
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENSEMW2S: CAN AN ENSEMBLE OF LLMS BE
LEVERAGED TO OBTAIN A STRONGER LLM?

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we harness the collective capabilities of multiple Large Language Models
(LLMs) to create an even more powerful model? This question forms the foundation
of our research, where we propose an innovative approach to weak-to-strong (w2s)
generalization—a critical problem in AI alignment. Our work introduces an easy-
to-hard (e2h) framework for studying the feasibility of w2s generalization, where
weak models trained on simpler tasks collaboratively supervise stronger models
on more complex tasks. This setup mirrors real-world challenges, where direct
human supervision is limited. To achieve this, we develop a novel AdaBoost-
inspired ensemble method, demonstrating that an ensemble of weak supervisors
can enhance the performance of stronger LLMs across classification and generative
tasks on difficult QA datasets. In several cases, our ensemble approach matches the
performance of models trained on ground-truth data, establishing a new benchmark
for w2s generalization. We observe an improvement of up to 14% over existing
baselines and average improvements of 5% and 4% for binary classification and
generative tasks, respectively. This research points to a promising direction for
enhancing AI through collective supervision, especially in scenarios where labeled
data is sparse or insufficient.

1 INTRODUCTION

As AI models, particularly Large Language Models (LLMs), continue to surpass human performance
in various domains, a pressing challenge arises: how do we effectively supervise models that exceed
our capabilities? This problem, known as super-alignment, is exacerbated by the scarcity of high-
quality labeled data, which limits direct human oversight. The key question driving our work is
whether weak models, trained on simpler tasks, can be leveraged to instruct and improve stronger
models in complex settings—a problem known as weak-to-strong (w2s) generalization.

The concept of w2s generalization was introduced by Burns et al. (2023), where weak models are
used to align stronger models in the absence of sufficient ground-truth supervision. However, while
this work laid the groundwork, it left several critical challenges unresolved. (C1) Single Weak
Supervisor Limitation. Prior studies (Burns et al., 2023; Ji et al., 2024; Charikar et al., 2024; Lang
et al., 2024) tend to rely on a single weak supervisor, limiting the diversity and robustness of the
supervision. A single model’s perspective often falls short when attempting to instruct stronger
models in more complex tasks, highlighting the need for a more diversified supervisory approach.
(C2) Lack of Focus on Weak Model Enhancement. Another limitation is that previous research
(Burns et al., 2023; Ji et al., 2024; Charikar et al., 2024; Lang et al., 2024) has focused predominantly
on improving knowledge transfer from weak to strong models without addressing how to enhance the
weak models themselves. This oversight leaves weak models under-optimized, thereby restricting
their utility in complex problem settings. (C3) Overlooking Task Complexity. Furthermore, while
task complexity plays a crucial role in determining how well weak models can supervise stronger
ones, most prior work (Sun et al., 2024) has not adequately addressed this issue. For instance, Burns
et al. (2023) briefly explored the impact of task complexity using chess data, but a more structured
and systematic approach is needed to differentiate between easy and hard tasks and study their effects
on supervision.

To address these challenges, we propose a novel ensemble-based method designed to improve w2s
generalization. Central to our approach is an easy-to-hard (e2h) framework, which extends w2s
generalization by focusing on the progression from simpler tasks (easy) to more complex tasks (hard).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This mirrors practical scenarios, where human oversight is more feasible for simpler tasks, and weak
models must step in to guide stronger models in tackling harder tasks. In this setting, weak models
trained on easy data supervise stronger models working on more difficult problems, creating a more
pragmatic approach to w2s generalization.

To further enhance the capabilities of weak models, we develop a novel AdaBoost-inspired ensemble
method for generation tasks, in addition to classification tasks. By combining the supervision of
multiple weak models, we create a more robust and effective supervisory system for stronger LLMs.
This ensemble approach overcomes the limitations of single-supervisor systems and introduces a
mechanism to refine the weak models themselves, ensuring they can provide meaningful guidance
even in complex tasks. Our experiments demonstrate that this ensemble method not only improves
the weak models’ generalization capabilities but also enables stronger models to achieve performance
on par with oracle models trained on high-quality data.

The main contributions of this paper are the following:
(1) We introduce an ensemble method inspired by AdaBoost, combining weak LLMs to provide
stronger supervision for training stronger models. Our approach is validated through experiments
on binary classification tasks, where we observe improvements of up to 14% over baselines and an
average improvement of 7% across all model pairs, showcasing the feasibility of w2s generalization.
(2) We extend this framework to supervised fine-tuning tasks for autoregressive LLMs, where
our novel algorithm combines weak LLMs via a voting mechanism that adjusts token probabilities.
In several cases, we observe our strong model trained using weak labels to outperform the strong
model trained on ground truth, thus enabling effective supervision, even on complex tasks.
(3) We propose a practical easy-to-hard (e2h) framework for w2s generalization, where models
trained on easy data provide supervision for harder tasks. This setup emphasizes the importance of
task complexity and demonstrates significant improvements when weak models guide strong LLMs.
For our EnsemW2S method, along with observing w2s-trained student models outperforming the
strong student oracle in several e2h generalization scenarios, we also observe accuracy improvements
of up to 10% over baselines and an average improvement of 3.34% and 4.4% for Quartz and ARC
data respectively.

2 WEAK-TO-STRONG GENERALIZATION VIA EASY-TO-HARD FRAMEWORK

the size of her appetite

Pseudo Label on Hard Data

PGR =

EASY DATA

the power of its appetite

the size of its nose

Prompt: Which of the following is a trait that a dog does NOT
inherit from its parents?

HARD DATA

Weak-to-Strong - Weak
Strong Ceiling - Weak

=

HARD DATA with Pseudo Labels

LOWER
BOUND

UPPER
BOUND

EASY DATA
Prompt: The gravitational force exerted by an object depends on its Answer: mass.

HARD DATA
Prompt: A ball is thrown downward onto a concrete floor and bounces upward. What
supplies the upward force that makes the ball bounce? Answer: the floor

QUARTZ DATA EXAMPLE FOR EASY vs HARD

TRAINING PHASE:

TESTING PHASE: HARD DATA

the size of its appetite

Figure 1: This figure illustrates the complete pipeline of our EnsemW2S method for easy-to-hard
generalization using w2s generalization. In a realistic scenario, weak teachers are adept at answering
easy questions but must supervise strong models to tackle hard problems. In the leftmost portion,
we show that we train weak models on easy data, strong models on hard data, and transfer models
on pseudo labels generated by the weak model on hard data. Ultimately, we aim to increase the
Performance Gap Recovered (PGR). On the right, we depict how our EnsemW2S algorithm chooses
the correct answer at the token level. At the bottom, we provide an example of easy and hard data
for the Quartz dataset for e2h generalization, highlighting the importance of distinguishing between
easy and hard data for realistic w2s generation.

The Overall Idea. We investigate the easy-to-hard framework as a more pragmatic setting to study
the (im)possibility of w2s generalization. In this framework, weak models train on simpler tasks and
subsequently instruct strong models to tackle more complex challenges, closely mirroring real-world
conditions with limited human oversight. Figure 1 explains our idea and pipeline for easy-to-hard

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generalization using w2s generalization. (Figure 7 in the Appendix provides the detailed algorithmic
and data flow). In a realistic scenario, weak teachers are proficient in answering easy questions but
must supervise strong models to tackle hard problems. We train weak models on easy data and strong
models on hard data. A transfer model is trained using pseudo labels generated by the weak model
on the hard data. Ultimately, we aim to improve the Performance Gap Recovered (PGR).

2.1 THE EASY-TO-HARD FRAMEWORK

Weak Model hθ as the Teacher. A state-of-the-art LLM hθ is trained on a set of ‘easy data’ that we
currently have access to labels, i.e., (xe,ye). For example, this could be Go games, math problems,
or common sense reasoning questions that we have solutions for. This ‘weak teacher’ is trained on the
labeled easy data (xe,ye). Although we refer to this model as a “weak teacher”, it is only relatively
weak compared to the strong model we aim to obtain. Moreover, the “easy data” is only relatively
easy compared to the hard data for which we currently lack solutions. Thus, the easy data may not be
simple but slightly easier than the hard data, which are currently unsolvable using existing models.

Strong Model uϕ as the Upper Bound. As an important part of our thought experiment, we establish
an upper bound, which is not attainable in practice. Specifically, we assume access to the ground-truth
labels of the hard data (xh,yh), which is impractical but establishes an upper bound for this thought
experiment. A model uϕ, larger than the weak teacher hθ, is trained on the labeled hard data (xh,yh).
The reason why uϕ is larger than hθ is that we believe a model strong enough to solve hard questions
that no existing models can solve will require high capacity.

Weak-to-Strong Model fϕ Obtained in Practice. To test the weak-to-strong generalization, we
will train a weak-to-strong transfer model fϕ that has the same capacity as the strong model, i.e.,
the same model size as uϕ, but is not trained under the unrealistic assumption of oracle access to
hard labels. Rather, it is trained using weak teacher’s feedback. Specifically, we consider using the
pseudo-labeled (xh, hθ(x

h) as training data for training the weak-to-strong transfer model fϕ.

2.2 EASY AND HARD DATA

Dataset and Setup. We use the SciQ dataset (Welbl et al., 2017) for the binary classification task. It
is a multiple-choice science question-answer dataset and is also used as one of the NLP classification
datasets by Burns et al. (2023). We convert it into binary labels following (Burns et al., 2023). For
the supervised fine-tuning (SFT) task on the Q/A dataset, we use ARC (Clark et al., 2018) and Quartz
(Tafjord et al., 2019) datasets, which are also multiple-choice question-answer datasets, allowing
us to generate multiple-choice pseudo labels. Ding et al. (2024) provide difficulty levels for some
common mathematics and programming problems, chess puzzles, and reasoning question datasets,
which can be further utilized to expand this work.

Easy (xe,ye) and Hard (xh,yh) Data Split. To generate difficulty ratings for our datasets, we
employ the n-fold cross-validation method. We train the model on the (n− 1) out of n splits of the
data and test on the remaining split. We repeat the process n times with different splits for testing
each time and aggregate the errors. We use this error value for each sample as its difficulty rating.
We split the low difficulty-rated data for weak model training and use the high difficulty-rated data to
generate strong model training data and testing data randomly. We follow the same cross-validation
method, with different training protocols, for generating difficulty for both binary classification and
generation tasks. More details and our difficulty rating plots can be seen in Figures 8, 9, and 10 in the
Appendix.

2.3 AN ENSEMBLE OF TEACHERS

In a practical situation, we may face a dearth of strong supervisors but have an abundance of weak
supervisors. Previous works (Burns et al., 2023; Ji et al., 2024) have used only one weak supervisor.
Our work aims to combine the power of multiple weak supervisors to provide stronger supervision
for better weak-to-strong (w2s) generalization. However, combining multiple weak supervisors to
improve w2s generalization is challenging. In the following section, we detail how to combine a
collection of weak teachers with diverse skill sets to obtain a competitive weak-to-strong model that
is better than the weak model and ideally reaches or even surpasses the strong model, i.e., the upper
bound of performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 W2S GENERALIZATION VIA ENSEMW2S OF EXISTING DIVERSE TEACHERS

In this section, we introduce our ensemble based method to boost teachers. We first show how simple
ensemble method (Adaboost) can be applied to a binary classification task for NLP datasets. Then we
introduce EnsemW2S for more complex supervised fine-tuning task for multiple-choice Q/A datasets.
A list of important notations is mentioned in Appendix C.2 for reference.

3.1 ADABOOST OF WEAK LLM TEACHERS FOR CLASSIFICATION TASKS

This simple thought experiment tests w2s generalization and is the first task evaluated by Burns et al.
(2023). We utilize the vanilla AdaBoost (Algorithm 2, detailed in the Appendix C.3) to generate
answer to hard questions, xh, from each weak LLM teacher, i.e., generate ht

θ(x
h) for t ∈ {1, . . . , T},

where T is max Adaboost round. It works iteratively by focusing on the samples that are hardest to
classify, assigning them higher weights in each subsequent iteration. The weak teachers are trained
one at a time on the re-weighted training examples, as detailed in Line 5 of Algorithm 2. The only
requirement is that they perform better than random, thus satisfying the well-known weak learning
condition.

A weighted "majority vote/aggregation" is implemented to generate a consensus as the answer,
1(
∑T

t=1 αth
t
θ(x

h) > 0) ∈ {0, 1}, also known as the pseudo-label, to the hard question xh. Here, the
coefficients {αt | t ∈ {1, . . . , T}} are hyperparameters that weigh the weak learner’s contributions
based on their accuracy. A detailed mathematical summary of Adaboost is provided in Appendix
section C.3.

AdaBoost leverages the "wisdom of the crowd" to obtain a stronger learner. Inspired by this
philosophy, we use an ensemble of weak LLM teachers as "weak learners" to obtain a "stronger
learner," i.e., a stronger model that improves binary classification tasks, eventually enabling better
w2s generalization. These weak teachers represent a practical scenario where, although individually
weak, they possess complementary knowledge like different human experts. Thus, when combined,
they have the potential to form a stronger teacher.

3.2 ENSEMW2S: ADABOOST INSPIRED ALGORITHM FOR COMPLEX GENERATION TASKS

Challenges of Applying AdaBoost. The canonical AdaBoost algorithm assumes a sophisticated
ensemble of feedback in the form of scores. However, LLMs are generative AI models known
for their remarkable ability to generate coherent, free-form text. Applying the vanilla AdaBoost
algorithm directly to generation tasks is challenging because (1) the output is not just a single class
label but a sequence of text with no fixed length, and (2) different teachers may generate answers in
various formats, making it non-trivial to combine their responses.

