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Abstract
We present a deep recurrent neural network architecture to solve a class of stochastic optimal
control problems described by fully nonlinear Hamilton Jacobi Bellman partial differential equations.
Such PDEs arise when considering stochastic dynamics characterized by uncertainties that are
additive, state dependent, and control multiplicative. Stochastic models with these characteristics
are important in computational neuroscience, biology, finance, and aerospace systems and provide
a more accurate representation of actuation than models with only additive uncertainty. Previous
literature has established the inadequacy of the linear HJB theory for such problems, so instead,
methods relying on the generalized version of the Feynman-Kac lemma have been proposed resulting
in a system of second-order Forward-Backward SDEs. However, so far, these methods suffer from
compounding errors resulting in lack of scalability. In this paper, we propose a deep learning based
algorithm that leverages the second-order FBSDE representation and LSTM-based recurrent neural
networks to not only solve such stochastic optimal control problems but also overcome the problems
faced by traditional approaches, including scalability. The resulting control algorithm is tested on
a high-dimensional linear system and three nonlinear systems from robotics and biomechanics in
simulation to demonstrate feasibility and out-performance against previous methods.

1. Introduction

Stochastic Optimal Control (SOC) is at the center of decision making under uncertainty with
extensive prior work in both theory and algorithms (Stengel, 1994; Fleming and Soner, 2006). One
of the most celebrated formulations is for linear dynamics and additive noise, known as the Linear
Quadratic Gaussian (LQG) case (Stengel, 1994). For control affine nonlinear stochastic systems,
the SOC formulation results in the Hamilton-Jacobi-Bellman (HJB) equation, which is a nonlinear
Partial Differential Equation (PDE) that evolves backwards in time. Solving the HJB PDE for high
dimensional systems is challenging and suffers from the curse of dimensionality (Bellman, 2003).

Algorithms so far that solve the HJB equation can be mostly classified into two groups: (i)
linearization-based and (ii) sampling-based. Linearization-based algorithms rely on either first-order
(iLQG) or second-order (Stochastic Differential Dynamic Programming) Taylor’s approximation of
dynamics and quadratic approximation of the cost function (Todorov and Li, 2005b; Theodorou et al.,
2010b). These algorithms exhibit high sensitivity to time discretization and require application of
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special linearization schemes. Sampling-based algorithms, such as the Markov-Chain Monte Carlo
(MCMC) approximation of the HJB equation (Kushner and Dupuis, 1992; Huynh et al., 2016), rely on
backward propagating the value function on a pre-specified grid. Recently, tensor-train decomposition
techniques (Gorodetsky et al., 2015) were proposed to improve scalability. However, these have
demonstrated limited applicability so far. Other methods include transforming the problem into a
deterministic one by employing the Fokker-Planck PDE (Annunziato and Borzi, 2010; Annunziato
and Borzì, 2013). This approach is also grid-based and therefore unscalable to high dimensions.

Previous sampling-based methods rely on the linear Feynman-Kac lemma (Karatzas and Shreve,
1991) and its generalized nonlinear version (Pardoux and Rascanu, 2014). The former relies on
exponentiating the value function and an assumption coupling control authority to the noise variance,
which prohibits tuning of the control cost independent of the noise. Controls are computed using
forward sampling of Forward Stochastic Differential Equations (FSDEs) (Kappen, 2005; Todorov,
2007, 2009; Theodorou et al., 2010a). The nonlinear Feynman-Kac lemma originates from the
theory of backward Stochastic Differential Equations (SDEs) that connects the solution of a parabolic
PDE to a set of Forward-Backward Stochastic Differential Equations (FBSDEs) (Pardoux and Peng,
1990; El Karoui et al., 1997) and does not require any of the above transformations or assumptions.
However, solving FBSDEs requires backpropagating SDEs to satisfy a terminal condition. Since
the uncertainty that enters the dynamics evolves forward in time, only conditional expectations can
be back-propagated (Shreve, 2004, Chapter 2) thereby requiring complicated numerical schemes
(Exarchos and Theodorou, 2018, 2016; Exarchos et al., 2018, 2019). The major limitation of these
methods is the compounding regression errors at every time step rendering them unscalable.

