
A Versatile Influence Function for Data Attribution with Non-Decomposable
Loss

Junwei Deng 1 Weijing Tang 2 Jiaqi W. Ma 1

Abstract
Influence function, a technique rooted in robust
statistics, has been adapted in modern machine
learning for a novel application: data attribution—
quantifying how individual training data points
affect a model’s predictions. However, the com-
mon derivation of influence functions in the data
attribution literature is limited to loss functions
that can be decomposed into a sum of individual
data point losses, with the most prominent exam-
ples known as M-estimators. This restricts the
application of influence functions to more com-
plex learning objectives, which we refer to as
non-decomposable losses, such as contrastive or
ranking losses, where a unit loss term depends
on multiple data points and cannot be decom-
posed further. In this work, we bridge this gap
by revisiting the general formulation of influence
function from robust statistics, which extends be-
yond M-estimators. Based on this formulation,
we propose a novel method, the Versatile Influ-
ence Function (VIF), that can be straightforwardly
applied to machine learning models trained with
any non-decomposable loss. In comparison to
the classical approach in statistics, the proposed
VIF is designed to fully leverage the power of
auto-differentiation, hereby eliminating the need
for case-specific derivations of each loss func-
tion. We demonstrate the effectiveness of VIF
across three examples: Cox regression for sur-
vival analysis, node embedding for network anal-
ysis, and listwise learning-to-rank for information
retrieval. In all cases, the influence estimated
by VIF closely resembles the results obtained by
brute-force leave-one-out retraining, while being
up to 103 times faster to compute. We believe
VIF represents a significant advancement in data

1University of Illinois Urbana-Champaign 2 Carnegie Mel-
lon University. Correspondence to: Jiaqi W. Ma <ji-
aqima@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

attribution, enabling efficient influence-function-
based attribution across a wide range of machine
learning paradigms, with broad potential for prac-
tical use cases.

1. Introduction
Influence function (IF) is a well-established technique orig-
inating from robust statistics and has been adapted to the
novel application of data attribution in modern machine
learning (Koh & Liang, 2017). Data attribution aims to quan-
tify the impact of individual training data points on model
outputs, which enables a wide range of data-centric appli-
cations such as mislabeled data detection (Koh & Liang,
2017), data selection (Xia et al., 2008), and copyright com-
pensation (Deng & Ma, 2023).

Despite its broad potential, the application of IFs for data
attribution has been largely limited to loss functions that
can be decomposed into a sum of individual data point
losses—such as those commonly used in supervised learning
or maximum likelihood estimation, which are also known
as M-estimators. This limitation arises from the specific
way that IFs are typically derived in the data attribution
literature (Koh & Liang, 2017; Grosse et al., 2023), where
the derivation involves perturbing the weights of individual
data point losses. As a result, this restricts the application of
IF-based data attribution methods to more complex machine
learning objectives, such as contrastive or ranking losses,
where a unit loss term depends on multiple data points
and cannot be further decomposed into individual data point
losses. We refer to such loss functions as non-decomposable
losses.

To address this limitation, we revisit the general formula-
tion of IF in statistics literature (Huber & Ronchetti, 2009),
which can extend beyond M-estimators. Specifically, sta-
tistical estimators are viewed as functionals of probability
measures, and the IF is derived as a functional derivative in
a specific perturbation direction. In principle, this formu-
lation applies to any estimator defined as the minimizer of
a loss function that depends on an (empirical) probability
measure, which corresponds to the learned parameters in
the context of machine learning. However, directly applying

1



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

this general formulation to modern machine learning models
poses significant challenges. Firstly, deriving the precise IF
for a particular loss function often requires complex, case-
by-case mathetical derivations, which can be challenging
for intricate loss functions and models. Secondly, for non-
convex models, the (local) minimizer of the loss function
is not unique; as a result, the mapping from the probability
measure to the learned model parameters is not well-defined,
making it unclear how the IF should be derived.

To overcome these challenges, we propose the Versa-
tile Influence Function (VIF), a novel method that ex-
tends IF-based data attribution to models trained with non-
decomposable losses. The proposed VIF serves as an ap-
proximation of the general formulation of IF but can be
efficiently computed using auto-differentiation tools avail-
able in modern machine learning libraries. This approach
eliminates the need for case-specific derivations of each loss
function. Furthermore, like existing IF-based data attribu-
tion methods, VIF does not require model retraining and can
be generalized to non-convex models using similar heuristic
tricks (Koh & Liang, 2017; Grosse et al., 2023).

We validate the effectiveness of VIF through both theoret-
ical analysis and empirical experiments. In special cases
like M-estimation, VIF recovers the classical IF exactly. For
Cox regression, we show that VIF closely approximates the
classical IF. Empirically, we demonstrate the practicality
of VIF across several tasks involving non-decomposable
losses: Cox regression for survival analysis, node embed-
ding for network analysis, and listwise learning-to-rank for
information retrieval. In all cases, VIF closely approximates
the influence obtained from the brute-force leave-one-out
retraining while significantly reducing computational time—
achieving speed-ups of up to 103 times. We also provide
case studies demonstrating VIF can help interpret the behav-
ior of the models. By extending IF to non-decomposable
losses, VIF opens new opportunities for data attribution
in modern machine learning models, enabling data-centric
applications across a wider range of domains.

2. Related Work
Data Attribution. Data attribution methods can be roughly
categorized into two groups: retraining-based and gradient-
based methods (Hammoudeh & Lowd, 2024). Retraining-
based methods (Ghorbani & Zou, 2019; Jia et al., 2019;
Kwon & Zou, 2021; Wang & Jia, 2023; Ilyas et al., 2022)
typically estimate the influence of individual training data
points by repeatedly retraining models on subsets of the
training dataset. While these methods have been shown
effective, they are not scalable for large-scale models and
applications. In contrast, gradient-based methods (Koh &
Liang, 2017; Guo et al., 2020; Barshan et al., 2020; Schioppa
et al., 2022; Kwon et al., 2023; Yeh et al., 2018; Pruthi et al.,

2020; Park et al., 2023) estimate the training data influence
based on the gradient and higher-order gradient information
of the original model, avoiding expensive model retraining.
In particular, many gradient-based methods (Koh & Liang,
2017; Guo et al., 2020; Barshan et al., 2020; Schioppa et al.,
2022; Kwon et al., 2023; Pruthi et al., 2020; Park et al.,
2023) can be viewed as variants of IF-based data attribution
methods. Therefore, extending IF-based data attribution
methods to a wider domains could lead to a significant
impact on data attribution.

There are a few studies that adapt influence functions for
graph neural networks (Chen et al., 2022; Wu et al., 2023),
which can be viewed as special cases of non-decomposable
losses. Chen et al. (2022) developed an influence function
specifically for Simplified Graph Convolution model, which
is a linearized graph neural network model. Wu et al. (2023)
proposed a machine unlearning method for graph neural
networks based on influence function, where the influence
function is adapted to consider the graph dependency among
samples. In comparison to these methods, our approach has
a more general formulation and can be broadly applied to
various different non-decomposable losses.

Influence Function in Statistics. The IF is a well-
established concept in statistics dating back at least to Ham-
pel (1974), though it is typically applied for purposes other
than data attribution. Originally introduced in the context of
robust statistics, it was used to assess the robustness of statis-
tical estimators (Huber & Ronchetti, 2009) and later adapted
as a tool for developing asymptotic theories (van der Vaart,
2012). Notably, IFs have been derived for a wide range
of estimators beyond M-estimators, including L-estimators,
R-estimators, and others (Huber & Ronchetti, 2009; van der
Vaart, 2012). Closely related to an example of this study,
Reid & Crepeau (1985) developed the IF for the Cox re-
gression model. However, the literature in statistics of-
ten approaches the derivation of IFs through precise defini-
tions specific to particular estimators, requiring case-specific
derivations. In contrast, this work proposes an approxima-
tion for the general IF formulation in statistics, which can
be straightforwardly applied to a broad family of modern
machine learning loss functions for the purpose of data
attribution. While this approach involves some degree of
approximation, it benefits from being more versatile and
computationally efficient, leveraging auto-differentiation ca-
pabilities provided by modern machine learning libraries.

3. The Versatile Influence Function
3.1. Preliminaries: IF-Based Data Attribution for

Decomposable Loss

We begin by reviewing the formulation of IF-based data
attribution in prior literature (Koh & Liang, 2017; Schioppa

2



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

et al., 2022; Grosse et al., 2023). IF-based data attribu-
tion aims to approximate the effect of leave-one-out (LOO)
retraining—the change of model parameters after removing
one training data point and retraining the model—which
could be used to quantify the influence of this training data
point.

Formally, suppose we have the following loss function1,

LD(θ) =

n∑
i=1

ℓ(θ; zi), (1)

where θ is the model parameters, {zi}ni=1 is the training
dataset, and each ℓ(·; zi), i = 1, . . . , n, corresponds to the
loss function of one training data point zi. The IF-based
data attribution is derived by first inserting a binary weight
wi in front of each ℓ(·; zi) to represent the inclusion or
removal of the individual data points, transforming LD(θ)
to a weighted loss

LD(θ, w) =

n∑
i=1

wiℓ(θ; zi). (2)

Note that w = 1 corresponds to the original loss in Eq. (1);
while removing the i-th data point is to set wi = 0 or,
equivalently, w = 1−i, where 1−i is a vector of all one
except for the i-th element being zero. Denote the learned
parameters as θ̂D(w) := argminθ LD(θ, w)2. The LOO
effect for data point i is then characterized by θ̂D(1−i) −
θ̂D(1).