EnsemW2S: Our AdaBoost inspired Algorithm for Multiple-Choice Q/A Task. To address
these challenges, we propose a modified multi-class generation based AdaBoost algorithm where
the number of classes corresponds to the vocabulary size. We treat each token as an independent
sample, as shown in Algorithm 1, and apply multi-class AdaBoost (Hastie et al., 2009) with major
modifications described below, calling our algorithm EnsemW2S.

Token-Level Weighting. The first modification involves generating weights for each token within a
sentence sample. We define the initial token-sample weights vector D1(i, j)← 1

n for all i ∈ [m], j ∈
[ki], where n =

∑m
i=1 ki, ki is the number of tokens in the answer part of each sample i, m is the

total number of training data samples and j is the jth token in a particular chosen ith sample. We
update these weights, Dt(i, j), for each iteration t of EnsemW2S.

Token-Level Data Sampling. We sample S′ = {(x′e
i ,y

′e
i)}mi=1 from S using token-sample weights

Dt(i, j). By sampling with respect to probability masses Dt(i, j) with repetition, we obtain a set of
n =

∑m
i=1 ki tokens to train on. However, treating these n sampled tokens as independent training

samples is very inefficient. Instead, we “assemble” the sampled tokens back into the sentences
they belong to and implement label masking to only train on the sampled tokens in each sentence.
Following this method, we can train on sampled tokens with minimal overheads.

Training and Generating New Weak Teachers. For each iteration, t, of EnsemW2S algorithm we train
a new weak teacher model ht

θ on the sampled data, S′.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Incorporating Prior Term. Following Hastie et al. (2009), multi-class boosting uses an additional
log(c− 1) term, where c is the number of classes, in the calculation of the AdaBoost parameter α.
This term serves two purposes: (1) It enables the generation of weak models with accuracy above
1
c %, where 1

c % is random selection accuracy. This is crucial for smaller models and challenging
tasks that cannot achieve 50% accuracy. (2) It ensures that α remains positive. Bayesian inference is
used to provide proof of the benefits of this prior term. Given the large vocabulary size in our case,
using log(c− 1) will make all the α practically similar. Therefore, we introduce a different prior term
log(1

1−ϵpre
− 1), where ϵpre is the pre-trained model error of the chosen LLM. This term is sensible

because it represents the error before fine-tuning the LLM, effectively replacing the random error
baseline. Thus, the final α equation is: αt ← log(1−ϵt

ϵt
) + log(1

1−ϵpre
− 1). Please refer to Appendix

section C.4 for intuition behind the prior term.

Algorithm 1 Main Algorithm: EnsemW2S
Input: An “easy” Q/A training dataset with m examples: Se = {(xe

i ,y
e
i)}mi=1; a pre-trained weak

teacher model h0
θ parameterized by θ; total number of EnsemW2S iterations T ; a “hard” unlabeled

(questions only) dataset with O examples: Sh = {xh
o}Oo=1

Output: Weak-to-Strong Student Model fϕ(·)
1: Initialize Token-Sample Weights: D1(i, j)← 1

n for all i ∈ [m], j ∈ [ki], where ki is the token
length in the ith easy example (i.e., ye

i = (ye,1
i ,ye,2

i ...ye,ki

i)) and n =
∑m

i=1 ki
2: Calculate pre-training error of h0

θ: ϵpre ←
∑m

i=1

∑ki

j=1 1{h0
θ(x

e
i ,y

e,j−1
i) ̸= ye,j

i }D1(i, j)
3: for t← 1 to T do
4: Sample S′ = {(x′e

i ,y
′e
i)}mi=1 from S using token-sample weights Dt(i, j)

5: Train a new weak teacher ht
θ on S′

6: Calculate ϵt =
∑m

i=1

∑ki

j=1 1{ht
θ(x

e
i ,y

e,j−1
i) ̸= ye,j

i }Dt(i, j)
7: if ϵt ≥ ϵpre then
8: break
9: Calculate αt ← log 1−ϵt

ϵt
+ log(1

1−ϵpre
− 1)

10: Update Dt+1(i, j) ← 1
Zt
Dt(i, j)e

αt1{ht
θ(x

e
i ,y

e,j−1
i) ̸=ye,j

i } for all i ∈ [m], j ∈ [ki] , where

Zt is a normalization factor such that
∑m

i=1

∑ki

j=1 Dt+1(i, j) = 1

11: for o← 1 to O do
12: for j ← 1 to ko do
13: Autoregressively generate the jth token of the “pseudo-answer” ŷh,j

o ∼ ∆vocab(
∑T

t=1 αt ·
softmax(ht

θ([x
h
o , ŷ

h,1:j−1
o]))), where ∆vocab denotes the simplex on the vocabulary

14: Train weak-to-strong student model fϕ(·) on {(xh
o , ŷ

h
o)}Oo=1

Weighted Error Calculation. Our weighted error equation ϵt also undergoes minor changes. The
strict condition for each round of AdaBoost-inspired EnsemW2S training is that the weighted model
error (calculated by comparing each token of each sample) must be less than the pre-training error,
i.e., ϵt < ϵpre. The weighted model error ϵt is defined as, ϵt =

∑m
i=1

∑ki

j=1 1{ht
θ(x

e
i ,y

e,j−1
i) ̸=

ye,j
i }Dt(i, j) < ϵpre. Here, ye,j−1

i is the (j − 1)th ground-truth token in the answer part. The model
ht
θ(x

e
i ,y

e,j−1
i) predicts the next token and compares it with the ground-truth token yj

i .

Weight Update Equation. Our sample-weight update equation for each token is Dt+1(i, j) ←
1
Zt
Dt(i, j)e

αt1{ht
θ(x

e
i ,y

e,j−1
i)̸=ye,j

i } where Zt is a normalization factor ensuring that the updated

weights satisfy
∑m

i=1

∑ki

j=1 Dt+1(i, j) = 1. The main idea is to adjust the sample weights to
emphasize misclassified examples, thereby guiding the sampling process for training the next weak
learner.

Combining Teachers to Generate Pseudo Answers for Hard Questions: To combine the outputs of
different teachers trained during the various EnsemW2S rounds, we scale the probability distribution
for each token generated by the model ht

θ in round t by its corresponding weight αt. Specifically, we
multiply αt by the probability distribution vector of each token. We then aggregate these weighted
distributions across all rounds, normalizing the resulting vector to form a new probability distribution
for each token.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Using this aggregated distribution, we sample the final predicted token. The process is autoregressive,
where the jth token of the "pseudo-answer" is generated as

ŷh,j
o ∼ ∆vocab

(
T∑

t=1

αt · softmax
(
ht
θ

(
[xh

o , ŷ
h,1:j−1
o]

)))
(1)

where ∆vocab represents the simplex over the vocabulary.

By combining the outputs of multiple teachers, each trained in different EnsemW2S rounds, the
ensemble approach leverages diverse perspectives from the weak models. Each teacher contributes
its learned strengths, and through weighted aggregation, we diminish the influence of models that
are less confident or less effective on certain tokens. This helps reduce variance in the generation
process, ensuring that errors from individual weak models are mitigated. The result is a more robust
pseudo-labeling system that is better aligned with the true distribution of the hard data, often yielding
a performance improvement over any single weak model.

Unlike classification, where scores are combined over a fixed set of classes, generation tasks involve
predicting sequences of tokens, where each prediction affects future ones. This makes combining
generation probabilities more complex, as errors in early token predictions can propagate throughout
the sequence. Additionally, we are aggregating probability distributions over large vocabularies,
which introduces computational overhead and potential numerical instability.

Our method addresses these challenges by using a weighted combination of teacher models’ token
probabilities, ensuring that weaker predictions from individual rounds are minimized. By normalizing
the aggregated distribution for each token, we maintain valid probability distributions across the
vocabulary, effectively reducing the risk of cascading errors during autoregressive generation. This
ensemble approach results in a more stable and accurate generation process, mitigating the issues
inherent in sequence modeling.

Pseudo answer generation on multiple-choice datasets: On multiple-choice Q/A datasets, instead
of using generated tokens ŷh as pseudo answers, we can select one of the choices in the MCQ dataset
using negative log-likelihood (NLL). Specifically, we calculate the NLL between the choices and ŷh

and select the choice with the lowest NLL. For datasets without multiple choices, we can directly use
ŷh.

Train W2S Model: The strong student model, fϕ(·), is trained using pseudo answers generated for
the hard data {(xh

o , ŷ
h
o)}Oo=1. While it might be beneficial to include the labeled easy data in the

training process, we adhere to the pipeline established by Burns et al. (2023) by focusing exclusively
on the hard examples to maintain consistency.

Ablation Studies. We experimented with combining the logits directly instead of probabilities but
did not observe any improvement (refer to Appendix Figure 11). We conducted ablation studies
where, instead of treating each token as independent, we used a sliding window of length L while
calculating weights and aggregating errors (see Appendix Figure 12 and 13). Different window
lengths did not cause significant changes in values, so we ultimately chose a window of L = 1.
We also explored treating each sample as independent instead of each token as independent in the
sample-answer part, finding better results with the latter. This is reasonable since the error calculated
using independent-sample weights is less accurate.

Evaluation Metric. We used two metrics to evaluate this Q/A dataset. One is (1) Token-wise
comparison, where we compare each predicted token and average the total error, and (2) Option-
wise comparison, where we compare the negative log-likelihood (NLL) of the correct answer
completion with the NLLs of the incorrect answer completions. Accuracy represents the number of
entries where the correct answer completion has the lowest NLL among all choices.

4 RELATED WORK

Weak-to-Strong (Burns et al., 2023) was the first to introduce the problem of weak-to-strong
generalization for the super-alignment problem, where the ultimate aim is to elicit the full capabilities
of the strong model using supervision only from weak models. (Charikar et al., 2024) provides a
theoretical framework for the same with insights on how much w2s improvement can occur, though
their work is limited to a few layer neural networks. Similarly, (Lang et al., 2024) provides bounds

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

on expansion properties using finite data distributions for when w2s generalization will happen, but
only for simple binary classification tasks. (Zhang et al., 2024) proves that transcendence (exceeding
the capability of the model that generates the training data) is possible for low-temperature sampling.
Although this setting is not exactly w2s, it sheds light on this direction.

Several works have attempted to solve w2s generalization in LLMs. (Sang et al., 2024) tries to
improve this supervision using ensemble learning and scalable oversight for binary classification NLP
tasks but cannot observe significant improvement. (Ji et al., 2024) introduces a model that enhances
the alignment of LLMs with human intentions by correcting the residual differences between aligned
and unaligned answers by training on a query-answer correction dataset. This method boosts w2s
generalization using supervisory signal from smaller models to improve the performance of complex
systems. In (Sun et al., 2024), the authors propose a scalable approach for e2h generalization which
involves training reward models on easier tasks and using them to evaluate performance on harder
tasks. (Liu & Alahi, 2024) introduces a method similar to the classical hierarchical mixture of experts,
where multiple specialized weak supervisors are used for weak-to-strong generalization instead of a
single generalist model. (Bansal et al., 2024) compares large LLM training from data generated using
weak (cheap) vs strong (expensive) model in a compute matching way and finds larger data from
weaker model to provide better w2s.

Ensemble Learning Binary Classification Boosting (Freund & Schapire, 1997) and multi-
classfication boosting (Hastie et al., 2009) are common ensemble learning algorithms. In (Verga et al.,
2024), they use a voting mechanism to combine multiple small LLMs instead of a single large LLM
to evaluate another LLM and show it performs better than large LLMs. An extended related work
section is present in Appendix A.

5 EXPERIMENTAL SETUP

We test two different strategies for each task. One aligns with Burns et al. (2023), where we split the
training data randomly into train-weak and train-strong. Train-weak is used to train the weak model.
Train-strong is used to train the strong and transfer models using pseudo labels generated using the
weak model. The second strategy involves splitting the training data into easy and hard splits, where
the easy data is now train-weak, and the hard data is now train-strong with the same training pipeline.
This is also a more realistic setup for weak-to-strong generalization, as discussed in Section 1. For
both strategies, we aim to recover the performance gap (PGR) and elicit the full capability of the
strong model using an ensemble of weak models. The baseline in all experiments uses a single model
for w2s generalization, following the principle of Burns et al. (2023).

We run AdaBoost/EnsemW2S algorithm 10 times for the binary classification tasks and 5 times for
the generation tasks. We pick the best w2s performing round for our plots. However, we observe
that all rounds (n >= 2) are better than the baseline (n = 1). Additionally, we chose single model
performance (n = 1) for weak model performance.

5.1 BINARY CLASSIFICATION TASK

W2S Results with Random Training Data Splits. The baseline of this method is a replication of
Burns et al. (2023). From Figure 2, by applying AdaBoost, we observe a significant improvement in
the weak model accuracy, significantly improving the PGR values. In the case of the GPT-2-medium
to GPT-2-large pair, we even see the PGR exceeding 100%, meaning that the transfer model has
outperformed the strong model’s performance. This is the ambitious aim of the w2s generalization
problem, and our results show that w2s generalization is achievable.

