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Abstract—In this work, it has been assumed that the state
estimators are located remotely and measurements are received
through a common unreliable network. In such scenario, due
to limited communication capacity, measurements are generally
delayed in a random manner. In this correspondence, the authors
developed a higher degree cubature quadrature Kalman filter
(HDCQKF) for a nonlinear system with arbitrary step randomly
delayed measurements. With the help of two examples, it has
been shown that the randomly delayed HDCQKF provides more
accurate estimation compared with randomly delayed cubature
Kalman filter (CKF).

Index Terms—State estimation, randomly delayed measure-
ments, nonlinear filter

I. INTRODUCTION

Filtering is one of the most important tools in engineering

for precise state estimation of a dynamic system. For a linear

dynamic system with additive white Gaussian noise, optimal

solution exists in the name of Kalman filter (KF) [1]. But in

most of the real life state estimation problems, system dy-

namics and observation model are nonlinear in nature and no

optimal solution is available. Initially, estimation of nonlinear

system was done with the help of extended Kalman filter

(EKF) [2], which had played a very significant role over the

last 30-40 years. The EKF applies standard Kalman filtering

algorithm over the linearized nonlinear system [3]. The EKF

can easily lead to divergence for a highly nonlinear system. To

avoid such limitations, several efficient filtering techniques are

proposed in the literature. Among them, the unscented Kalman

filter (UKF) [4], Gauss-Hermite filter (GHF) [5], particle filter

(PF) [6], cubature quadrature Kalman filter [7] [8] [12], higher

degree cubature quadrature Kalman filter [9]–[11] etc. are

important.

As mentioned earlier, here we assume that estimators and

controllers are remotely located and connected with the physi-

cal system through a common communication network, where

delay can occur. Work on networked estimation has been

started with the work of Ray et al. [13], where the authors have

modified the standard Kalman filter for randomly delayed mea-

surements. Later in subsequent publications, an optimal filter

is proposed for randomly sampled and delayed measurement

[14], delayed input [15], and with multiple packet dropouts

[16]. For a nonlinear process and observation model, Hermoso-

Carazo et al. proposed a nonlinear filtering algorithm for one

step [17] and two-step [18] randomly delayed measurement. In

[19], a nonlinear filtering algorithm is developed by using CKF

for one step randomly delayed measurement. Very recently,

Singh et al. [20] have introduced a sub optimal solution using

CQKF for an arbitrary step randomly delayed measurements.

In this paper, we have extended the work of [20], [21] by

formulating the higher degree cubature quadrature Kalman

filter (HDCQKF) for arbitrary step randomly delayed mea-

surements. We call the proposed method as HDCQKF-RD and

the method is applied to two nonlinear networked estimation

problems. From the simulation results, it has been seen that

HDCQKF-RD performs better than CKF-RD.

II. BAYESIAN FRAMEWORK OF FILTERING FOR

RANDOMLY DELAYED MEASUREMENTS

Let us consider a dynamic system whose state equation is

given by

xk = φk−1(xk−1)+ηk−1, (1)

and measurement equation is

zk = γk(xk)+ vk, (2)

where xk ∈ R
n is the state of a dynamic system, zk ∈ R

d is

sensor output. φk(xk) and γk(xk) are nonlinear function of

xk. The process noise, ηk and measurement noise, vk are

assumed to be uncorrelated, white, Gaussian with zero mean

and covariance Qk and Rk respectively.

In the Bayesian framework, state estimation consists of two

steps: (i) prediction step (ii) update step. The prior pdf is

obtained in prediction step while the posterior pdf is calculated

in update step. For linear system, the prior and posterior pdfs

are Gaussian in nature. For nonlinear system, the prior and

posterior pdfs are not Gaussian and arbitrary in nature. But

many times it is approximated as Gaussian and mean and

covariance of prior and posterior pdfs are calculated.

A. Delayed Measurement

In networked control systems, sensor output (zk) reaches

to remote estimator through a common, unreliable communi-

cation network. In this situation, not only measurement are,

they can also be lost. The delay may be arbitrary step and

random. The maximum number of delays considered by the
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algorithm will be fixed by the practitioner, and here we assume

measurement can be delayed with maximum (N−1) time step.

