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Abstract

Social bots are automated programs designed
to spread rumors and misinformation, posing
significant threats to the security of the net-
work. Graph Neural Network (GNN)-based
social bot detection models are limited by
the over-smoothing and over-squashing prob-
lems of the message-passing mechanism, mak-
ing it difficult to effectively extract key high-
dimensional topological features and model
complex topological structures across different
social networks. To address the issue of lim-
ited topological feature extraction caused by
over-smoothing and over-squashing in GNN-
based social bot detection models, we propose
a topology-aware multi-scale detection method
for social bots. By leveraging local topolog-
ical layers and a clustering attention mech-
anism, the approach effectively incorporates
topological features into node representations
and captures multi-level structural patterns at
both global and local scales. Experimental re-
sults demonstrate that our model exhibits strong
competitiveness on three widely used bench-
mark datasets, effectively addressing existing
methods’ limitations in capturing local feature
patterns, while also being capable of capturing
global features, thereby enhancing the over-
all modeling of complex structures. We pub-
licly release our code in https://anonymous.
4open.science/r/TopoMSG-2C41/

1 Introduction

Social bots are automated programs operating on
social media platforms, where malicious bots sig-
nificantly threaten network security through mass
retweeting, rumor dissemination, election interfer-
ence, and extremist ideology propagation (Berger
and Morgan, 2015; Deb et al., 2019). Social bot
detection provides crucial safeguards for maintain-
ing cyberspace security and enhancing platform
credibility.

Influenced by a variety of factors including node
connectivity patterns, community structures, and
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Figure 1: Topological structure features across datasets,
Relations represent relationships between different enti-
ties, such as followers, friend, comments, retweets, etc.

user interaction behaviors, the topological architec-
ture of social networks manifests significant com-
plexity and diversity, a characteristic that is espe-
cially pronounced in datasets constructed via dif-
fering methodologies. Existing social bot detection
datasets are primarily constructed based on graph
structures. However, the adoption of different sam-
pling methods results in significant variations in the
topological features of these datasets. As shown in
Figure 1, MGTAB (Shi et al., 2023) is constructed
as a scale-free dataset based on topic relevance.
TwiBot-20 (Feng et al., 2021) is built as a tree-
like structured dataset using breadth-first search.
TwiBot-22 (Feng et al., 2022b) is developed as
a heterogeneous graph dataset through metadata
neighborhood expansion. (Ng and Carley, 2025)
shows that bots tend to form star-like network struc-
tures, while human users are more likely to exhibit
tree-like patterns. The high prevalence of tree-like
structures in the TwiBot-20 dataset may pose chal-
lenges for bot detection tasks. We further analyzed
the proportion of users forming cyclic structures un-
der different relationship types, as presented in Ta-
ble. 1. The results show that in datasets constructed
using hierarchical sampling methods (e.g., TwiBot-
20 and TwiBot-22), social bots tend to form cyclic
structures in the network, mimicking the interaction
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patterns of human users. However, in the topic-
based dataset MGTAB, the proportion of social
bots forming such cyclic structures is significantly
lower. This indicates that social bots struggle to
effectively imitate human behavior when engaging
in substantive discussions with real users.

Dataset Relation On Cycle Off Cycle
Users Bots Users Bots
followers  56.42% 43.58% 44.35% 55.65%
Twibot-20  friends  36.98% 63.02% 59.73% 40.27%
All Relations 44.28% 55.72% 44.28% 55.72%
followers  83.51% 16.49% 55.01% 44.99%
friends  83.98% 16.02% 52.86% 47.14%
mention  97.05% 295% 69.75% 30.25%
reply 98.93% 1.07% 83.85% 16.15%
MGTAB quoted  99.60% 0.40% 80.83% 19.17%
URL - - 29.16% 70.84%
hashtag - - 75.41% 24.59%
All Relations 73.06% 26.94% 73.06% 26.94%
TwiBoay followers — 88.14% 11.86% 8591% 14.09%
(subgraply . friends 9030% 9.70% 9149% 8.51%
E1AP1) - All Relations 88.26% 11.74% 88.26% 11.74%

Table 1: Comparison of Users and Bots Proportions on
and off Cycles. TwiBot-22(subgraph) is a connected
subgraph extracted from the homogeneous graph of user
nodes in the heterogeneous graph TwiBot-22. "-" indi-
cates that no cyclic structures exist under this relation.

Both message-passing-based (Gilmer et al.,
2017) and attention-based (Vaswani et al., 2017)
detection methods face distinct challenges in prac-
tice. Graph Neural Networks (GNNs) leverage
message passing to aggregate features from neigh-
boring nodes and capture structural information (Fu
et al., 2023; Huang et al., 2024; Liu et al., 2024).
However, they are prone to the problems of over-
smoothing (Yang et al., 2020; Rusch et al., 2023)
and over-squashing (Topping et al., 2021; Di Gio-
vanni et al., 2023), which hinder the model’s abil-
ity to learn long-range dependencies. Addition-
ally, aggregation functions are typically designed
to aggregate node attribute features while largely
ignoring the topological structure attributes of net-
works, such as connected components, cycles, and
holes (Bouritsas et al., 2022). In contrast, attention-
based Graph Transformers excel at modeling long-
range dependencies. However, they suffer from the
local-global chaos problem (Wang et al., 2024) dur-
ing the integration of local and global information,
leading to overfitting and over-globalization (Xing
et al., 2024), which negatively impacts model gen-
eralization.