However, evaluating θ̂D(1−i) is computationally expensive
as it requires model retraining. Koh & Liang (2017) pro-
posed to approximate the LOO effect by relaxing the binary
weights in w to the continuous interval [0, 1] and measuring
the influence of the training data point zi on the learned
parameters as

∂θ̂D(w)

∂wi

∣∣∣∣∣
w=1

= −
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi),

(3)
which can be evaluated using only θ̂D(1), hence eliminating
the need for expensive model retraining.

However, by construction, this approach critically relies on
the introduction of the loss weights wi’s, and is thus limited
to loss functions that are decomposable with respect to the
individual training data points, taking the form of Eq. (1).

1The subscript D in LD refers to “decomposable”, which is
included to differentiate with the later notation.

2While this definition is technically valid only under specific
assumptions about the loss function (e.g., strict convexity), in prac-
tice, methods developed based on these assumptions (together with
some heuristics tricks) are often applicable to more complicated
models such as neural networks (Koh & Liang, 2017).

3.2. Non-Decomposable Loss

In practice, there are many common loss functions that are
not decomposable. Below we list a few examples.

Example 1: Cox’s Partial Likelihood. The Cox regression
model (Cox, 1972) is one of the most widely used models
in survival analysis, designed to analyze the time until spe-
cific events occur (e.g., patient death or customer churn). A
unique challenge in survival analysis is handling censored
observations, where the exact event time is unknown be-
cause the event has either not occurred by the end of the
study or the individual is lost to follow-up. These censored
data points contain partial information about the event tim-
ing and should be properly modeled to improve estimation.
The Cox regression model is defined through specifying a
hazard function over time t conditional on the individual
feature x:

h(t | x) = h0(t) exp(θ
⊤x),

where h0(t) is a baseline hazard function and exp(θ⊤x) is
the relative risk with θ as the model parameters to be esti-
mated. Given n data points {(Xi, Yi,∆i)}ni=1, where Xi

represents the features for the i-th data point, Yi denotes the
observed time (either the event time or the censoring time),
and ∆i is the binary event indicator (∆i = 1 if the event
has occurred and ∆i = 0 if the observation is censored),
the parameters θ can be learned through minimizing the
following negative log partial likelihood

LCox(θ) = −
∑

i:∆i=1

θ⊤Xi − log
∑
j∈Ri

exp(θ⊤Xj)

 ,

(4)
where Ri := {j : Yj > Yi} is called the at-risk set for the
i-th data point.

In Eq. (4), each data point may appear in multiple loss
terms if it belongs to the at-risk sets of other data points.
Consequently, we can no longer characterize the effect of
removing a training data point by simply introducing the
loss weight.

Example 2: Contrastive Loss. Contrastive losses are com-
monly seen in unsupervised representation learning across
various modalities, such as word embeddings (Mikolov
et al., 2013), image representations (Chen et al., 2020),
or node embeddings (Perozzi et al., 2014). Gener-
ally, contrastive losses rely on a set of triplets, D =
{(ui, vi, Ni)}mi=1, where ui is an anchor data point, vi is
a positive data point that is relevant to ui, while Ni is a
set of negative data points that are irrelevant to ui. The
contrastive loss is then the summation over such triplets:

LContrast(θ) =

m∑
i=1

ℓ(θ; (ui, vi, Ni)), (5)

3



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

where the loss l(·) could take many forms. In
word2vec (Mikolov et al., 2013) for word embeddings or
DeepWalk (Perozzi et al., 2014) for node embeddings, θ
corresponds to the embedding parameters for each word or
node, while the loss l(·) could be defined by heirarchical
softmax or negative sampling (see Rong (2014) for more
details).

Similar to Eq. (4), each single term of the contrastive loss
in Eq. (5) involves multiple data points. Moreover, taking
node embeddings as an example, the set of triplets D is
constructed by running random walks on the network. Re-
moving one data point, which is a node in this context, could
also affect the proximity of other pairs of nodes and hence
the construction of D.

Example 3: Listwise Learning-to-Rank. Learning-to-rank
is a core technology underlying information retrieval appli-
cations such as search and recommendation. In this con-
text, listwise learning-to-rank methods aim to optimize the
ordering of a set of documents or items based on their rel-
evance to a given query. One prominent example of such
methods is ListMLE (Xia et al., 2008). Suppose we have
annotated results for m queries over n items as a dataset
{(xi, (y

(1)
i , y

(2)
i , . . . , y

(k)
i )}mi=1, where xi is the query fea-

ture, y(1)i , y
(2)
i , . . . , y

(k)
i ∈ [n] := {1, . . . , n} indicate the

top k items for query i. Then the ListMLE loss function is
defined as following

LLTR(θ) =−
m∑
i=1

k∑
j=1

(f(xi; θ)j

− log
∑

l∈[n]\{y(1)
i ,...,y

(j−1)
i }

exp(f(xi; θ)l)),

(6)

where f(·; θ) is a model parameterized by θ that takes the
query feature as input and outputs n logits for predicting the
relevance of the n items.

In this example, Eq. (6) is decomposable with respect to the
queries while not decomposable with respect to the items.
The influence of items could also be of interest in informa-
tion retrieval applications. For example, in a search engine,
we may want to detect webpages with malicious search
engine optimization (Invernizzi et al., 2012); in product co-
purchasing recommendation (Zhao et al., 2017), both the
queries and items are products.

A General Loss Formulation. The examples above can be
viewed as special cases of the following formal definition
of non-decomposable loss.

Definition 3.1 (Non-Decomposable Loss). Given n objects
of interest within the training data, let a binary vector b ∈
{0, 1}n indicate the presence of the individual objects in

training, i.e., for i = 1, . . . , n,

bi =

{
1 if the i-th object presents,
0 otherwise.

Suppose the machine learning model parameters are denoted
as θ ∈ Rd, a non-decomposable loss is any function

L : Rd × {0, 1}n → R,

that maps given model parameters θ and the object presence
vector b to a loss value L(θ, b).

Denoting θ̂(b) = argminθ L(θ, b) on any non-
decomposable loss L(θ, b), the LOO effect of data point
i on the learned parameters can still be properly defined by

θ̂(1−i)− θ̂(1).

However, in this case, we can no longer use the partial
derivative with respect to bi to approximate the LOO effect,
as θ̂(b) is only well-defined for binary vectors b.
Remark 3.2 (“Non-Decomposable” v.s. “Not Decompos-
able”). The class of non-decomposable loss in Definition 3.1
includes the decomposable loss in Eq. (1) as a special case
when L(θ, b) :=

∑
i:bi=1 li(θ). Throughout this paper, we

will call loss functions that cannot be written in the form of
Eq. (1) as “not decomposable”. We name the general class
of loss functions in Definition 3.1 as non-decomposable loss
to highlight that they are generally not decomposable.
Remark 3.3 (Randomness in Losses). Strictly speaking,
many contrastive losses are not deterministic functions of
training data points as there is randomness in the construc-
tion of the triplet set D, due to procedures such as negative
sampling or random walk. However, our method derived for
the deterministic non-decomposable loss still gives mean-
ingful results in practice for losses with randomness.

3.3. The Statistical Perspective of Influence Function

The Statistical Formulation of IF. To derive IF-based data
attribution for non-decomposable losses, we revisit a general
formulation of IF in robust statistics (Huber & Ronchetti,
2009). Let Ω be a sample space, and T (·) is a function that
maps from a probability measure on Ω to a vector in Rd. Let
P and Q be two probability measures on Ω. The IF of T (·)
at P in the direction Q measures the infinitesimal change
towards a specific perturbation direction Q, which is defined
as

IF(T (P );Q) := lim
ε→0

T ((1− ε)P + εQ)− T (P )

ε
.

In the context of machine learning, the learned model pa-
rameters, denoted as θ̃(P ), can be viewed as a function of
the data distribution P . Specifically, the parameters of the
learned model are typically obtained by minimizing a loss

4



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

function, i.e., θ̃(P ) = argminθ L̃(θ, P ). Here, L̃(θ, P ) is
a loss function that depends on a probability measure P ,
distinguishing it from the non-decomposable loss L(θ, b)
that depends on the object presence vector b.

Assuming the loss is strictly convex and twice-differentiable
with respect to the parameters, the learned parameters θ̃(P )
are then implicitly determined by the following equation

∇θL̃(θ̃(P ), P ) = 0.

Moreover, the IF of θ̃(P ) with a perturbation towards Q is
given by3

IF(θ̃(P );Q) = −
[
∇2

θL̃(θ̃(P ), P )
]−1

·

lim
ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
. (7)

The advantage of the IF formulation in Eq. (7) is that it
can be applied to more general loss functions by properly
specifying P,Q, and L̃.

Example: Application of Eq. (7) to M-Estimators. As
an example, the following Lemma 3.4 states that the IF in
Eq. (3) for decomposable loss can be viewed as a special
case of the formulation in Eq. (7). This is a well-known re-
sult for M-estimators in robust statistics (Huber & Ronchetti,
2009), and the proof of which can be found in Appendix A.2.
Intuitively, with the choice of P,Q, and L̃ in Lemma 3.4,
(1 − ε)P + εQ = (1 − ε)Pn + εδzi leads to the effect of
upweighting the loss weight of zi with a small perturbation,
which is essentially how the IF in Eq. (3) is derived.