W2S Results with Easy and Hard Training Data Splits. From Figure 2, we see that applying
AdaBoost significantly improves weak model accuracy, thereby enhancing the PGR values. However,
for this holistic e2h generalization problem, we are far from reaching the full capability of a strong
model. For very small (GPT-2) and large model pairs (GPT-2-xl and above), we do not see improve-
ment in w2s generalization despite the weak models’ accuracy improvements. Overall, we observe
an improvement of up to 14% in accuracy compared to the baseline and an average improvement of
6.52% and 3% for random and easy-hard splits, respectively.

Scaling Law: In Figure 2 (line plot), we see less PGR recovery for the Qwen-1.8B model even
though it is similar in size to GPT-2-xl. Similarly, in the bar plot, we see a drastic difference between
the oracle performance of GPT2xl and Qwen-1.8B. This is because the Qwen models series are more

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GPT-2 to
GPT-2 Med

GPT-2 to
GPT-2 Large

GPT-2 to
GPT-2 XL

GPT-2 to
Qwen1.8B

GPT-2 Med to
GPT-2 Large

GPT-2 Med to
GPT-2 XL

GPT-2 Med to
Qwen1.8B

GPT-2 Large to
GPT-2 XL

GPT-2 Large to
Qwen1.8B

GPT-2 XL to
Qwen1.8B

50

60

70

80

Ac
cu

ra
cy

 (%
)

Data Separation: Random

GPT-2 to
GPT-2 Med

GPT-2 to
GPT-2 Large

GPT-2 to
GPT-2 XL

GPT-2 to
Qwen1.8B

GPT-2 Med to
GPT-2 Large

GPT-2 Med to
GPT-2 XL

GPT-2 Med to
Qwen1.8B

GPT-2 Large to
GPT-2 XL

GPT-2 Large to
Qwen1.8B

GPT-2 XL to
Qwen1.8B

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Data Separation: Easy Hard

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 2: Binary Classification Task: Top figure shows a bar plot comparing w2s generalization
of our method (grey) with a baseline (blue) from Burns et al. (2023) using accuracy values(%) for
different combinations of weak and strong model pairs for random data split (top bar-plot) and
easy-hard split(bottom bar-plot). Bottom figure shows a line plot comparing the accuracy and
performance gap recovered values (PGR). The left two figures are for random data split, while the
right two figures are for the easy-hard split to show e2h generalization.

capable even after being the same size. Thus, model size is not a good metric, but model capability is
a better metric for differentiating between weak and strong models.

Better metric: Figure 2 shows the accuracy and PGR plots for both random and easy-hard split.
We observe that PGR is not very informative, as it can produce extremely large or even negative
values. However, this sensitivity does not invalidate PGR as a reasonable metric for studying w2sg.
We believe it is important to share these demerits to guide future research in w2sg. In the w2s
experiments, large values occur because the ensemble of weak models becomes strong enough to
match or exceed a strong model, improving w2s generalization. Negative values, seen in baseline
experiments, indicate the transfer model performed worse than the weak model, often when the
strong model fails to learn and its inductive bias becomes random with pseudo-label training. Similar
patterns are seen in Figure 5 and 4. (Refer to Appendix Table 1 and 2 for more details.)

5.2 GENERATION TASK FOR MULTIPLE CHOICE DATASET

5.2.1 COMPARING WEAK MODEL’S PERFORMANCE

10

15

20

25

20

30

40

30

40

50

30

40

50

60

30

40

50

60

ARC: Easy-Hard ARC: Random

Quartz: Easy-Hard Quartz: Random

Pythia70m Pythia160m Pythia410m Pythia1b Pythia1.4b

Figure 3: Performance comparison of a single
weak model (dark color) with the combined weak
models (Lighter hue shows improvement).

In Figure 3, we compare the performance of a single
weak model (dark color) with combined weak mod-
els after 5 rounds of EnsemW2S algorithm. Smaller
models show greater improvement, which is expected
since boosting works best when weak models are di-
verse. Using EnsemW2S, smaller models can diver-
sify through the data sampling step; however, larger
models tend to learn all possible information and can-
not learn something different with each round. Also,
we use token error in Figure 3 since it is a more pre-
cise metric to measure improvement in weak models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2.2 COMPARING STRONG MODEL’S
PERFORMANCE

Here, we use the multiple-choice classification accuracies to calculate the accuracy of all our plots.
We show the accuracy values of token-wise metrics in the Appendix tables.

W2S Results with Random Training Data Splits. From Figure 4 and 5, we see that w2s training
using an ensemble of teachers almost consistently outperforms the baseline (single teacher). Thus,
ensemble learning is beneficial. We can see the trend of accuracy and performance gap recovered for
the different model pairs in Figure 4 and 5 for Quartz and ARC datasets, respectively. For Quartz
data, we see that our PGR percentage (Figure 4) improves as the model scales up except when the
weak model is the smallest sized model (pythia-70m). This could be because the increasing capability
difference between the small and large models makes it difficult for the strong model to learn anything
from the weak. This trend is the same in the baseline as well as our EnsemW2S. But an important
thing to note is that for some cases for both ARC and Quartz data, our method generates a large PGR
percentage of >=100%, showing the ability of our w2s method to recover the performance gap.

W2S Results with Easy-Hard Training Data Splits. From Figure 4 and 5, we see that w2s training
using an ensemble of teachers almost consistently outperforms the baseline (single teacher). Thus
showing that ensemble learning is beneficial. Our method shows more improvement over baseline for
easy-hard data split as compared to random split. This is because of two reasons. Firstly, the power
of combining weak models using our modified AdaBoost is more useful when all of them are weak
but slightly different from each other. Secondly, by easy and hard splitting, the margin between weak
and strong increases more, giving more room for improvement.

We also observe that PGR for e2h generalization is significantly lower, highlighting the complexity
of the e2h generalization problem. We hope this work could motivate researchers to build more
sophisticated methods for this more complex e2h generalization problem. Another simple observation
is as the models become more capable, both the performances (baseline and ours) increase.

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

Data Separation: Random

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

Data Separation: Easy Hard

Weak to Strong Performance (baseline) Weak to Strong Performance (ours)

Figure 4: Generation Task (Quartz Data): Top figure shows a bar plot comparing the w2s
generalization of our method (grey) with a baseline (blue) for various combinations of weak and
strong model pairs for the SFT task on Q/A data for random data split (top bar-plot) and easy-hard
split (bottom bar-plot). Bottom figure shows a line plot comparing accuracy and PGR. The left
two figures are for random data split, while the right two are for the easy-hard split to show e2h
generalization.

Note: Refer to Appendix Table 3 and 6 for detailed values of our experiments for Quartz and ARC
datasets, respectively, for random data split. Appendix Figure 14 and Fig. 18 show bar plots with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

weak and strong (oracle) model performance for the Quartz and ARC datasets, respectively, for the
random split. For easy-hard data split, the same details can be found in Appendix Tables 4, 7 and
Figure 15 and 17.

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ac
cu

ra
cy

 (%
)

Data Separation: Random

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

16

18

20

22

24

26

Ac
cu

ra
cy

 (%
)

Data Separation: Easy Hard

Weak to Strong Performance (baseline) Weak to Strong Performance (ours)

Figure 5: Generation Task (ARC Data): Top figure shows a bar plot comparing the w2s generaliza-
tion of our method (grey) with a baseline (blue) for various combinations of weak and strong model
pairs for the SFT task on Q/A data for random data split (top bar-plot) and easy-hard split (bottom
bar-plot). Bottom figure shows a line plot comparing accuracy and PGR. The left two figures are for
random data split, while the right two are for the easy-hard split to show e2h generalization.

5.2.3 PERFORMANCE ON HARD DATA AFTER TRAINING ON WEAK VS STRONG DATA

Quartz ARC
Model Size Easy Split Hard Split Easy Split Hard Split
pythia-70m 49.11 50.13 21.42 25.26
pythia-160m 48.47 46.43 21.85 22.10
pythia-410m 51.50 51.50 18.01 18.95
pythia-1b 53.32 56.77 19.80 22.10
pythia-1.4b 60.34 63.78 21.42 21.42
pythia-2.8b 66.84 70.41 25.09 26.71

Figure 6: Accuracy (%) values for LLMs trained on
easy vs hard data and evaluated on hard data.

We conduct this experiment to motivate the im-
portance of e2h with w2s generalization. For
the Quartz dataset in Table 6, we see a signif-
icant margin of improvement when trained on
hard data for the larger models, showing larger
models are more capable of understanding com-
plicated data. With ARC, we see improvement
in all models but with a lesser margin, implying
that ARC data has a lesser disparity between
easy and hard samples.

6 CONCLUSION, LIMITATION AND FUTURE WORK

Conclusion: This paper aims to stimulate discussion on the more holistic problem of weak-to-strong
generalization by emphasizing easy-to-hard generalization. We develop a new AdaBoost-inspired
algorithm and conduct a thought experiment on how to combine the "wisdom of the crowd" to
improve w2s generalization. We are first to focus on the idea of making the weaks less weak using
an ensemble, and test our method for binary classification and Q/A-based SFT task. Our method in
some cases recovers full strong model capability.

Limitation and Future Work: This work only explores the supervised fine-tuning phase. While SFT
is an important part of the LLM learning pipeline, our future work will focus on developing weak
supervision in the reward modeling phase. Another interesting future direction would be to improve
the combination of tokens in the decoding phase by replacing the classical AdaBoost algorithm
with more adaptive ensemble learning methods. We hope this work sparks discussion on combining
multiple LLMs to improve weak-to-strong generalization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller, weaker,
yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint arXiv:2408.16737,
2024. 7

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023. 1, 3,
4, 6, 7, 8, 28

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024. 13

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learning
to generate better than your llm. arXiv preprint arXiv:2306.11816, 2023. 13

Moses Charikar, Chirag Pabbaraju, and Kirankumar Shiragur. Quantifying the gain in weak-to-strong
generalization. arXiv preprint arXiv:2405.15116, 2024. 1, 6

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. 3

Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal, Avi Schwarzschild,
Tianyi Zhou, Tom Goldstein, John Langford, Anima Anandkumar, and Furong Huang. Easy2hard-
bench: Standardized difficulty labels for profiling llm performance and generalization, 2024. URL
https://arxiv.org/abs/2409.18433. 3

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997. 7, 16

Jianyuan Guo, Hanting Chen, Chengcheng Wang, Kai Han, Chang Xu, and Yunhe Wang. Vision
superalignment: Weak-to-strong generalization for vision foundation models. arXiv preprint
arXiv:2402.03749, 2024. 13

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness of easy
training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024. 13

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its Interface,
2(3):349–360, 2009. 4, 5, 7, 16

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, Borong Zhang, Xuehai Pan, Juntao Dai, and
Yaodong Yang. Aligner: Achieving efficient alignment through weak-to-strong correction. arXiv
preprint arXiv:2402.02416, 2024. 1, 3, 7

Lifeng Jin, Baolin Peng, Linfeng Song, Haitao Mi, Ye Tian, and Dong Yu. Collaborative decoding of
critical tokens for boosting factuality of large language models. arXiv preprint arXiv:2402.17982,
2024. 13

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Theoretical analysis of weak-to-strong
generalization. arXiv preprint arXiv:2405.16043, 2024. 1, 6

Yuejiang Liu and Alexandre Alahi. Co-supervised learning: Improving weak-to-strong generalization
with hierarchical mixture of experts. arXiv preprint arXiv:2402.15505, 2024. 7

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023. 13

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024. 13

11

https://arxiv.org/abs/2409.18433

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jitao Sang, Yuhang Wang, Jing Zhang, Yanxu Zhu, Chao Kong, Junhong Ye, Shuyu Wei, and Jinlin
Xiao. Improving weak-to-strong generalization with scalable oversight and ensemble learning.
arXiv preprint arXiv:2402.00667, 2024. 7

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode
collaboratively with multiple language models. arXiv preprint arXiv:2403.03870, 2024. 13

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024. 1, 7

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. Quartz: An open-domain dataset of
qualitative relationship questions. arXiv preprint arXiv:1909.03553, 2019. 3

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady Arkhang-
orodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries: Evaluating
llm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796, 2024. 7

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017. 3

Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L Edelman, Milind Tambe,
Sham M Kakade, and Eran Malach. Transcendence: Generative models can outperform the experts
that train them. arXiv preprint arXiv:2406.11741, 2024. 7

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Weak-to-Strong Generalisation: (Continue from the main manuscript) Guo et al. (2024) in-
troduces an dynamic adjustable loss function for weak-to-strong supervision. Hase et al. (2024)
demonstrates that current language models can achieve high performance on difficult tasks by training
on simpler, cleanly labeled data, thus avoiding the high costs and noise associated with hard data
labeling. None of these works focused on making the weak teachers, less weak but only focus on
improving transfer learning and correction of weak labels. Thus, our method can be combined with
all ideas focused on improving transfer learning.

Multi-LLM learning: There are numerous works involving the collaboration of multiple LLMs.
Chang et al. (2023) proposes Reinforcement Learning with Guided Feedback (RLGF), where a
dynamic black-box guide like GPT-3 is used to fine-tune large language models. Rosset et al. (2024)
introduces Direct Nash Optimization (DNO), a scalable algorithm that combines contrastive learning
with general preference optimization. Cai et al. (2024) presents MEDUSA, an innovative framework
designed to accelerate inference in large language models by introducing multiple decoding heads,
enabling simultaneous prediction of several tokens, and enhancing efficiency through reduced decod-
ing steps and parallel processing capabilities. Shen et al. (2024) proposes Co-LLM, a collaborative
decoding framework that interleaves token-level generations from multiple models. This method
optimizes the latent variable model for marginal likelihood, allowing a base model to decide when to
generate tokens itself or utilize an assistant model, thereby improving performance across various
specialized tasks without direct supervision. Jin et al. (2024) introduces a novel collaborative decod-
ing framework aimed at improving the factuality of large language models by employing a critical
token classifier. This approach strategically uses both pre-trained and aligned models to selectively
generate critical tokens, significantly enhancing the model’s ability to maintain factual accuracy
without compromising the diversity of the generated content.