Therefore, social bot detection faces two key
challenges: (a) How to utilize high-dimensional

topological features under different relationships
to address the incomplete topological structures
caused by sampling. (b) How to separate global
and local features to alleviate the impact of local-
global chaos. To address these issues, we propose
a topology-aware multi-scale social bot detection
method.

First, for local feature extraction, we introduce
Persistent Homology (Edelsbrunner et al., 2008), a
method from topological data analysis, to encode
structural features of nodes based on different types
of edge relationships, thereby capturing rich topo-
logical properties. Persistent Homology has shown
strong potential in deep learning (Zia et al., 2024),
showcasing its effectiveness especially in graph
classification tasks (Aktas et al., 2019). Besides, re-
cent research has also reported significant progress
in leveraging Persistent Homology for node classi-
fication tasks (Immonen et al., 2023). Second, for
global feature extraction, we employ a clustered
global attention mechanism to alleviate information
imbalance caused by over-globalization. Finally,
we adopt a global-local collaborative training strat-
egy to automatically adjust the importance weights
of global and local features. Our model integrates
global attention mechanisms with message-passing
mechanisms, achieving collaborative optimization
between global and local features, which enhances
detection accuracy and robustness.

Our main contributions are summarized as fol-
lows:

* This study is the first to apply Persistent Ho-
mology to the task of social bot detection,
enhancing node representation by capturing
high-dimensional topological features under
heterogeneous node relationships.

* We propose a clustered global attention mech-
anism, which effectively reduces the over-
reliance of Graph Transformers on global
attention and alleviates local-global chaos
caused by over-globalization.

* A collaborative training strategy is employed
to automatically balance and optimize the
learning process of global and local features.

* Experimental results demonstrate that our
method achieves performance comparable to
state-of-the-art approaches across multiple
datasets, showcasing its strong competitive-
ness and broad application potential.



2 Related Work

Social networks are essentially complex graph
structures constituted by massive user interactions,
excelling in capturing collective behaviors and
propagation patterns compared to text analysis
methods. The advent of attention mechanisms
has significantly advanced graph neural networks
(GNNs). Existing graph transformers approaches
can be categorized into two main types: message-
passing-based and global-attention-based.

2.1 Message Passing Neural Networks

Graph Attention Networks (GATs) (Velickovic¢
et al., 2017) demonstrate unique advantages in so-
cial bot detection. The classic GAT adaptively as-
signs inter-node weights through attention mecha-
nisms to capture the most relevant interaction pat-
terns. Inspired by this, the Relational Graph Trans-
former (RGT) (Feng et al., 2022a) introduces multi-
relational attention mechanisms that dynamically
adjust weights across semantically distinct relation-
ships, enhancing modeling capacity for complex
social networks. The Heterogeneous Graph Trans-
former (HGT) (Wang et al., 2019) further designs
specialized attention mechanisms for diverse user
types and interaction patterns in social networks
through explicit modeling of the heterogeneity of
nodes and edges. These message-passing-based
GNNs not only enable flexible node aggregation
but also capture diverse structural features, achiev-
ing state-of-the-art performance in bot detection
tasks.

2.2 Global Attention Neural Networks

Transformers provide theoretical foundations for
GNN s to capture global features through learnable
fully-connected attention graphs (Waswani et al.,
2017). NodeFormer (Wu et al., 2022) proposes
an all-pair message passing paradigm that reduces
computational complexity to linear scale via kernel-
ized Gumbel-Softmax operators, enabling efficient
signal propagation on large graphs. SGFormer (Wu
et al., 2024) introduces a simplified graph trans-
former architecture that resolves quadratic over-
head through single-layer attention modeling. De-
spite their demonstrated potential in capturing long-
range dependencies, global attention mechanisms
remain underexplored in social bot detection.

3 Preliminaries

This section formally introduces key concepts em-
ployed in our work.

Persistent Homology: Topological structures
are defined as features invariant under continuous
deformations (Zia et al., 2024). Persistent homol-
ogy identifies multi-scale topological signatures by
tracking homology group evolution across filtration
scales. Different homology orders represent dimen-
sional features: 0-order (connected components),
1-order (cycles), and 2-order (cavities).

For a k-dimensional simplicial complex C' (com-
posed of simplices: O-simplices as vertices, 1-
simplices as edges, 2-simplices as triangles) with
filtration values ag < a; < --- < a,, we define
a filtration process via a filtration function f that
generates nested complexes:

fcCicCycC---CCy, (1)

This filtration induces birth/death events of topo-
logical structures (connected components, cycles,
voids). Each structure is associated with a birth-
death pair (a;,a;), visualized in persistence dia-
grams where z- and y-axes represent birth/death
times. Diagonal points denote short-lived local fea-
tures or noise, while off-diagonal points correspond
to persistent global structures.

