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ABSTRACT

Lean is an advanced proof assistant designed to facilitate formal theorem proving
by providing a variety of interactive feedback. In this paper, we explore method-
ologies to leverage proof assistant feedback to augment the capabilities of large
language models in constructing formal proofs. First, we deploy online reinforce-
ment learning using Lean verification outcomes as the reward signal to improve
the proof completion policy. This straightforward approach shows great promise
in enhancing the model’s alignment with the formal verification system. In addi-
tion, we propose RMaxTS, a variant of Monte-Carlo tree search that employs an
intrinsic-reward-driven exploration strategy to generate diverse proof paths. The
tree structure is organized to represent the transitions of intermediate tactic states,
extracted from the compilation messages given by Lean’s tactic mode. The intrin-
sic reward is constructed to incentivize the discovery of novel tactic states, which
helps to to mitigate the sparse-reward problem inherent in proof search. These
techniques lead to a more efficient planning scheme for formal proof generation,
achieving new state-of-the-art results on both miniF2F and ProofNet benchmarks.

1 INTRODUCTION

Recent advancements in large language models have significantly influenced mathematical reason-
ing and theorem proving in artificial intelligence. Despite notable progress in natural language
domains, language models still encounter substantial challenges in formal theorem proving, e.g. us-
ing Lean (Moura & Ullrich, 2021) and Isabelle (Paulson, 1994), which requires rigorous derivations
satisfying formal specifications of the verification system. Even advanced models like GPT-4 (Ope-
nAI, 2023) struggle with complex formal proofs, underscoring the intricate nature of both the coding
and the mathematics involved. A formal theorem proving model must not only grasp the syntax and
semantics of formal systems like the Lean theorem prover but also align abstract mathematical rea-
soning with precise formal representation.

Language models in formal theorem proving typically employ two strategies: proof-step generation
(Jiang et al., 2022a; Lample et al., 2022; Yang et al., 2023; Wu et al., 2024) and whole-proof gen-
eration (Zhao et al., 2023; Wang et al., 2023a). The proof-step generation approach is motivated by
the interactive nature of Lean’s tactic mode, in which the compiler provides the access to the tactic
state, i.e., a structured representation summarizing the current status of the proof, including all the
relevant information such as the local context of hypotheses and pending goals. Given the interme-
diate tactic state, the proof-step generation approach predicts each subsequent tactic and verifies it
using the formal verifier to obtain updated information about the current tactic state. This interactive
process often employs tree search techniques to compose valid proofs through several iterations of
tactic generation (Polu & Sutskever, 2020). In contrast, the whole-proof generation approach treats
the construction of formal proofs as a general code completion task. This branch of methods aims
to generate the entire proof code based on the theorem statement and perform verification only at
the end of the generation process. The simplicity of the whole-proof generation paradigm has been
proven to offer high scalability (Xin et al., 2024) from the perspectives of both model training and in-
ference deployment. In addition, the whole-proof generation model is trained to perform long-term
planning for theorem proving, facilitating the integration and utilization of the model’s capabilities
in natural language mathematical reasoning (Jiang et al., 2022b).
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    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left
        linarith
      · -- Case 2: 2x - 10 = 0
        right
        linarith
    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num
  -- Now we compute the sum of the roots.
  rw [this]
  norm_num

reward

Passed the verification of
Lean4 prover

    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left
        linear_combination (1 / 2) * h1
      · -- Case 2: 2x - 10 = 0
        right
        linear_combination (1 / 2) * h2
    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num
  -- Now we compute the sum of the roots.
  rw [this]
  norm_num
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import Mathlib
import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

/-- Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$.
Show that it is 7/2.-/
theorem amc12a_2002_p1 (f : ℂ → ℂ) (h₀ : ∀ x, f x = (2 * x + 3) * (x - 4) + 
(2 * x + 3) * (x - 6)) (h₁ : Fintype (f⁻¹' {0})) : 
  ∑ y in (f⁻¹' {0}).toFinset, y = 7 / 2 := by
  -- We show that the roots of the polynomial are -3/2 and 5.
  have : (f⁻¹' {0}).toFinset = {-(3 / 2 : ℂ), (5 : ℂ)} := by
    ext x
    simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage,
      Set.mem_setOf, Finset.mem_insert, Finset.mem_singleton]
    /- tactic state:
    case a
    f : ℂ → ℂ
    h₀ : ∀ (x : ℂ), f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6)
    h₁ : Fintype ↑(f ⁻¹' {0})
    x : ℂ
    ⊢ f x = 0 ↔ x = -(3 / 2) ∨ x = 5
    -/

Whole-proof
Completion

Error Message from Lean 4 prover:
failed to synthesize
   LinearOrder ℂ

Figure 1: Overall Framework of DS-Prover-V1.5. During supervised fine-tuning, the model re-
ceives an incomplete theorem proof ending with a tactic state comment keyword. The model is
trained to predict the content of this tactic state (auxiliary objective) and complete the subsequent
proof steps (main objective). In the reinforcement learning stage, given an incomplete theorem proof
and ground-truth tactic state from the Lean prover, we roll out the fine-tuned model to generate mul-
tiple proof candidates, which are then verified by the Lean prover. The verification results for these
candidates are used as binary rewards to further optimize the model and enhance its alignment with
the formal specifications of the verification system. For model inference, we decompose the gener-
ated proof into a series of tree nodes, appending intermediate tactic states extracted from the Lean
prover, thereby establishing an interactive proof search paradigm.

In this paper, we present a unified approach that combines the strengths of both proof-step and
whole-proof generation paradigms. We begin by training a whole-proof generation model, incorpo-
rating several auxiliary tasks to enhance its capabilities in mathematical reasoning and long-horizon
planning, meanwhile empowering it to recognize information from Lean’s proof assistant feedback.
The model is named DS-Prover-V1.5, as it builds upon the prior work of DeepSeek-Prover-V1(Xin
et al., 2024). We then employ a truncate-and-resume mechanism to decompose the whole-proof
generation into a tactic-level proof search scheme. Figure 1 presents an illustration of our approach.
The process begins with standard whole-proof generation, where the language model completes the
proof code following the theorem statement prefix. The Lean assistant then verifies this code. If
an error is detected, the code is truncated at the first error message, and any subsequent code is
discarded. The successfully generated proof code is then used as a prompt for the generation of next
proof segment. The latest tactic state from the Lean prover is appended at the end of the prompt
as a comment block to provide intermediate guidance for the construction of long proofs. Notably,
our method is not restricted to resuming from the last successfully applied tactic. We formalize the
truncate-and-resume mechanism within the framework of Monte-Carlo tree search (MCTS; Coulom,
2006) in which the truncation points are scheduled by the tree search policy. In addition, we propose
a novel reward-free exploration algorithm for MCTS to address the reward sparsity issue of proof
search. We assign the tree search agent intrinsic motivation, a.k.a. curiosity (Schmidhuber, 2010), to
extensively explore the tactic state space. These algorithmic modules extend the functionality of our
whole-proof generation model to become a flexible tool for interactive theorem proving, which can
effectively utilize the proof assistant feedback and generate diverse solution candidates. In exper-
iments, we demonstrate substantial improvement of our proposed approach over baseline models,
achieving new state-of-the-art results on the test set of the high school level miniF2F benchmark
(63.5%) and the undergraduate level ProofNet benchmark (25.3%).
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2 RELATED WORK

