ACC F1

GCN ✗ ✗ 81.59 ± 0.39 60.79 ± 2.98 73.61 ± 0.63 75.16 ± 0.92 90.68± 0.08 52.79± 1.34
RGCN ✗ ✗ 88.16 ± 0.61 78.24 ± 1.13 85.48 ± 1.31 86.94 ± 1.92 92.52 ± 0.17 64.32 ± 1.60
GAT ✗ ✓ 78.63 ± 0.85 43.12 ± 4.03 77.21 ± 0.47 79.46 ± 0.51 91.09± 0.10 55.99± 0.70
RGT ✗ ✓ 86.80 ± 0.48 76.02 ± 1.77 85.53 ± 1.14 86.81 ± 1.48 90.05 ± 0.08 52.27 ± 2.54
Nodeformer ✓ ✗ 87.69 ± 0.20 83.51 ± 0.50 86.66 ± 0.15 88.25 ± 0.13 – –
Ours ✓ ✓ 88.70 ± 0.27 79.85 ± 0.37 87.15 ± 0.08 88.64 ± 0.10 92.70 ± 0.09 66.67 ± 1.01

to fit the ground-truth labels but also strengthen the366

collaborative consistency between the two modules:367

368

Lco = α(Ll + Lg) + (1− α)(Llg + Lgl) (23)369

where Ll and Lg denote the losses of the Local370

Topo module and the Global Cluster Attention mod-371

ule, respectively. Llg and Lgl represent the losses372

between the two modules. All loss functions are373

implemented using the cross-entropy loss formu-374

lation. α is the balance factor that controls the375

relative weights of the individual loss components.376

5 EXPERIMENTS377

5.1 Datasets378

We selected three publicly available datasets that379

are widely used in the field of social bot detection.380

These datasets were constructed differently, result-381

ing in distinct topological structures. MGTAB was382

constructed under a unified theme, resulting in a383

relatively dense topological structure. In contrast,384

TwiBot-20 and TwiBot-22 were sampled based on385

relational criteria, leading to sparser graph struc-386

tures. Moreover, since TwiBot-22 is a heteroge-387

neous graph, we extracted only the user-to-user re-388

lations, which resulted in a large number of isolated389

nodes. To ensure graph connectivity, we filtered out390

these isolated nodes and constructed the TwiBot-391

22(subgraph). We provide detailed descriptions of392

the datasets in Appendix. A393

5.2 Baselines394

We compared our model with some classical and395

state-of-the-art models on graph neural networks396

to verify the effectiveness of our optimizations and397

improvements for graph neural networks.398

• Message Passing: Message Passing Aggre-399

gate messages from neighboring nodes to up-400

date each node’s feature representation. Such401

as: GCN, RGCN402

• Local Attention:Local Attention employ self- 403

attention to compute message or aggregation 404

weight. Such as RGT 405

• Global Attention: Global attention mecha- 406

nisms allow each node to compute its attention 407

weights with respect to all other nodes in the 408

graph. Such as Nodeformer 409

5.3 Experimental Setups 410

In our experimental setup, all models were trained 411

using an RTX 3090 GPU. The learning rate was set 412

to 0.01, dropout to 0.3, and the hidden layer dimen- 413

sion to 128. In our model, we set the topological 414

layer to extract 0-dimensional features. 415

5.4 Main Result 416

In our experiments, we compared different base- 417

line models by categorizing them based on local 418

attention and global attention mechanisms. The 419

results reported in Table 2 are averaged over five 420

independent runs. From the results , we can draw 421

the following conclusions: 422

• For graph datasets with complex structures, 423

local information plays a crucial role; in 424

contrast, graphs with simpler structures rely 425

more on global information to capture bot 426

characteristics. Specifically, on the MGTAB 427

dataset, the RGCN model — which is based 428

on message-passing mechanisms and effec- 429

tively exploits local neighborhood informa- 430

tion — achieves an accuracy of 88.16%, out- 431

performing the NodeFormer model that em- 432

ploys global attention mechanisms. However, 433

on the TwiBot series of datasets, where edges 434

are sparsely sampled, message-passing-based 435

models perform suboptimally. 436

• In imbalanced dataset MGTAB, global fea- 437