4 Methodology

We propose a topology-aware multi-scale detection
model. As shown in Figure 2, the TopoMSG frame-
work integrates persistent homology-based topo-
logical learning with multi-head global attention
through co-training, enabling joint optimization of
global-local feature awareness.

4.1 Local Topo Relational Graph
Transformer

Inspired by Feng et al. (Feng et al., 2022a), we
adopted the architecture of RGT and utilized the
attention mechanism to learn diverse node repre-
sentations under each relation. Given user feature
vectors x; and feature matrix X, we first apply
linear transformation:

20 = LeakyReLU(W - z + b) ()

where W € R?*? and b are learnable parameters.
The message-passing mechanism and multi-head

attention self-attention mechanisms have demon-

strated outstanding performance in the field of
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Figure 2: Topology-aware multi-scale Graph Network framework

graph neural networks. Consequently, we employ
Graph Transformer layers (GTLayer) to extract
shallow topological representations of nodes. The
hidden representations xglfl) are fed into Graph
Transformer:

(Q7 k, ’U)Z,(zl) ( )Wl (g,k,v) + blq(q,k,v) 3)
where ¢, k, v denote query,key,value vectors, re-
spectively; Wc{(q’k,v) and bf: (g k) AT€ learnable pa-
rameters with regard to relation r and head ¢ ; [
denotes the I-th layer of Graph Transformer. Then,
we leverage the message-passing mechanism to
learn the neighborhood unit structure for each node
and capture the graph structural information.

ZZ

c= 1JeNT )

r(l) r (4)

C7Z7] C7J

where « represents the attention scores under dif-
ferent relations and attention heads:

) = DR, )
SRR SR RO N

&)

where (-, -) denotes exponential-scaled dot-product;
NT (i) represents neighbors under relation 7.

We employ persistent homology to capture topo-
logical features under different relationship types

and design the TopoLayer (Horn et al., 2021) to ef-
fectively integrate the continuously evolving topo-
logical features of nodes into their vector represen-
tations. Further details are provided in Section 4.2:

(1)

Upopoi = TopoLayer(u:(l)) (6)

At least, using semantic aggregation net-
works (Feng et al., 2022a) to aggregate node repre-
sentations across relations while preserving the re-
lation heterogeneity entailed in the social networks:

w” r(l
wh = |V| qu - tanh( W() uT(o;M—i-b&)s)
1%
(7

where qgl), Wéli, and bg)s are semantic attention
parameters. Normalized weights are obtained via:

exp(w;(l))

S rer exp(wh®)

A )

leading to the final node representation:

TL Z [Zﬁ“’ T] ©)

dl reER

where x, ; denotes the local topology-aware node
embedding.



4.2 TopoLayer

In this subsection, we describe the architecture of
TopoLayer in detail. We employ persistent homol-
ogy from topological data analysis to reveal multi-
scale hidden shape features (e.g., O-dimensional
connected components, 1-dimensional cycles, 2-
dimensional voids). Specifically, we take GNN
hidden layer representations as input and main-
tain identical input-output dimensions, enabling
seamless integration with arbitrary GNN layers.
First, we map nodes to k distinct real-valued groups
through k filtration functions to capture multi-scale
topological features. We implement Multilayer Per-
ceptrons (MLPs) as persistent homology filtration
functions:

uy) = £ V), i€k
where u;(jl) denotes the filtration value of node
1, generating k filtration groups. The filtration

function f; is instantiated as an MLP. Each filtra-

tion group captures distinct graph attributes. For
@, r@ (D)

(10)

node filtration values ug’j U sty e fil-
ter graph G through nested complexes:

Gl}j = (%7j7Ei,j)7 (&S (Ln)vj € (17k)7 (1D
r(l) _ () ()

Vii={veV v <u'} (12)

. . ! 4
Ei = {(v,w) € E | max{v] ", P} < f1}
13)
This process generates persistence diagrams:

ph(Gj,MLP;) = {D], Dj,....Dj"}  (14)

where ph(Gj, MLP;) denotes persistence diagrams
under filtration function MLP;, and D" represents
diagrams across topological dimensions. We then
map persistence diagrams to d-dimensional node
embeddings via linear projection:

m
£/ =" Linear(D}) (15)
p=0
Aggregating k-scale features with residual connec-
tions yields:

k
Ui = Urg) + 1) (16)
j=1

where ufﬁ()lgo ; denotes topology-enhanced neighbor-

hood features.

4.3 Global Cluster Attention

Global-Attention-Based Graph Transformers excel
in capturing long-range dependencies, surpassing
the capabilities of message-passing mechanisms.
However, they suffer from over-globalization,
where attention weights disproportionately focus
on higher-order neighbors, often neglecting criti-
cal information residing in lower-hop neighbors.
Our Global Cluster Attention restricts model fo-
cus within clusters to address this issue. Using
Metis(Karypis and Kumar, 1998), we partition the
graph into m non-overlapping clusters and remove
edges enabling the nodes to focus more on intra-
cluster information.