Reinforcement Learning for Theorem Proving. Numerous prior research efforts have explored
modeling the interaction interface with the proof assistants as a Markov Decision Process (MDP),
leveraging various reinforcement learning techniques, such as using policy gradient (Zombori et al.,
2021; Crouse et al., 2021) and deep Q-learning (Fawzi et al., 2019), and involving a wide range
of formal verification systems, including E (McKeown & Sutcliffe, 2023), Coq (Kusumoto et al.,
2018), and HOL4 (Gauthier, 2020). A common choice for the reward signal is a binary indicator
denoting whether the proof has been completed. Fawzi et al. (2019) designed a temporal-difference
reward assignment according to problem structure of solving polynomial inequality. Aygün et al.
(2022) generalized the idea of hindsight experience replay (Andrychowicz et al., 2017) from goal-
reaching control to formal theorem proving, which enriches the reward supervision.

Tree Search for Theorem Proving. Integrating supervised models with search algorithms is a
classical paradigm for automated theorem proving (Rawson & Reger, 2019; 2021; Zhang et al.,
2024). For proof-step generation models, the most widely applied search strategy is best-first search
(Yang et al., 2023), in which search branches are prioritized based on the cumulative log-likelihoods
of the generated tactics. Lample et al. (2022) developed a specialized Monte-Carlo tree search algo-
rithm tailored for the Lean theorem prover, in which subgoal branches are represented as hyperedges.
The model training and tree search procedures are integrated similarly to the algorithmic framework
of AlphaZero (Silver et al., 2018). Beyond the tactic-level tree abstraction, Wang et al. (2023b)
investigated the effectiveness of using a proof-level value function in proof tree search, demonstrat-
ing that incorporating the entire proof as context is more effective than using a tactic-level state
representation.

3 LEARNING TO UTILIZE PROOF ASSISTANT FEEDBACK

3.1 SUPERVISED FINE-TUNING

In this section, we explore the methodology and processes involved in the supervised fine-tuning
(SFT) of DS-Prover-V1.5. Specifically, we incorporate intermediate tactic state information as an
auxiliary prediction task to support the truncate-and-resume mechanism used in Monte-Carlo tree
search. In addition, we augment the proof dataset from DeepSeek-Prover-V1 (Xin et al., 2024) by
adding detailed explanatory comments. This enhancement aims to improve the alignment between
natural language descriptions and Lean 4 code, thereby facilitating better formal mathematical rea-
soning. We refer to the resulting model as DS-Prover-V1.5-SFT, which is a 7B dense model trained
on around 20B tokens. Details of data processing are described in Appendix A.2.

Prompt Augmentation with Tactic State Information. To implement the truncate-and-resume
mechanism for Monte-Carlo Tree Search, we needed to extract tactic information from the code
generated by the model. We enhanced the Lean REPL (Read-Eval-Print Loop; Leanprover Commu-
nity, 2023) with data extraction tools from the LeanDojo (Yang et al., 2023) project. This allowed
us to extract tactic information in triples, which include the position of each tactic, as well as the
tactic states before and after its application. This information helps us identify the specific tactic
code that triggers verification errors (used in the expansion step for tree search, see Section 4.2).
For each tactic in a generated valid formal proof, we insert the tactic state returned by the verifier
as a comment “/- tactic state: ... -/”. During training, we include all tokens following the leading
prompt ”/- tactic state: ” as responses to calculate the supervised fine-tuning loss, while the tokens
before this comment is used as prompts and do not contribute to the training loss calculation, i.e.,
we construct an auxiliary task for the prover model to predict the current tactic state.

Thought-augmented Proof Generation. Similar to Lean-STaR (Lin et al., 2024), which per-
forms isolated chain-of-thought reasoning (Wei et al., 2022; Feng et al., 2023) before generating
each proof step, we integrate this reasoning procedure directly as comments within the proof code.
We use the DeepSeek-Coder V2 236B (Zhu et al., 2024) to enhance existing data in DeepSeek-
Prover-V1 in two ways: first, by inserting a complete natural language solution at the beginning
of the proof block, and second, by alternately inserting specific natural language steps for corre-
sponding Lean tactics. Training the model with this data format enforces it to propose complete
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mathematical reasoning at the beginning of the proof block and detailed step planning before each
tactic. This approach successfully develops new behaviors, employing delicate mathematical think-
ing to guide the generation of tactics. In the training data, two distinct guiding prompts are used
to differentiate between the CoT (Chain of Thought) mode and the non-CoT mode for proof code
completion. Examples of input and output in both modes can be found in Appendix G.

Discussion. The primary purpose of implementing these data processing procedures during the
SFT phase is to optimize the model’s performance for downstream inference-time strategy. When
applying tree search for proof generation, we leverage the model’s ability to utilize proof assistant
feedback while performing chain-of-thought reasoning. For an incomplete proof, we first append a
comment block containing the ground-truth tactic state extracted from the Lean assistant, and then
the model would perform chain-of-thought based on the full context information (see Figure 2). This
procedure emulates the strategy employed by human experts when interacting with a formal proof
assistant, combining both real-time feedback from the assistant and logical reasoning to iteratively
refine and extend the proof.

3.2 REINFORCEMENT LEARNING FROM PROOF ASSISTANT FEEDBACK

Reinforcement learning (RL) has been proven effective in enhancing the mathematical reasoning
capabilities of supervised fine-tuned language models (Shao et al., 2024). To further advance DS-
Prover-V1.5-SFT, we incorporate a reinforcement learning phase, resulting in the model DS-Prover-
V1.5-RL. This phase leverages RL to enhance performance based on verification feedback from the
Lean 4 prover. The specifics of this RL process are detailed below. Detailed training setting and
hyper-parameters refer to Appendix A.3.

Reinforcement Learning Algorithm. We employ Group Relative Policy Optimization (GRPO;
Shao et al., 2024) as our RL algorithm, which has demonstrated superior effectiveness and efficiency
compared to PPO (Schulman et al., 2017), primarily because it eliminates the necessity of training
an additional critic model. Specifically, GRPO samples a group of candidate proofs for each theorem
prompt and optimizes the model based on the relative rewards of the outputs within the group. To
ensure that both correct and incorrect proofs are included in the rollout candidates, we select a
subset of theorem statements with appropriate difficulty from the supervised fine-tuning dataset as
training prompts. These selected prompts are chosen based on the rule that DS-Prover-V1.5-SFT
achieves a moderate success rate in generating correct proofs over multiple attempts. After filtering,
we retain approximately 4.5k unique theorem statements. Each theorem is prefixed with both CoT
and non-CoT guiding prompts to enhance the model’s proof generation capabilities in both modes.
The reward function is naturally given by the formal verification system, i.e., each generated proof
receives a reward of 1 if verified as correct, and 0 otherwise. The complete RL phase processes
approximately 1.5B tokens.