tures significantly improve recall performance. 438

The NodeFormer model achieves the highest 439

F1-score of 83.51% on the MGTAB dataset, 440
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Table 3: Ablation study. w/o Global Cluster Attention refers to a Local Topo Relational Graph Transformer
module; w/o Local Topo denotes the standalone Global Cluster Attention module; and w/o Co-training represents
the variant where global and local features are directly concatenated instead of being trained through the proposed
co-training mechanism. Additionally, RGT and Vanilla MHA serve as the backbone architectures for the Local
Topo and Global Cluster Attention modules, respectively.

Method MGTAB Twibot-20 Twibot-22(subgraph)
ACC F1 ACC F1 ACC F1

Ours 88.70 ± 0.27 79.85 ± 0.37 87.15 ± 0.08 88.64 ± 0.10 92.70 ± 0.09 66.67 ± 1.01
w/o Global Cluster Attention 86.90 ± 0.69 76.86 ± 1.40 86.61 ± 0.17 88.12 ± 0.23 90.39 ± 0.09 51.83 ± 1.83
w/o Local Topo 88.41 ± 0.27 78.73 ± 0.56 86.45 ± 0.35 87.98 ± 0.36 89.84 ± 0.07 50.20 ± 0.67
w/o co-training 87.71 ± 0.25 78.33 ± 0.54 85.47 ± 0.12 86.74 ± 0.12 89.59 ± 0.64 37.91 ± 13.15
RGT 86.80 ± 0.48 76.02 ± 1.77 85.53 ± 1.14 86.81 ± 1.48 90.05 ± 0.08 52.27 ± 2.54
Vanilla MHA 85.84 ± 0.98 73.32 ± 2.60 86.12 ± 0.76 87.53 ± 0.84 91.00 ± 0.25 21.89 ± 6.07

which contains 7,451 genuine users and 2,748441

bot accounts. This demonstrates the effective-442

ness of global feature modeling in handling443

class imbalance.444

• Compared to methods focusing on single-445

scale information processing, our model ef-446

fectively integrates both local and global in-447

formation, achieving the best classification448

accuracy across three different datasets with449

an average improvement of approximately 0.5450

percentage points. This result highlights the451

strong generalization capability of our model452

across datasets with varying sampling strate-453

gies.454

5.5 Analysis455

In this section, we analyze our model to address456

the following questions:457

• RQ1: Does each component of our model458

contribute significantly to the overall perfor-459

mance?460

• RQ2: Does the use of heterogeneous graphs461

help the model capture more topological struc-462

tural information?463

• RQ3: Can our model learn more discrimina-464

tive node representations?465

Ablation Study(RQ1): We design and conduct466

a series of ablation experiments to evaluate the con-467

tribution of each component in our model. Table 2468

summarizes the role of key modules in the overall469

architecture. Experimental results show that the470

Local Topo module significantly outperforms its471

baseline RGT across all three datasets, with an im-472

provement of 1.08% on the TwiBot-20 dataset. The473

Global Cluster Attention module also surpasses474

Vanilla MHA by 2.57% on the MGTAB dataset, 475

which has complex local structures, indicating that 476

the clustering mechanism effectively alleviates the 477

over-globalization issue caused by standard global 478

attention. Removing the co-training mechanism 479

and replacing it with direct feature concatenation 480

leads to a substantial performance drop — even 481

falling below the performance of either individual 482

module (as observed on TwiBot-20 and TwiBot- 483

22). This demonstrates that local and global fea- 484

tures cannot be effectively fused through simple 485

concatenation, and the proposed co-training strat- 486

egy enables complementary learning between the 487

two, thereby improving the overall model perfor- 488

mance. 489

Table 4: Performance Metrics for Different Datasets and
Relation Types. Heterogeneous refers to the extraction
of topological features based on distinct relationship
types, whereas Homogeneous denotes the extraction
of topological features without differentiating among
relationship types.