Lemma 3.4 (IF for M-Estimators). Eq. (7) reduces to
Eq. (3) up to a constant when we specify that 1) P is the
empirical distribution Pn =

∑n
i=1 δzi/n, where δzi is the

Dirac measure, i.e., Pr(zi) = 1 and Pr(zj) = 0, j ̸= i; 2)
Q = δzi ; and 3) L̃(θ, P ) := Ez∼P [ℓ(θ; z)]. Specifically,

IF(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi).

Challenges of Applying Eq. (7) in Modern Machine
Learning. While the IF in Eq. (7) is a principled and well-
established notion in statistics, there are two unique chal-
lenges when applying it to modern machine learning models
for general non-decomposable losses. Firstly, solving the
limit in the right hand side of Eq. (7) requires case-by-case
derivation for different loss functions and models, which
can be complicated (see an example of IF for the Cox regres-
sion (Reid & Crepeau, 1985) in Appendix A.5). Secondly,
the mapping θ̃(P ), hence the limit, are not well-defined for
non-convex loss functions as the (local) minimizer is not
unique. A similar problem exists in the IF for decomposable

3See Appendix A.1 for the derivation.

loss in Eq. (3) and Koh & Liang (2017) mitigate this prob-
lem through heuristic tricks specifically designed for Eq. (3).
However, the IF in Eq. (7) is in general more complicated
for non-decomposable losses and generalizing it to modern
setups like neural networks remains unclear.

3.4. VIF as A Finite Difference Approximation

We now derive the proposed VIF method by applying Eq. (7)
to the non-decomposable loss while addressing the afore-
mentioned challenges through a finite-difference approxima-
tion.

Definition 3.5 (Finite-Difference IF). Define the finite-
difference IF as following

ÎFε(θ̃(P );Q) := −
[
∇2

θL̃(θ̃(P ), P )
]−1

·

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
, (8)

which approximates the IF in Eq. (7), IF(θ̃(P );Q), by re-
placing the limit with a finite difference.

Observation on M-Estimators. The proposed VIF method
for general non-decomposable losses is motivated by the
following observation in the special case for M-estimators.

Theorem 3.6 (Finite-Difference IF for M-Estimators). Un-
der the specification of P = Pn, Q = δzi , and L̃ =
Ez∼P [ℓ(θ; z)] in Lemma 3.4, the IF is identical to the finite-
difference IF with ε = − 1

n−1 , i.e.,

IF(θ̃(Pn); δzi) = ÎF− 1
n−1

(θ̃(Pn); δzi).

Furthermore, denote Q(−i)
n−1 as the empirical distribution

where Pr(zi) = 0 and Pr(zj) =
1

n−1 , j ̸= i. Then we have

(1 +
1

n− 1
)Pn − 1

n− 1
δzi = Q(−i)

n−1,

ÎF− 1
n−1

(θ̃(Pn); δzi) = −(n− 1)ÎF1(θ̃(Pn);Q(−i)
n−1).

The first part of Theorem 3.6 suggests that, for M-estimators,
the limit in IF(θ̃(Pn); δzi) can be exactly replaced by a finite
difference with a proper choice of ε. The second part of The-
orem 3.6 further shows that we can construct another finite-
difference IF, ÎF1(θ̃(Pn);Q(−i)

n−1), with a different choice of
Q = Q(−i)

n−1 and ε = 1, that differs from IF(θ̃(Pn); δzi) only
by a constant factor. For the purpose of data attribution, we
typically only care about the relative influence among the
training data points, so the constant factor does not matter.

Generalization to General Non-Decomposable Losses.
The benefit of having the form ÎF1(θ̃(Pn);Q(−i)

n−1) is that
it is straightforward to generalize this formula from M-
estimators to general non-decomposable losses. Specifically,

5



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

noticing that Pn and Q(−i)
n−1 are respectively empirical dis-

tribution on the full dataset and the dataset without zi, we
can apply this finite-difference IF to any non-decomposable
loss through an appropriate definition of L̃.

Definition 3.7 (L̃(θ, P ) for Non-Decomposable Loss). Let
P(n) be the set of uniform distributions supported on sub-
sets of n fixed points {zi}ni=1. Note that both of the empiri-
cal distributions Pn and Q(−i)

n−1 belong to the set P(n). For
any P ∈ P(n), denote bP ∈ {0, 1}n as a binary vector such
that bPi = 1[P (zi) > 0], i = 1, . . . , n. The L̃(θ, P ) for a
non-decomposable loss L can be defined as follows:

L̃(θ, P ) := L(θ, bP ).

Proposition 3.8 (Finite-Difference IF on Non-Decompos-
able Loss). Under Definition 3.7, we have

ÎF1(θ̃(Pn);Q(−i)
n−1) =

[
∇2

θL(θ̂(1),1)
]−1

·

∇θ

(
L(θ̂(1),1)− L(θ̂(1),1−i)

)
. (9)

The Proposed VIF. We propose the following method to
approximate the LOO effect for any non-decomposable loss.

Definition 3.9 (Versatile Influence Function). The Versatile
Influence Function (VIF) that measures the influence of a
data object i on the parameters θ̂(1) learned from a non-
decomposable loss L is defined as following

VIF(θ̂(1); i) :=−
[
1

n
∇2

θL(θ̂(1),1)
]−1

·

∇θ

(
L(θ̂(1),1)− L(θ̂(1),1−i)

)
. (10)

The proposed VIF is a variant of Eq. (9), as it can be easily
shown that

VIF(θ̂(1); i) = −nÎF1(θ̃(Pn);Q(−i)
n−1).

The inclusion of the additional constant factor is motivated
by Theorem 3.6 to make it better align with the original IF
in Eq. (7). In practice, this definition is also typically more
numerically stable as the Hessian is normalized by 1

n .

Computational Advantages. The VIF defined in Eq. (10)
enjoys a few computational advantages. Firstly, VIF de-
pends on the parameters only at θ̂(1) and does not require
θ̂(1−i). Therefore, it does not require model retraining.
Secondly, compared to Eq. (7), VIF only involves gradients
and the Hessian of the loss, which can be easily obtained
through auto-differentiation provided in modern machine
learning libraries. Thirdly, VIF can be applied to more com-
plicated models and accelerated with similar heuristic tricks
employed by existing IF-based data attribution methods for
decomposable losses (Koh & Liang, 2017; Grosse et al.,

2023). We have included the results of efficient approxi-
mate implementations of VIF based on Conjugate Gradient
(CG) and LiSSA (Agarwal et al., 2017; Koh & Liang, 2017)
in Appendix C. Finally, note that VIF calculates the differ-
ence L(θ̂(1),1)− L(θ̂(1),1−i) before taking the gradient
with respect to the parameters. In some special cases (see,
e.g., the decomposable loss case in Section 3.5), taking the
difference before the gradient significantly simplifies the
computation as the loss terms not involving the i-th data
object will cancel out.

Attributing a Target Function. In practice, we are often in-
terested in attributing certain model outputs or performance.
Similar to Koh & Liang (2017), given a target function of
interest, f(z, θ), that depends on both some data z and the
model parameter θ, then the influence of a training data
point i on this target function can be obtained through the
chain rule:

∇θf(z, θ̂(1))
⊤VIF(θ̂(1); i). (11)

3.5. Approximation Quality in Special Cases

To provide insights into how accurately the proposed VIF
approximates Eq. (7), we examine the following special
cases. Although there is no universal guarantee of the ap-
proximation quality for all non-decomposable losses, our
analysis in these cases suggests that VIF may perform well
in many practical applications.

M-Estimation (Decomposable Loss). For a decomposable
loss, we have ∇θLD(θ̂D(1),1) =

∑n
i=1 ∇θℓ(θ̂D(1); zi)

and ∇θLD(θ̂D(1),1−i) =
∑n

j=1,j ̸=i ∇θℓ(θ̂D(1); zj). In
this case, it is straightforward to see that

VIF(θ̂(1); i) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi),

which indicates that the VIF here is identical to the IF in
Lemma 3.4 without approximation error.

Cox Regression. The close-form of the IF for the Cox re-
gression model, obtained by directly solving the limit in
Eq. (7) under the Cox regression model, exists in the statis-
tics literature (Reid & Crepeau, 1985), which allows us to
characterize the approximation error of the VIF in compari-
son to the exact solution.
Theorem 3.10 (Approximation Error under Cox Regression;
Informal). Denote the exact solution by Reid & Crepeau
(1985) as IFCox(θ̂(1); i) while the application of VIF on Cox
regression as VIFCox(θ̂(1); i). Their difference is bounded
as following:

VIFCox(θ̂(1); i)− IFCox(θ̂(1); i) = Op(
1

n
).

Theorem 3.10 suggests that the approximation error of the
VIF vanishes when the training data size is large. A formal

6



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

statement of this result and its proof can be found in Ap-
pendix A.5, and an empirical verification of the theoretical
results can be found in Appendix A.6.

4. Experiments
4.1. Experimental setup

We conduct experiments on three examples listed in Sec-
tion 3.2: Cox Regression, Node Embedding, and Listwise
Learning-to-Rank. 4 In this section, we present the perfor-
mance and runtime of VIF compared to brute-force LOO
retraining. We also provide two case studies to demonstrate
how the influence estimated by VIF can help interpret the
behavior of the trained model.