Discussion. In Lean’s tactic mode, proofs are constructed through a sequence of tactics that trans-
form the proof state. This sequential nature introduces the risk of compounding errors (Ross et al.,
2011), where a single misinterpretation can lead to significant deviations from a valid proof path.
More specifically, the whole-proof generation model may have incorrect believes on intermediate
tactic states when generating long proofs. Online reinforcement learning has been proven to be an
effective method for mitigating compounding errors in the extrapolation setting of model inference
(Fujimoto et al., 2019). By continuously interacting with the environment and receiving feedback in
real-time, the model is able to refine its decision-making policy and reduce the bias inducted from
the supervised dataset.

4 EXPLORATION-ORIENTED MONTE-CARLO TREE SEARCH

4.1 TACTIC-LEVEL TREE ABSTRACTION

To implement the tree search method in the whole-proof generation setting, we introduce a proof tree
abstraction to define the tailored state and action space, leveraging a truncate-and-resume mecha-
nism. Roughly following the paradigm of Yao et al. (2023), we begin by decomposing an incomplete
proof into a sequence of tree nodes that correspond to individual proof steps, and then we utilize the
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        linarith      · -- Case 2: 2x - 10 = 0        right        linarith    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num  -- Now we compute the sum of the roots.
  rw [this]  norm_num

    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left

Whole-proof Completion

import Mathlib
import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

/-- Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$.
Show that it is 7/2.-/
theorem amc12a_2002_p1 (f : ℂ → ℂ) (h₀ : ∀ x, f x = (2 * x + 3) * (x - 4) + 
(2 * x + 3) * (x - 6)) (h₁ : Fintype (f⁻¹' {0})) : 
  ∑ y in (f⁻¹' {0}).toFinset, y = 7 / 2 := by
  -- We show that the roots of the polynomial are -3/2 and 5.
  have : (f⁻¹' {0}).toFinset = {-(3 / 2 : ℂ), (5 : ℂ)} := by
    ext x
    simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage,
      Set.mem_setOf, Finset.mem_insert, Finset.mem_singleton]

Expansion

Error from Lean 4:failed to synthesizeLinearOrder ℂ

DISCARDED

    /- tactic state:
    case a
    f : ℂ → ℂ
    h₀ : ∀ (x : ℂ), f x = (2 * x + 3) * (x - 4) + 
        (2 * x + 3) * (x - 6)
    h₁ : Fintype ↑(f ⁻¹' {0})
    x : ℂ
    ⊢ f x = 0 ↔ x = -(3 / 2) ∨ x = 5
    -/
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Figure 2: Truncate-and-Resume Mechanism in the Expansion Step of MCTS. (a) After selecting
a node, we trace its corresponding incomplete proof code prefix, which includes the file header,
initial statement, and successfully applied tactics from the ancestor nodes. (b) The language model
then generates the subsequent proof based on this prefix along with a comment block containing the
current tactic state. (c) The combined proof code (prefix and newly generated code) is verified by
the Lean 4 prover. If no errors are found, the tree-search procedure terminates. If errors are detected,
we truncate the newly generated code at the first error message, discard the subsequent code, and
parse the successful portion into tactics. (d) Each tactic is added as a new node in the search tree,
extending a chain of descendants beneath the selected node. (e) Once the tree updates are complete,
the next iteration of expansion begins by selecting an alternative candidate node, which is not limited
to leaf nodes. This process repeats until a correct proof is found or the sample budget is exhausted.

partial content stored in these tree nodes to continue the proof generation process. Figure 2 illustrates
the process of constructing a proof search tree from whole-proof generation.

Truncate: Proof Decomposition into Tree Nodes. We construct the proof search tree at the tactic
level, where each tree edge represents a single transition step of the tactic state. Initially, we submit
the entire proof the model generated to the Lean prover to parse it into tactics. We then truncate
the proof at the earliest verification error, ensuring that all subsequent tactic codes can be success-
fully applied to advance the proof towards the desired theorem. The tactic codes are segmented
into several code fractions, each containing a valid tactic code and its associated chain-of-thought
comments, corresponding to a single tree edge that represents a tactic state transition. Through this
abstraction, each tactic code is converted into a series of tree nodes, forming a path from the root to
a specific node.

Resume: Proof Generation from a Tree Node. In Lean 4, different tactics can lead to the same
tactic state, meaning each node in our proof tree can correspond to various tactic codes that achieve
the same outcome. To handle this, we store a set of these equivalent tactic codes at each node.
When the tree search agent expands a node, it randomly selects one tactic to use as a prompt for
the language model. This prompt includes the incomplete proof code ending with the chosen tactic
and the tactic state information from the Lean prover as a comment block. The fine-tuned model
(see Section 3.1) has been trained to recognize and utilize this format, using the incomplete code
augmented with tactic state comments to guide subsequent proof generation.
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4.2 INTERACTIVE THEOREM PROVING VIA MONTE-CARLO TREE SEARCH

Our proof search tree is developed using the standard Monte-Carlo Tree Search (MCTS) paradigm
(MCTS; Coulom, 2006; Browne et al., 2012), which iteratively applies four steps: Selection, Expan-
sion, Simulation, and Backpropagation. We integrate the Simulation step into Expansion because
our whole-proof generation model inherently performs a rollout from the expanded node. The de-
tailed design of the algorithm workflow is as follows.

Selection. The selection step, a.k.a.the tree policy, starts from the root node and traverses down-
ward to identify a promising node for expansion. The objective of this algorithmic step is to trade
off between exploration and exploitation (Kocsis & Szepesvári, 2006). The tree policy at a tree node
s is computed by selecting the action that maximizes the value from the set of valid operations:

TreePolicy(s) = argmax
a∈Children(s)∪{⊘}

QUCB(s, a), (1)

where the action a can be either moving to a child node, denoted by a ∈ Children(s), or expanding
the current node s, denoted by a special token a = ⊘. This approach uses a technique called virtual
node (Wang et al., 2023b), which assigns each node an imaginary child to represent the selection
of the current node s for expansion. It enables the tree search agent to continually expand non-
leaf nodes, as the action space is supported by a generative model whose output scope cannot be
determined by a fixed number of trails. The value estimation QUCB(s, a) of performing action a on
node s is composed by two components:

∀a ∈ Children(s) ∪ {⊘}, QUCB(s, a) = Q(s, a)︸ ︷︷ ︸
Exploitation

+ UCB(s, a)︸ ︷︷ ︸
Exploration

, (2)

where Q(s, a) denotes a sample-based estimation of action values derived from the selection history,
functioning as the exploitation component that retrieves high-value candidates from previous trials.
UCB(s, a) denotes the exploration bonus computed by upper confidence bounds (UCB; Auer, 2002),
which diminishes with the repeated execution of the state-action pair (s, a). More specifically,
QUCB(s, a) stands for an optimistic estimation of Q(s, a) and can serve as an upper bound with
high probability. We defer the discussion of detailed settings of node values and UCB bonus to
Section 4.3.