Datasets Relation Type Acc (%) F1-score (%)

MGTAB

1: followers 85.06 ± 0.57 74.09 ± 1.3
2: friends 85.47 ± 1.52 74.75 ± 3.07

3: mention 85.12 ± 0.71 72.69 ± 1.17
4: reply 84.73 ± 1.04 72.33 ± 2.01

5: quoted 85.92 ± 1.00 73.86 ± 1.94
6: hashtag 85.00 ± 1.39 72.47 ± 2.18

7: url 85.76 ± 0.80 74.14 ± 1.67
Metadata (1+2) 85.08 ± 0.64 73.66 ± 1.31

Content (3+4+5) 86.13 ± 0.66 75.38 ± 0.94
Heterogeneous 86.90 ± 0.69 76.86 ± 1.40
Homogeneous 86.31 ± 0.33 74.74 ± 1.14

TwiBot-20

1: followers 86.56 ± 0.26 87.96 ± 0.31
2: friends 86.38 ± 0.14 87.84 ± 0.16

Heterogeneous 86.61 ± 0.17 88.12 ± 0.23
Homogeneous 86.38 ± 0.23 87.87 ± 0.28

TwiBot-22
(subgraph)

1: followers 89.31 ± 0.17 44.67 ± 3.28
2: friends 89.65 ± 0.10 49.34 ± 2.50

Heterogeneous 90.39 ± 0.09 51.83 ± 1.83
Homogeneous 89.96 ± 0.70 50.63 ± 2.49
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(a) GCN (b) GAT (c) RGCN (d) RGT (e) NodeFormer (f) Ours

Figure 3: TwiBot-20 dataset account node representation visualization. Blue denotes Bot accounts and red denotes
Human accounts.