Datasets and Models. We evaluate our approach on mul-
tiple datasets across different scenarios. For Cox Regres-
sion, we use the METABRIC and SUPPORT datasets (Katz-
man et al., 2018). For both of the datasets, we train a Cox
model using the negative log partial likelihood following
Eq. (4). For Node Embedding, we use Zachary’s Karate
network (Zachary, 1977) and train a DeepWalk model (Per-
ozzi et al., 2014). Specifically, we train a two-layer model
with one embedding layer and one linear layer optimized via
contrastive loss following Eq. (5), where the loss is defined
as the negative log softmax. For Listwise Learning-to-Rank,
we use the Delicious (Tsoumakas et al., 2008) and Medi-
amill (Snoek et al., 2006) datasets. We train a linear model
using the loss defined in Eq. (6). Please refer to Appendix B
for more detailed experiment settings.

Target Functions. We apply VIF to estimate the change of
a target function, f(z, θ), before and after a specific data
object is excluded from the model training process. Below
are our choice of target functions for difference scenarios.

• For Cox Regression, we study how the relative risk func-
tion, f(xtest, θ) = exp(θ⊤xtest), of a test object, xtest,
would change if one training object were removed.

• For Node Embedding, we study how the contrastive loss,
f((u, v,N), θ) = l(θ; (u, v,N)), of an arbitrary pair of
test nodes, (u, v), would change if a node w ∈ N were
removed from the graph.

• For Listwise Learning-to-Rank, we study how the
ListMLE loss of a test query, f((xtest, y

[k]
test), θ) =

−
∑k

j=1(f(xtest; θ)j
− log

∑
l∈[n]\{y(1)

test,...,y
(j−1)
test } exp(f(xtest; θ)l)), would

change if one item l ∈ [n] were removed from the training
process.

4The code is publicly available at https://github.com/
TRAIS-Lab/Versatile-Influence-Function.

4.2. Performance

Table 1. The Pearson correlation coefficients of VIF and brute-
force LOO retraining under different experimental settings. Specif-
ically, “Brute-Force” refers to the results of two times of brute-
force LOO retraining using different random seeds, which serves
as a reference upper limit of performance.

Scenario Dataset Method Pearson Correlation

Cox Regression
METABRIC VIF 0.997

Brute-Force 0.997

SUPPORT VIF 0.943

Brute-Force 0.955

Node Embedding Karate VIF 0.407

Brute-Force 0.419

Listwise Learning-to-Rank
Mediamill VIF 0.823

Brute-Force 0.999

Delicious VIF 0.906

Brute-Force 0.999

We utilize the Pearson correlation coefficient to quantita-
tively evaluate how closely the influence estimated by VIF
aligns with the results obtained by brute-force LOO retrain-
ing. Furthermore, as a reference upper limit of performance,
we evaluate the correlation between two brute-force LOO
retraining with different random seeds. As noted in Re-
mark 3.3, some examples like contrastive losses are not
deterministic, which could impact the observed correlations.

Table 1 presents the Pearson correlation coefficients com-
paring VIF with brute-force LOO retraining using different
random seeds. The performance of VIF matches the brute-
force LOO in all experimental settings. Except for the Node
Embedding scenario, the Pearson correlation coefficients
are close to 1, indicating a strong resemblance between the
VIF estimates and the retraining results. In the Node Embed-
ding scenario, the correlations are moderately high for both
methods due to the inherent randomness in the random walk
procedure for constructing the triplet set in the DeepWalk
algorithm. Nevertheless, VIF achieves a correlation that is
close to the upper limit by brute-force LOO retraining. In
Figure 1, we show that the influences of each training sam-
ple predicted by VIF align almost perfectly with the exact
test loss differences after LOO retraining that respectively
removes the individual training samples. Additional experi-
ment results on larger datasets and models are presented in
Appendix B and C.

4.3. Runtime

We report the runtime of VIF and brute-force LOO retrain-
ing in Tabel 2. The computational advantage of VIF is
significant, reducing the runtime by factors up to 1097×.
This advantage becomes more pronounced as the dataset
size increases. The improvement ratio on the Karate dataset
is moderate due to the overhead from the random walk

7

https://github.com/TRAIS-Lab/Versatile-Influence-Function
https://github.com/TRAIS-Lab/Versatile-Influence-Function


A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Figure 1. The influences predicted by VIF versus the exact loss dif-
ferences after LOO retraining on 6 randomly selected test samples.
The experiment is done with Cox Regression on the METABRIC
dataset. Each sub-figure corresponds to one test sample. The x-
axis indicates the influence of a training sample on the test sample,
while the y-axis indicates the change of loss on the test sample
after LOO retraining by leaving that training sample out.

process and potential optimizations in the implementation.
All runtime measurements were recorded using an Intel(R)
Xeon(R) Gold 6338 CPU.

Table 2. Runtime comparison of VIF and brute-force LOO retrain-
ing.

Senario Dataset Brute-Force VIF Improvement Ratio

Cox Regression METABRIC 24 min 2.43 sec 593×
SUPPORT 225 min 12.3 sec 1097×

Network Embedding Karate 204 min 109 min 1.87×

Listwise Learning-to-Rank Mediamill 52 min 2.6 min 20×
Delicious 660 min 2.8 min 236×

4.4. Case Studies

We present two case studies to show how the influence
estimated by VIF can help interpret the behavior of the
trained model.

Case study 1: Cox Regression. In Table 3, we show the
top-5 most influential training samples, as estimated by
VIF, for the relative risk function of two randomly selected
test samples. We observe that removing two types of data
samples in training will significantly increase the relative
risk function of a test sample, which leads to a shorter event
time: (1) training samples that share similar features with the
test sample and have long event times (e.g., training sample
ranks 1, 3, 4, 5 for test sample 0 and ranks 5 for test sample
1) and (2) training samples that differ in features from the
test sample and have short event times (e.g., training sample
ranks 2 for test sample 0 and ranks 1, 2, 3, 4 for test sample
1). These findings align with domain knowledge.

Case study 2: Node Embedding. in Figure 2b and 2c,
we show the influence of all nodes to the contrastive loss
of 2 pairs of test nodes. The spring layout of the Karate
dataset is provided in Figure 2a. We observe that the most

Table 3. The top-5 influential training samples to 2 test samples
in the METABRIC dataset. “Features Similarity” is the cosine
similarity between the feature of the influential training sample
and the test sample. “Observed Time” and “Event Occurred” are
the Y and ∆ of the influential training sample as defined in Eq. (4).

Influence Rank Feature Similarity Observed Time Event Occurred

Test Sample 0

1 0.84 322.83 False

2 -0.34 9.13 True

3 0.77 258.17 True

4 0.23 131.27 False

5 0.81 183.43 False

Test Sample 1

1 -0.49 16.57 True

2 -0.22 30.97 True

3 -0.39 15.07 True

4 -0.65 4.43 True

5 0.72 307.63 False

influential nodes (on the top right in Figure 2b and 2c) are
the hub nodes that lie on the shortest path of the pair of
test nodes. For example, the shortest path from node 12 to
node 10 passes through node 0, while the shortest path from
node 15 to node 13 passes through node 33. Conversely,
the nodes with the most negative influence (on the bottom
left in Figure 2b and 2c) are those that likely “distract” the
random walk away from the test node pairs. For instance,
node 3 distracts the walk from node 12 to node 10, and node
30 distracts the walk from node 15 to node 13.

5. Conclusion
In this work, we introduced the Versatile Influence Function
(VIF), a novel method that extends IF-based data attribu-
tion to models trained with non-decomposable losses. The
key idea behind VIF is a finite difference approximation of
the general IF formulation in the statistics literature, which
eliminates the need for case-specific derivations and can be
efficiently computed with the auto-differentiation tools pro-
vided in modern machine learning libraries. Our theoretical
analysis demonstrates that VIF accurately recovers classical
influence functions in the case of M-estimators and provides
strong approximations for more complex settings such as
Cox regression. Empirical evaluations across various tasks
show that VIF closely approximates the influence obtained
by brute-force leave-one-out retraining while being orders-
of-magnitude faster. By broadening the scope of IF-based
data attribution to non-decomposable losses, VIF opens new
avenues for data-centric applications in machine learning,
empowering practitioners to explore data attribution in more
complex and diverse domains.

8



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

Karate Club Graph

(a) Karate Club Graph

0.2 0.0 0.2 0.4 0.6
Influence estimated by VIF

1

0

1

2

3

Ac
tu

ra
l d

iff
 in

 C
on

tra
st

iv
e 

lo
ss 0

12

3

4
56 78911 13141516171819202122232425262728293031 32

33

Contrastive loss of 
 Node 12 and Node 10, 

 Pearson correlation = 0.934

(b) Node 12 and Node 10

0.2 0.0 0.2 0.4
Influence estimated by VIF

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
tu

ra
l d

iff
 in

 C
on

tra
st

iv
e 

lo
ss

0

1

2

3

4
5

6
7

8
9

1011

12
1416

17

181920
21

22

2324
25

26
2728 29

30

31

32

33

Contrastive loss of 
 Node 15 and Node 13, 

 Pearson correlation = 0.761

(c) Node 15 and Node 13

Figure 2. VIF is applied to Zachary’s Karate network to estimate
the influence of each node on the contrastive loss of a pair of test
nodes. Figure 2a is a spring layout of the Karate network. Fig-
ure 2b and Figure 2c illustrate the alignment between the influence
estimated by VIF (x-axis) and the brute-force LOO retrained loss
difference (y-axis).