Expansion. The next step is invoking the proof generation model to expand the node nominated
by the selection phase. Resuming the incomplete proof codes stored on the node designated for
expansion, we perform whole-proof generation to propose a series of subsequent tactics and submit
the generated proof to Lean prover for verification. Such a trial of proof completion is equivalent to
conducting a single rollout of simulation within the standard MCTS framework. When the verifi-
cation result indicates the proof is complete, the search procedure is ready to be terminated, having
found a new proof of the desired theorem. Otherwise, we parse the verification feedback and trun-
cate the generated proof to the assertion of the earliest verification error. The remaining tactics are
transformed into a path of nodes to be merged into the search tree (see Figure 2). It is important to
note that, because we use the whole-proof generation setting—where the output is an entire proof
consisting of a sequence of tactics, rather than just the next tactic—our expansion procedure may
insert a path of tree nodes into the search tree during each iteration. This differs from the conven-
tional MCTS designed for competitive games, which typically expands only one layer of children
nodes per iteration (Silver et al., 2016; 2018; Schrittwieser et al., 2020).

Backpropagation. The final phase of each tree search iteration is to update value statistics along
the selection trajectory from the root to the expanded node, i.e., updating the values associated with
the tree policy stated in Eq. (1). Let τ = {(root, s(1)), (s(1), s(2)), (s(2), s(3)), . . . , (s(|τ |−1) =
st,⊘)} denote the selection trajectory of t-th iteration that ends with st as the expanding node.
We update QUCB(s, a) for all (s, a) ∈ τ by taking the most recent trajectory reward R(τ) into
account (details refer to Eq. (7)). The extrinsic source of rewards comes from the compiler feedback,
specifically assigning a reward of Rextrinsic(τ) = 1 for completed proofs and Rextrinsic(τ) = 0 for
unsolved ones. In Section 4.3, we will introduce an intrinsic reward mechanism to augment the
reward assignment that enhances the agent’s incentive for exploration.
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4.3 INTRINSIC REWARDS FOR PROOF SEARCH

In the search problem of formal theorem proving, the extrinsic rewards are extremely sparse, i.e., the
search agent only obtains non-zero rewards when the proof is completely solved. More specifically,
the proof search process forms a tree structure with only a narrow set of leaves delivering non-
zero rewards, which matches a famous hard-exploration case (Krishnamurthy et al., 2016) in the
literature of statistical reinforcement learning. To promote exploration in sparse-reward sequential
decision making, one classical paradigm is constructing intrinsic rewards (Schmidhuber, 2010) that
encourage the agent to not only optimize extrinsic rewards but also acquire general information
about the interactive environment (Bellemare et al., 2016; Houthooft et al., 2016; Pathak et al., 2017;
Burda et al., 2019). In this section, we present our intrinsic-reward-driven exploration algorithm,
RMax applied to Tree Search (RMaxTS), to incorporate reward-free exploration in the proof search
problem.

RMax applied to MCTS. We adopt RMax (Brafman & Tennenholtz, 2002), a classical explo-
ration mechanism, to construct intrinsic rewards for Monte-Carlo tree search. The core idea of
RMax is to explore a broad coverage of the state space. The agent awards itself a maximal amount
of reward upon reaching an unseen state. In the context of proof search, where no extrinsic re-
wards are provided until the proof is completed, our algorithmic procedure resembles ZeroRMax
(Jin et al., 2020), in which the agent’s exploration is driven solely by intrinsic rewards, i.e., setting
R(τ) = Rintrinsic(τ). The intrinsic reward of a tree expansion step is determined by whether a new
node is added to the search tree,

Rintrinsic(τ) = I [at least one new node is added to the search tree] , (3)

where τ denotes the most recent selection trajectory that requires a reward assignment for back-
propagation. This exploration strategy prioritizes the expansion of nodes where the prover model
generates tactics that lead to a diverse range of tactic states. As multiple Lean codes can result in the
same transition of intermediate states, this heuristics can potentially reduce redundant generation
and improve sample efficiency.

UCB for Non-stationary Rewards. The common setting of UCB exploration bonus for Monte-
Carlo tree search is using UCB1 (Auer et al., 2002):

QUCB1(s, a) =
W (s, a)

N(s, a)
+

√
2 ln

∑
a′ N(s, a′)

N(s, a)
, (4)

W (s, a) =
∑

τ∈Γ(s,a) R(τ), (5)

N(s, a) = |Γ(s, a)| , (6)

where Γ(s, a) = {τ | (s, a) ∈ τ} denotes the list of tree-policy trajectory τ containing (s, a) as
an intermediate selection step. To facilitate discussions, we organize the list Γ(s, a) = {τ1, τ2, · · · }
such that newly collected trajectories have larger subscript indices. In this work, we propose to
use an alternative variant of UCB method. Note that the derived intrinsic reward in Eq. (3) is a
non-stationary reward signal whose expected value decays with the progress of exploration. That is
because it becomes definitely harder to discover new nodes with unseen tactic states as the search
tree expands through sophisticated exploration. To tackle the non-stationarity, we consider dis-
counted upper confidence bounds (DUCB; Garivier & Moulines, 2011), which uses a discount factor
γ ∈ (0, 1) to smoothly drop those outdated feedback records:

QDUCB(s, a) =
Wγ(s, a)

Nγ(s, a)
+

√
2 ln

∑
a′ Nγ(s, a′)

Nγ(s, a)
, (7)

Wγ(s, a) =
∑N(s,a)

t=1 γN(s,a)−tR(τt), (8)

Nγ(s, a) =
∑N(s,a)−1

t=0 γt, (9)

where newly received feedback would be assigned a larger weight in the value estimation. In prac-
tice, we set γ = 0.99. Note that the role of discount factor γ in DUCB differs from its role in value
iteration for infinite-horizon MDPs. The discounting is applied to tree search iterations rather than
to the action-step horizon within a single trajectory.
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ProofNet-test
RL (CoT) RL (non-CoT) SFT (CoT) SFT (non-CoT) Model Pass@128

miniF2F-test ProofNet-test

Base (3-shot) 29.7%± 0.5% 9.7%± 0.7%

SFT (non-CoT) 49.8%± 0.3% 15.9%± 0.5%
SFT (CoT) 50.4%± 0.4% 15.9%± 0.6%

RL (non-CoT) 50.5%± 0.6% 17.5%± 0.5%
RL (CoT) 51.6%± 0.5% 18.2%± 0.5%

Figure 3: Comparison of model capabilities at different training stages. ”CoT” and ”non-CoT”
refer to evaluations using two guiding prompts. The shaded region represents the range of standard
deviations around the mean values. The notation µ ± σ indicates the average accuracy µ and the
standard deviation σ, estimated from 16 independent runs of sampling evaluation.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the theorem-proving capabilities of DS-Prover-V1.5 using two distinct
benchmarks: miniF2F (Zheng et al., 2022), which encompasses high-school level exercises and
competition problems, and ProofNet (Azerbayev et al., 2023), which pertains to undergraduate-
level theorems. We present the results for both whole-proof generation and Monte-Carlo tree search
methodologies. Detailed experiment settings are described in Appendix B.1.