Relational Topology Analysis(RQ2): To inves-490

tigate the impact of topological features from dif-491

ferent types of relations in heterogeneous graphs on492

model performance , we systematically analyzed493

the experimental results under various relation com-494

binations. As shown in Table 4, We investigated495

the extraction of topological features from relation-496

ally heterogeneous graphs across different types of497

relations, and compared it with the feature extrac-498

tion based on homogeneous graphs. Experimental499

results on three independent datasets show that the500

method based on relational heterogeneity achieves501

accuracy rates of 86.90%, 86.61%, and 90.39%, re-502

spectively, outperforming the homogeneous graph-503

based approach by an average of 0.42 percentage504

points. This demonstrates the effectiveness of mod-505

eling relational heterogeneity in our framework.506

Furthermore, we find that relying solely on a single507

type of relation for topological feature extraction508

leads to a significant degradation in model perfor-509

mance. To further evaluate the impact of differ-510

ent relation types, we conducted ablation studies511

on the MGTAB dataset, where we separately ex-512

tracted topological features based on user metadata513

(Metadata) and user content (Content). The results514

indicate that incorporating content-based topolog-515

ical structures improves both the accuracy (ACC)516

and F1-Score by more than 1%. This suggests that517

current social bots still struggle to fully mimic the518

complex interaction patterns exhibited by genuine519

users; topological structures can provide valuable520

discriminative cues for social bot detection.521

Representation Study(RQ3): To address RQ3,522

we conducted a two-dimensional visualization of523

the generated node representations using t-SNE524

on the TwiBot-20 dataset, as shown in Figure 3.525

The results show that traditional methods such526

as GCN and GAT fail to effectively separate dif-527

ferent categories of nodes. Although RGCN per-528

forms relatively well in node classification, it pro-529

duces two distinct cluster centers for bot accounts.530

NodeFormer, while achieving suboptimal accuracy,531

leads to overly dispersed embeddings for bot ac- 532

counts. In contrast, both RGT and our model gen- 533

erate more compact embeddings, with our model 534

achieving even tighter clustering, thereby reducing 535

the misclassification rate of genuine users as bots. 536

6 Conclusion 537

In this paper, we propose a topology-aware multi- 538

scale graph network for social bot detection, aim- 539

ing to address two key challenges: the difficulty 540

in extracting topological features and the issue of 541

local-global chaos. Specifically, we design both 542

global and local modules to separately model node 543

representations at different scales, thereby mitigat- 544

ing the interference caused by local-global chaos. 545

Meanwhile, we incorporate Persistent Homology, 546

a technique from topological data analysis, into 547

node embeddings to explicitly capture high-order 548

topological information. Extensive experimental 549

results demonstrate that our method significantly 550

improves the accuracy of bot detection across mul- 551

tiple datasets, highlighting the importance of topo- 552

logical features and providing a promising new 553

direction for future research in this field. 554

Limitations 555

7 Limitations 556

Time Complexity We employed the Metis tool 557

for hierarchical graph partitioning. However, it in- 558

troduces notable computational overhead on large- 559

scale datasets. More efficient clustering strategies 560

could improve the model’s scalability. 561

High-Dimensional Topology Due to resource 562

and efficiency constraints, we only utilized 0- 563

dimensional persistent homology features (con- 564

nected components). Higher-dimensional features 565

(e.g., loops and voids) may offer richer structural 566

information. Future work includes exploring effi- 567

cient ways to incorporate these features to further 568

enhance performance. 569
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A Datasets711