Limitation and Future Work. Similar to early IF-based
methods for decomposable loss (Koh & Liang, 2017), the
formal derivation of VIF assumes convexity of the loss func-
tion, which requires practical tricks to adapt the proposed
method to large-scale neural network models. While we
have explored the application of Conjugate Gradient and
LiSSA (Agarwal et al., 2017) for efficient inverse Hessian
approximation (see Appendix C), more advanced techniques
to stabilize and accelerate IF-based methods developed for
decomposable losses, such as EK-FAC (Grosse et al., 2023),
ensemble (Park et al., 2023), or gradient projection (Choe
et al., 2024), may be adapted to further enhance the practical
applicability of VIF on large-scale models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
WT was partially supported by NSF DMS-2412853. The
views and conclusions expressed in this paper are solely

those of the authors and do not necessarily reflect the official
policies or positions of the supporting agency.

References
Agarwal, N., Bullins, B., and Hazan, E. Second-order

stochastic optimization for machine learning in linear
time. Journal of Machine Learning Research, 18(116):1–
40, 2017. URL http://jmlr.org/papers/v18/
16-491.html.

Barshan, E., Brunet, M.-E., and Dziugaite, G. K. Relatif:
Identifying explanatory training samples via relative in-
fluence. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1899–1909. PMLR, 2020.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
Simple Framework for Contrastive Learning of Visual
Representations. In Iii, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 2020.

Chen, Z., Li, P., Liu, H., and Hong, P. Characteriz-
ing the influence of graph elements. arXiv preprint
arXiv:2210.07441, 2022.

Choe, S. K., Ahn, H., Bae, J., Zhao, K., Kang, M., Chung,
Y., Pratapa, A., Neiswanger, W., Strubell, E., Mitamura,
T., et al. What is your data worth to gpt? llm-scale
data valuation with influence functions. arXiv preprint
arXiv:2405.13954, 2024.

Cox, D. R. Regression models and life-tables. Jour-
nal of the Royal Statistical Society. Series B, Statisti-
cal methodology, 34(2):187–202, January 1972. ISSN
1369-7412,1467-9868. doi: 10.1111/j.2517-6161.1972.
tb00899.x.

Cox, D. R. Partial likelihood. Biometrika, 62(2):269–276,
1975.

Deng, J. and Ma, J. Computational Copyright: Towards A
Royalty Model for Music Generative AI. arXiv [cs.AI],
December 2023.

Ghorbani, A. and Zou, J. Data shapley: Equitable
valuation of data for machine learning. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pp. 2242–2251. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
ghorbani19c.html.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Taj-
dini, A., Steiner, B., Li, D., Durmus, E., Perez, E., Hub-

9

http://jmlr.org/papers/v18/16-491.html
http://jmlr.org/papers/v18/16-491.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html


A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

inger, E., Lukošiūtė, K., Nguyen, K., Joseph, N., McCan-
dlish, S., Kaplan, J., and Bowman, S. R. Studying large
language model generalization with influence functions.
arXiv [cs.LG], August 2023.

Guo, H., Rajani, N. F., Hase, P., Bansal, M., and Xiong,
C. Fastif: Scalable influence functions for efficient
model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020.

Hammoudeh, Z. and Lowd, D. Training data influence
analysis and estimation: A survey. Machine Learning,
113(5):2351–2403, 2024.

Hampel, F. R. The influence curve and its role in robust es-
timation. Journal of the American Statistical Association,
69(346):383–393, June 1974. ISSN 0162-1459,1537-
274X. doi: 10.1080/01621459.1974.10482962.

Huber, P. J. and Ronchetti, E. M. Robust Statis-
tics. Wiley Series in Probability and Statistics. Wiley-
Blackwell, Hoboken, NJ, 2 edition, January 2009.
ISBN 9780470129906,9780470434697. doi: 10.1002/
9780470434697.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training data.
arXiv preprint arXiv:2202.00622, 2022.

Invernizzi, L., Comparetti, P. M., Benvenuti, S., Kruegel, C.,
Cova, M., and Vigna, G. Evilseed: A guided approach to
finding malicious web pages. In 2012 IEEE symposium
on Security and Privacy, pp. 428–442. IEEE, 2012.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J. To-
wards efficient data valuation based on the shapley value.
In Chaudhuri, K. and Sugiyama, M. (eds.), Proceedings of
the Twenty-Second International Conference on Artificial
Intelligence and Statistics, volume 89 of Proceedings of
Machine Learning Research, pp. 1167–1176. PMLR, 16–
18 Apr 2019. URL https://proceedings.mlr.
press/v89/jia19a.html.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang,
T., and Kluger, Y. Deepsurv: personalized treatment rec-
ommender system using a cox proportional hazards deep
neural network. BMC medical research methodology, 18:
1–12, 2018.

Koh, P. W. and Liang, P. Understanding Black-box Pre-
dictions via Influence Functions. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1885–1894. PMLR,
2017.

Kwon, Y. and Zou, J. Beta shapley: a unified and noise-
reduced data valuation framework for machine learning.
arXiv preprint arXiv:2110.14049, 2021.

Kwon, Y., Wu, E., Wu, K., and Zou, J. Datainf: Efficiently
estimating data influence in lora-tuned llms and diffusion
models. arXiv preprint arXiv:2310.00902, 2023.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. Neural information process-
ing systems, 2013.

Park, S. M., Georgiev, K., Ilyas, A., Leclerc, G., and Madry,
A. Trak: Attributing model behavior at scale. arXiv
preprint arXiv:2303.14186, 2023.

Perozzi, B., Al-Rfou, R., and Skiena, S. DeepWalk: online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710, New York,
NY, USA, August 2014. ACM. ISBN 9781450329569.
doi: 10.1145/2623330.2623732.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent.
Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Reid, N. and Crepeau, H. Influence functions for propor-
tional hazards regression. Biometrika, 72(1):1, April
1985. ISSN 0006-3444,1464-3510. doi: 10.2307/
2336329.

Rong, X. word2vec Parameter Learning Explained. arXiv
[cs.CL], November 2014.

Schioppa, A., Zablotskaia, P., Vilar, D., and Sokolov, A.
Scaling up influence functions. In Proc. Conf. AAAI
Artif. Intell., volume 36, pp. 8179–8186. Association for
the Advancement of Artificial Intelligence (AAAI), June
2022. doi: 10.1609/aaai.v36i8.20791.

Snoek, C. G., Worring, M., Van Gemert, J. C., Geusebroek,
J.-M., and Smeulders, A. W. The challenge problem for
automated detection of 101 semantic concepts in multi-
media. In Proceedings of the 14th ACM international
conference on Multimedia, pp. 421–430, 2006.

Tsoumakas, G., Katakis, I., and Vlahavas, I. Effective and
efficient multilabel classification in domains with large
number of labels. In Proc. ECML/PKDD 2008 Workshop
on Mining Multidimensional Data (MMD’08), volume 21,
pp. 53–59, 2008.

van der Vaart, A. W. Asymptotic Statistics. Cam-
bridge University Press, Cambridge, England, June 2012.
ISBN 9780511802256,9780521496032. doi: 10.1017/
cbo9780511802256.

10

https://proceedings.mlr.press/v89/jia19a.html
https://proceedings.mlr.press/v89/jia19a.html


A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Wang, J. T. and Jia, R. Data banzhaf: A robust data valu-
ation framework for machine learning. In International
Conference on Artificial Intelligence and Statistics, pp.
6388–6421. PMLR, 2023.

Wu, J., Yang, Y., Qian, Y., Sui, Y., Wang, X., and He, X.
Gif: A general graph unlearning strategy via influence
function. In Proceedings of the ACM Web Conference
2023, pp. 651–661, 2023.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. List-
wise approach to learning to rank: theory and algo-
rithm. In Proceedings of the 25th international confer-
ence on Machine learning - ICML ’08, pp. 1192–1199,
New York, New York, USA, 2008. ACM Press. ISBN
9781605582054. doi: 10.1145/1390156.1390306.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. Advances in neural information processing
systems, 31, 2018.

Zachary, W. W. An information flow model for conflict
and fission in small groups. Journal of anthropological
research, 33(4):452–473, 1977.

Zhao, T., McAuley, J., Li, M., and King, I. Improving
recommendation accuracy using networks of substitutable
and complementary products. In 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 3649–3655.
IEEE, 2017.

11



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

A. Omitted Derivations
A.1. Derivation of Eq. (7)

Consider an ε perturbation towards another distribution Q, i.e., (1 − ε)P + εQ. Note that θ̃((1 − ε)P + εQ) solves
∇θL̃(θ, (1− ε)P + εQ) = 0. We take derivative with respect to ε and evaluate at ε = 0 on both side, which leads to

∇2
θL̃(θ̃(P ), P ) lim

ε→0

θ̃((1− ε)P + εQ)− θ̃(P )

ε
+ lim

ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
= 0.

Given the strict convexity, the Hessian is invertible at the global optimal. By plugging the definition of IF, we have

IF (θ̃(P );Q) = −
[
∇2

θL̃(θ̃(P ), P )
]−1

lim
ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
.

A.2. Proof of Lemma 3.4

Proof. Under M-estimation, the objective function becomes the empirical loss, i.e., L̃(θ, P ) = Ez∼P [ℓ(θ; z)], where
P = Pn =

∑n
i=1 δzi/n is the empirical distribution over the dataset. Note that L̃(θ, P ) = 1

nLD(θ,1) for any θ, therefore
they share the same minimizer, i.e.,

θ̃(P ) = θ̂D(1).