HY% = Muti-head Attention (Xp)  (17)
where X prepresent the k-th cluster node embed-
dings, and H 1"3 is the output of multi-head Attention.
Then we apply mean pooling to H Ikg to obtain clus-
ter representation P. Next, we apply mean pooling
to H ]]%in order to obtain a unified representation for
clusters:

P = [Mecm(Hlli),Mean(Hg),...] (18)
And then, we feed the cluster representations P
into MHA:

P = Muti-head Attention (P) (19)

At least, we concat intra-cluster and inter-cluster
node representation:

X = concat((H%, 17 pIYWy) (20)

where W; € R??*? are learnable parameters and

1P denotes all-ones vector with a dimensional of
N

7
4.4 Co-training

We implement co-training to dynamically balance
local-global feature importance. Sequentially, we
feed the output of Local Topo Graph Transformer
x,; and the Global Cluster Attention x,; into the
classifier to obtain soft labels.:

U1, = softmax (Linear(xr, ;)) (21)

Ug,; = softmax (Linear(z¢,;)) (22)

Finally, by utilizing the collaborative training loss
function, we not only enhance the model’s ability



Table 2: Comparison of ACC and F1 scores across different models on multiple datasets. Bold values indicate the

best results,

represents cases where the model failed due to out-of-memory errors.

Method Global Local MGTAB Twibot-20 Twibot-22(subgraph)
Attention Attention ACC F1 ACC F1 ACC F1
GCN X X 81.59£0.39 60.79+298 73.61 £0.63 75.16£0.92 90.68+0.08 52.79+1.34
RGCN X X 88.16 £ 0.61 7824+ 1.13 8548 +1.31 8694 +1.92 9252+0.17 6432+ 1.60
GAT X v 78.63 £0.85 43.12+4.03 77.21+047 7946+ 0.51 91.09+0.10 55.99+0.70
RGT X v 86.80 £ 048 76.02+1.77 8553+ 1.14 86.81 £1.48 90.05+0.08 52.27 +2.54
Nodeformer v X 87.69 £ 0.20 83.51 +£0.50 86.66+0.15 88.25+0.13 - -
Ours v v 88.70 +0.27 79.85+0.37 87.15+0.08 88.64 +£0.10 92.70 £ 0.09 66.67 + 1.01

to fit the ground-truth labels but also strengthen the
collaborative consistency between the two modules:

Loo=0a(Li+Ly)+(1—a)(Liyg+ Ly) (23)

where £; and L, denote the losses of the Local
Topo module and the Global Cluster Attention mod-
ule, respectively. £;, and L, represent the losses
between the two modules. All loss functions are
implemented using the cross-entropy loss formu-
lation. « is the balance factor that controls the
relative weights of the individual loss components.

S EXPERIMENTS

5.1 Datasets

We selected three publicly available datasets that
are widely used in the field of social bot detection.
These datasets were constructed differently, result-
ing in distinct topological structures. MGTAB was
constructed under a unified theme, resulting in a
relatively dense topological structure. In contrast,
TwiBot-20 and TwiBot-22 were sampled based on
relational criteria, leading to sparser graph struc-
tures. Moreover, since TwiBot-22 is a heteroge-
neous graph, we extracted only the user-to-user re-
lations, which resulted in a large number of isolated
nodes. To ensure graph connectivity, we filtered out
these isolated nodes and constructed the TwiBot-
22(subgraph). We provide detailed descriptions of
the datasets in Appendix. A

5.2 Baselines

We compared our model with some classical and
state-of-the-art models on graph neural networks
to verify the effectiveness of our optimizations and
improvements for graph neural networks.

* Message Passing: Message Passing Aggre-
gate messages from neighboring nodes to up-
date each node’s feature representation. Such
as: GCN, RGCN

* Local Attention:Local Attention employ self-
attention to compute message or aggregation
weight. Such as RGT

* Global Attention: Global attention mecha-
nisms allow each node to compute its attention
weights with respect to all other nodes in the
graph. Such as Nodeformer

5.3 Experimental Setups

In our experimental setup, all models were trained
using an RTX 3090 GPU. The learning rate was set
to 0.01, dropout to 0.3, and the hidden layer dimen-
sion to 128. In our model, we set the topological
layer to extract O-dimensional features.

5.4 Main Result

In our experiments, we compared different base-
line models by categorizing them based on local
attention and global attention mechanisms. The
results reported in Table 2 are averaged over five
independent runs. From the results , we can draw
the following conclusions:

* For graph datasets with complex structures,
local information plays a crucial role; in
contrast, graphs with simpler structures rely
more on global information to capture bot
characteristics. Specifically, on the MGTAB
dataset, the RGCN model — which is based
on message-passing mechanisms and effec-
tively exploits local neighborhood informa-
tion — achieves an accuracy of 88.16%, out-
performing the NodeFormer model that em-
ploys global attention mechanisms. However,
on the TwiBot series of datasets, where edges
are sparsely sampled, message-passing-based
models perform suboptimally.