At the time of fixing the largest number of delays, we need to

consider two situations (i) if N−1 is very small, measurement

can be lost (ii) if N− 1 is very large, the complexity of the

filtering algorithm will be increased. Delayed measurement

(yk) can be expressed as [20]

yk = (1−β1)zk +β1(1−β2)zk−1 +β1β2(1−β3)zk−2 + · · ·

+(
N−1

∏
j=1

β j)(1−βN)zk−N+1 +
[
1− (1−β1)−β1(1−β2)

−β1β2(1−β3)−·· ·− (
N−1

∏
j=1

β j)(1−βN)
]
yk−1

= β 0zk +β 1zk−1 +β 2zk−2 + · · ·+β N−1z(k−N+1)

+ (1−
N−1

∑
i=0

β i)yk−1,

(3)

where β i = (∏i
j=0 β j)(1 − βi+1) and β0 = 1. β j, j ∈

{1,2,3, · · · ,N} are mutually independent Bernoulli random

variables. As β j are the Bernoulli random variables, the value

of β j will be either 0 or 1 and it satisfy the probability

P(β j = 1) = p and P(β j = 0) = 1−p. From now onwards,

φk−1(xk−1) and γk(xk) will be replaced by φk−1(·) and γk(·)
respectively.

B. Time Update

In time update step, we evaluate prior mean (x̂k|k−1) and

prior error covariance (Pk|k−1), which can be expressed as

x̂k|k−1 = E[φk−1(·)+ηk−1]

=
∫

φk−1(·)p(xk−1|y1:k−1)dxk−1

=
∫

φk−1(·)ℵ(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1,

(4)

and

Pk|k−1 = E[(xk− x̂k|k−1)(xk− x̂k|k−1)
T ]

=
∫

φk−1(·)φ T
k−1(·)ℵ(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

− x̂k|k−1x̂T
k|k−1 +Qk−1,

(5)

where p(·) and ℵ(·) represent the probability density function

and normal distribution respectively.

C. Measurement Update

To perform measurement update, we need to evaluate ẑk|k−1,

Pzz
k|k−1

and Pxz
k|k−1

. The expectation of the measurement can be

expressed as

ẑk|k−1 = E[γk(·)+ vk]

=
∫

γk(·)ℵ(xk; x̂k|k−1,Pk|k−1)dxk.
(6)

The covariance of the measurement can be given as

Pzz
k|k−1

= E[(zk− ẑk|k−1)(zk− ẑk|k−1)
T ]

=
∫

γk(·)γT
k (·)ℵ(xk; x̂k|k−1,Pk|k−1)dxk

− ẑk|k−1ẑT
k|k−1 +Rk.

(7)

The cross-covariance between the state and measurement can

be expressed as

Pxz
k|k−1

= E[(xk− x̂k|k−1)(zk− ẑk|k−1)
T ]

=
∫

xkγT
k (·)ℵ(xk; x̂k|k−1,Pk|k−1)dxk− x̂k|k−1ẑT

k|k−1.
(8)

Considering delay in measurement for a nonlinear system,

Singh et al. [20] recently proposed a filtering algorithm, in

which they considered N−1 as the largest number of delays

and at kth time step either any measurement zk−i (0 ≤ i ≤
N−1) arrives or measurement is lost. In case of measurement

is lost, the estimator fetches the previous measurement from

the buffer where the sensor output is stored, and it will be

used for measurement update. The expectation of delayed

measurement can be expressed as [20]

ŷk|k−1 = (1−p)
N−1

∑
i=0

piẑk−i|k−i−1 +pNŷk−1|k−2. (9)

The covariance of the delayed measurement can be given as

[20]

Pyy
k|k−1

= (1−p)
N−1

∑
i=0

piPzz
k−i|k−i−1

+(1−p)
N−1

∑
i=0

pi(1−pi(1−p))

(ẑk−i|k−i−1)(ẑk−i|k−i−1)
T +pNPyy

k−1|k−2
.

(10)

The cross-covariance between state and delayed measurement

can be expressed as [20]

Pxy
k|k−1

= (1−p)
N−1

∑
i=0

piPxz
k−i|k−i−1

+pNPxy
k−1|k−2

. (11)

III. HIGHER DEGREE CUBATURE QUADRATURE KALMAN

FILTER

To develop an algorithm of filtering under the Bayesian

framework, we need to solve the intractable integrals, men-

tioned in Eqs. (4)-(8). These integrals cannot be solved ana-

lytically and generally be solved by using a numerical approx-

imation method with the help of deterministic sample points

and their corresponding weights. Here the integrals are solved

with higher degree cubature quadrature (HDCQ) points [10].

In this method, these intractable integrals are decomposed

into surface and line integral. Arbitrary odd degree spherical-

radial cubature rule [9], [22] is used for calculating the surface

integral over a unit hyper-sphere. The line integral is evaluated

using the Gauss-Laguerre quadrature rule of integration [23].

With the help of the following theorems, HDCQ points and

weights generation procedure could be understood.