5.1 MAIN RESULTS

Results on miniF2F and ProofNet. Table 1 and 2 provides a comparative analysis of various
theorem-proving methods on the miniF2F and ProofNet benchmarks. In the single-pass whole-proof
generation setting, DS-Prover-V1.5-RL achieved the highest pass rate at 60.2% on miniF2F-test and
at 23.7% on ProofNet-test, significantly outperforming all advanced baselines. When combining
DS-Prover-V1.5-RL with RMaxTS, the new state-of-the-art are achieved, solving 62.7% problems
from miniF2F-test and 25.3% problems from ProofNet-test.

General Enhancement of Reinforcement Learning. To support the claim that online reinforce-
ment learning from verification feedback generally enhances the model capabilities, we compare
our final model to the SFT-only version using a large sample budget. The comparison results are
presented as two columns in Table 4. DS-Prover-V1.5-RL consistently outperforms the SFT model
across all generation settings, regardless of whether the chain-of-thought strategy is applied. The
results also indicate that the improvements gained from conducting online RL is orthogonal to those
achieved through RMaxTS, which can be further combined to boost the performance. By integrating
both CoT prompting and RMaxTS, DS-Prover-V1.5-RL achieves a pass rate of 62.7% on miniF2F-
test. This performance shows a notable 3.7% improvement over the SFT model, highlighting the
critical role of reinforcement learning in enhancing the overall effectiveness of the proof completion
model.

CoT, non-CoT, and Mixture Strategy. We compare the performance of two generation modes,
i.e., non-CoT and CoT, on miniF2F-test dataset. The results, shown in Table 4, indicate that the ad-
vantage of CoT over the non-CoT mode is amplified as the sample budget increases. This suggests
that the incorporation of natural language chain-of-thought can diversify the planning pathways of
theorem proving, potentially leading to a broader range of reasoning strategies and more innovative
solutions. Results also show that these two modes have complementary advantages across different
problems. The model’s theorem proving strategy in the CoT mode is more systematic and proactive
in mathematical thinking, while in the non-CoT mode, the model can efficiently use Lean high-level
tactics to solve computational problems that can be addressed within Lean’s automation mecha-
nisms. To leverage these advantages, we consider a mixture strategy, denoted by non-CoT & CoT
in Table 4, allocates half of sample budget to the CoT mode and the remains to the non-CoT mode.
This simple combination of two guiding prompts shows great promise in further bootstrapping the
performance of our proof completion model, achieving a pass rate of 63.5% on miniF2F-test. In Ap-
pendix H, we present example problems that illustrate the different advantages of the two generation
modes.
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Method Sample budget miniF2F-test

Single-pass Whole-Proof Generation Methods

DeepSeek-Prover-V1 (Xin et al., 2024) 128 46.1%± 0.5%
16× 4096 50.0%

DS-Prover-V1.5-SFT
128 50.4%± 0.4%
3200 53.3%± 0.5%

16× 6400 57.4%

DS-Prover-V1.5-RL
128 51.6%± 0.5%
3200 54.9%± 0.7%

16× 6400 60.2%

Tree Search Methods

GPT-f (Polu et al., 2022) 64× 8× 512 36.6%
Hypertree Proof Search (Lample et al., 2022) 64× 5000 41.0%
Lean-STaR (Lin et al., 2024) 64× 1× 50 46.3%
InternLM2-Math-Plus-7B (Ying et al., 2024b) 1× 32× 100 43.4%

InternLM2-StepProver (Wu et al., 2024) 1× 32× 100 48.8%
64× 32× 100 54.5%

DS-Prover-V1.5-SFT + RMaxTS
1× 3200 53.5%± 0.4%
16× 6400 59.0%
32× 6400† 60.2%

DS-Prover-V1.5-RL + RMaxTS
1× 3200 55.0%± 0.7%
16× 6400 62.7%
32× 6400† 63.5%

Table 1: Comparison with state-of-the-art methods on the miniF2F-test dataset. Unless otherwise
specified, DS-Prover-V1.5-SFT and RL employ CoT mode prompting. The notation µ±σ indicates
the average accuracy µ and the standard deviation σ. The symbol † indicates performance using a
mixture strategy with two guiding prompts (see Section 5.1 for details). More baseline results are
presented in Table 3 in Appendix.

Method Sample budget ProofNet
valid‡ test all

Single-pass Whole-Proof Generation Methods

DS-Prover-V1.5-SFT
128 19.9%± 0.4% 15.9%± 0.6% 17.9%± 0.3%
3200 20.7%± 0.7% 21.0%± 0.9% 20.9%± 0.6%

4× 6400 22.2% 23.7% 22.9%

DS-Prover-V1.5-RL
128 20.1%± 0.5% 18.2%± 0.5% 19.1%± 0.4%
3200 21.4%± 0.3% 22.0%± 0.5% 21.7%± 0.4%

4× 6400 21.6% 23.7% 22.6%

Tree Search Methods

ReProver (Yang et al., 2023) - - - 13.8%
InternLM2-StepProver (Wu et al., 2024) 1× 32× 100 - - 18.1%

DS-Prover-V1.5-SFT + RMaxTS 1× 3200 22.2%± 0.7% 21.6%± 0.2% 21.9%± 0.4%
4× 6400 23.8% 25.8% 24.8%

DS-Prover-V1.5-RL + RMaxTS 1× 3200 22.0%± 0.3% 21.5%± 0.8% 21.8%± 0.4%
4× 6400 25.4% 25.3% 25.3%

Table 2: Comparing with state-of-the-arts on the ProofNet dataset. The notation µ± σ indicates the
average accuracy µ and the standard deviation σ. ‡ Note that the validation set of ProofNet is used

to perform expert iteration in supervised fine-tuning.
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RMaxTS
RMaxTS (w/o state)
RMaxTS (UCB1)
UCT (w/o Rintrinsic)
w/o Tree Search

Sample budget miniF2F-test

Single-Pass Generation 4 × 6400 58.4% ± 0.5%
16 × 6400 60.2%

UCT 4 × 6400 58.2% ± 0.3%
(without Rintrinsic) 16 × 6400 61.1%

RMaxTS 4 × 6400 58.6% ± 0.3%
(DUCB → UCB1) 16 × 6400 60.7%

RMaxTS 4 × 6400 58.4% ± 0.3%
(without tactic state) 16 × 6400 61.1%

RMaxTS 4 × 6400 59.6% ± 0.6%
16 × 6400 62.7%

Figure 4: A modular ablation study on the design of RMaxTS. The experiments are conducted on
the miniF2F-test dataset with DS-Prover-V1.5-RL using the CoT mode. The left panel presents the
curves of Pass@K accuracy within 6400 generation samples. The results with a larger sample size
are presented in the right panel. The shaded regions represent one standard deviation around the
mean accuracy. The notation µ± σ indicates the average accuracy µ and the standard deviation σ.