Additionally, Mudgal et al. (2023) introduces Controlled Decoding (CD), a method for aligning
language model outputs with desired outcomes using a separate prefix scorer module. This approach
allows multi-objective RL without additional training and performs well on benchmarks, bridging the
gap between token-level control and sequence-level best-of sampling strategies.

B LIMITATION AND FUTURE WORK

(Continue from main manuscript)

Computational Overhead: For fully generative tasks, multiple forward passes are required in an
autoregressive manner. At each step, the final voted token is input to all LLMs to predict the next
token. This increases generation time, which can be mitigated using efficient decoding algorithms like
speculative decoding. Addressing this also forms part of our future work. Smaller Models: Another
limitation is of all w2s work is they attempt to mimic the weak and strong setting as an analogy to the
realistic problem and cannot test on a real human with super-human model.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C DETAILS ON THE METHODOLOGY

C.1 DETAILED FLOWCHART

Train-Error <
s.t.

Figure 7: This figure explains our pipeline for easy-to-hard generalization using w2s generalization
in complete detail including the algorithm and data flow. We train weak models on easy data and
strong models on hard data. A transfer model is trained using pseudo labels generated by the weak
model on the hard data. Ultimately, we aim to improve the Performance Gap Recovered (PGR).

C.2 IMPORTANT NOTATIONS

Easy Data: {(xe
i ,y

e
i)}mi=1

Hard Data: {(xh
o ,y

h
o)}Oo=1

Total number of Easy Data points: m

Total number of Hard Data points: O

Total EnsemW2S-AdaBoost Rounds: T Weak Teachers: {ht
θ}Tt=1

Strong Student (Oracle): uϕ

Weak-to-Strong model: fϕ

Total number of tokens in the answer part of each sample i: ki

AdaBoost voting parameter: {αt}Tt=1

EnsemW2S-AdaBoost token-sample weights for ith sample and jth token: {Dt(i, j)}Tt=1

Pre-trained Model error: ϵpre

EnsemW2S-AdaBoost’s weighted model error for round t: ϵt

C.3 ADABOOST

AdaBoost is an ensemble learning algorithm that combines multiple weak classifiers, such as decision
stumps, to create a strong classifier. It works iteratively by focusing on the samples that are hardest
to classify, assigning them higher weights in each subsequent iteration. Weak classifiers are trained

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

one at a time, and their contributions are weighted based on their accuracy. The final prediction is
made by taking a weighted majority vote of all weak classifiers. AdaBoost is known for its ability to
improve generalization by focusing on difficult cases and is often resistant to overfitting with simple
weak learners. However, it can struggle with noisy data if overemphasis is placed on misclassified
samples. Its also presented as Algorithm 2.

Let the training dataset consist of m samples:

{(xi, yi) | i = 1, 2, . . . ,m}, xi ∈ Rd, yi ∈ {−1,+1}.

Each weak learner ht(x) outputs a prediction ht(xi) ∈ {−1,+1}. The goal is to sequentially train
weak learners such that the combined model minimizes the classification error. A weight distribution
Dt(i) is maintained over the training samples at each iteration t, where:

Dt(i) ≥ 0,

m∑
i=1

Dt(i) = 1.

Initially, all samples are equally weighted: D1(i) =
1
m , ∀i

Training the Weak Learners: For each iteration t = 1, 2, . . . , T , train a weak learner ht(x) using
the current weight distribution Dt. Compute the weighted error:

ϵt =

m∑
i=1

Dt(i) · I(ht(xi) ̸= yi),

where I(·) is the indicator function.

Weak Learner Weight Assign a weight αt to the weak learner based on its performance:

αt =
1

2
ln

(
1− ϵt
ϵt

)
Intuition behind it is that if ϵt is small, αt is large, giving more importance to the weak learner. If
ϵt = 0.5, αt = 0, indicating no contribution to the ensemble. ϵt > 0.5 is undesirable, as the weak
learner performs worse than random guessing.

Update the weights of the training samples to focus on misclassified samples:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

where Zt is a normalization factor ensuring
∑m

i=1 Dt+1(i) = 1:

Zt =

N∑
i=1

Dt(i) exp(−αtyiht(xi)).

Misclassified samples (yi ̸= ht(xi)) receive higher weights, making them more influential in the next
iteration. The final strong classifier H(x) is a weighted majority vote of the weak learners:

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Generalization Abilities: AdaBoost improves generalization by maximizing the margins on the
training set. The margin for a sample (xi, yi) is defined as:

Margin(xi) = yi

T∑
t=1

αtht(xi).

AdaBoost aims to increase the margin for all samples, reducing the chance of misclassification.

Summary of Key Properties

a) Sequential Training: Weak learners are trained iteratively, with weights updated to focus on
difficult samples.

b) Weighting Scheme: Misclassified samples are emphasized in subsequent iterations.
c) Generalization: AdaBoost achieves strong generalization by maximizing margins and minimiz-

ing exponential loss.
d) Flexibility: It can work with any weak learner as long as the learner achieves performance slightly

better than random guessing.

Algorithm 2 AdaBoost Freund & Schapire (1997)
Input: Training Dataset S = {(xi, yi)}mi=1 ∼ Dm

T = AdaBoost iterations
D⃗1(i)← 1

m∀i ∈ [m]
for t← 1 to T do

ht such that ϵt =
∑m

i=0 1{ht(xi) ̸= yi}D⃗t(i) <
1
2

αt ← 1
2 log

1−ϵt
ϵt

Zt ← 2
√
ϵt(1− ϵt)

D⃗t+1 ← 1
Zt
D⃗te

−αtyiht(xi)

g ←
∑T

t=1 αtht

Return h(x) = sign(g)

C.4 INTUITION BEHIND PRIOR TERM IN EMSEMW2S

The calculation of α cannot rely solely on error, ϵ, as the traditional Adaboost method is valid only
when ϵ < 0.5. Applying the same equation in our context could yield negative α values. We introduce
a prior term, log(1

1−ϵpre
− 1), inspired from multi-class classification Adaboost works Hastie et al.

(2009), to address this issue.

Existing works on multi-class classification Adaboost Hastie et al. (2009) suggest using 1
c (where c is

the number of classes) in the prior term, log(c− 1), as 1
c represents the random performance of the

model. However, when c (the number of classes) becomes very large, the log(c− 1) term also grows
significantly, causing the α parameters of Adaboost to become nearly identical and, consequently,
less useful. To address this, we introduce a pre-training error term, ϵpre, which represents an upper
bound on the sample error. We then use 1− ϵpre (a lower bound on accuracy) as a replacement for
the 1

c term, as our model’s lowest possible accuracy is 1− ϵpre, not 1
c .

D BINARY CLASSIFICATION TASK

D.1 DETAILED RESULTS FOR BINARY CLASSIFICATION TASK WITH α AND ErrTrain
t IN

TABLE 1 AND TABLE 2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 1: This table shows weak to strong generalization using random data-splits for sciq dataset.
We also study the impact of using ensemble learning methods like AdaBoost, which combines weak
learners, for weak to strong training. Each model is trained for 3 epochs and uses an optimized
learning rate.

AdaBoost Weak Model Strong Model Weak-to-Strong Model α ErrTrain
t

Model Name GPT-2 GPT-2 Medium
Baseline 0.610 0.665 0.590 0.455 0.287
With AdaBoost (T:02) 0.613 0.665 0.619 0.488 0.274
With AdaBoost (T:03) 0.614 0.665 0.609 0.463 0.284
With AdaBoost (T:04) 0.611 0.665 0.622 0.467 0.282
With AdaBoost (T:05) 0.623 0.665 0.640 0.448 0.290
With AdaBoost (T:06) 0.621 0.665 0.641 0.333 0.340
With AdaBoost (T:07) 0.646 0.665 0.638 0.433 0.300
With AdaBoost (T:08) 0.610 0.665 0.626 0.471 0.281
With AdaBoost (T:09) 0.634 0.665 0.619 0.463 0.284
With AdaBoost (T:10) 0.618 0.665 0.622 0.503 0.268
Model Name GPT-2 GPT-2 Large
Baseline 0.610 0.681 0.591 0.455 0.287
With AdaBoost (T:02) 0.613 0.681 0.657 0.488 0.274
With AdaBoost (T:03) 0.614 0.681 0.620 0.463 0.284
With AdaBoost (T:04) 0.611 0.681 0.629 0.467 0.282
With AdaBoost (T:05) 0.623 0.681 0.656 0.448 0.290
With AdaBoost (T:06) 0.621 0.681 0.650 0.333 0.340
With AdaBoost (T:07) 0.646 0.681 0.654 0.433 0.300
With AdaBoost (T:08) 0.610 0.681 0.633 0.471 0.281
With AdaBoost (T:09) 0.634 0.681 0.648 0.463 0.284
With AdaBoost (T:10) 0.618 0.681 0.652 0.503 0.268
Model Name GPT-2 GPT-2 XL
Baseline 0.607 0.707 0.620 0.455 0.287
With AdaBoost (T:02) 0.613 0.707 0.654 0.488 0.274
With AdaBoost (T:03) 0.614 0.707 0.628 0.463 0.284
With AdaBoost (T:04) 0.611 0.707 0.663 0.467 0.282
With AdaBoost (T:05) 0.623 0.707 0.645 0.448 0.290
With AdaBoost (T:06) 0.621 0.707 0.648 0.333 0.340
With AdaBoost (T:07) 0.646 0.707 0.649 0.433 0.300
With AdaBoost (T:08) 0.610 0.707 0.653 0.471 0.281
With AdaBoost (T:09) 0.634 0.707 0.657 0.463 0.284
With AdaBoost (T:10) 0.618 0.707 0.654 0.503 0.268
Model Name GPT-2 Qwen1.5-1.8B
Baseline 0.602 0.842 0.646 0.445 0.291
With AdaBoost (T:02) 0.599 0.842 0.683 0.500 0.269
With AdaBoost (T:03) 0.626 0.842 0.702 0.444 0.292
With AdaBoost (T:04) 0.611 0.842 0.723 0.400 0.310
With AdaBoost (T:05) 0.613 0.842 0.704 0.461 0.285
With AdaBoost (T:06) 0.613 0.842 0.734 0.417 0.303
With AdaBoost (T:07) 0.603 0.842 0.712 0.422 0.301
With AdaBoost (T:08) 0.608 0.842 0.717 0.319 0.346
With AdaBoost (T:09) 0.614 0.842 0.712 0.405 0.308
With AdaBoost (T:10) 0.606 0.842 0.712 0.360 0.328
Model Name GPT-2 Medium GPT-2 Large
Baseline 0.653 0.681 0.626 0.705 0.196
With AdaBoost (T:02) 0.656 0.681 0.643 0.624 0.223
With AdaBoost (T:03) 0.646 0.681 0.639 0.674 0.206
With AdaBoost (T:04) 0.663 0.681 0.664 0.645 0.216
With AdaBoost (T:05) 0.645 0.681 0.654 0.690 0.201
With AdaBoost (T:06) 0.652 0.681 0.667 0.619 0.225
With AdaBoost (T:07) 0.650 0.681 0.665 0.722 0.191
With AdaBoost (T:08) 0.657 0.681 0.685 0.733 0.187
With AdaBoost (T:09) 0.651 0.681 0.684 0.601 0.231
With AdaBoost (T:10) 0.648 0.681 0.666 0.682 0.203
Model Name GPT-2 Medium GPT-2 XL
Baseline 0.653 0.707 0.655 0.705 0.196
With AdaBoost (T:02) 0.656 0.707 0.651 0.624 0.223
With AdaBoost (T:03) 0.646 0.707 0.648 0.674 0.206
With AdaBoost (T:04) 0.663 0.707 0.675 0.645 0.216
With AdaBoost (T:05) 0.645 0.707 0.663 0.690 0.201
With AdaBoost (T:06) 0.652 0.707 0.682 0.619 0.225
With AdaBoost (T:07) 0.650 0.707 0.657 0.722 0.191
With AdaBoost (T:08) 0.657 0.707 0.673 0.733 0.187
With AdaBoost (T:09) 0.651 0.707 0.665 0.601 0.231
With AdaBoost (T:10) 0.648 0.707 0.687 0.682 0.203
Model Name GPT-2 Medium Qwen1.5-1.8B
Baseline 0.649 0.842 0.722 0.658 0.211
With AdaBoost (T:02) 0.649 0.842 0.742 0.626 0.222
With AdaBoost (T:03) 0.669 0.842 0.732 0.673 0.206
With AdaBoost (T:04) 0.649 0.842 0.757 0.662 0.210
With AdaBoost (T:05) 0.661 0.842 0.745 0.688 0.202
With AdaBoost (T:06) 0.655 0.842 0.735 0.722 0.191
With AdaBoost (T:07) 0.664 0.842 0.732 0.717 0.192
With AdaBoost (T:08) 0.664 0.842 0.741 0.718 0.192
With AdaBoost (T:09) 0.657 0.842 0.748 0.791 0.171
With AdaBoost (T:10) 0.667 0.842 0.737 0.671 0.207
Model Name GPT-2 Large GPT-2 XL
Baseline 0.673 0.707 0.682 1.675 0.034
With AdaBoost (T:02) 0.658 0.707 0.675 0.974 0.125
With AdaBoost (T:03) 0.671 0.707 0.687 1.091 0.101
With AdaBoost (T:04) 0.671 0.707 0.684 1.080 0.103
With AdaBoost (T:05) 0.668 0.707 0.687 1.033 0.112
With AdaBoost (T:06) 0.675 0.707 0.683 1.133 0.094
With AdaBoost (T:07) 0.669 0.707 0.688 1.083 0.103
With AdaBoost (T:08) 0.676 0.707 0.683 1.047 0.110
With AdaBoost (T:09) 0.678 0.707 0.682 1.085 0.103
With AdaBoost (T:10) 0.669 0.707 0.681 1.132 0.094
Model Name GPT-2 Large Qwen1.5-1.8B
Baseline 0.664 0.842 0.749 1.454 0.052
With AdaBoost (T:02) 0.670 0.842 0.717 0.971 0.126
With AdaBoost (T:03) 0.670 0.842 0.728 0.037 0.481
With AdaBoost (T:04) 0.677 0.842 0.727 1.128 0.095
With AdaBoost (T:05) 0.675 0.842 0.740 1.107 0.098
With AdaBoost (T:06) 0.677 0.842 0.737 0.979 0.124
With AdaBoost (T:07) 0.676 0.842 0.766 1.136 0.093
With AdaBoost (T:08) 0.680 0.842 0.741 1.103 0.099
With AdaBoost (T:09) 0.691 0.842 0.762 1.075 0.104
With AdaBoost (T:10) 0.683 0.842 0.755 1.052 0.109
Model Name GPT-2 XL Qwen1.5-1.8B
Baseline 0.673 0.842 0.733 0.564 0.244
With AdaBoost (T:02) 0.701 0.842 0.740 0.428 0.298
With AdaBoost (T:03) 0.702 0.842 0.753 0.383 0.317
With AdaBoost (T:04) 0.694 0.842 0.756 0.316 0.347
With AdaBoost (T:05) 0.704 0.842 0.759 0.260 0.373
With AdaBoost (T:06) 0.693 0.842 0.757 0.288 0.360
With AdaBoost (T:07) 0.708 0.842 0.755 0.277 0.365
With AdaBoost (T:08) 0.706 0.842 0.761 0.223 0.391
With AdaBoost (T:09) 0.700 0.842 0.748 0.252 0.377
With AdaBoost (T:10) 0.703 0.842 0.747 0.258 0.374