* In imbalanced dataset MGTAB, global fea-
tures significantly improve recall performance.
The NodeFormer model achieves the highest
F1-score of 83.51% on the MGTAB dataset,



Table 3: Ablation study. w/o Global Cluster Attention refers to a Local Topo Relational Graph Transformer
module; w/o Local Topo denotes the standalone Global Cluster Attention module; and w/o Co-training represents
the variant where global and local features are directly concatenated instead of being trained through the proposed
co-training mechanism. Additionally, RGT and Vanilla MHA serve as the backbone architectures for the Local

Topo and Global Cluster Attention modules, respectively.

Method MGTAB Twibot-20 Twibot-22(subgraph)
ACC F1 ACC F1 ACC F1

Ours 88.70 + 0.27 79.85 +0.37 87.15+0.08 88.64+0.10 92.70 +0.09 66.67 & 1.01
w/o Global Cluster Attention 86.90 £ 0.69 76.86 £ 1.40 86.61 £0.17 88.12+0.23 90.39+0.09 51.83+1.83
w/o Local Topo 88.41 £0.27 78.73+0.56 86.45+0.35 8798 +£0.36 89.84 £0.07 50.20 £ 0.67
w/o co-training 87.71 £0.25 7833 £0.54 8547+0.12 86.74+0.12 89.59 +0.64 3791 £+ 13.15
RGT 86.80 £ 0.48 76.02+1.77 8553 +1.14 86.81 £1.48 90.05£0.08 5227 +2.54
Vanilla MHA 85.84 £0.98 73.32+2.60 86.12+0.76 87.53+£0.84 91.00£0.25 21.89+6.07

which contains 7,451 genuine users and 2,748
bot accounts. This demonstrates the effective-
ness of global feature modeling in handling
class imbalance.

* Compared to methods focusing on single-
scale information processing, our model ef-
fectively integrates both local and global in-
formation, achieving the best classification
accuracy across three different datasets with
an average improvement of approximately 0.5
percentage points. This result highlights the
strong generalization capability of our model
across datasets with varying sampling strate-
gies.

5.5 Analysis

In this section, we analyze our model to address
the following questions:

* RQ1: Does each component of our model
contribute significantly to the overall perfor-
mance?

* RQ2: Does the use of heterogeneous graphs
help the model capture more topological struc-
tural information?

¢ RQ3: Can our model learn more discrimina-
tive node representations?

Ablation Study(RQ1): We design and conduct
a series of ablation experiments to evaluate the con-
tribution of each component in our model. Table 2
summarizes the role of key modules in the overall
architecture. Experimental results show that the
Local Topo module significantly outperforms its
baseline RGT across all three datasets, with an im-
provement of 1.08% on the TwiBot-20 dataset. The
Global Cluster Attention module also surpasses

Vanilla MHA by 2.57% on the MGTAB dataset,
which has complex local structures, indicating that
the clustering mechanism effectively alleviates the
over-globalization issue caused by standard global
attention. Removing the co-training mechanism
and replacing it with direct feature concatenation
leads to a substantial performance drop — even
falling below the performance of either individual
module (as observed on TwiBot-20 and TwiBot-
22). This demonstrates that local and global fea-
tures cannot be effectively fused through simple
concatenation, and the proposed co-training strat-
egy enables complementary learning between the
two, thereby improving the overall model perfor-
mance.

Table 4: Performance Metrics for Different Datasets and
Relation Types. Heterogeneous refers to the extraction
of topological features based on distinct relationship
types, whereas Homogeneous denotes the extraction
of topological features without differentiating among
relationship types.

Datasets Relation Type Acc (%) F1-score (%)
1: followers 85.06 £0.57 74.09+ 1.3

2: friends 8547 £1.52 7475 £3.07

3: mention 85.12£0.71 72.69 £ 1.17

4: reply 84.73 £1.04 7233 £2.01

5: quoted 8592 +£1.00 73.86+1.94

MGTAB 6: hashtag 85.00 £ 1.39 72.47 £2.18
7: url 85.76 £ 0.80 74.14 £ 1.67

Metadata (1+2) 85.08 £ 0.64 73.66 £ 1.31

Content (3+4+5) 86.13 £0.66 75.38 £0.94
Heterogeneous  86.90 & 0.69  76.86 + 1.40
Homogeneous  86.31 £0.33 74.74 + 1.14

1: followers 86.56 £0.26 87.96 + 0.31

TwiBot-20 2: friends 86.38 £ 0.14 87.84 +=0.16
Heterogeneous  86.61 + 0.17  88.12 + 0.23
Homogeneous  86.38 +£0.23  87.87 £ 0.28

1: followers 89.31 £0.17 44.67 £3.28

TwiBot-22 2: friends 89.65 £ 0.10 49.34 +2.50
(subgraph)  Heterogeneous  90.39 £ 0.09 51.83 +1.83
Homogeneous  89.96 +0.70  50.63 £ 2.49




(a) GCN

(b) GAT (c) RGCN

(d) RGT

(e) NodeFormer

Figure 3: TwiBot-20 dataset account node representation visualization. Blue denotes Bot accounts and red denotes

Human accounts.