5.2 ABLATION STUDIES ON RMAXTS

Intrinsic Rewards and Discounted UCB. We investigate the effectiveness of two core compo-
nents of RMaxTS, i.e., the intrinsic rewards defined in Eq. (3) and the discounted upper confidence
bound stated in Eq. (7). We start with a baseline implementing the standard UCT algorithm (Koc-
sis & Szepesvári, 2006) without intrinsic rewards, in which the exploration is driven exclusively
by the UCB bonus. Note that, since no non-zero rewards are provided for this baseline, all vari-
ants of the UCB formula become equivalent, as node selection is determined solely by visitation
counts. The experimental results in Figure 4 show that, in the absence of intrinsic rewards, the per-
formance of UCT (without Rintrinsic) degenerates into a level comparable to that of non-search meth-
ods. Furthermore, we consider RMaxTS using the standard UCB1 (refer to Eq. (4)) instead of the
discounted UCB, denoted by RMaxTS (DUCB→ UCB1). The results indicate that the performance
of RMaxTS with UCB1 bonus is also moderate, comparable to that of UCT (without Rintrinsic). That
is because UCB1 is designed to guarantee asymptotic performance through exhausted exploration
(Auer et al., 2002) assuming the sample size to be sufficiently large. In contrast, the discounted UCB
can accelerate the value propagation of non-stationary intrinsic rewards.

Guidance of Tactic State Information. When expanding a tree node, we concatenate the in-
termediate tactic state information as a comment block to the incomplete code to guide the proof
completion. With the provided auxiliary information, the proof completion model can enhance its
internal representation of the tactic state, offering intermediate guidance for long-horizon planning.
To demonstrate this advantage, we present experiments on RMaxTS that performs code comple-
tion directly from the raw incomplete code without accessing tactic state information, denoted by
RMaxTS (without tactic state) in Figure 4. The results indicate that the performance gain from
applying tree search becomes moderate in the absence of tactic state information, especially when
tackling hard problems that require a large amount of samples.

6 CONCLUSION

The framework of DS-Prover-V1.5 is designed to establish an AlphaZero-like pipeline for formal
theorem proving. The use of expert iteration and synthetic data mirrors the core trial-and-error loop
of reinforcement learning, with the compiler oracle serving as the world model to provide environ-
mental supervision. Within the RL paradigm, the integrated tree search module has proven to be
highly effective in advancing superhuman performance across various domains (Silver et al., 2016;
Fawzi et al., 2022; Lutz et al., 2023). A promising future direction is training a critic model to assess
incomplete proofs and prune search branches of proofs. Such a partial-proof critic model would im-
plicitly perform temporal credit assignment (Sutton, 1984), decomposing proof-level feedback into
step-wise value differences (Arjona-Medina et al., 2019). Developing critic models for assessing
long planning paths and providing guidance rewards presents a crucial and challenging problem (Ng
& Russell, 2000; Sorg et al., 2010) that warrants further investigation.
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A IMPLEMENTATION DETAILS

A.1 PRE-TRAINING

To enhance our language model’s proficiency in generating formal proofs and reasoning through
mathematical language, we further pre-train our base model from DeepSeekMath-7B-Base (Shao
et al., 2024). This refinement involved training on high-quality datasets that include both code and
natural language mathematical content. We specifically focused on formal languages widely used
in proof assistants, such as Lean, Isabelle, and Metamath. We designate this improved model as
DS-Prover-V1.5-Base.
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Potential Data Leak. When constructing our SFT dataset, we ensure that all Lean statements in
the training set have distinct initial states from those in the test set. The most uncontrollable potential
source of data leakage stems from the pre-training phase. To the best of our knowledge, the leakage
risk of Lean statement from miniF2F and ProofNet is limited, as these benchmarks were specifically
designed for ML research and were not gathered from arbitrary sources on the internet. On the
other hand, potential leakage of natural language statements from math problems may exist, but it
is generally considered acceptable, as the formalization of natural language proof to Lean codes is
one of the core challenges of formal theorem proving.

A.2 SUPERVISED FINE-TUNING

Data Curation. We develop a comprehensive Lean 4 code completion dataset for the supervised
fine-tuning. This dataset includes synthetic proof code derived from a wide range of formal theo-
rems. These theorems are sourced from various projects, such as the standard Lean 4 math library
Mathlib4 (Mathlib Community, 2020), synthetic theorems from DeepSeek-Prover-V1 (Xin et al.,
2024) and Lean Workbook (Ying et al., 2024a), and validation sets from the miniF2F (Zheng et al.,
2022) and ProofNet (Azerbayev et al., 2023) benchmarks. To augment the formal proof data, we
employed an expert iteration process (Polu & Sutskever, 2020). This involves generating proofs
using the language model, verifying the generated proof data, retraining the model with the verified
data, and then using the optimized model to generate additional proof data. Between each itera-
tion, we use DeepSeek-Coder V2 236B (Zhu et al., 2024) to annotate the thought process before
the proof code as comments. Finally, we tailor these data for the truncate-and-resume mechanism
for Monte-Carlo Tree Search (details in Section 4.1). The resulting proof dataset consists of 9,645k
sequences.

Training Setting. We conduct supervised fine-tuning based on the pre-trained model and train
for 9B tokens, using a batch size of 2,048 and a constant learning rate of 1e-4. The training process
begins with 100 warm-up steps to stabilize the learning dynamics. Training examples are randomly
concatenated to form sequences, with a maximum context length of 4,096 tokens. The entire SFT
phase processes 2600 steps and around 20B tokens.

A.3 REINFORCEMENT LEARNING FROM PROOF ASSISTANT FEEDBACK

Prompts. In the reinforcement learning stage, we use a subset of theorem statements from the
supervised fine-tuning dataset as training prompts. We select theorems for which DS-Prover-V1.5-
SFT has a moderate success rate in generating correct proofs upon multiple attempts. This ensures
that the model has room for improvement while still being able to receive positive feedback. After
filtering, we retain approximately 4.5k unique theorem statements. Each theorem is prefixed with
both CoT and non-CoT guiding prompts to enhance the model’s proof generation capabilities in
both modes.

Rewards. When training LLMs via RL, a trained reward model typically provides feedback sig-
nals. In contrast, formal theorem proving benefits from the rigorous verification of generated proofs
by proof assistants, offering a significant advantage. Specifically, each generated proof receives a
reward of 1 if verified as correct, and 0 otherwise. While this binary reward signal is accurate, it is
also sparse, especially for theorems that are challenging for the supervised fine-tuned model. To mit-
igate this sparsity, we select training prompts that are challenging yet achievable for the supervised
fine-tuned model, as described above.

Reinforcement Learning Algorithm. We employ the Group Relative Policy Optimization
(GRPO; Shao et al., 2024) as our RL algorithm, which has demonstrated superior effectiveness
and efficiency compared to PPO (Schulman et al., 2017), primarily because it eliminates the neces-
sity of training an additional critic model. Specifically, GRPO samples a group of candidate proofs
for each theorem prompt and optimizes the model based on the relative rewards of the outputs within
the group. Given a group of outputs {o1, · · · , oG} regarding an input question q, the objective of
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GRPO is stated as follows:

JGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
Lclip(oi, θ)− βDKL[πθ ∥ πθref ]

]
,

Lclip(oi, θ) = min

(
πθ(oi,t | q, oi,<t)

πθref(oi,t | q, oi,<t)
Âi,t, clip

(
πθ(oi,t | q, oi,<t)

πθref(oi,t | q, oi,<t)
Âi,t, 1− ϵ, 1 + ϵ

))
,

where Âi,t =
ri−mean(r)

std(r) is the normalized advantage with respect to the sampling-average baseline.
Our prompt selection strategy is designed to likely include both correct and incorrect proofs among
the candidates, aligning well with the group-relative nature of GRPO and thereby enhancing the
training process.