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 2: This table shows weak to strong generalization using easy and hard data-splits for sciq dataset.
We also study the impact of using ensemble learning methods like AdaBoost, which combines weak
learners, for weak to strong training. Each model is trained for 3 epochs and uses an optimized
learning rate.

AdaBoost Weak Model Strong Model Weak-to-Strong α ErrTrain
t

Model Name GPT-2 GPT-2 Medium
Baseline 0.362 0.638 0.388 2.178 0.013
With AdaBoost (T:02) 0.356 0.638 0.382 1.790 0.027
With AdaBoost (T:03) 0.343 0.638 0.386 1.953 0.020
With AdaBoost (T:04) 0.361 0.638 0.385 2.014 0.018
With AdaBoost (T:05) 0.361 0.638 0.382 1.534 0.044
With AdaBoost (T:06) 0.365 0.638 0.393 1.588 0.040
With AdaBoost (T:07) 0.365 0.638 0.402 1.474 0.050
With AdaBoost (T:08) 0.369 0.638 0.404 1.478 0.049
With AdaBoost (T:09) 0.362 0.638 0.394 1.865 0.023
With AdaBoost (T:10) 0.364 0.638 0.394 1.267 0.074
Model Name GPT-2 GPT-2 Large
Baseline 0.362 0.597 0.385 2.178 0.013
With AdaBoost (T:02) 0.356 0.597 0.367 1.790 0.027
With AdaBoost (T:03) 0.343 0.597 0.383 1.953 0.020
With AdaBoost (T:04) 0.361 0.597 0.379 2.014 0.018
With AdaBoost (T:05) 0.361 0.597 0.387 1.534 0.044
With AdaBoost (T:06) 0.365 0.597 0.382 1.588 0.040
With AdaBoost (T:07) 0.365 0.597 0.388 1.474 0.050
With AdaBoost (T:08) 0.369 0.597 0.389 1.478 0.049
With AdaBoost (T:09) 0.362 0.597 0.393 1.865 0.023
With AdaBoost (T:10) 0.364 0.597 0.395 1.267 0.074
Model Name GPT-2 GPT-2 XL
Baseline 0.355 0.561 0.421 2.178 0.013
With AdaBoost (T:02) 0.356 0.561 0.409 1.791 0.027
With AdaBoost (T:03) 0.343 0.561 0.409 1.953 0.020
With AdaBoost (T:04) 0.361 0.561 0.407 2.014 0.018
With AdaBoost (T:05) 0.361 0.561 0.418 1.534 0.044
With AdaBoost (T:06) 0.365 0.561 0.409 1.588 0.040
With AdaBoost (T:07) 0.365 0.561 0.407 1.474 0.050
With AdaBoost (T:08) 0.369 0.561 0.413 1.478 0.049
With AdaBoost (T:09) 0.362 0.561 0.410 1.865 0.023
With AdaBoost (T:10) 0.364 0.561 0.409 1.267 0.074
Model Name GPT-2 Qwen1.5-1.8B
Baseline 0.364 0.760 0.407 2.178 0.013
With AdaBoost (T:02) 0.356 0.760 0.397 1.791 0.027
With AdaBoost (T:03) 0.343 0.760 0.393 1.953 0.020
With AdaBoost (T:04) 0.361 0.760 0.381 2.014 0.018
With AdaBoost (T:05) 0.361 0.760 0.390 1.534 0.044
With AdaBoost (T:06) 0.365 0.760 0.394 1.588 0.040
With AdaBoost (T:07) 0.365 0.760 0.390 1.474 0.050
With AdaBoost (T:08) 0.369 0.760 0.387 1.478 0.049
With AdaBoost (T:09) 0.362 0.760 0.402 1.865 0.023
With AdaBoost (T:10) 0.364 0.760 0.404 1.267 0.074
Model Name GPT-2 Medium GPT-2 Large
Baseline 0.391 0.597 0.420 1.511 0.046
With AdaBoost (T:02) 0.448 0.597 0.438 1.571 0.041
With AdaBoost (T:03) 0.426 0.597 0.405 1.483 0.049
With AdaBoost (T:04) 0.454 0.597 0.437 1.601 0.039
With AdaBoost (T:05) 0.448 0.597 0.428 1.334 0.065
With AdaBoost (T:06) 0.465 0.597 0.444 1.249 0.076
With AdaBoost (T:07) 0.449 0.597 0.453 1.460 0.051
With AdaBoost (T:08) 0.461 0.597 0.444 1.646 0.036
With AdaBoost (T:09) 0.449 0.597 0.433 1.453 0.052
With AdaBoost (T:10) 0.447 0.597 0.424 1.154 0.090
Model Name GPT-2 Medium GPT-2 XL
Baseline 0.392 0.561 0.440 1.510 0.047
With AdaBoost (T:02) 0.459 0.561 0.442 1.589 0.040
With AdaBoost (T:03) 0.420 0.561 0.435 1.669 0.034
With AdaBoost (T:04) 0.458 0.561 0.441 1.460 0.051
With AdaBoost (T:05) 0.424 0.561 0.431 1.393 0.058
With AdaBoost (T:06) 0.444 0.561 0.448 1.286 0.071
With AdaBoost (T:07) 0.419 0.561 0.436 1.429 0.054
With AdaBoost (T:08) 0.454 0.561 0.443 1.596 0.039
With AdaBoost (T:09) 0.437 0.561 0.439 1.577 0.041
With AdaBoost (T:10) 0.432 0.561 0.439 1.289 0.071
Model Name GPT-2 Medium Qwen1.5-1.8B
Baseline 0.388 0.760 0.435 1.511 0.046
With AdaBoost (T:02) 0.448 0.760 0.477 1.571 0.041
With AdaBoost (T:03) 0.426 0.760 0.462 1.483 0.049
With AdaBoost (T:04) 0.454 0.760 0.473 1.601 0.039
With AdaBoost (T:05) 0.448 0.760 0.471 1.334 0.065
With AdaBoost (T:06) 0.465 0.760 0.470 1.249 0.076
With AdaBoost (T:07) 0.449 0.760 0.469 1.460 0.051
With AdaBoost (T:08) 0.461 0.760 0.480 1.646 0.036
With AdaBoost (T:09) 0.449 0.760 0.476 1.453 0.052
With AdaBoost (T:10) 0.447 0.760 0.483 1.154 0.090
Model Name GPT-2 Large GPT-2 XL
Baseline 0.454 0.561 0.453 2.981 0.003
With AdaBoost (T:02) 0.451 0.561 0.455 1.791 0.027
With AdaBoost (T:03) 0.458 0.561 0.451 1.954 0.020
With AdaBoost (T:04) 0.463 0.561 0.447 2.220 0.012
With AdaBoost (T:05) 0.471 0.561 0.452 2.145 0.014
With AdaBoost (T:06) 0.465 0.561 0.458 1.745 0.030
With AdaBoost (T:07) 0.459 0.561 0.453 1.729 0.031
With AdaBoost (T:08) 0.469 0.561 0.455 1.726 0.031
With AdaBoost (T:09) 0.471 0.561 0.445 1.915 0.021
With AdaBoost (T:10) 0.466 0.561 0.447 2.179 0.013
Model Name GPT-2 Large Qwen1.5-1.8B
Baseline 0.439 0.760 0.476 2.745 0.004
With AdaBoost (T:02) 0.437 0.760 0.467 1.747 0.029
With AdaBoost (T:03) 0.443 0.760 0.469 1.874 0.023
With AdaBoost (T:04) 0.445 0.760 0.460 2.018 0.017
With AdaBoost (T:05) 0.448 0.760 0.468 2.063 0.016
With AdaBoost (T:06) 0.449 0.760 0.467 1.639 0.036
With AdaBoost (T:07) 0.444 0.760 0.457 1.673 0.034
With AdaBoost (T:08) 0.453 0.760 0.468 1.727 0.031
With AdaBoost (T:09) 0.443 0.760 0.475 2.049 0.016
With AdaBoost (T:10) 0.459 0.760 0.484 2.217 0.012
Model Name GPT-2 XL Qwen1.5-1.8B
Baseline 0.463 0.763 0.504 1.165 0.089
With AdaBoost (T:02) 0.475 0.763 0.508 1.156 0.090
With AdaBoost (T:03) 0.481 0.763 0.512 0.941 0.132
With AdaBoost (T:04) 0.488 0.763 0.500 0.841 0.157
With AdaBoost (T:05) 0.481 0.763 0.518 0.821 0.162
With AdaBoost (T:06) 0.494 0.763 0.514 0.776 0.175
With AdaBoost (T:07) 0.483 0.763 0.499 0.801 0.168
With AdaBoost (T:08) 0.489 0.763 0.513 0.687 0.202
With AdaBoost (T:09) 0.492 0.763 0.516 0.832 0.159
With AdaBoost (T:10) 0.481 0.763 0.519 0.636 0.219

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E GENERATIVE TASK DETAILS

E.1 DIFFERENT RATING FOR ALL THE DATASETS

We use GPT-2 for binary classification and pythia-160m for SFT task’s easy and hard splitting. We
use the same training parameters as used in the training of the actual w2s results.

Figure 8: This figure shows the difficulty rating distribution of sciq dataset.

Figure 9: This figure shows difficulty rating distribution of ARC dataset.

Figure 10: This figure shows difficulty rating distribution of quartz dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E.2 COMPARISON BETWEEN PROBABILITY BASED COMBINATION WITH LOGIT BASED
COMBINATION OF THE TOKENS, DURING GENERATION AND EVALUATION OF COMBINED
WEAK EXPERTS.

Figure 11: This figure compares probability-based combination with logit-based combination of
the tokens across different AdaBoost rounds. Here we show improvement from the baseline where
baseline is single model. The orange bars represent logit-based combination, while the blue bars
represent probability-based combination, showing that probability-based combination performs better.

E.3 COMPARISON BETWEEN DIFFERENT WINDOW LENGTHS FOR "SAMPLE AND TOKEN
WEIGHING".

Figure 12: This figure compares different token window lengths for the Pythia 70M model across
various AdaBoost rounds. The plots show improvements over the baseline, where the baseline
represents a single model. The different bars (red, blue, green, yellow, and pink) correspond to
window lengths of 1, 2, 4, 8, and 16, respectively. We observe that, overall, all window lengths
perform similarly. Window length in EmsemW2S plays a role only during sampling step.