The gradient and Hessian of L̃(θ̃(P ), P ) are respectively

∇θL̃(θ̃(P ), P ) = Ez∼P [∇θℓ(θ̃(P ); z)] =
1

n

n∑
j=1

∇θℓ(θ̃(P ); zj) = 0

and

∇2
θL̃(θ̃(P ), P ) = Ez∼P [∇2

θℓ(θ̃(P ); z)] =

n∑
i=1

∇2
θℓ(θ̃(P ); zi)/n =

1

n
∇2

θLD(θ̂D(1),1).

The infinitesimal change on the gradient towards the distribution Q = δzi equals to

lim
ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε

= lim
ε→0

Ez∼(1−ε)P+εQ[∇θℓ(θ̃(P ), z)]− 0

ε

= lim
ε→0

(1− ε)Ez∼P [∇θℓ(θ̃(P ), z)] + εEz∼Q[∇θℓ(θ̃(P ), z)]

ε

= lim
ε→0

(1− ε) · 0 + εEz∼Q[∇θℓ(θ̃(P ), z)]

ε

=Ez∼Q[∇θℓ(θ̃(P ), z)]

=∇θℓ(θ̃(P ), zi) = ∇θℓ(θ̂D(1), zi).

Plugging the above equations into Eq. (7), it becomes

IF(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi).

A.3. Proof of Theorem 3.6

Lemma A.1. Let Pn and Q(−i)
n−1 be the empirical distributions respectively on {zj}nj=1 and {zj}nj=1 \ {zi}, while δzi is the

distribution concentrated on zi. Then

(1 +
1

n− 1
)Pn − 1

n− 1
δzi = Q(−i)

n−1.

12



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Proof of Lemma A.1. For any j ̸= i,

(1 +
1

n− 1
)Pn(zj)−

1

n− 1
δzi(zj) = (1 +

1

n− 1
) · 1

n
− 0

=
1

n− 1

= Q(−i)
n−1(zj).

For i,

(1 +
1

n− 1
)Pn(zi)−

1

n− 1
δzi(zi) = (1 +

1

n− 1
) · 1

n
− 1

n− 1
· 1

= 0

= Q(−i)
n−1(zi).

Proof of Theorem 3.6. We first prove the first part of Theorem 3.6, where our goal is to show

ÎF− 1
n−1

(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi).

Expanding ÎFε(θ̃(Pn); δzi) by its definition in Eq. (8),

ÎFε(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn), (1− ε)Pn + εδzi)−∇θL̃(θ̃(Pn),Pn)

ε
.

Setting ε = − 1
n−1 and by Lemma A.1,

ÎF− 1
n−1

(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn),Q(−i)

n−1)−∇θL̃(θ̃(Pn),Pn)

−1/(n− 1)
(12)

= −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 E

z∼Q(−i)
n−1

[∇θℓ(θ̃(Pn); z)]− Ez∼Pn [∇θℓ(θ̃(Pn); z)]

−1/(n− 1)

= −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1

∑n
j=1,j ̸=i ∇θℓ(θ̃(Pn); zj)/(n− 1)−

∑n
j=1 ∇θℓ(θ̃(Pn); zj)/n

−1/(n− 1)

= −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1

− n∑
j=1,j ̸=i

∇θℓ(θ̃(Pn); zj) +
n− 1

n

n∑
j=1

∇θℓ(θ̃(Pn); zj)

 . (13)

Noting that θ̃(Pn) is the optimizer for L̃(θ,Pn), so

0 = ∇θL̃(θ̃(Pn),Pn) =
1

n

n∑
j=1

∇θℓ(θ̃(Pn); zj).

Therefore,

−
n∑

j=1,j ̸=i

∇θℓ(θ̃(Pn); zj) = ∇θℓ(θ̃(Pn); zi).

Plugging the two equations above into Eq. (13), we have

ÎF− 1
n−1

(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1

∇θℓ(θ̃(Pn); zi).

13



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

From the proof of Lemma 3.4 in Appendix A.2, we know

θ̃(Pn) = θ̂D(1), ∇2
θL̃(θ̃(Pn),Pn) =

1

n
∇2

θLD(θ̂D(1),1).

Therefore,

ÎF− 1
n−1

(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi),

which completes the proof for the first part of Theorem 3.6. For the second part, the first equation has been proved as
Lemma A.1. The second equation is straightforward from Eq. (12):

ÎF− 1
n−1

(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn),Q(−i)

n−1)−∇θL̃(θ̃(Pn),Pn)

−1/(n− 1)

= −(n− 1)

(
−
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn),Q(−i)

n−1)−∇θL̃(θ̃(Pn),Pn)

1

)
= −(n− 1)ÎF1(θ̃(Pn);Q(−i)

n−1).

A.4. Proof of Proposition 3.8

Proof. It is easy to verify that

bPn = 1, bQ
(−i)
n−1 = 1−i.

Hence, based on the definition of L̃ in Proposition 3.8, we have

L̃(θ,Pn) = L(θ,1), L̃(θ,Q(−i)
n−1) = L(θ,1−i).

Therefore, we also have θ̃(Pn) = θ̂(1). The result in Eq. (9) follows directly by plugging these quantities into the definition
of ÎF1(θ̃(Pn);Q(−i)

n−1).

A.5. Formal Statement and Proof of Theorem 3.10

Setup and Notation. For convenience, we adopt a set of slightly different notations tailored for the Cox regression model.
Consider n i.i.d. generated right-censoring data {Zi = (Xi, Yi,∆i)}ni=1, where Yi = min{Ti, Ci} is the observed time,
Ti is the time to event of interest, and Ci is the censoring time. We assume non-informative censoring, i.e., T and Ci

are independent conditional on X , which is a common assumption in the literature. Suppose there are no tied events for
simplicity.

A well-known estimate for the coefficients β under the Cox model is obtained by minimizing the negative log-partial
likelihood:

Ln(θ) := −
n∑

i=1

∆i

θ⊤Xi − log

∑
j∈Ri

exp
(
θ⊤Xj

)
= −

n∑
i=1

∆i

θ⊤Xi − log

 n∑
j=1

I(Yj ≥ Yi) exp
(
θ⊤Xj

) .

Note that Ln(θ) is a convex function and the estimate θ̂ equivalently solves the following score equation:

∇θLn(θ̂) =

n∑
i=1

−∆i

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
︸ ︷︷ ︸

∇θℓn(θ̂;Zi)

= 0,

14



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

where

S(0)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
, (14)

S(1)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
Xi. (15)

It has been shown that, under some regularity conditions, θ̂ is a consistent estimator for θ∗. Note that the above score
equation is not a simple estimation equation that takes the summation of i.i.d. terms, because S

(0)
n (t; θ) and S

(1)
n (t; θ)

depend on all observations.

Analytical Form of Influence Function in Statistics. Reid & Crepeau (1985) derived the influence function by evaluating
the limit in (7) with P being the underlying data-generating distribution and Q = δZi

(i.e., the Gateaux derivative at
θ∗ = θ(P ) in the direction δZi ). To start with, we define the population counterparts of Eq. (14) and Eq. (15):

s(0)(t; θ) = E
(
I (Y ≥ t) exp

(
θ⊤X

))
,

s(1)(t; θ) = E
(
I (Y ≥ t) exp

(
θ⊤X

)
X
)
,

and introduce the counting process notation: the counting process associated with i-th data Ni(t) = I(Yi ≤ t,∆i = 1),
the process Gn(t) =

1
n

∑n
i=1 Ni(t), and its population expectation G(t) = E(Gn(t)). Then the influence function for the

observation Zi = (Xi, Yi,∆i) is given by

A · IF(i) =∆i

(
Xi −

s(1)(Yi; θ
∗)

s(0)(Yi; θ∗)

)
− exp(θ∗⊤Xi) ·

∫
I(Yi ≥ t)

s(0)(t; θ∗)

(
Xi −

s(1)(t; θ∗)

s(0)(t; θ∗)

)
dG(t)

where A is the non-singular information matrix. A consistent estimate for A is given by ∇2
θLn(θ̂)/n (Cox, 1975). The

empirical influence function given n data points is obtained by substituting A, θ∗, and G(t) by ∇2
θL(θ̂)/n, θ̂, and Gn(t)

respectively:

IFn(i) =− [∇2
θL(θ̂)/n]−1∇θℓn(θ̂;Zi)− [∇2

θL(θ̂)/n]−1Ci(θ̂),

where

Ci(θ̂) = exp(θ̂⊤Xi) ·
1

n

n∑
j=1

∫
I(Yi ≥ t)

S
(0)
n (t; θ̂)

(
Xi −

S
(1)
n (t; θ̂)

S
(0)
n (t; θ̂)

)
dNj(t)

= exp(θ̂⊤Xi) ·
1

n

n∑
j=1

I(Yi ≥ Yj)∆j

S
(0)
n (Yj ; θ̂)

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
.

The first term is analogous to the standard influence function for M-estimators and the second term captures the influence of
the i-th observation in the at-risk set.

The Proposed VIF. Under the Cox regression, the proposed VIF becomes

VIFn(i) := −
[
∇2

θLn(θ̂)/n
]−1 (

∇θLn(θ̂)−∇θL(−i)
n−1(θ̂)

)
,

where ∇θL(−i)
n−1(θ̂) is the gradient of the negative log-partial likelihood after excluding the i-th data point at θ̂. Given no tied

events, we can rewrite ∇θL(−i)
n−1(θ̂) as

∇θL(−i)
n−1(θ̂) =−

∑
j:Yj<Yi

∆j

(
Xj −

S
(1)
n (Yj ; θ̂)− exp(θ̂⊤Xi)Xi/n

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

)
−

∑
j:Yj>Yi

∆j

(
Xj −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
.