Training Setting. We conduct RL training based on the SFT model, which serves as both the
initial model and the reference model for imposing the Kullback-Leibler (KL) divergence penalty.
We use a constant learning rate of 5e-6, and the KL penalty coefficient is set to 0.02. For each
theorem, we sample a group of 32 candidate proofs, with maximum length set to 2,048. The training
batch size is configured to 512. The entire RL phase processes 800 steps and around 1.5B tokens.

A.4 PARALLELIZATION OF MONTE-CARLO TREE SEARCH

To enhance the efficiency of Monte-Carlo Tree Search (MCTS), we implement several established
parallelization techniques as described by Chaslot et al. (2008).

• Root Parallelization: We deploy 256 MCTS runners per node, with one language model
per GPU and a batch size of 512 for proof generation. The Lean prover is invoked through
REPL and executed on a cluster with thousands of CPU cores, where each proof verifica-
tion task is handled by an individual process, created and terminated in a sandbox. Both
proof generation by language models and verification by Lean provers are handled asyn-
chronously. This setup allows MCTS runners to perform concurrent tree search operations,
significantly accelerating the process.

• Tree Parallelization: We manage each search tree with 32 thread workers to parallelize
the tree iteration steps. This method effectively schedules and balances the tasks of proof
generation and Lean verification. Each thread worker iteratively performs the tree search
loop by selecting a candidate node for expansion, invoking the language model to generate
the proof, verifying the generated proof with the Lean prover, and performing backpropa-
gation.

• Virtual Loss: To encourage diverse node selection among concurrent thread workers, we
assign a virtual reward R(τ) = 0 for ongoing iterations. This involves backpropagating a
reward of 0 temporarily and updating it to the true reward upon completion. This strategy
promotes exploration of different nodes for expansion, thereby enhancing the overall search
efficiency.
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A.5 PSEUDO CODE OF RMAXTS

Algorithm 1 RMax applied to Tree Search (RMaxTS)
1: function MCTS(root, sample budget)
2: for t = 1 to sample budget do
3: node← SELECT(root)
4: node′ ← EXPAND(node, t)
5: reward← I[node′.time stamp ̸= t] ▷ RMax intrinsic reward (Eq. (3))
6: BACKPROPAGATE(node, reward)
7: end for
8: return BESTCHILD(root)
9: end function

10: function SELECT(node)
11: A ← Children(node) ∪ {⊘} ▷ ⊘ denotes the virtual node
12: child← argmaxa∈A QDUCB(node, a) ▷ Discounted UCB (Eq. (7))

where QDUCB(node, a) =
Wγ(node, a)

Nγ(node, a)
+

√
2 ln

∑
a′∈A Nγ(node, a′)

Nγ(node, a)

13: if child = ⊘ then
14: return node ▷ select the virtual node
15: else
16: return SELECT(child)
17: end if
18: end function

19: function EXPAND(node, t)
20: Resume the partial code stored in node
21: Generate a new proof through code completion
22: Truncate the generated proof to the first compilation error
23: Segment the valid code into a series of state transitions (node.state→ s1 → · · · → sK)
24: for k = 1 to K do
25: if node has a child with state sk then ▷ move to an existing child
26: node← child where child ∈ Children(node) ∩ child.state = sk
27: else ▷ create a new tree node
28: create a new tree node node′

29: node′.state← sk
30: node′.time stamp← t
31: Children(node)← Children(node) ∪ {node′}
32: node← node′

33: end if
34: end for
35: return node
36: end function

37: function BACKPROPAGATE(node, reward)
38: Nγ(node,⊘)← γ ·Nγ(node,⊘) + 1 ▷ update the virtual node
39: Wγ(node,⊘)← γ ·Wγ(node,⊘) + reward
40: while node.parent is not null do
41: child← node
42: node← node.parent
43: Nγ(node, child)← γ ·Nγ(node, child) + 1 ▷ update the tree path
44: Wγ(node, child)← γ ·Wγ(node, child) + reward
45: end while
46: end function
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A.6 COMPARISON WITH EXISTING METHODS

In this section, we compare our proposed proof tree search method, which introduces a novel
truncate-and-resume mechanism for whole-proof generation, with existing approaches. Current
methods for using language models in formal mathematics proof search generally fall into two main
strategies:

• Multi-pass proof-step generation: This strategy breaks down the proving process into
multiple episodes of tactic generation and verification, typically following a tree search
pattern. It involves generating and verifying one tactic at a time, repeating the process
for the next tactic until no proof goals remain. Notable examples include GPT-f (Polu &
Sutskever, 2020; Polu et al., 2022), Thor (Jiang et al., 2022a), ReProver (Yang et al., 2023),
Hypertree Proof Search (Lample et al., 2022), and InternLM2-StepProver (Wu et al., 2024).

• Single-pass whole-proof generation: This approach generates and verify an entire proof in
one attempt. If the proof is incorrect, the model generates a new proof in the next attempt.
Methods in this category include DSP (Jiang et al., 2022b), Subgoal-Prover Zhao et al.
(2023), LEGO-Prover (Wang et al., 2023a), Lyra (Zheng et al., 2023), and miniCTX (Hu
et al., 2024).

Our proof tree search method uniquely bridges these two strategies, offering a novel hybrid ap-
proach. It starts with whole-proof generation, similar to the single-pass approach, but extends this by
implementing a sophisticated truncate-and-resume mechanism. This process involves truncating the
generated proof to its successful initial segment, parsing this segment into individual tactics, and re-
suming the tree search from this point. This iterative process effectively implements a Monte-Carlo
Tree Search, seamlessly integrating single-pass whole-proof generation with multi-pass proof-step
generation. Consequently, we can train a single model with nearly identical objectives to support
both strategies simultaneously. Our experimental results demonstrate that this unified approach
achieves superior performance in both settings. By combining the strengths of existing methods
and introducing innovative techniques, our method offers a more versatile and effective solution for
formal mathematics proof search, potentially paving the way for future advancements in this field.

B EXPERIMENT SETTINGS

B.1 EVALUATION

Formal Verification Environment. The Lean theorem prover is a state-of-the-art proof assistant
and functional programming language, primarily designed for formalizing mathematics. Developed
by Leonardo de Moura at Microsoft Research (Moura & Ullrich, 2021), Lean combines dependent
type theory with a versatile meta-programming framework, facilitating the creation of proofs and the
development of domain-specific tactics. Its open-source nature, coupled with an extensive library
ecosystem such as mathlib (Mathlib Community, 2020), has established Lean as a cornerstone
of modern mathematical formalization (Avigad, 2023). Lean has hosted some of the world’s most
sophisticated formalizations, including scheme theory (Buzzard et al., 2021), forcing (Han & van
Doorn, 2019), and the ongoing project for Fermat’s Last Theorem (Buzzard, 2024).