Figure 13: This figure compares different token window lengths for the Pythia 410M model across
various AdaBoost rounds. The plots show improvements/decline over the baseline, where the baseline
represents a single model. Thus, the black colored bars show decline. The different bars (red, blue,
green, yellow, and pink) correspond to window lengths of 1, 2, 4, 8, and 16, respectively. We observe
that, overall, all window lengths perform similarly. Window length in EmsemW2S plays a role only
during sampling step.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.4 SUPERVISED-FINE TUNING TASK FOR QUARTZ QUESTION-ANSWER DATASET

Table 3: This table shows weak to strong generalization using random data-splits for quartz dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5x10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 17.95 ± 0.44 50.21 ± 0.23 49.7 ± 0.28 10.81 ± 0.04 50.77 ± 0.26 34.3 ± 0.44 51.11 ± 0.23
With Adaboost (T:03) 25.94 ± 0.38 50.64 ± 0.39 49.43 ± 0.25 10.67 ± 0.05 50.77 ± 0.26 34.17 ± 0.36 51.66 ± 0.45

Pythia-70m Pythia-410m
Baseline 17.95 ± 0.44 50.21 ± 0.23 49.7 ± 0.28 10.81 ± 0.04 59.18 ± 0.78 50.28 ± 0.44 50.68 ± 0.3
With Adaboost (T:04) 25.22 ± 0.15 50.51 ± 0.53 49.8 ± 0.14 10.68 ± 0.05 59.18 ± 0.78 50.88 ± 0.18 52.42 ± 0.33

Pythia-70m Pythia-1b
Baseline 17.95 ± 0.44 50.21 ± 0.23 49.7 ± 0.28 10.81 ± 0.04 63.35 ± 0.3 51.87 ± 0.11 50.89 ± 0.16
With Adaboost (T:05) 26.2 ± 0.06 50.55 ± 0.28 49.65 ± 0.11 10.66 ± 0.04 63.35 ± 0.3 51.83 ± 0.38 51.83 ± 0.31

Pythia-70m Pythia-1.4b
Baseline 17.89 ± 0.46 49.87 ± 0.06 49.46 ± 0.35 10.82 ± 0.05 68.83 ± 1.28 51.82 ± 0.05 50.17 ± 0.24
With Adaboost (T:04) 25.32 ± 0.82 50.04 ± 0.37 49.23 ± 0.27 10.7 ± 0.06 68.83 ± 1.28 51.76 ± 0.17 51.45 ± 0.07

Pythia-70m Pythia-2.8b
Baseline 18.06 ± 0.39 49.4 ± 0.39 49.73 ± 0.33 10.86 ± 0.02 73.38 ± 1.02 52.28 ± 0.29 50.21 ± 0.23
With Adaboost (T:02) 24.37 ± 0.99 50.13 ± 0.4 49.48 ± 0.21 10.74 ± 0.04 73.38 ± 1.02 52.3 ± 0.14 51.02 ± 0.22

Pythia-160m Pythia-410m
Baseline 33.51 ± 0.19 50.81 ± 1.0 49.6 ± 0.27 10.03 ± 0.0 59.18 ± 0.78 50.39 ± 0.3 50.68 ± 0.5
With Adaboost (T:04) 40.85 ± 0.49 51.79 ± 0.48 49.08 ± 0.32 9.81 ± 0.05 59.18 ± 0.78 50.39 ± 0.18 52.13 ± 0.3

Pythia-160m Pythia-1b
Baseline 33.51 ± 0.19 50.81 ± 1.0 49.6 ± 0.27 10.03 ± 0.0 63.35 ± 0.3 52.36 ± 0.29 50.6 ± 0.33
With Adaboost (T:02) 40.61 ± 0.8 51.36 ± 0.25 49.93 ± 0.52 9.76 ± 0.05 63.35 ± 0.3 52.45 ± 0.42 51.92 ± 0.31

Pythia-160m Pythia-1.4b
Baseline 33.42 ± 0.23 51.4 ± 0.59 49.43 ± 0.41 10.03 ± 0.0 68.83 ± 1.28 52.02 ± 0.2 51.02 ± 0.55
With Adaboost (T:03) 40.87 ± 0.49 51.02 ± 0.18 49.28 ± 0.13 9.75 ± 0.02 68.83 ± 1.28 52.11 ± 0.39 53.02 ± 0.55

Pythia-160m Pythia-2.8b
Baseline 33.42 ± 0.23 51.4 ± 0.59 49.43 ± 0.41 10.03 ± 0.0 73.17 ± 0.88 52.82 ± 0.02 51.45 ± 0.5
With Adaboost (T:04) 41.13 ± 0.51 51.23 ± 0.4 49.65 ± 0.14 9.78 ± 0.06 73.17 ± 0.88 52.51 ± 0.3 51.74 ± 0.17

Pythia-410m Pythia-1b
Baseline 52.71 ± 0.24 59.27 ± 0.46 55.54 ± 0.49 10.0 ± 0.01 63.35 ± 0.3 53.39 ± 0.2 56.21 ± 0.76
With Adaboost (T:02) 53.39 ± 0.17 58.5 ± 0.33 55.91 ± 0.35 9.69 ± 0.08 63.35 ± 0.3 53.87 ± 0.46 56.42 ± 0.56

Pythia-410m Pythia-1.4b
Baseline 52.9 ± 0.09 59.65 ± 0.15 55.66 ± 0.51 9.98 ± 0.02 68.83 ± 1.28 53.33 ± 0.74 56.34 ± 0.9
With Adaboost (T:02) 53.26 ± 0.27 58.8 ± 0.42 56.11 ± 0.34 9.66 ± 0.08 68.83 ± 1.28 54.14 ± 0.63 57.7 ± 0.61

Pythia-410m Pythia-2.8b
Baseline 52.13 ± 0.64 58.29 ± 1.1 55.94 ± 0.3 9.89 ± 0.06 73.38 ± 1.02 54.38 ± 0.31 55.74 ± 0.73
With Adaboost (T:04) 53.39 ± 0.19 59.18 ± 0.42 55.32 ± 0.51 9.85 ± 0.05 73.38 ± 1.02 55.71 ± 0.53 59.01 ± 0.94

Pythia-1b Pythia-1.4b
Baseline 55.65 ± 0.52 61.99 ± 0.51 58.6 ± 1.13 9.85 ± 0.01 68.62 ± 0.12 55.33 ± 0.31 58.93 ± 0.68
With Adaboost (T:03) 56.81 ± 0.47 62.12 ± 0.43 58.14 ± 0.85 9.74 ± 0.11 68.62 ± 0.12 55.99 ± 0.16 61.69 ± 0.57

Pythia-1b Pythia-2.8b
Baseline 55.54 ± 0.6 62.12 ± 0.51 58.55 ± 1.14 9.84 ± 0.01 73.3 ± 0.3 57.26 ± 0.3 61.52 ± 1.38
With Adaboost (T:02) 57.09 ± 0.41 62.84 ± 0.12 59.0 ± 0.62 9.63 ± 0.02 73.3 ± 0.3 58.1 ± 0.08 63.99 ± 0.93

Pythia-1.4b Pythia-2.8b
Baseline 57.11 ± 0.45 69.64 ± 0.97 66.87 ± 1.1 9.87 ± 0.02 73.76 ± 0.67 59.34 ± 0.24 67.94 ± 0.78
With Adaboost (T:02) 59.17 ± 0.12 70.66 ± 0.06 67.29 ± 0.77 9.65 ± 0.03 73.76 ± 0.67 59.3 ± 0.34 68.92 ± 1.06

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 14: Quartz Dataset (Random): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: This table shows weak to strong generalization using easy-hard data-splits for quartz dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5× 10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 16.27 ± 0.14 48.0 ± 0.51 49.21 ± 0.05 10.53 ± 0.0 47.11 ± 0.28 29.24 ± 0.18 49.11 ± 0.39
With Adaboost (T:03) 23.31 ± 0.9 47.11 ± 0.31 49.23 ± 0.41 10.43 ± 0.03 47.11 ± 0.28 29.24 ± 0.25 49.32 ± 0.23

Pythia-70m Pythia-410m
Baseline 16.27 ± 0.14 48.0 ± 0.51 49.21 ± 0.05 10.53 ± 0.0 52.3 ± 0.39 43.63 ± 0.29 47.32 ± 0.36
With Adaboost (T:04) 23.81 ± 1.01 47.66 ± 0.5 49.06 ± 0.2 10.42 ± 0.02 52.3 ± 0.39 43.53 ± 0.44 48.13 ± 0.47

Pythia-70m Pythia-1b
Baseline 16.27 ± 0.14 48.0 ± 0.51 49.21 ± 0.05 10.53 ± 0.0 55.91 ± 0.37 47.48 ± 0.23 47.92 ± 0.23
With Adaboost (T:05) 24.64 ± 0.22 47.49 ± 0.49 49.41 ± 0.38 10.39 ± 0.0 55.91 ± 0.37 45.5 ± 0.74 49.74 ± 0.24

Pythia-70m Pythia-1.4b
Baseline 16.07 ± 0.22 48.17 ± 0.43 49.38 ± 0.14 10.58 ± 0.04 65.35 ± 0.66 46.25 ± 0.61 47.96 ± 0.34
With Adaboost (T:04) 23.79 ± 0.55 46.94 ± 0.18 49.58 ± 0.27 10.44 ± 0.04 65.35 ± 0.66 45.53 ± 0.2 50.68 ± 0.17

Pythia-70m Pythia-2.8b
Baseline 16.12 ± 0.21 48.85 ± 0.48 49.75 ± 0.32 10.63 ± 0.04 70.2 ± 0.17 48.08 ± 0.18 48.85 ± 0.31
With Adaboost (T:02) 22.96 ± 0.75 47.02 ± 0.12 49.36 ± 0.11 10.5 ± 0.05 70.2 ± 0.17 48.58 ± 0.16 49.87 ± 0.06

Pythia-160m Pythia-410m
Baseline 25.61 ± 0.33 47.75 ± 0.35 49.83 ± 0.29 9.96 ± 0.02 52.3 ± 0.39 42.75 ± 0.91 47.75 ± 0.61
With Adaboost (T:04) 29.63 ± 0.55 47.02 ± 0.09 48.47 ± 0.3 9.7 ± 0.09 52.3 ± 0.39 43.78 ± 0.14 48.42 ± 0.12

Pythia-160m Pythia-1b
Baseline 25.61 ± 0.33 47.75 ± 0.35 49.83 ± 0.29 9.96 ± 0.02 55.91 ± 0.37 46.08 ± 0.38 49.36 ± 0.53
With Adaboost (T:02) 28.96 ± 0.23 46.43 ± 0.18 48.49 ± 0.11 9.69 ± 0.09 55.91 ± 0.37 44.7 ± 0.58 49.15 ± 0.73

Pythia-160m Pythia-1.4b
Baseline 25.76 ± 0.43 47.15 ± 0.15 49.26 ± 0.2 9.96 ± 0.02 65.35 ± 0.66 45.83 ± 0.64 49.7 ± 0.85
With Adaboost (T:03) 28.83 ± 0.84 46.56 ± 0.27 48.17 ± 0.14 9.64 ± 0.06 65.35 ± 0.66 45.4 ± 0.44 50.0 ± 0.22

Pythia-160m Pythia-2.8b
Baseline 26.46 ± 0.25 47.49 ± 0.33 48.98 ± 0.14 10.02 ± 0.03 70.2 ± 0.17 48.03 ± 0.13 49.4 ± 0.3
With Adaboost (T:04) 29.61 ± 0.51 46.6 ± 0.25 48.69 ± 0.47 9.54 ± 0.03 70.2 ± 0.17 48.4 ± 0.29 50.3 ± 0.41

Pythia-410m Pythia-1b
Baseline 36.73 ± 0.39 51.06 ± 0.39 53.26 ± 0.38 10.07 ± 0.01 55.91 ± 0.37 46.6 ± 0.38 50.72 ± 0.68
With Adaboost (T:02) 38.11 ± 0.44 49.36 ± 0.21 51.66 ± 0.35 9.76 ± 0.14 55.91 ± 0.37 46.4 ± 0.35 52.09 ± 0.3

Pythia-410m Pythia-1.4b
Baseline 37.23 ± 0.27 51.11 ± 0.4 53.19 ± 0.42 10.04 ± 0.03 65.35 ± 0.66 47.73 ± 0.78 53.66 ± 0.56
With Adaboost (T:02) 38.31 ± 0.23 50.17 ± 0.44 51.56 ± 0.22 9.53 ± 0.09 65.35 ± 0.66 48.35 ± 0.18 53.36 ± 0.5

Pythia-410m Pythia-2.8b
Baseline 37.13 ± 0.23 51.02 ± 0.47 52.87 ± 0.21 10.03 ± 0.03 70.2 ± 0.17 48.48 ± 0.36 54.47 ± 0.16
With Adaboost (T:04) 38.13 ± 0.26 49.87 ± 0.68 51.49 ± 0.28 9.6 ± 0.04 70.2 ± 0.17 49.05 ± 0.14 55.36 ± 0.47

Pythia-1b Pythia-1.4b
Baseline 40.3 ± 0.46 54.51 ± 0.73 54.25 ± 0.26 10.33 ± 0.08 66.67 ± 0.72 47.0 ± 0.22 56.76 ± 0.58
With Adaboost (T:03) 40.75 ± 0.67 53.36 ± 0.92 53.61 ± 0.44 11.0 ± 0.72 66.67 ± 0.72 47.25 ± 0.32 57.23 ± 0.37

Pythia-1b Pythia-2.8b
Baseline 40.33 ± 0.44 54.08 ± 1.07 54.33 ± 0.19 10.33 ± 0.08 73.09 ± 0.42 49.2 ± 0.2 58.08 ± 0.38
With Adaboost (T:02) 40.53 ± 0.34 52.34 ± 0.09 53.39 ± 0.2 11.68 ± 0.75 73.09 ± 0.42 49.48 ± 0.3 59.35 ± 0.52

Pythia-1.4b Pythia-2.8b
Baseline 42.2 ± 1.12 59.69 ± 0.83 62.39 ± 1.06 10.3 ± 0.1 73.17 ± 0.38 51.22 ± 0.5 62.46 ± 0.91
With Adaboost (T:02) 42.98 ± 0.64 59.82 ± 0.51 61.38 ± 0.48 10.52 ± 0.35 73.17 ± 0.38 51.72 ± 0.37 63.01 ± 0.28

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 15: Quartz Dataset (Easy-Hard): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: This table shows weak to strong generalization using random as well as easy-hard data-splits
for quartz dataset. As compared to previous tables 3 and 4, here we run experiment once and note the
improvement of our method with respect to the baseline.