Theorem 1 [8]: The integral, in Cartesian coordinate system

I( f ) =
1√| Σ | (2π)n

∫
Rn

f (X)e−(1/2)(X−μ)T Σ−1(X−μ)dX (12)
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can be written in spherical coordinate system as

I( f ) =
1√
(2π)n

∫ ∞

r=0

∫
Un

[ f (CrZ +μ)dσ(Z)]rn−1e−r2/2dr,

(13)

where X ∈R
n, f (X) is an any arbitrary function, X = CrZ+μ ,

C is the Cholesky decomposition of the covariance matrix Σ,

‖ Z ‖= 1, μ is the mean of the Gaussian distribution and Un
is the surface of a unit hyper-sphere.

A. High Degree Cubature Rule

An arbitrary but odd degree spherical cubature rule, which

has been introduced by Genz [22], and later used by Jia et al.
[9] is used to solve the surface integral.

Theorem 2 [9]: The spherical integral IUn( frZ) =∫
Un

f (rZ)dσ(Z) can be calculated for odd degree as:

IUn,2m+1( frZ) = ∑
|q|

wq f
{

ruq
}
. (14)

Here IUn,2m+1, (m≥ 1) represents the (2m+1)th degree spher-

ical cubature rule used to imprecise the integral. Cubature

points ruq and their associated weights wq are defined as{
ruq
}
�
⋃
(α1ruq1

,α2ruq2
, · · · ,αnruqn) (15)

and wq � 2−n(uq)

(
IUn

(
n

∏
i=1

qi−1

∏
j=0

z2
i −u2

j

u2
qi
−u2

j

))
. (16)

Here q is a set of positive integers, described as q=[q1, q2,

· · · , qn] with |q| = q1 + q2 + · · ·+ qn. The superscript n(uq)
is the number of non-zero element in set uq (elements are

non-negative), α =±1 and uqi =
√

qi/m.

Theorem 3 [9]: The intermediate weight wq can be computed

with the help of the following formula.∫
Un

zθ1
1 zθ2

2 · · ·zθn
n dZ = 2

Γ((θ1 +1)/2) · · ·Γ((θn +1)/2)

Γ((| θ |+n)/2)
,

where Γ(·) represents the Gamma function and | θ |= θ1 +
θ2 + · · ·+θn.

B. Gauss-Laguerre Quadrature Rule

The line integral can be approximately written as

∫ ∞

λ=0
f (λ )λ α e−λ dλ ≈

n′

∑
i′=1

ωi′ f (λi′), (17)

where for an arbitrary n′, quadrature points (λ ′i ) are the roots

of the equation

Lα
n′(λ

′
i ) = (−1)n′λ−α

i′ eλ ′i dn′

dλ n′
i′

λ α+n′
i′ e−λ ′i = 0, (18)

and the corresponding weights are given by

ωi′ =
n′!Γ(α +n′+1)

λi′ [L̇α
n′(λi′)]2

. (19)

C. Higher Degree Cubature Quadrature Rule

Theorem 4 [10]: With the assumption of zero mean and

unity covariance, Eq. (13) can be approximately written as,

I( f ) =
1√
(2π)n

∫ ∞

r=0

∫
Un

[ f (rZ)dσ(Z)]rn−1e−r2/2dr

=
1

2
√

πn

n′

∑
i′=1

ωi′

[
∑
|p|

wq f
{√

2λi′uq

}]
.

(20)

Note. The number of support points required for a n di-

mensional system, and arbitrary (2m+1) degree cubature and

n′ order quadrature rule are provided in [10]. Unfortunately

the table has some typographic error. Here we correct the

expressions and presented in TABLE I.

TABLE I: Number of support points required for odd degree

cubature and n′ order quadrature rule

Degree of cubature (2m+1) rule No. of support points (ns)

3 2n×n′

5 2n2×n′

7
2n(1+2n2)×n′

3

9
2n2(2+n2)×n′

3

11
2n(2n4+10n2+3)×n′

15

D. Calculation of HDCQ Points and their Corresponding
Weights

The HDCQ points and their related weights can be calcu-

lated as follows:

• Find all the feasible sets of q=[q1, q2, · · · , qn] with |q|=
q1+q2+ · · ·+qn, where qi is positive integer and n is the

dimension of the system.

• Set uq = [uq1
,uq2

, · · · ,uqn ] where uqi =
√

qi/m for each

sets of q.

• Find the cubature points for (2m+1) degree of cubature

rule, ξ = [α1uq1
,α2uq2

, · · · ,αnuqn ], where αi =±1.

• Determine the intermediate weights, wq, for their associ-

ated cubature points with the help of Eq. (16).