Recent efforts in Deep Learning for solving nonlinear PDEs demonstrate potential solutions
to overcome the problem of compounding errors. An algorithm introduced by Han et al. (2018)
mitigates the problem by using the terminal condition as the prediction target for a forward propagated
backward SDE. This is enabled by randomly initializing the value function and its gradient at the
start time and treating them as trainable parameters of a self-supervised deep learning problem. As a
result, the approximation errors at each time step are compensated for by backpropagation during
training. However, their algorithm relies on forward processes driven purely by noise, which is not
only inefficient for exploration but cannot yield any solution for controlling highly nonlinear systems.
In Pereira et al. (2019), we extended this work by firstly incorporating importance sampling using
Girsanov’s theorem (Shreve, 2004, Chapter 5) allowing efficient sampling from controlled dynamics.
Secondly, we introduced a more efficient Long-Short Term Memory (LSTM)-based architecture and
a framework that can optimally handle control constraints. However, the approach is only applicable
to stochastic systems wherein noise is either additive or state dependent.

Hence, in this paper, we address SOC problems wherein controls have a multiplicative effect
on the noise entering the system resulting in fully nonlinear HJB PDEs. Literature for SOC of such
systems is sparse and existing algorithms (iLQG/SDDP) require special linearization schemes for
stochastic dynamics (Torre and Theodorou., 2015). The aforementioned methods relying on the
linear Feynman-Kac lemma cannot be derived in the case of control multiplicative noise and those
relying on the nonlinear Feynman-Kac lemma are limited to first-order FBSDEs. Bakshi et al. (2017)
used the second-order FBSDEs (2FBSDEs) to solve the fully nonlinear HJB PDE, but their approach
suffers from the same aforementioned approximations errors due to regression. To overcome these
drawbacks, we propose a novel LSTM-based architecture tailored to solve such SOC problems,
which are critical in biomechanics, computational neuroscience, autonomous systems, and finance
(Todorov and Li, 2005a; Mitrovic et al., 2010; Primbs, 2007; McLane, 1971; Phillis, 1985).
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The paper is organized as follows: in Section 2 we introduce notation, mathematical preliminaries,
and problem formulation. Section 3 provides the 2FBSDE formulation followed by the Deep
2FBSDE algorithm in Section 4. Results from our simulation experiments are provided in Section 5
followed by a discussion, contributions, and future directions in Section 6.

2. Notation, mathematical preliminaries, and problem statement

Note that hereon bold faced notation will be abused for both vectors and matrices, while non-bold
faced will be used for scalars. We consider SDEs that are nonlinear functions of the state but are affine
in the controls. Let x ∈ Rnx be the state, and u ∈ Rnu be the controls taking values in the set of all
admissible controls U([0, T ]), for a fixed finite time horizon T ∈ [0,∞). Let

(
[v(t)T w(t)T]T

)
t∈[0,T ]

be a vector of mutually independent Brownian motions in Rnw+1. We assume that the functions
f : [0, T ] × Rnx → Rnx , G : [0, T ] × Rnx → Rnx×nu , Σ : [0, T ] × Rnx → Rnx×nw and σ ∈ R+

satisfy certain Lipschitz and growth conditions (Wang et al., 2019, SM A). Given this assumption,
for every initial condition ξ ∈ Rnx , there exists a unique solution

(
x(t)

)
t∈[0,T ]

to the FSDE,

dx(t) =
(
f(t,x(t)) + G(t,x(t))u(t)

)
dt+ σG(t,x(t))u(t)dv(t) + Σ(t,x(t))dw(t)

=
(
f(t,x(t)) + G(t,x(t))u(t)

)
dt+ C

(
t,x(t),u(t)

)
dε(t), (1)

with x(0) = ξ, C(t,x(t),u(t)) =
[
σG(t,x(t))u(t),Σ(t,x(t))