Weak
Model
Size

Strong
Model
Size

Data Separation: Random
Improv(%)

Data Separation: Easy-Hard
Improv(%)W2S Performance W2S Performance

Baseline Ours Baseline Ours
Pythia-70M Pythia-160M 0.5077 0.5255 3.5% 0.48 0.4898 2%
Pythia-70M Pythia-410M 0.5077 0.5255 3.5% 0.4643 0.4923 6%
Pythia-70M Pythia-1B 0.5051 0.5255 4% 0.4758 0.5026 5.6%
Pythia-70M Pythia-1.4B 0.5026 0.5153 2.5% 0.4719 0.5089 7.8%
Pythia-70M Pythia-2.8B 0.5 0.5115 2.3% 0.4923 0.4987 1.3%
Pythia-160M Pythia-410M 0.5 0.5281 5.6% 0.4758 0.4834 1.6%
Pythia-160M Pythia-1B 0.5026 0.523 4.1% 0.4681 0.4898 4.6%
Pythia-160M Pythia-1.4B 0.5077 0.5217 2.8% 0.4936 0.5038 2.1%
Pythia-160M Pythia-2.8B 0.5077 0.5153 1.5% 0.4949 0.5128 3.6%
Pythia-410M Pythia-1B 0.551 0.551 0% 0.4921 0.5179 5.2%
Pythia-410M Pythia-1.4B 0.5816 0.5918 1.8% 0.5268 0.537 1.9%
Pythia-410M Pythia-2.8B 0.5599 0.611 9.1% 0.5434 0.5485 0.9%
Pythia-1B Pythia-1.4B 0.5982 0.6288 5.1% 0.5536 0.574 3.7%
Pythia-1B Pythia-2.8B 0.6288 0.6543 4.1% 0.5855 0.5957 1.7%
Pythia-1.4B Pythia-2.8B 0.6926 0.713 2.9% 0.6161 0.6288 2.1%
Qwen2.5-3B Qwen2.5-7B 0.805 0.816 1.4% 0.8087 0.8087 0%

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.4.1 SUPERVISED-FINE TUNING TASK FOR ARC QUESTION-ANSWER DATASET

Table 6: This table shows weak to strong generalization using random data-splits for arc dataset. We
also study the impact of using ensemble learning methods, which combines weak learners, for weak
to strong training. Each model is trained for 5 epochs and uses a learning rate of 5x10−5. The values
in this table are generated by aggregating 3 experiments. We show here mean and Standard Error of
the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 13.28 ± 0.05 25.31 ± 0.1 25.76 ± 0.94 10.73 ± 0.03 24.12 ± 0.48 26.91 ± 0.1 24.46 ± 0.06
With Adaboost (T:03) 17.93 ± 0.78 24.75 ± 0.76 25.82 ± 0.69 10.68 ± 0.02 24.12 ± 0.48 27.15 ± 0.36 24.23 ± 0.08

Pythia-70m Pythia-410m
Baseline 13.28 ± 0.05 25.31 ± 0.1 25.76 ± 0.94 10.73 ± 0.03 28.61 ± 0.08 41.29 ± 0.1 27.25 ± 0.24
With Adaboost (T:04) 17.94 ± 0.88 24.97 ± 0.69 25.82 ± 0.69 10.67 ± 0.04 28.61 ± 0.08 41.61 ± 0.02 27.27 ± 0.3

Pythia-70m Pythia-1b
Baseline 13.28 ± 0.05 25.31 ± 0.1 25.76 ± 0.94 10.73 ± 0.03 31.11 ± 0.02 45.13 ± 0.11 28.33 ± 0.18
With Adaboost (T:05) 19.7 ± 1.18 24.92 ± 0.28 26.23 ± 0.49 10.65 ± 0.04 31.11 ± 0.02 45.17 ± 0.11 28.52 ± 0.09

Pythia-70m Pythia-1.4b
Baseline 13.35 ± 0.06 25.06 ± 0.14 24.39 ± 0.42 10.77 ± 0.06 32.34 ± 0.3 45.21 ± 0.24 29.86 ± 0.28
With Adaboost (T:04) 19.75 ± 1.16 24.26 ± 0.56 25.7 ± 0.65 10.68 ± 0.05 32.34 ± 0.3 45.33 ± 0.14 30.35 ± 0.13

Pythia-70m Pythia-2.8b
Baseline 13.42 ± 0.11 24.63 ± 0.13 23.97 ± 0.55 10.77 ± 0.05 35.18 ± 0.02 48.07 ± 0.12 30.94 ± 0.13
With Adaboost (T:02) 19.88 ± 0.56 24.52 ± 0.49 24.87 ± 0.81 10.68 ± 0.04 35.18 ± 0.02 47.75 ± 0.08 31.43 ± 0.43

Pythia-160m Pythia-410m
Baseline 25.5 ± 0.66 24.12 ± 0.45 26.06 ± 0.68 9.89 ± 0.03 29.18 ± 0.04 41.39 ± 0.14 27.5 ± 0.27
With Adaboost (T:04) 31.95 ± 0.47 24.94 ± 0.29 25.88 ± 0.64 9.74 ± 0.03 29.18 ± 0.04 41.28 ± 0.03 27.7 ± 0.34

Pythia-160m Pythia-1b
Baseline 25.5 ± 0.66 24.12 ± 0.45 26.06 ± 0.68 9.89 ± 0.03 31.26 ± 0.44 45.12 ± 0.05 28.24 ± 0.18
With Adaboost (T:02) 32.25 ± 0.21 24.52 ± 0.34 26.06 ± 0.57 9.66 ± 0.01 31.26 ± 0.44 45.18 ± 0.14 28.47 ± 0.24

Pythia-160m Pythia-1.4b
Baseline 24.74 ± 0.14 23.97 ± 0.36 25.76 ± 0.51 9.86 ± 0.02 32.25 ± 0.35 45.01 ± 0.1 30.55 ± 0.07
With Adaboost (T:03) 32.55 ± 0.21 24.46 ± 0.22 26.12 ± 0.8 9.66 ± 0.01 32.25 ± 0.35 45.23 ± 0.05 30.86 ± 0.33

Pythia-160m Pythia-2.8b
Baseline 25.43 ± 0.66 24.34 ± 0.09 26.0 ± 0.32 9.86 ± 0.02 35.44 ± 0.06 47.88 ± 0.02 31.03 ± 0.15
With Adaboost (T:04) 32.6 ± 0.03 24.23 ± 0.18 26.47 ± 0.53 9.66 ± 0.02 35.44 ± 0.06 47.77 ± 0.08 31.68 ± 0.41

Pythia-410m Pythia-1b
Baseline 39.76 ± 0.3 27.85 ± 0.52 24.33 ± 0.97 9.39 ± 0.02 30.97 ± 0.08 44.94 ± 0.08 28.9 ± 0.12
With Adaboost (T:02) 40.69 ± 0.14 28.27 ± 0.11 24.33 ± 0.59 9.01 ± 0.04 30.97 ± 0.08 44.76 ± 0.14 29.41 ± 0.08

Pythia-410m Pythia-1.4b
Baseline 39.66 ± 0.22 27.82 ± 0.53 24.09 ± 0.8 9.39 ± 0.02 32.82 ± 0.27 45.54 ± 0.03 30.26 ± 0.56
With Adaboost (T:02) 40.82 ± 0.13 28.9 ± 0.21 24.51 ± 0.59 9.01 ± 0.04 32.82 ± 0.27 45.66 ± 0.09 30.94 ± 0.53

Pythia-410m Pythia-2.8b
Baseline 39.57 ± 0.24 28.01 ± 0.69 24.69 ± 0.44 9.39 ± 0.01 35.86 ± 0.26 48.06 ± 0.15 31.15 ± 0.3
With Adaboost (T:04) 40.56 ± 0.11 28.7 ± 0.34 25.34 ± 1.12 9.03 ± 0.07 35.86 ± 0.26 48.22 ± 0.12 31.88 ± 0.27

Pythia-1b Pythia-1.4b
Baseline 42.31 ± 0.2 30.35 ± 0.24 28.02 ± 0.76 9.53 ± 0.02 32.65 ± 0.43 45.41 ± 0.06 30.26 ± 0.22
With Adaboost (T:03) 43.22 ± 0.13 31.68 ± 0.55 27.79 ± 0.71 9.37 ± 0.01 32.65 ± 0.43 45.44 ± 0.06 31.28 ± 0.22

Pythia-1b Pythia-2.8b
Baseline 42.2 ± 0.29 30.46 ± 0.16 27.73 ± 0.89 9.53 ± 0.02 35.12 ± 0.26 48.12 ± 0.06 32.14 ± 0.02
With Adaboost (T:02) 43.61 ± 0.2 31.17 ± 0.93 27.79 ± 0.76 9.26 ± 0.02 35.12 ± 0.26 48.2 ± 0.08 32.54 ± 0.08

Pythia-1.4b Pythia-2.8b
Baseline 42.39 ± 0.37 33.42 ± 0.37 30.65 ± 1.82 9.48 ± 0.03 35.12 ± 0.26 48.35 ± 0.11 32.42 ± 0.44
With Adaboost (T:02) 43.58 ± 0.27 33.5 ± 0.22 30.71 ± 1.48 11.07 ± 0.84 35.12 ± 0.26 48.29 ± 0.13 33.19 ± 0.24

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

20.0
22.5
25.0
27.5
30.0
32.5
35.0

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 16: ARC Dataset (Random): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 8.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: This table shows weak to strong generalization using easy-hard data-splits for ARC dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5× 10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 8.17 ± 0.06 22.5 ± 0.33 27.85 ± 0.57 10.45 ± 0.0 22.3 ± 0.16 17.88 ± 0.11 22.27 ± 0.32
With Adaboost (T:03) 13.35 ± 0.54 22.81 ± 0.29 27.78 ± 0.46 10.35 ± 0.02 22.3 ± 0.16 17.87 ± 0.17 22.56 ± 0.06

Pythia-70m Pythia-410m
Baseline 8.17 ± 0.06 22.5 ± 0.33 27.85 ± 0.57 10.45 ± 0.0 19.28 ± 0.15 28.92 ± 0.14 17.06 ± 0.31
With Adaboost (T:04) 14.53 ± 0.72 22.93 ± 0.17 27.96 ± 0.46 10.32 ± 0.0 19.28 ± 0.15 28.84 ± 0.05 18.0 ± 0.07

Pythia-70m Pythia-1b
Baseline 8.17 ± 0.06 22.5 ± 0.33 27.85 ± 0.57 10.45 ± 0.0 21.5 ± 0.24 32.05 ± 0.13 19.96 ± 0.15
With Adaboost (T:05) 12.95 ± 0.88 22.58 ± 0.38 28.03 ± 0.21 10.35 ± 0.02 21.5 ± 0.24 31.84 ± 0.08 20.45 ± 0.06

Pythia-70m Pythia-1.4b
Baseline 8.23 ± 0.1 22.61 ± 0.42 27.37 ± 0.42 10.45 ± 0.0 21.76 ± 0.14 32.98 ± 0.04 20.45 ± 0.42
With Adaboost (T:04) 12.65 ± 0.05 23.24 ± 0.06 28.32 ± 0.76 10.33 ± 0.01 21.76 ± 0.14 32.95 ± 0.17 21.28 ± 0.02

Pythia-70m Pythia-2.8b
Baseline 8.33 ± 0.1 23.24 ± 0.23 27.19 ± 0.47 10.45 ± 0.0 26.59 ± 0.13 35.98 ± 0.09 22.78 ± 0.51
With Adaboost (T:02) 14.28 ± 0.15 23.26 ± 0.22 28.27 ± 0.14 10.37 ± 0.01 26.59 ± 0.13 35.86 ± 0.28 23.15 ± 0.2

Pythia-160m Pythia-410m
Baseline 17.46 ± 0.16 21.73 ± 0.35 26.95 ± 0.1 9.61 ± 0.0 19.11 ± 0.37 28.8 ± 0.23 18.15 ± 0.15
With Adaboost (T:04) 20.57 ± 0.1 22.16 ± 0.2 27.19 ± 0.5 9.22 ± 0.02 19.11 ± 0.37 28.9 ± 0.11 18.43 ± 0.04

Pythia-160m Pythia-1b
Baseline 17.46 ± 0.16 21.73 ± 0.35 26.95 ± 0.1 9.61 ± 0.0 21.59 ± 0.07 32.06 ± 0.06 19.65 ± 0.1
With Adaboost (T:02) 20.47 ± 0.09 22.27 ± 0.29 27.31 ± 0.51 9.24 ± 0.01 21.59 ± 0.07 32.07 ± 0.12 20.17 ± 0.14