• Calculate the quadrature points (λ ′i ) and their associated

weight by using Eqs. (18)-(19) respectively.

• Determine the cubature quadrature points ξ j =
√

2λi′ξi

and their associated weights Wj =
ωi′wq

2
√

πn
, where i =

1,2, · · · ,nk, i′= 1,2, · · · ,n′, j = 1,2, · · · ,ns, nk = ns/n′ and

ns is the number of support points.

Once the HDCQ points and weights are generated, the

working equations for randomly delayed measurements

(summarized in section II) could be realized. The algo-

rithm of HDCQKF-RD is summarized in Algorithm 1.

Algorithm 1

• Initialize with x̂0|0, P0|0 and x0|0.

• Generate ξ j and Wj j = 1 · · ·ns.
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Prediction step

• This step is same as ordinary HDCQKF
[10].

Measurement update step

• Cholesky decomposition of prior error
covariance, Pk|k−1 = Sk|k−1ST

k|k−1.
• HDCQ points, χ∗j,k|k−1 = Sk|k−1ξ j + x̂k|k−1.
• Propagated HDCQ points,

z j,k|k−1 = γ(χ∗j,k|k−1).
• Estimate the predicted measurement at
current time-step, ẑk|k−1 = ∑ns

j=1 Wjz j,k|k−1.
• Estimate the actual delayed
measurement, ŷk|k−1 by using Eq. (9).

• Calculate the covariance of the
measurement,
Pzz

k|k−1
= ∑ns

j=1 Wj(z j,k|k−1 − ẑk|k−1)(z j,k|k−1 − ẑk|k−1)
T +

Rk.
• Calculate the covariance of the
delayed measurement, Pyy

k|k−1
with the

help of Eq. (10).
• Calculate the cross-covariance of
state and measurement,
Pxz

k|k−1
= ∑ns

j=1 Wj(χ∗j,k|k−1− ẑk|k−1)(χ∗j,k|k−1− ẑk|k−1)
T.

• Calculate the cross-covariance of
state and delayed measurement, Pxy

k|k−1
by using Eq. (11).

• Estimate the Kalman gain,
K = Pxy

k|k−1
(Pyy

k|k−1
)−1.

• Estimate the posterior state,
x̂k|k = x̂k|k−1 +K(yk− ŷk|k−1).

• Posterior error covariance,
Pk|k = Pk|k−1−KPyy

k|k−1
KT.

IV. SIMULATION RESULTS

In this section, the superiority of HDCQKF-RD is shown

with the help of two examples.

Problem 1: Here we consider a discrete time system with

process model

xk+1 = φkxk +ηk,

and measurement model

yk =
√

1+ xT
k xk + vk,

where xk ∈R
2, yk ∈R is the system output, φk is time varying

function given by

φk =

[
0.8 0

1+ sin(2πk/N1) 0.6

]
,

where N1 = 100. Process noise ηk is Gaussian with mean

zero and covariance Qk = I2 and measurement noise vk is also

Gaussian with mean zero and covariance Rk = 1.25. Initial

truth value of the state is x0 = [0 0]T . The filter is initialized

with an initial estimate of the state x̂0 = [0 0]T and initial

error covariance P0|0 = 0.1I2. The simulation is carried out

for 100 time-step, and 100 Monte Carlo runs are performed

for unbiased comparison. In this problem, measurement is

assumed as one step delayed (N−1 = 1).

For this two-dimensional problem, points and their corre-

sponding weights used by respective filters are as shown in

Fig. 1. It is observed that, during simulation, sometimes algo-

rithm stops due to negative-definite error covariance matrix.

This problem is common and to avoid it, square root version

of CKF-RD (SRCKF-RD) [7], [24] is used. Here fifth degree

(m = 2) and seventh degree (m = 3) of cubature rule are used

for implementation of SRHDCQKF-RD. The quadrature rule

is considered as 2 i.e. n′ = 2. We abbreviated the filter as

SRHDCQKF-RD(d), where d is the degree of cubature rule.

For comparison, averaged RMSE is calculated for each

state. Averaged RMSE is the mean value of RMSE over time.

For each state, the averaged RMSE against the probability

(p = P(β j = 1)) are plotted in Fig 2. From Eq. (3), it has

been seen that if p= 0 no delay in measurement occurs and if

p= 1 no measurement is received (i.e. packet drop condition).

The value of probability (p) is varied from 0.1 to 0.9. From

the figure, it can be seen that SRHDCQKF-RD(5,7) performs

better than SRCKF-RD.