Relational Topology Analysis(RQ2): To inves-
tigate the impact of topological features from dif-
ferent types of relations in heterogeneous graphs on
model performance , we systematically analyzed
the experimental results under various relation com-
binations. As shown in Table 4, We investigated
the extraction of topological features from relation-
ally heterogeneous graphs across different types of
relations, and compared it with the feature extrac-
tion based on homogeneous graphs. Experimental
results on three independent datasets show that the
method based on relational heterogeneity achieves
accuracy rates of 86.90%, 86.61%, and 90.39%, re-
spectively, outperforming the homogeneous graph-
based approach by an average of 0.42 percentage
points. This demonstrates the effectiveness of mod-
eling relational heterogeneity in our framework.
Furthermore, we find that relying solely on a single
type of relation for topological feature extraction
leads to a significant degradation in model perfor-
mance. To further evaluate the impact of differ-
ent relation types, we conducted ablation studies
on the MGTAB dataset, where we separately ex-
tracted topological features based on user metadata
(Metadata) and user content (Content). The results
indicate that incorporating content-based topolog-
ical structures improves both the accuracy (ACC)
and F1-Score by more than 1%. This suggests that
current social bots still struggle to fully mimic the
complex interaction patterns exhibited by genuine
users; topological structures can provide valuable
discriminative cues for social bot detection.

Representation Study(RQ3): To address RQ3,
we conducted a two-dimensional visualization of
the generated node representations using t-SNE
on the TwiBot-20 dataset, as shown in Figure 3.
The results show that traditional methods such
as GCN and GAT fail to effectively separate dif-
ferent categories of nodes. Although RGCN per-
forms relatively well in node classification, it pro-
duces two distinct cluster centers for bot accounts.
NodeFormer, while achieving suboptimal accuracy,

leads to overly dispersed embeddings for bot ac-
counts. In contrast, both RGT and our model gen-
erate more compact embeddings, with our model
achieving even tighter clustering, thereby reducing
the misclassification rate of genuine users as bots.

6 Conclusion

In this paper, we propose a topology-aware multi-
scale graph network for social bot detection, aim-
ing to address two key challenges: the difficulty
in extracting topological features and the issue of
local-global chaos. Specifically, we design both
global and local modules to separately model node
representations at different scales, thereby mitigat-
ing the interference caused by local-global chaos.
Meanwhile, we incorporate Persistent Homology,
a technique from topological data analysis, into
node embeddings to explicitly capture high-order
topological information. Extensive experimental
results demonstrate that our method significantly
improves the accuracy of bot detection across mul-
tiple datasets, highlighting the importance of topo-
logical features and providing a promising new
direction for future research in this field.

Limitations
7 Limitations

Time Complexity We employed the Metis tool
for hierarchical graph partitioning. However, it in-
troduces notable computational overhead on large-
scale datasets. More efficient clustering strategies
could improve the model’s scalability.

High-Dimensional Topology Due to resource
and efficiency constraints, we only utilized O-
dimensional persistent homology features (con-
nected components). Higher-dimensional features
(e.g., loops and voids) may offer richer structural
information. Future work includes exploring effi-
cient ways to incorporate these features to further
enhance performance.



References

Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui.
2019. Persistence homology of networks: methods
and applications. Applied Network Science, 4(1):1—
28.

Jonathon M Berger and Jonathon Morgan. 2015. The
isis twitter census: Defining and describing the popu-
lation of isis supporters on twitter.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-
Lopez, Leslie O’Bray, Bastian Rieck, et al. 2020.
Graph kernels: State-of-the-art and future challenges.
Foundations and Trends® in Machine Learning, 13(5-
6):531-712.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou,
and Michael M Bronstein. 2022. Improving graph
neural network expressivity via subgraph isomor-
phism counting. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 45(1):657—668.

Ashok Deb, Luca Luceri, Adam Badaway, and Emilio
Ferrara. 2019. Perils and challenges of social me-
dia and election manipulation analysis: The 2018 us
midterms. In Companion proceedings of the 2019
world wide web conference, pages 237-247.

Francesco Di Giovanni, Lorenzo Giusti, Federico Bar-
bero, Giulia Luise, Pietro Lio, and Michael M Bron-
stein. 2023. On over-squashing in message passing
neural networks: The impact of width, depth, and
topology. In International conference on machine
learning, pages 7865-7885. PMLR.

Herbert Edelsbrunner, John Harer, et al. 2008. Persis-
tent homology-a survey. Contemporary mathematics,
453(26):257-282.

Shangbin Feng, Zhaoxuan Tan, Rui Li, and Minnan Luo.
2022a. Heterogeneity-aware twitter bot detection
with relational graph transformers. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 3977-3985.

Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan
Wang, Zilong Chen, Binchi Zhang, Qinghua Zheng,
Wengian Zhang, Zhenyu Lei, Shujie Yang, et al.
2022b. Twibot-22: Towards graph-based twitter bot
detection. Advances in Neural Information Process-
ing Systems, 35:35254-35269.

Shangbin Feng, Herun Wan, Ningnan Wang, Jundong
Li, and Minnan Luo. 2021. Twibot-20: A comprehen-
sive twitter bot detection benchmark. In Proceedings
of the 30th ACM international conference on informa-
tion & knowledge management, pages 4485-4494.

Chengqi Fu, Shuhao Shi, Yuxin Zhang, Yongmao
Zhang, Jian Chen, Bin Yan, and Kai Qiao. 2023.
Squeezegen: Adaptive neighborhood aggregation
with squeeze module for twitter bot detection based
on gen. Electronics, 13(1):56.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural mes-
sage passing for quantum chemistry. In International
conference on machine learning, pages 1263-1272.
PMLR.

Max Horn, Edward De Brouwer, Michael Moor, Yves
Moreau, Bastian Rieck, and Karsten Borgwardt.
2021. Topological graph neural networks. arXiv
preprint arXiv:2102.07835.

Haitao Huang, Hu Tian, Xiaolong Zheng, Xingwei
Zhang, Daniel Dajun Zeng, and Fei-Yue Wang. 2024.
Cgnn: A compatibility-aware graph neural network
for social media bot detection. IEEE Transactions on
Computational Social Systems.

Johanna Immonen, Amauri Souza, and Vikas Garg.
2023. Going beyond persistent homology using per-
sistent homology. Advances in neural information
processing systems, 36:63150-63173.

George Karypis and Vipin Kumar. 1998. A fast and
high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing,
20(1):359-392.

Feng Liu, Zhenyu Li, Chunfang Yang, Daofu Gong,
Haoyu Lu, and Fenlin Liu. 2024. Segcn: a sub-
graph encoding based graph convolutional network
model for social bot detection. Scientific Reports,
14(1):4122.

Lynnette Hui Xian Ng and Kathleen M Carley. 2025.
A global comparison of social media bot and human
characteristics. Scientific Reports, 15(1):10973.

T Konstantin Rusch, Michael M Bronstein, and Sid-
dhartha Mishra. 2023. A survey on oversmooth-
ing in graph neural networks. arXiv preprint
arXiv:2303.10993.

Shuhao Shi, Kai Qiao, Jian Chen, Shuai Yang, Jie
Yang, Baojie Song, Linyuan Wang, and Bin Yan.
2023. Mgtab: A multi-relational graph-based twit-
ter account detection benchmark. arXiv preprint
arXiv:2301.01123.

Jake Topping, Francesco Di Giovanni, Benjamin Paul
Chamberlain, Xiaowen Dong, and Michael M Bron-
stein. 2021. Understanding over-squashing and bot-
tlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.



Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous
graph attention network. In The world wide web
conference, pages 2022-2032.

Xiaotang Wang, Yun Zhu, Haizhou Shi, Yongchao Liu,
and Chuntao Hong. 2024. Graph triple attention
network: A decoupled perspective. arXiv preprint
arXiv:2408.07654.

A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones,
A Gomez, L Kaiser, and I Polosukhin. 2017. Atten-
tion is all you need. In NIPS.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and
Junchi Yan. 2022. Nodeformer: A scalable graph
structure learning transformer for node classification.

Advances in Neural Information Processing Systems,
35:27387-27401.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui
Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. 2024. Simplifying and empowering
transformers for large-graph representations. Ad-
vances in Neural Information Processing Systems,
36.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and
Chuan Shi. 2024. Less is more: on the over-
globalizing problem in graph transformers. arXiv
preprint arXiv:2405.01102.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong
Liu, and Tarek Abdelzaher. 2020. Revisiting
over-smoothing in deep gens.  arXiv preprint
arXiv:2003.13663.

Ali Zia, Abdelwahed Khamis, James Nichols, Us-
man Bashir Tayab, Zeeshan Hayder, Vivien Rolland,
Eric Stone, and Lars Petersson. 2024. Topological
deep learning: a review of an emerging paradigm.
Artificial Intelligence Review, 57(4):77.

10



A Datasets

In this section, we analyze the basic structural
properties of commonly used datasets in social bot
detection, including the number of users (nodes),
node degree distribution, number of edges, and
graph density. Among these, graph density is a par-
ticularly informative metric. For directed graphs, it
is defined as:

Density = (24)

N-(N-1)

where E denotes the number of edges and N rep-
resents the total number of nodes. Graph density
reflects the sparsity or denseness of connections in
the graph: higher density indicates a more tightly
connected and structurally complex graph, while
lower density corresponds to a simpler, sparser
topology.