In this section, we analyze the basic structural712

properties of commonly used datasets in social bot713

detection, including the number of users (nodes),714

node degree distribution, number of edges, and715

graph density. Among these, graph density is a par-716

ticularly informative metric. For directed graphs, it717

is defined as:718

Density =
E

N · (N − 1)
(24)719

where E denotes the number of edges and N rep-720

resents the total number of nodes. Graph density721

reflects the sparsity or denseness of connections in722

the graph: higher density indicates a more tightly723

connected and structurally complex graph, while724

lower density corresponds to a simpler, sparser725

topology.726

A.1 Twibot-20727

The TwiBot-20 dataset selects a batch of node ac-728

counts as seed nodes placed at layer 0, considering729

users as nodes and following relationships as edges.730

The user information for layer i + 1 is extracted731

from the users in layer i along the edges, where up732

to 20 neighbor nodes are extracted for each follow733

and followed relationship. A total of three layers734

are extracted to form user clusters. This dataset con-735

struction method uses edges for expansion, forming736

a star-shaped structure centered around seed nodes,737

which tends to exhibit tree-like topological struc-738

tures.739

A.2 MGTAB740

The MGTAB dataset selects 100 seed nodes and741

constructs the user network using breadth-first742

search. At the same time, each user acquires up to743

10,000 tweets, from which mention, reply, quote,744

and other relations are extracted to construct a745

multi-relational network of users. Additionally,746

MGTAB undergoes cleaning by discarding users747

irrelevant to the target topic and outlier accounts748

without following relationships, thereby construct-749

ing a compact topological dataset strongly related750

to the theme.751

A.3 TwiBot-22(subgraph)752

TwiBot-22 is the largest dataset in the field of social753

bot detection to date, encompassing four types of754

entities—user, tweet, list, and hashtag—as well as755

a total of 14 relationship types, including follower,756

following, and mention. However, when perform-757

ing bot account detection, only the user entity and758

its internal follower and following relationships are 759

directly utilized for analysis. We observe that this 760

approach results in numerous outliers, specifically 761

accounts without any followers or friends. This 762

limitation leads to the emergence of a significant 763

number of isolated nodes in the graph structure, 764

which are essentially accounts lacking both follow- 765

ers and friends. To enhance the effectiveness and 766

accuracy of data analysis, we adopt a processing 767

method inspired by MGTAB, where such unassoci- 768

ated users are removed to refine the dataset. Con- 769

sequently, we construct a well-connected subgraph 770

collection, referred to as TwiBot-22(subgraph). 771

B Baselines 772

We compared our model with some state-of-the-art 773

models on graph neural networks to verify the ef- 774

fectiveness of our optimizations and improvements 775

for graph neural networks. 776

• GCN: Utilizes graph convolutional neural net- 777

works to aggregate messages within the neigh- 778

borhood of nodes to learn node features. 779

• GAT: Employs Transformer mechanisms to 780

autonomously learn edge weights for bot de- 781

tection. 782

• RGCN: Constructs heterogeneous graphs to 783

represent network structures and utilizes rela- 784

tional graph convolutional neural networks to 785

learn node features for bot detection. 786

• RGT: Uses relational graph attention net- 787

works and captures bot node features under 788

different relationships through semantic atten- 789

tion mechanisms for social bot detection. 790

• Nodeformer: A Graph Transformer based 791

on global attention that implements efficient 792

pairwise node signal transmission using a ker- 793

nelized Gumbel-Softmax operator, addressing 794

shortcomings of traditional graph neural net- 795

works in handling overfitting, heterogeneity, 796

long-range dependencies, and missing graph 797

structures. 798

C Layer Placement Study 799

As indicated in (Borgwardt et al., 2020), node fea- 800

tures often contain a substantial amount of discrim- 801

inative information, which may to some extent sup- 802

press the additional gains provided by the graph 803
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Table 5: Position Analysis of TOGL: Performance comparison under different insertion positions across datasets.

TOGL Position MGTAB TwiBot-20 TwiBot-22(subgraph)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

Without TOGL 86.80 ± 0.48 76.02 ± 1.77 85.53 ± 1.14 86.81 ± 1.48 90.05 ± 0.08 52.27 ± 2.54
Before GNN 85.51 ± 0.70 75.15 ± 1.39 86.15 ± 0.14 87.66 ± 0.16 90.02 ± 0.23 51.31 ± 2.72
After GNN 86.90 ± 0.69 76.86 ± 1.40 86.61 ± 0.17 88.12 ± 0.23 90.39 ± 0.09 51.83 ± 1.83

Table 6: Graph Structural Statistics of Bot Detection
Datasets

Feature Cresci-15 TwiBot-20 MGTAB TwiBot-22(subgraph)

Real Users 1,950 5,237 7,451 612,328
Bot Accounts 3,351 6,589 2,748 81,431
Total Nodes 5,301 229,580 10,199 693,759
Maximum Degree 416 20 8,383 2,229
Average Degree 2.68 0.99 166.69 10.79
Number of Edges 14,220 227,979 1,700,108 3,743,633
Graph Density 0.001012 0.000009 0.032691 0.000008

structure. To explore how the position of the topo-804

logical layer affects model performance, we place805

it either before or after the message-passing GNN806

layers. Experimental results, as shown in Table 5,807

reveal a consistent trend across all three datasets:808

placing the topological layer before the GNN layers809

leads to a decline in performance, whereas position-810

ing it after results in significantly improved model811

effectiveness.812

D Parameter Study813

Numbers of clusters: Due to the high compu-814

tational cost associated with increasing the num-815

ber of clusters, we limit the number of clusters to816

within 500 and divide them at intervals of 100 to817

investigate the potential relationship between the818

number of clusters and the dataset structure. As819

shown in Figure 4, larger datasets are more prone to820

over-globalization issues, necessitating more clus-821

ters to focus attention on smaller regions. Further-822

more, datasets with more complex structures (e.g.,823

MGTAB) require more clusters to decompose local824

information effectively.825

Figure 4: ACC and F1-score on the datasets for varying
numbers of clusters
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