3
2

1

X
1

0
-1

-2
-3-3

-2
-1

0

X
2

1
2

0.3

0.2

0.1

0
3

W
e
i
g

h
t
s

Fig. 1: Plot of weights against points (a) SRCKF-RD (red) (b)

SRHDCQKF-RD(5) (green) (c) SRHDCQKF-RD(7) (blue)

(a) (b)

Fig. 2: Averaged RMSE against probability plot, for (a) state-1

(b) state-2
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Problem 2: The process model is given by [20]

xk = 2cos(xk−1)+ηk−1,

and measurement model is given by

yk =
√

1+ xT
k xk + vk.

The system dimension is considered as 6. The process noise,

ηk−1 and the measurement noise, vk are assumed to be white,

uncorrelated and normally distributed with covariance 5I6 and

5 respectively. The initial truth value of the filter is x0 = 0.16×1.

The initial estimate of the state and error covariance are x̂0|0 =
156×1 and P0|0 = 5I6 respectively.

Here states are estimated by using CKF-RD and HDCQKF-

RD. The maximum number of delay in measurement is

considered as 1. The simulation is done for 200 time-steps.

For a fair comparison, 200 independent Monte Carlo runs are

performed. The filtering performance has been compared using

averaged RMSE. From the Fig 3, it can be seen that HDCQKF-

RD(7) has lowest averaged RMSE while CKF-RD has most.

So for a higher degree of cubature rule, the accuracy of the

filter is more.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Averaged RMSE against probability plot, for (a) state-1

(b) state-2 (c) state-3 (d) state-4 (e) state-5 (f) state-6

V. DISCUSSIONS AND CONCLUSIONS

In networked control system where the estimators are re-

motely located, delay in measurement is very common. In

this paper, a higher degree CQKF is formulated for arbitrary

delayed measurement systems. The superiority of HDCQKF-

RD in comparison with CKF-RD has been demonstrated with

the help of two nonlinear estimation problems.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 34–45,
Mar. 1960.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applica-
tions to tracking and navigation: theory algorithms and software. John
Wiley & Sons, 2004.

[3] R. G. Brown and P. Y. Hwang, Introduction to random signals and
applied Kalman filtering. New York : Wiley, 1992.

[4] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” in Proceedings of the 1995 American
Control Conference (ACC), vol. 3. IEEE, 1995, pp. 1628–1632.

[5] I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-time nonlinear
filtering algorithms using Gauss–Hermite quadrature,” Proceedings of
the IEEE, vol. 95, no. 5, pp. 953–977, May 2007.

[6] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter for
nonlinear problems,” IEE Proceedings-Radar, Sonar and Navigation,
vol. 146, no. 1, pp. 2–7, Feb. 1999.

[7] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-
actions on automatic control, vol. 54, no. 6, pp. 1254–1269, June 2009.

[8] S. Bhaumik and Swati, “Cubature quadrature Kalman filter,” IET Signal
Processing, vol. 7, no. 7, pp. 533–541, Sep. 2013.

[9] B. Jia, M. Xin, and Y. Cheng, “High-degree cubature Kalman filter,”
Automatica, vol. 49, no. 2, pp. 510–518, Feb. 2013.

[10] A. K. Singh and S. Bhaumik, “Higher degree cubature quadrature
Kalman filter,” International Journal of Control, Automation and Sys-
tems, vol. 13, no. 5, pp. 1097–1105, Oct. 2015.

[11] D. Meng, L. Miao, H. Shao, and J. Shen, “A seventh-degree cubature
Kalman filter,” Asian Journal of Control, vol. 20, no. 1, pp. 250–262,
Jan. 2018.

[12] Swati and S. Bhaumik, “Nonlinear estimation using cubature quadrature
points,” in Proceedings of 2011 International Conference on Energy,
Automation, and Signal (ICEAS). IEEE, 2011, pp. 1–6.

[13] A. Ray, L. Liou, and J. Shen, “State estimation using randomly de-
layed measurements,” Journal of Dynamic Systems, Measurement, and
Control, vol. 115, no. 1, pp. 19–26, 1993.

[14] S. C. Thomopoulos and L. Zhang, “Decentralized filtering with random
sampling and delay,” Information Sciences, vol. 81, no. 1-2, pp. 117–
131, Nov. 1994.

[15] S. Sun and J. Ma, “Linear estimation for networked control systems with
random transmission delays and packet dropouts,” Information Sciences,
vol. 269, pp. 349–365, June 2014.

[16] S. Sun, L. Xie, W. Xiao, and N. Xiao, “Optimal filtering for systems with
multiple packet dropouts,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 55, no. 7, pp. 695–699, April 2008.

[17] A. Hermoso-Carazo and J. Linares-Pérez, “Extended and unscented
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