A1l Twibot-20

The TwiBot-20 dataset selects a batch of node ac-
counts as seed nodes placed at layer O, considering
users as nodes and following relationships as edges.
The user information for layer 7 + 1 is extracted
from the users in layer ¢ along the edges, where up
to 20 neighbor nodes are extracted for each follow
and followed relationship. A total of three layers
are extracted to form user clusters. This dataset con-
struction method uses edges for expansion, forming
a star-shaped structure centered around seed nodes,
which tends to exhibit tree-like topological struc-
tures.

A2 MGTAB

The MGTAB dataset selects 100 seed nodes and
constructs the user network using breadth-first
search. At the same time, each user acquires up to
10,000 tweets, from which mention, reply, quote,
and other relations are extracted to construct a
multi-relational network of users. Additionally,
MGTAB undergoes cleaning by discarding users
irrelevant to the target topic and outlier accounts
without following relationships, thereby construct-
ing a compact topological dataset strongly related
to the theme.

A.3 TwiBot-22(subgraph)

TwiBot-22 is the largest dataset in the field of social
bot detection to date, encompassing four types of
entities—user, tweet, list, and hashtag—as well as
a total of 14 relationship types, including follower,
following, and mention. However, when perform-
ing bot account detection, only the user entity and
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its internal follower and following relationships are
directly utilized for analysis. We observe that this
approach results in numerous outliers, specifically
accounts without any followers or friends. This
limitation leads to the emergence of a significant
number of isolated nodes in the graph structure,
which are essentially accounts lacking both follow-
ers and friends. To enhance the effectiveness and
accuracy of data analysis, we adopt a processing
method inspired by MGTAB, where such unassoci-
ated users are removed to refine the dataset. Con-
sequently, we construct a well-connected subgraph
collection, referred to as TwiBot-22(subgraph).

B Baselines

We compared our model with some state-of-the-art
models on graph neural networks to verify the ef-
fectiveness of our optimizations and improvements
for graph neural networks.

* GCN: Utilizes graph convolutional neural net-
works to aggregate messages within the neigh-
borhood of nodes to learn node features.

GAT: Employs Transformer mechanisms to
autonomously learn edge weights for bot de-
tection.

* RGCN: Constructs heterogeneous graphs to
represent network structures and utilizes rela-
tional graph convolutional neural networks to
learn node features for bot detection.

* RGT: Uses relational graph attention net-
works and captures bot node features under
different relationships through semantic atten-
tion mechanisms for social bot detection.

* Nodeformer: A Graph Transformer based
on global attention that implements efficient
pairwise node signal transmission using a ker-
nelized Gumbel-Softmax operator, addressing
shortcomings of traditional graph neural net-
works in handling overfitting, heterogeneity,
long-range dependencies, and missing graph
structures.

C Layer Placement Study

As indicated in (Borgwardt et al., 2020), node fea-
tures often contain a substantial amount of discrim-
inative information, which may to some extent sup-
press the additional gains provided by the graph



Table 5: Position Analysis of TOGL: Performance comparison under different insertion positions across datasets.

TOGL Position MGTAB

TwiBot-20 TwiBot-22(subgraph)

ACC (%) F1 (%)

ACC (%)

F1 (%) ACC (%) F1 (%)

Without TOGL
Before GNN
After GNN

86.80£0.48 76.02+1.77 8553+1.14 86.81 +1.48
85.51+£0.70 75.15+1.39 86.15+0.14 87.66+0.16
86.90 £0.69 76.86+1.40 86.61+0.17 88.12+0.23

90.05 £0.08 52.27+2.54
90.02+£0.23 51.31+£2.72
90.39 £0.09 51.83+1.83

Table 6: Graph Structural Statistics of Bot Detection
Datasets

Feature Cresci-15 TwiBot-20 MGTAB TwiBot-22(subgraph)

1,950 5,237 7451 612,328
3,351 6,589 2,748 81,431
5,301 229,580 10,199 693,759
416 20 8,383 2,229
2.68 0.99 166.69 10.79
14,220 227,979 1,700,108 3,743,633
0.001012  0.000009  0.032691 0.000008

Real Users

Bot Accounts
Total Nodes
Maximum Degree
Average Degree
Number of Edges
Graph Density

structure. To explore how the position of the topo-
logical layer affects model performance, we place
it either before or after the message-passing GNN
layers. Experimental results, as shown in Table 5,
reveal a consistent trend across all three datasets:
placing the topological layer before the GNN layers
leads to a decline in performance, whereas position-
ing it after results in significantly improved model
effectiveness.

D Parameter Study

Numbers of clusters: Due to the high compu-
tational cost associated with increasing the num-
ber of clusters, we limit the number of clusters to
within 500 and divide them at intervals of 100 to
investigate the potential relationship between the
number of clusters and the dataset structure. As
shown in Figure 4, larger datasets are more prone to
over-globalization issues, necessitating more clus-
ters to focus attention on smaller regions. Further-
more, datasets with more complex structures (e.g.,
MGTAB) require more clusters to decompose local
information effectively.
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Figure 4: ACC and F1-score on the datasets for varying
numbers of clusters
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