]
and ε(t) =

[
v(t) w(t)

]T.
Problem Statement and HJB PDE: We formulate the SOC problem as finding the optimal

control (u∗) that minimizes the following expected cost, which is quadratic in control

J
(
t,x(t); u(t)

)
= E

[ T∫
t

(
q(s,x(s)) +

1

2
u(s)TRu(s)

)
ds+ φ

(
x(T )

)]
, (2)

where q : Rnx → R+ is the running state cost, R is a symmetric positive definite matrix of size
nu × nu and φ : Rnx → R+ is the terminal state cost. q and φ are differentiable with continuous
derivatives up to the second order. We can define the value function as

V
(
t,x(t)

)
= inf

u(t)∈U([t,T ])
J
(
t,x(t); u(t)

)
, V

(
T,x(T )

)
= φ

(
x(T )

)
. (3)

Assuming that V (t,x) is once differentiable in t and twice differentiable in x with continuous
derivatives, there exists a unique solution to the following fully nonlinear HJB PDE

Vt + q + V T
x f − 1

2
V T
x GR̂−1GTVx +

1

2
tr(VxxΣΣT) = 0, V (T,x(T )) = φ(x(T )), (4)

with the optimal control u∗(t,x) = −R̂−1G(t,x)TVx(t,x), where, R̂ , (R + σ2GTVxxG). See
(Wang et al., 2019, SM B) for the detailed derivation.

3. A Controlled 2FBSDE Solution to the fully nonlinear HJB PDE

Bakshi et al. (2017) considered neither controls nor control multiplicative noise in their numerical
algorithm. This lack of control leads to insufficient exploration of possible solutions and for highly
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nonlinear systems renders it potentially impossible to find a solution to complete the task. In light of
this, we introduce a new set of 2FBSDEs that includes control in the FSDE

dx = fdt+ Gu∗dt+ Cdε (FSDE)

dV = H(V )dt+ V T
x Gu∗dt+ V T

x Cdε (BSDE 1)

dVx = H(Vx)dt+ VxxGu∗dt+ VxxCdε (BSDE 2)

x(0) = ξ, V (T ) = φ(x(T )), Vx(T ) = φx(x(T )),

(5)

where u∗ is the optimal control and the operator H is defined as H(·) , ∂t(·) + ∂x(·)Tf +
1
2tr(∂xx(·)CCT). We can obtain this particular set of 2FBSDEs by substituting for the optimal
control in the forward process (1). The backward processes are obtained by applying the Itô-Doeblin
formula (Shreve, 2004, Chapter 4), which is essentially the second order Taylor series expansion, to
the value function V and its gradient Vx. Additionally, we substitute the expression for Vt from (4)
into BSDE 1 and obtain the final form of the 2FBSDEs as

dx = fdt+ G(u∗dt+ σu∗dv) + Σdw

dV = −
(
q − 1

2V
T
x GR̂−T (R + 2σ2GTVxxG)R̂−1GTVx

)
dt

+V T
x G(u∗dt+ σu∗dv) + V T

x Σdw

dVx = (A + Vxxf)dt+ VxxG(u∗dt+ σu∗dv) + VxxΣdw

x(0) = ξ, V (T ) = φ(x(T )), Vx(T ) = φx(x(T )),

(6)

with A = ∂t(Vx) + 1
2tr(∂xx(Vx)CCT). The full derivation can be found in Wang et al. (2019, SM

B,C). In contrast to our prior approaches (Exarchos and Theodorou, 2018; Pereira et al., 2019) that
first introduce an uncontrolled system of FBSDEs and then use Girsanov’s theorem for imporatance
sampling (i.e. introducing controls in the forward and backward SDEs), our new derivation considers
controlled dynamics from the very beginning, circumventing the need to use Girsanov’s theorem.
Additionally, it must be emphasized that Girsanov’s theorem cannot be naively used in the case of
control multiplicative noise to obtain controlled forward and backward processes.