15



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Then it follows that

VIFn(i) =− [∇2
θLn(θ̂)/n]

−1
(
∇θLn(θ̂)−∇θL(−i)

n−1(θ̂)
)

=− [∇2
θLn(θ̂)/n]

−1

∇θℓn(θ̂;Zi) +
∑

j:Yj<Yi

∆j

(
S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

− S
(1)
n (Yj ; θ̂)− exp(θ̂⊤Xi)Xi/n

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

)
=− [∇2

θLn(θ̂)/n]
−1∇θℓn(θ̂;Zi)

− [∇2
θLn(θ̂)/n]

−1

exp(θ̂⊤Xi) ·
1

n

n∑
j=1

I(Yj < Yi)∆j

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

) .

Approximation Error. Below, we formally bound the difference between the analytical form of IF and our proposed
approximation. Our result implies that the difference between the analytic expression of the IF and the proposed VIF
approximation, i.e., VIFn(i)− IFn(i), diminishes at a rate of 1/n as the sample size grows and is of a smaller order than
IFn(i). This is because IFn(i) = IF(i) + op(1), where IF(i) is a non-degenerate random variable that doesn’t converge to
zero in probability; therefore IFn(i) remains bounded away from zero in probability, denoted as = Ωp(1).
Theorem A.2 (Approximation Error Bound under Cox Model). Assume that (1) the true parameter θ∗ is an interior point
of a compact set B ⊂ Rd; (2) the density of X is bounded below by a constant c > 0 over its domain X , which is a compact
subset of Rd; (3) there is a truncation time τ < ∞ such that for some constant δ0, Pr(Y > τ |X) ≥ δ0 almost surely; (4)
the information matrix A is non-singular. Assuming uninformative censoring, the difference between IFn(i) and VIFn(i) is
upper bounded by

Diff(i) := VIFn(i)− IFn(i) = Op(
1

n
).

Proof. The difference between IFn(i) and VIFn(i) is given by

Diffn(i) = VIFn(i)− IFn(i)

=
[
∇2

θL(θ̂)/n
]−1

exp(θ̂⊤Xi) ·
1

n

{
n∑

j=1

I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)

−
n∑

j=1

I(Yj < Yi)∆j

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)}

=
[
∇2

θL(θ̂)/n
]−1

exp(θ̂⊤Xi) ·
1

n

{
n∑

j=1

I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)

−
n∑

j=1

I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)}

+
∆i

S
(0)
n (Yi; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

))

= −
[
∇2

θL(θ̂)/n
]−1 exp(2θ̂⊤Xi)

n
· 1
n

n∑
j=1

{
I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)

· 1

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)}

+
[
∇2

θL(θ̂)/n
]−1 exp(θ̂⊤Xi)

n
· ∆i

S
(0)
n (Yi; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
.

Define

Jn(t; θ, Zi) =
I(t ≤ Yi)

S
(0)
n (t; θ)

· 1

S
(0)
n (t; θ)− exp(θ⊤Xi)/n

·

(
Xi −

S
(1)
n (t; θ)

S
(0)
n (t; θ)

)
,

and

J(t; θ, Zi) =
I(t ≤ Yi)

s(0)(t; θ)
· 1

s(0)(t; θ)− exp(θ⊤Xi)/n
·
(
Xi −

s(1)(t; θ)

s(0)(t; θ)

)
.

16



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Then we rewrite Diffn(i) using the empirical process notation:

Diffn(i) =−
[
∇2

θL(θ̂)/n
]−1 exp(2θ̂⊤Xi)

n
·
∫ τ

0

Jn(t; θ̂, Zi)dGn(t)

+
[
∇2

θL(θ̂)/n
]−1 exp(θ̂⊤Xi)

n
· ∆i

S
(0)
n (Yi; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
. (16)

Next, we show that ∫ τ

0

Jn(t; θ̂, Zi)dGn(t) =

∫ τ

0

J(t; θ∗, Zi)dG(t) + op(1). (17)

To prove Eq. (17), we further decompose it into four terms:∫ τ

0

Jn(t; θ̂, Zi)dGn(t)−
∫ τ

0

J(t; θ∗, Zi)dG(t) =

∫ τ

0

(
Jn(t; θ̂, Zi)− J(t; θ̂, Zi)

)
d(Gn(t)−G(t))︸ ︷︷ ︸

I1

+

∫ τ

0

J(t; θ̂, Zi)d(Gn(t)−G(t))︸ ︷︷ ︸
I2

+

∫ τ

0

(
Jn(t; θ̂, Zi)− J(t; θ̂, Zi)

)
dG(t)︸ ︷︷ ︸

I3

+

∫ τ

0

(
J(t; θ̂, Zi)− J(t; θ∗, Zi)

)
dG(t)︸ ︷︷ ︸

I4

.

For the first term I1, by the triangle inequality, we have

sup
t∈[0,τ ],θ∈B

∥Jn(t; θ, Zi)− J(t; θ, Zi)) ∥

≤ sup
t∈[0,τ ],θ∈B

∥∥∥∥∥∥ I(t ≤ Yi)

S
(0)
n (t; θ)

(
S
(0)
n (t; θ)− exp(θ⊤Xi)/n

) ·Xi −
I(t ≤ Yi)[
(s(0)(t; θ)

]2 ·Xi

∥∥∥∥∥∥
+ sup

t∈[0,τ ],θ∈B

∥∥∥∥∥∥∥
I(t ≤ Yi)[

S
(0)
n (t; θ)

]2 (
S
(0)
n (t; θ)− exp(θ⊤Xi)/n

) · S(1)
n (t; θ)− I(t ≤ Yi)[

(s(0)(t; θ)
]3 s(1)(t; θ)

∥∥∥∥∥∥∥
≲ sup

t∈[0,τ ],θ∈B

∣∣∣∣∣∣∣
1[

(S
(0)
n (t; θ)

]2 − 1[
(s(0)(t; θ)

]2
∣∣∣∣∣∣∣+Op(

1

n
)

+ sup
t∈[0,τ ],θ∈B

∥∥∥∥∥∥∥
1[

S
(0)
n (t; θ)

]3 · S(1)
n (t; θ)− 1[

(s(0)(t; θ)
]3 s(1)(t; θ)

∥∥∥∥∥∥∥ (18)

where the second inequality relies on the the boundedness of the support of Xi, τ , and B. Here, “W1 ≲ W2” denotes that
there exists a universal constant C > 0 such that W1 ≤ CW2. Under Conditions (1)-(3), the function class {ft,θ(x, y) =
I(y ≥ t) exp(θ⊤x) : t ∈ [0, τ ], θ ∈ B} is a Glivenko-Cantelli class, i.e., supt∈[0,τ ],θ∈B |S(0)

n (t; θ) − s(0)(t; θ)| = op(1).

Similarly, we have supt∈[0,τ ],θ∈B ∥S(1)
n (t; θ) − s(1)(t; θ)∥ = op(1). By applying the first-order Taylor expansion of the

function 1/x2 at x = s(0)(t; θ), we obtain

1[
(S

(0)
n (t; θ)

]2 =
1[

(s(0)(t; θ)
]2 − 2[

(s(0)(t; θ)
]3 · (S(0)

n (t; θ)− s(0)(t; θ)) + o
(
|S(0)

n (t; θ)− s(0)(t; θ)|
)
.

17



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Since X , B, and τ are bounded, there exists a constant C > 0 such that inft∈[0,τ ],θ∈B s(0)(t; θ) =

E
(
I (Y ≥ t) exp

(
θ⊤X

))
≥ C, which implies that the denominators in the expansion are uniformly bounded away

from zero. Therefore, the first term in Eq. (18) satisfies

sup
t∈[0,τ ],θ∈B

∣∣∣∣∣∣∣
1[

(S
(0)
n (t; θ)

]2 − 1[
(s(0)(t; θ)

]2
∣∣∣∣∣∣∣ ≲ sup

t∈[0,τ ],θ∈B
|S(0)

n (t; θ)− s(0)(t; θ)| = op(1).

Similarly, by applying the first-order Taylor expansion to the bi-variate function y/x3 at the point (x, y) =
(s(0)(t; θ), s(1)(t; θ)), we can show that the third term in Eq. (18) is also op(1). Combining these results, we obtain
the uniform convergence:

sup
t∈[0,τ ],θ∈B

∥Jn(t; θ, Zi)− J(t; θ, Zi)) ∥ = op(1). (19)

By the empirical process theory, we have
√
n(Gn(t) − G(t)) converges to a Gaussian process uniformly. Therefore, it

follows that

I1 =

∫ τ

0

(
Jn(t; θ̂, Zi)− J(t; θ̂, Zi)

)
d(Gn(t)−G(t)) = op(1/

√
n).

To bound the second term I2, we first show that supt∈[0,τ ],θ∈B J(t; θ, Zi) = O(1). By definition, all numerators in
J(t; θ, Zi) are bounded due to the bounded support of X , the compactness of B, and the bounded τ . The denominators
of J(t; θ, Zi) involve both s(0)(t; θ) and s(0)(t; θ) − exp

(
θ⊤Xi

)
/n, which we show are uniformly bounded away from

zero. Specifically, since X , B, and τ are bounded, there exists a constant C > 0 such that inft∈[0,τ ],θ∈B s(0)(t; θ) =

E
(
I (Y ≥ t) exp

(
θ⊤X

))
≥ C. Moreover, the term eθ̂

TXi/n = O(1/n) is of a smaller order, so s(0)(t; θ)−exp
(
θ⊤Xi

)
/n

remains bounded below by a positive constant for large n. Therefore, J(t; θ, Zi) = O(1) uniformly over t ∈ [0, τ ] and
θ ∈ B. By plugging in θ̂ ∈ B and combining the fact that

√
n(Gn(t)−G(t)) converges to a Gaussian process uniformly,

we have I2 = Op(1/
√
n).