Pythia-160m Pythia-1.4b
Baseline 17.61 ± 0.07 22.84 ± 0.58 27.79 ± 0.64 9.61 ± 0.0 22.33 ± 0.34 33.11 ± 0.1 21.19 ± 0.15
With Adaboost (T:03) 20.31 ± 0.24 22.5 ± 0.36 27.79 ± 0.42 9.27 ± 0.06 22.33 ± 0.34 33.01 ± 0.05 21.25 ± 0.28

Pythia-160m Pythia-2.8b
Baseline 17.64 ± 0.06 23.09 ± 0.54 27.91 ± 0.59 9.6 ± 0.01 26.82 ± 0.1 35.83 ± 0.36 22.44 ± 0.11
With Adaboost (T:04) 20.3 ± 0.19 23.01 ± 0.43 27.73 ± 0.25 9.26 ± 0.06 26.82 ± 0.1 36.06 ± 0.07 23.35 ± 0.1

Pythia-410m Pythia-1b
Baseline 27.3 ± 0.16 18.8 ± 0.21 31.01 ± 0.51 9.24 ± 0.0 21.33 ± 0.04 32.06 ± 0.07 20.05 ± 0.08
With Adaboost (T:02) 28.07 ± 0.12 18.35 ± 0.21 32.2 ± 0.31 8.68 ± 0.09 21.33 ± 0.04 32.36 ± 0.05 20.34 ± 0.06

Pythia-410m Pythia-1.4b
Baseline 27.5 ± 0.14 18.54 ± 0.32 31.6 ± 0.21 9.24 ± 0.0 22.36 ± 0.3 33.47 ± 0.07 21.13 ± 0.1
With Adaboost (T:02) 28.09 ± 0.08 18.17 ± 0.28 31.78 ± 0.4 8.67 ± 0.09 22.36 ± 0.3 33.18 ± 0.11 21.47 ± 0.12

Pythia-410m Pythia-2.8b
Baseline 27.48 ± 0.13 18.12 ± 0.13 31.66 ± 0.17 9.25 ± 0.01 26.03 ± 0.21 36.13 ± 0.09 23.07 ± 0.18
With Adaboost (T:04) 27.96 ± 0.11 18.09 ± 0.2 31.07 ± 0.27 8.69 ± 0.08 26.03 ± 0.21 35.93 ± 0.09 24.06 ± 0.15

Pythia-1b Pythia-1.4b
Baseline 30.64 ± 0.17 21.22 ± 0.72 32.5 ± 0.6 9.38 ± 0.01 22.01 ± 0.21 33.13 ± 0.11 21.5 ± 0.07
With Adaboost (T:03) 30.41 ± 0.42 21.11 ± 0.22 32.68 ± 0.56 10.98 ± 0.78 22.01 ± 0.21 33.31 ± 0.03 21.53 ± 0.08

Pythia-1b Pythia-2.8b
Baseline 30.64 ± 0.17 21.22 ± 0.72 32.5 ± 0.6 9.38 ± 0.01 25.51 ± 0.2 36.14 ± 0.11 23.75 ± 0.16
With Adaboost (T:02) 31.11 ± 0.12 21.67 ± 0.18 33.21 ± 0.56 9.4 ± 0.24 25.51 ± 0.2 36.13 ± 0.13 23.75 ± 0.06

Pythia-1.4b Pythia-2.8b
Baseline 31.09 ± 0.12 22.27 ± 0.55 34.05 ± 0.1 9.31 ± 0.01 25.26 ± 0.11 36.13 ± 0.05 23.49 ± 0.2
With Adaboost (T:02) 31.56 ± 0.1 21.79 ± 0.44 34.35 ± 0.59 10.89 ± 0.65 25.26 ± 0.11 36.36 ± 0.2 24.37 ± 0.16

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

15.0

17.5

20.0

22.5

25.0

27.5

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 17: ARC Dataset (Easy-Hard): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 8.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: This table shows weak to strong generalization using random as well as easy-hard data-splits
for ARC dataset. As compared to previous tables 6 and 7, here we run experiment once and note the
improvement of our method with respect to the baseline.

Weak Model
Size

Strong Model
Size

Data Separation: Random
Improv (%)

Data Separation: Easy-Hard
Improv (%)W2S Performance W2S Performance

Baseline Ours Baseline Ours
Pythia-70M Pythia-160M 0.2457 0.244 -0.7 0.2201 0.2244 2
Pythia-70M Pythia-410M 0.2688 0.273 1.6 0.1672 0.1783 6.6
Pythia-70M Pythia-1B 0.2858 0.2875 0.6 0.1962 0.2048 4.4
Pythia-70M Pythia-1.4B 0.2927 0.3003 2.6 0.1945 0.2133 9.7
Pythia-70M Pythia-2.8B 0.3106 0.3208 3.3 0.2159 0.2321 7.5
Pythia-160M Pythia-410M 0.2816 0.285 1.2 0.1792 0.1834 2.3
Pythia-160M Pythia-1B 0.2782 0.2858 2.7 0.1945 0.2048 5.3
Pythia-160M Pythia-1.4B 0.3038 0.3166 4.2 0.2082 0.2125 2.1
Pythia-160M Pythia-2.8B 0.3089 0.3268 5.8 0.2218 0.2338 5.4
Pythia-410M Pythia-1B 0.2884 0.2935 1.8 0.2005 0.2031 1.3
Pythia-410M Pythia-1.4B 0.3148 0.3225 2.4 0.209 0.2176 4.1
Pythia-410M Pythia-2.8B 0.3183 0.3225 1.3 0.227 0.2415 6.4
Pythia-1B Pythia-1.4B 0.3029 0.3174 4.8 0.2142 0.2167 1.2
Pythia-1B Pythia-2.8B 0.3217 0.3259 1.3 0.2355 0.2372 0.7
Pythia-1.4B Pythia-2.8B 0.3148 0.3294 4.6 0.2304 0.2457 6.6
Qwen2.5-3B Qwen2.5-7B 0.5307 0.54 1.7 0.3882 0.4079 5.1

E.5 SUPERVISED-FINE TUNING TASK FOR CHALLENGING MATH-MC DATASET

Table 9: This table shows weak to strong generalization using random data-splits for math-mc dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5× 10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Qwen2.5-1.5B Qwen2.5-3B

Baseline 0.61 0.478 0.56 11.18 0.525 0.67 0.46
With Adaboost (T:03) 0.61 0.502 0.519 16.25 0.525 0.67 0.49

Table 10: This table shows weak to strong generalization using easy-hard data-splits for math-mc
dataset. We also study the impact of using ensemble learning methods, which combines weak learners,
for weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5× 10−5.
The values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Qwen2.5-1.5B Qwen2.5-3B

Baseline 0.6 0.48 0.543 11.525731 0.49 0.64 0.445
With Adaboost (T:03) 0.6 0.48 0.546 11.230499 0.49 0.65 0.450

E.6 CROSS-DATA PERFORMANCE BETWEEN TWO CHALLENGING MATH DATASETS.

To test generalization of our method across different data performance we train on math-mc dataset
for random as well as easy split and test on mmlu elementary-school-mathematics which is easy,
mmlu high-school-mathematics which is harder and mmlu college-mathematics which is hardest.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 11: In this table weak model is trained on math-mc easy data and weak-to-strong model is
trained on labels generated by weak model on math-mc hard data. We then evaluate the model on
different datasets of varying difficulty level to test its cross data performance. First two rows is for
same data but with different difficulty level, math-mc-hard. After that we test on varying difficulty
levels of mmlu dataset (elementary mathematics, high-school mathematics, college mathematics).
We observe that performance is more affected by difficulty levels than by data difference. Thus
showing our method is generalizable across different datasets.

Method Weak Model (Option Acc) Weak-to-Strong Model (Option Acc) Train Data Test Data
Baseline 0.48 0.445 math-mc Easy math-mc Hard
EnsemW2S 0.48 0.450 (Improve by 1%) math-mc Easy math-mc Hard
Baseline 0.677 0.70 math-mc Easy mmlu-elementary-school
EnsemW2S 0.685 0.72 (Improve by 3%) math-mc Easy mmlu-elementary-school
Baseline 0.404 0.456 math-mc Easy mmlu-high-school
EnsemW2S 0.441 0.474 (Improve by 4%) math-mc Easy mmlu-high-school
Baseline 0.3 0.3 math-mc Easy mmlu-college
EnsemW2S 0.3 0.3 (Improve by 0%) math-mc Easy mmlu-college

Table 12: In this table weak model is trained on math-mc random data and weak-to-strong model is
trained on labels generated by weak model on math-mc random data. We then evaluate the model on
different datasets of varying difficulty level to test its cross data performance. First two rows is for
same data. After that we test on varying difficulty levels of mmlu dataset (elementary mathematics,
high-school mathematics, college mathematics). We observe that performance is more affected
by difficulty levels than by data difference. Thus showing our method is generalizable across
different datasets.

Method Weak Model (Option Acc) Weak-to-Strong Model (Option Acc) Train Data Test Data
Baseline 0.478 0.46 math-mc Random math-mc Random
EnsemW2S 0.502 0.49 (Improve by 6.5%) math-mc Random math-mc Random
Baseline 0.645 0.698 math-mc Random mmlu-elementary-school
EnsemW2S 0.65 0.714 (Improve by 2.3%) math-mc Random mmlu-elementary-school
Baseline 0.467 0.474 math-mc Random mmlu-high-school
EnsemW2S 0.47 0.486 (Improve by 2.5%) math-mc Random mmlu-high-school
Baseline 0.4 0.36 math-mc Random mmlu-college
EnsemW2S 0.4 0.36 (Improve by 0%) math-mc Random mmlu-college

F COST ANALYSIS OF EMSEMW2S

Training Cost of Weak Learners: Each weak learner is trained sequentially, as its performance is
contingent upon the outputs of the preceding weak learner. Consequently, while the GPU load may
be lower, the overall training time is directly proportional to the number of weak learners utilized.

This is because the input and output token count for each weak learner during training remains
approximately constant, as suggested by Adaboost. Only the frequency of samples are adjusted based
on weights. In EnsembleW2S we sample the tokens by token-weights but eventually combine the
sampled tokens while masking the ones not sampled, thus keeping the total tokens approximately
similar and training time for each weak-learner independent of the tokens sampled. In the practical
superalignment case, pre-trained weak learners will be used, which may mitigate concerns regarding
training time.

Inference Cost of Weak Learners: The generation process can be executed in parallel as well as
sequentially, resulting in a GPU load for generation or clock time for generation respectively, that
scales linearly with the number of weak learners. For decoding, once the token-level distributions
generated by the weak learners are combined using EmsemW2S algorithm, efficient decoding
algorithms can be employed to produce the final response. However, this is not the focus of this work.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Strong Model Training and Inference: The strong model is trained using labels generated by the
weak learners and is evaluated on standard datasets. Therefore, the training cost and inference cost
associated with the strong model remains unchanged.

G AGGREGATED PLOTS

Figure 18: Aggregated results for Quartz Data on Generation Task and Sciq Data on Binary
Classification Task for both random and easy-hard data splits. We aggregate results for three
experimental runs will different seed across all model pairs similar to Burns et al. (2023).

H BROADER IMPACT

The proposed framework for weak-to-strong (w2s) generalization using ensembles of weak language
models (LLMs) has significant implications across various domains. By demonstrating that multiple
weak supervisors can effectively train more powerful models, our research addresses the critical
challenge of superalignment, potentially transforming how advanced AI systems are developed and
supervised. This approach could democratize access to powerful AI technologies by reducing reliance
on scarce, high-quality labeled data and enabling more inclusive participation in AI development.
Furthermore, our method encourages the creation of robust AI systems capable of tackling complex
problems, which can drive advancements in fields such as healthcare, education, and scientific
research. However, careful consideration must be given to ethical implications, ensuring that the
deployment of these advanced models aligns with societal values and mitigates risks associated with
misuse or unintended consequences.

28

	Introduction
	Weak-to-Strong Generalization via Easy-to-Hard Framework
	The Easy-to-Hard Framework
	Easy and Hard Data
	An Ensemble of Teachers

	W2S Generalization via EnsemW2S of Existing Diverse Teachers
	AdaBoost of Weak LLM Teachers for Classification Tasks
	EnsemW2S: Adaboost inspired algorithm for Complex Generation Tasks

	Related Work
	Experimental Setup
	Binary Classification Task
	Generation Task for Multiple Choice Dataset
	Comparing Weak model's performance
	Comparing Strong model's performance
	Performance on hard data after training on weak vs strong data

	Conclusion, Limitation and Future Work
	Related Works
	Limitation and Future Work
	Details on the Methodology
	Detailed Flowchart
	Important Notations
	Adaboost
	Intuition Behind Prior Term in EmsemW2S

	Binary Classification Task
	Detailed Results for Binary Classification Task

	Generative Task Details
	Different rating for all the datasets
	Comparison between probability based combination with logit based combination of the tokens, during generation and evaluation of combined weak experts.
	Comparison between different window lengths for "sample and token weighing".
	 Supervised-Fine Tuning task for Quartz Question-Answer Dataset
	 Supervised-Fine Tuning task for ARC Question-Answer Dataset

	Supervised-Fine Tuning task for Challenging math-mc Dataset
	Cross-data performance between two challenging math datasets.

	Cost Analysis of EmsemW2S
	Aggregated plots
	Broader Impact