4. Deep 2FBSDE Controller

In this section, we introduce a novel Deep Neural Network (DNN) architecture called the Deep
2FBSDE Controller, which works with the discretized version of the continuous time solution (6)
(Wang et al. (2019, Sec. 4) contains details regarding numerical integration scheme used).

Network architecture: The network architecture proposed by Han et al. (2018); Beck et al.
(2019) samples from uncontrolled dynamics, which in the current context eliminates the effect of
control multiplicative noise resulting in sampling from dynamics with additive noise alone. As a
result, the trained V (t,x) and Vx(t,x) won’t be effective in the presence of controls and hence
control multiplicative noise. Therefore similar to our previous work in Pereira et al. (2019), one could
consider the architecture consisting of Feed-forward Neural Networks (FNNs) at every time step as
in Han et al. (2018); Beck et al. (2019), with additional connections (2FBSDE-FNNs) that use Vx
and Vxx at every time step for optimal feedback control. This however, introduces additional gradient
paths requiring backprop through time. Alternatively, we propose the LSTM-based architecture
in Fig. 1 (2FBSDE-LSTM) inspired by the successful results in our work (Pereira et al., 2019).
This architectural design is the most practical in terms of memory requirements while potentially
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Figure 1: Deep 2FBSDE neural network architecture. The blocks FC1,2 are fully connected
layers with linear activations while the LSTM block represents recurrent layers of stacked LSTM
cells with standard nonlinear activations. These layers are parameterized by θ and shared temporally.
Additionally, V (x0, t0) and Vx(x, t0) are parameterized by ψ and ζ respectively. The self-supervised
targets V ∗N , V

∗
x,N are the terminal conditions from (6) and V ∗xx,N = φxx(xN ).

avoiding the vanishing gradient problem. Instead of predicting the gradient of the value function
Vx at every time step, the output of the LSTM is used to predict the Hessian of the value function
Vxx and A = ∂t(Vx) + 1

2tr(∂xx(Vx)CCT) using two separate fully connected (FC) layers with
linear activations. Notice that ∂xx(Vx) is a rank 3 tensor and using neural networks to predict V
and compute this term using automatic differentiation would render this method unscalable as in
Raissi (2018). We, however, bypass this problem by instead predicting the trace of the tensor product,
which is a vector allowing linear growth in output size with state dimensionality.

Algorithm∗: We refer the reader to Wang et al. (2019, Algorithm 1) for details regarding the
training procedure of the Deep 2FBSDE Controller. Here, we present the loss function L, which is
computed using the propagated value function (V ), its gradient (Vx) and Hessian (Vxx) at the final
time step, compared against their terminal conditions denoted by ∗, as follows

L = c1 ||V ∗ − VN ||22 + c2 ||V ∗x − Vx,N ||22 + c3 ||V ∗xx − Vxx,N ||22 + c4 ||V ∗||22 + λ||θ||22. (7)

The network can be trained using any variant of Stochastic Gradient Descent (SGD) such as Adam
(Kingma and Ba, 2014) until convergence.

5. Simulation Results∗

In this section, we demonstrate the capability of the Deep 2FBSDE Controller (2FBSDE) on four
different systems in simulation. We first consider a high-dimensional linear system consisting of 100
states to demonstrate the scalablity of our algorithm using the 2FBSDE-FNNs and 2FBSDE-LSTM
architectures and compare the performance with an analytical solution. For nonlinear systems, we
consider a cart-pole swing-up task and a reaching task for a 12-state quadcopter. Finally, we tested
on a 2-link 6-muscle (10-state) biomechanical human arm model for a planar reaching task. We
chose the 2FBSDE-LSTM architecture as it is more memory efficient (fewer parameters especially
for longer horizons) and consumes less training time compared to 2FBSDE-FNNs. The results were

∗Refer to Wang et al. (2019), for our proposed algorithm and simulation details (hyperparameter values, state-space
SDE models for each system and additional experiments) in the supplementary materials (SM G and SM H)
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compared against both the Deep FBSDE Controller (referred to as FBSDE hereon) in Pereira et al.
(2019), wherein the effect of control multiplicative noise was ignored by only considering the model
with additive noise resulting in first-order FBSDEs, and the iLQG controller in Li and Todorov
(2007), which explicitly considers control multiplicative noise. Our experiments were programmed
and executed using Tensorflow-cpu (Abadi et al., 2015), on a desktop computer with an Intel Xeon
E5-1607 v3 CPU (3.1Ghz x 4) with 64 GB RAM. All the code to reproduce the results presented in
this section is available on our github repository †.