For the third term I3, due to uniform convergence in Eq. (19), it follows that I3 = op(1).

To bound the fourth term I4, we use the Lipschitz continuity of J(t; θ, Zi) in θ, which follows from the boundedness of
X , B, and τ . Combined with the consistency of θ̂, i.e., θ̂ = θ∗ + op(1), under the regularity conditions of Theorem A.2
(Cox, 1975), we have supt∈[0,τ ] ∥J(t; θ̂, Zi) − J(t; θ∗, Zi)∥ = op(1) and thereby it follows that I4 = op(1). So far, we
have completed the proof of Eq. (17).
Finally, we plug in Eq. (17) together with known consistency results into Eq. (16): θ̂ = θ∗ + op(1) and ∇2

θL(θ̂)/n =
A+ op(1), and obtain that

Diff(i) =− [A+ op(1)]
−1 exp(2θ∗⊤Xi) + op(1)

n
·
(∫ τ

0

J(t; θ∗, Zi)dG(t) + op(1)

)
+ [A+ op(1)]

−1 exp(θ∗⊤Xi) + op(1)

n
· ∆i

s(0)(Yi; θ∗) + op(1)

(
Xi −

s(1)(Yi; θ
∗) + op(1)

s(0)(Yi; θ∗) + op(1)

)
=− [A]

−1 exp(2θ∗⊤Xi)

n
·
∫ τ

0

J(t; θ∗, Zi)dG(t)

+ [A]
−1 exp(θ∗⊤Xi)

n
· ∆i

s(0)(Yi; θ∗)

(
Xi −

s(1)(Yi; θ
∗)

s(0)(Yi; θ∗)

)
+ op(

1

n
)

=Op(
1

n
).

The second equality holds by the continuous mapping theorem and the third equality holds due to the boundedness of the
support of X , B, and τ . We used the fact that there exists a positive constant C > 0 such that inft∈[0,τ ],θ∈B s(0)(t; θ) =

E
(
I (Y ≥ t) exp

(
θ⊤X

))
≥ C. This completes the proof.

18



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Figure 3. Empirical verification of the theoretical results in Theorem 3.10. The x-axis indicates the size of the training dataset n, while the
y-axis indicates the average L2 error. The plot is a log-log plot.

A.6. Empirical Verification of Theorem 3.10

Here we empirically verify the theoretical results in Theorem 3.10. Specifically, we use randomly sampled subsets of
the METABRIC dataset with varying sample size n as the training datasets, and then plot the ∥VIFn(i)− IFn(i)∥2 and
∥ IFn(i)∥2, averaged over i, as a function of n. As can be seen from Figure 3, ∥VIFn(i)− IFn(i)∥2 decreases roughly in
O(1/n), while ∥ IFn(i)∥2 fluctuates at a constant level for larger n. This aligns with our discussion in the “Approximation
Error” paragraph in Appendix A.5.

B. Detailed Experiment Results
Additional Results on larger experiment settings. Table 4 shows that the Pearson correlation coefficients of VIF are high
on larger datasets and linear model and non-trivial on neural networks.

Table 4. Additional Results on larger experiment settings.

Scenario Dataset Model Pearson Correlation

Cox Regression RR-NL-NHP Linear 0.9997

Neural Network 0.3619

Listwise Learning-to-Rank Delicious (full) Linear 0.8337

Datasets. For Cox regression, both METABRIC and SUPPORT datasets are split into training, validation, and test sets with
a 6:2:2 ratio. The training objects and test objects are defined as the full training and test sets. For node embedding, the test

19



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

objects are all valid pairs of nodes, i.e., 34× 34 = 1156 objects, while the training objects are the 34 individual nodes. In
the case of listwise learning-to-rank, we sample 500 test samples from the pre-defined test set as the test objects. For the
Mediamill dataset, we use the full label set as the training objects. For the Delicious dataset, we sample 100 labels from
the complete label set for our primary experiments. Additionally, we conduct experiments on the full label set, denoted as
“Delicious (full).” The brute-force leave-one-out retraining follows the same training hyperparameters as the full model, with
one training object removed at a time.

Table 5. Training objects and test objects in different experiment settings.

Scenario Dataset Training obj Test obj

METABRIC 1217 samples 381 samples

SUPPORT 5677 samples 1775 samplesCox regression
RR-NL-NHP 16000 samples 5000 samples

Node embedding Karate 34 nodes 1156 pairs of nodes

Mediamill 101 labels 500 samples

Delicious 100 labels 500 samplesListwise learning-to-rank
Delicious (full) 983 labels 500 samples

Models. For Cox regression, we train a CoxPH model with a linear function on the features for both the METABRIC and
SUPPORT datasets. The model is optimized using the Adam optimizer with a learning rate of 0.01. We train the model for
200 epochs on the METABRIC dataset and 100 epochs on the SUPPORT dataset. For node embedding, we sample 1,000
walks per node, each with a length of 6, and set the window size to 3. The dimension of the node embedding is set to 2. For
listwise learning-to-rank, the model is optimized using the Adam optimizer with a learning rate of 0.001, weight decay of
5e-4, and a batch size of 128 for 100 epochs on both the Mediamill and Delicious datasets. We also use TruncatedSVD to
reduce the feature dimension to 8.

C. Efficient Inverse Hessian Approximation
Existing methods for efficient inverse Hessian approximation used by the conventional IF for decomposable losses can be
adapted to accelerate VIF. Specifically, we consider two methods used by Koh & Liang (2017), Conjugate Gradient (CG)
and LiSSA (Agarwal et al., 2017). The application of CG to VIF is straightforward, as it can be directly applied to the
original Hessian matrix. LiSSA is originally designed for decomposable losses in the form

∑n
i=1 ℓi(θ) and it accelerates

the inverse Hessian vector product calculation by sampling the Hessians of individual loss terms, ∇2
θℓi(θ). The adaptation

of LiSSA to VIF depends on the specific form of the loss function. In many non-decomposable losses (e.g., the all three
examples in this paper), the total loss can still be written as the summation of simpler loss terms, even though they are not
decomposable to individual data points. In such cases, LiSSA can still be applied to efficiently estimate the inverse Hessian
vector product through sampling the simpler loss terms.

C.1. Experiments

We implement the CG and LiSSA versions of accelerated VIF for the Cox regression model, and experiment them on the
METABRIC dataset. In addition to the linear model, we also experiment with a neural network model, where the relative
risk function is implemented as a two-layer MLP with ReLU activation. We use VIF (Explicit) to refer to the VIF with
explicit inverse Hessian calculation, while using VIF (CG) and VIF (LiSSA) to refer to the accelerated variants.

Performance. As can be seen from Table 6, the accelerated methods VIF (CG) and VIF (LiSSA) achieve similar performance
as both the original VIF (Explicit) and the Brute-Force LOO on both the linear and neural network models. The correlation
coefficients of all methods on the neural network model are lower than those on the linear model due to the randomness
inherent in the model training.

Runtime. We further report the runtime of different methods on neural network models with varying model sizes. VIF (CG)
and VIF (LiSSA) are not only faster than VIF (Explicit), especially as the model size grows, but also much more memory
efficient. VIF (Explicit) runs out of memory quickly as the model size grows, while VIF (CG) and VIF (LiSSA) can be

20



A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

Table 6. The Pearson correlation coefficients of methods for Cox regression on the METABRIC dataset.

Methods
Models

Linear Neural Network

VIF (Explicit) 0.997 0.238

VIF (CG) 0.997 0.201

VIF (LiSSA) 0.981 0.197

Brute-Force 0.997 0.219

scaled to much larger models.

Table 7. Runtime comparison of methods for Cox regression on the METABRIC dataset. The “#Param” refers to the total number of
parameters in the neural network model.

#Param VIF (Explicit) VIF (CG) VIF (LiSSA) Brute-Force

0.04K 9.88s 5.68s 8.85s 5116s

10.3K 116s 27.7s 17.18s 6289s

41.0K OOM 113s 67.7s /

81.9K OOM 171s 79.1s /

D. Heatmap of Node Embedding
In Figure 4, we present the heatmap of the influence estimated by VIF and the actual LOO loss difference on two pairs of
nodes. VIF could identify the top and bottom influential nodes accurately, while the estimation of node influence in the
middle more noisy. One caveat of these heatmap plots is that there is a misalignment between the color maps for VIF and
LOO. This reflects the fact that, while VIF is effective at having a decent correlation with LOO, the absolute values tend to
be misaligned.

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

VIF Heatmap; Node (12, 10)

(a) VIF on (12,10)

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

Groundtruth Heatmap; Node: (12, 10)

(b) LOO on (12, 10)

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

VIF Heatmap; Node (15, 13)

(c) VIF on (15,13)

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

Groundtruth Heatmap; Node: (15, 13)

(d) LOO on (15,13)

Figure 4. VIF is applied to Zachary’s Karate network to estimate the influence of each node on the contrastive loss of a pair of test nodes.
Figure 4a and Figure 4b represent the heatmap of influence on the node pair (12,10). Figure 4c and Figure 4d represent the heatmap of
influence on the node pair (15,13).

21