All the comparison plots contain statistics gathered over 128 test trials. For 2FBSDE and FBSDE,
we used a time discretization of ∆t = 0.02 seconds for cart-pole, quadcopter, and human arm. For
iLQG, ∆t = 0.01 seconds for cartpole and quadcopter and ∆t = 0.001 seconds for the human
arm were used to avoid numerical instability. Regarding the exact choice of time discretization,
the values were hand-tuned until we observed numerical stability, convergence, and reasonable
task performance. We would like to re-iterate that in case of iLQG, finer time discretizations were
required as compared to FBSDE and 2FBSDE. In all plots, the solid lines represent mean trajectories,
and the shaded regions represent the 68% confidence region (mean± standard deviation).

High Dimensional Linear System: We consider a linear time-invariant system given by
dx(t) = Ax(t)dt+Bu(t)dt+σBu(t)dv(t)+Σdw(t),x ∈ R100 with quadratic running state cost
and terminal state cost q

(
x(t)

)
= φ

(
x(T )

)
= (x − η)TQ(x − η).

Figure 2: Linear System Reaching
Task: 2FBSDE-LSTM has lower aver-
age cost compared to 2FBSDE-FNNs

The dynamics and cost function parameters are set as
A = 0,B = I,Σ = 0.5I, σ = 0.1,Q = 0.8I,R =
0.02I,x0 = 1.0I,∆t = 0.01. The task is to drive all the
states to η = 0. Although these dynamics may seem triv-
ial comprising of 100 independent scalar systems, such
dynamics arise in high-dimensional multi-agent systems
wherein the independent agents are only coupled through
the cost function. We refer the reader to Wang et al. (2019,
SM E, SM G.1) for derivation of the Riccati equations to
compute the analytical solution and additional simulation
details. Simulating the system for 1.5 seconds (despite
task completion in 0.3 seconds) highlights the stability of
2FBSDE-LSTM compared to 2FBSDE-FNN. The diver-
gence of 2FBSDE-FNN (green) results from the increase in variance of state costs across trials.

Cartpole: This experiment was a swing-up task with a horizon of T = 2.0 seconds. We tested
two different control cost coefficients and observed qualitatively different behavior. We present the
results for R = 0.5 and refer the reader to Wang et al. (2019, SM H.1) for R = 0.1. We did not
impose any cost or target for the cart position state. We would like to highlight in Fig. 3 that both
2FBSDE and iLQG (which take into account control multiplicative noise) chose to pre-swing the
pendulum and took advantage of using the system’s momentum to achieve the swing-up task. They
thus respect the presence of control multiplicative noise entering the system as compared to FBSDE,
which tries to drive the pendulum to the desired vertical position with large control effort.

Quadcopter: The controller was also tested on a 12-state quadcopter dynamics model for a task
of reaching and hovering at a target position with a horizon of 2.0 seconds. Only linear and angular
states are included in Fig. 4 since they most directly reflect the task performance (velocity plots

†GitHub repository (control_multi branch)
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Figure 3: Cartpole Swing-up Task: 2FBSDE is most aware of the presence of control multiplicative
noise and uses least control effort to perform the task. This is evident from the cart velocity plot, a
directly actuated state, which tries to stay as close to zero as possible.

Figure 4: Above plots, from left to right, in the top row are x, y and z positions and botton row are
roll, pitch and yaw angles. 2FBSDE clearly out-performs both FBSDE and iLQG, as indicated by
the smaller variance in all states and stability while others diverge due to high noise.

included in Wang et al. (2019, SM H.3)). The figure demonstrates superior performance of 2FBSDE
over FBSDE and iLQG controllers in reaching faster and maintaining lower variance. Moreover,
these results also convey the importance of taking into account multiplicative noise in the design of
optimal controllers as the state dimensionality and system complexity increases. We also tested the
2FBSDE controller for the same task (reach & hover) for a longer horizon of 3.0 seconds Wang et al.
(2019, SM H.4)) to verify its stabilizing capability in the presence of control multiplicative noise.

2-link 6-muscle Human Arm: This is a 10-state bio-mechanical system wherein control multi-
plicative noise models have been found to closely mimic empirical observations (Todorov, 2005).
The controllers were tasked with reaching a target position in 1.0 second. Additive noise in the
joint-angle acceleration channels and multiplicative noise in muscle activations were considered.
In Fig. 5, we show the log of terminal state cost (log φ(xN )) versus different values of additive
noise standard deviations Σ, (while holding multiplicative noise standard deviation fixed at σ = 0.1)
on top and versus different values of σ (keeping Σ fixed at 0) on the bottom. The FBSDE re-
sults are omitted as failure occurred in all trials. As seen in the figure, when additive noise is
varied (top), 2FBSDE outperforms iLQG at lower Σ and performance deteriorates much slower
than iLQG as Σ increases. When multiplicative noise is varied (bottom), iLQG exhibits erratic
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behaviour while 2FBSDE worsens gradually. The difference in behaviors can be attributed to the
fact that iLQG is only aware of the first two moments of the uncertainty entering the system while
2FBSDE, being a sampling-based controller is exposed to the true uncertainty entering the system.
We present the single control trajectory as well as mean and variance of 2FBSDE on Human Arm in
(Wang et al., 2019, SM H.2), which demonstrates the practical feasibility of the resulting controls.

Figure 5: Human Arm Planar
Reaching Task: 2FBSDE has
lower mean and variance of termi-
nal cost compared to iLQG.

Discussion: Although the performance of iLQG for the
cartpole and human arm tasks seems competitive to 2FBSDE,
we would like to highlight the fact that iLQG becomes brittle as
σ (multiplicative noise std. dev.) is increased and requires very
fine time discretizations, proper regularization scheduling and
fine state cost coefficient tuning for convergence. We observed
that it is markedly more difficult to tune iLQG when there is
both a terminal and running cost as compared to when there
is only a terminal cost. To achieve the performance in Fig.
5, running cost had to be reduced by an order of magnitude
compared to terminal cost for iLQG. Additionally, R had to be
tuned to a high value to prevent divergence for higher σ. We
implemented the regularization scheme for Quu as detailed in
Tassa et al. (2012) in addition to back-tracking line search. We
hypothesize that iLQG’s sensitivity to linearization becomes a
bigger problem in the presence of uncertainties causing decline
in performance. Inspired by this, Torre and Theodorou. (2015)
introduced a structured linearization approach, improving the
performance of SDDP for simple systems in the presence of
control multiplicative noise at the cost of increased complexity.

6. Conclusion and Contributions

In this paper, we proposed novel DNN architectures tailored to solve SOCs corresponding to fully
nonlinear HJB PDEs for stochastic systems with control multiplicative noise resulting in a system
of 2FBSDEs. We introduced a new derivation for FBSDEs that incorporates importance sampling
without relying on Girsanov’s change of measure theorem, which cannot be used for systems with
control multiplicative noise. We demonstrated scalability to high dimensional systems and robustness
to time-discretization and successfully applied our method for SOC of nonlinear systems with additive
and control multiplicative noise. Our simulations clearly illustrate the importance of considering the
nature of stochastic disturbances in the problem formulation as well as in the architecture design.
Finally, we can consider other architectures from the NLP community such as the Transformer
network (Vaswani et al., 2017) and a proof of convergence as potential future directions.
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