A defining feature of Lean is its tactic-based framework, which enables the construction of proofs
through high-level, human-readable commands that automate common reasoning patterns. Tactics
allow users to decompose complex goals into simpler subgoals and guide the proof process inter-
actively. Moreover, Lean’s extensibility supports the creation of custom tactics tailored to specific
domains, offering significant optimizations and abstractions. This tactic-based approach bridges the
gap between the machine’s precision and human intuition, making Lean exceptionally effective for
large-scale formalizations and interactive theorem proving.

Below is an example that demonstrates the application of tactics in Lean 4 and their corresponding
tactic states. First, we declare a theorem statement to prove:

import Mathlib

theorem Add_Assoc (a b c : Nat) : a + (b + c) = (a + b) + c := by sorry
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Here, sorry serves as a placeholder for the actual proof. Lean provides the initial tactic state as
feedback:

a b c : N
⊢ a + (b + c) = a + b + c

To complete the proof, we can replace it with tactics like ring or rw [Nat.add assoc] to
resolve the goal. After applying one of these tactics, Lean responds with No goals, indicating
that all objectives have been satisfied.

In this work, the transitions between tactic states are traced using the REPL (Leanprover Commu-
nity, 2023), and these transitions are used as inputs for training language models. Notably, the tran-
sitions between tactic states employed in our proof search are shared across all tactic-based proof
assistants, including Isabelle (Paulson, 1994) and Coq (Coq Development Team, 2024). Conse-
quently, there are no theoretical barriers to adapting our methods for use with other proof assistants.

Benchmarks. We evaluate theorem-proving performance on the following benchmarks to com-
pare model capabilities after each training stage:

• MiniF2F (Zheng et al., 2022) focuses on formal problem-solving skills for high-school
level exercises and competitions, such as AMC, AIME, and IMO, with an emphasis on
algebra and number theory. The benchmark includes 244 validation and 244 test problems,
originally in Lean 3 and manually converted to Lean 4.9.0, based on the version provided
by Yang (2023).

• ProofNet (Azerbayev et al., 2023) evaluates formal theorem-proving capabilities at the un-
dergraduate level in mathematics. It comprises 185 validation and 186 test problems from
widely-used undergraduate textbooks, covering real and complex analysis, linear algebra,
abstract algebra, and topology. These problems were initially in Lean 3 and manually con-
verted to Lean 4.9.0.

Prompting Configurations. For each proof attempt of DS-Prover-V1.5-Base, we independently
sample three proof demonstrations from the validation set to construct the few-shot prompts. For
the miniF2F benchmark, we use human-written proofs from Yang (2023), while for the ProofNet
benchmark, we use correct proofs generated by DS-Prover-V1.5-RL as few-shot demonstrations.
For DS-Prover-V1.5-SFT and DS-Prover-V1.5-RL, we employ two types of guiding prompts: one
that encourages chain-of-thought (CoT) reasoning before each proof step, and one that does not
(non-CoT). Detailed examples are provided in Appendix G.

Evaluation Settings. We evaluate theorem-proving performance using the pass@K accuracy met-
ric, which measures the model’s success in generating a correct proof within K attempts. Each
model is deployed on a single A100-40G GPU, utilizing the vLLM framework (Kwon et al., 2023)
for sample generation. The sampling parameters are set with a temperature of 1, a top-p value of
0.95, and a maximum token limit of 2,048. The generated proofs are then verified using the Lean
4 theorem prover. For this verification, we import Mathlib4 (Mathlib Community, 2020) and Ae-
sop (Limperg & From, 2023) to access predefined premises and tactics. The verification process
is subject to a time limit of 300 seconds. The largest-scale experiment presented in this paper,
RMaxTSwith a 32 × 6400 sample size and CoT generation mode on the miniF2F-test dataset, re-
quires 48 A100 GPUs and approximately 2000 CPUs to complete within 48 hours.

Baselines. We present a comparative analysis of DS-Prover-V1.5 against previous state-of-the-art
language models, highlighting its performance and advancements.

• General-purpose Models: GPT-3.5 and GPT-4 (OpenAI, 2023) are advanced generative
AI models developed by OpenAI, known for their effectiveness across diverse tasks, in-
cluding code generation. Despite not being specifically designed for theorem proving, their
extensive parameter scales provide significant capabilities. The evaluation of these models
in formal theorem proving is facilitated by COPRA (Thakur et al., 2023), an in-context
learning agent that leverages these large language models to propose tactic applications.
Additionally, we examine Llemma (Azerbayev et al., 2024), a series of language models

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

trained on extensive general mathematical corpora, commonly used as the base model for
formal theorem proving.

• Specialized Models for Formal Mathematics: GPT-f (Polu & Sutskever, 2020; Polu
et al., 2022) represents an initial effort to apply Transformers (Vaswani et al., 2017) to
proof-step generation for theorem proving tasks, utilizing a best-first search module to con-
struct complete proofs. Subsequent advancements include ReProver (Yang et al., 2023),
LLMStep (Welleck & Saha, 2023), and Lean-STaR (Lin et al., 2024). Hypertree Proof
Search (Lample et al., 2022) explores the use of Monte Carlo tree search in formal the-
orem proving using Lean. Concurrent works, InternLM2-Math (Ying et al., 2024b) and
InternLM2-StepProver (Wu et al., 2024), also demonstrate outstanding performance.

Metric. We compare the performance of DS-Prover-V1.5 with state-of-the-art models using the
pass@K accuracy metric, which evaluates the model’s ability to generate a correct proof within
K attempts. We display the sample budget K according to the the following rules to align the
computation budget across different generation schemes.

• For single-pass sampling methods, we define the sample budget K as the total number
of proofs generated, with large values of K factorized for the ease of comparison to tree
search methods.

• For best-first-search methods, following the notation of Azerbayev et al. (2024), we present
K = N × S × T where N denotes the number of best-first-search attempts, S denotes the
number of tactics generated for each expansion, and T denotes the number of expansion
iterations.

• For tree search methods, e.g., RMaxTS and HTPS (Lample et al., 2022), we present K =
N × T where N denotes the number of tree search attempts, and T denotes the number of
model generations invoked in tree expansions.

Confidence Interval. We report pass@K accuracy as µ ± σ where µ indicates the average ac-
curacy and σ denotes the standard deviation. The average score and the standard deviation are
computed by running several independent trials (using different random seeds) to replicate the sam-
pling and evaluation process. Let {ai}ni=1 denote the evaluation results of n independent runs.
The average accuracy is calculated by µ = 1

n

∑n
i=1 ai. The standard deviation is calculated by

σ =
√

1
n

∑n
i=1(ai − µ)2. For the miniF2F dataset, experiments with a sample budget below

4 × 6400 are based on 16 independent runs, while those with a budget of exactly 4 × 6400 are
estimated from 4 independent runs. For the ProofNet dataset, the threshold is set at 3200. The
results of ProofNet with a sample budget below 3200 are derived from 16 independent runs, while
those with a sample budget of exactly 3200 are estimated from 4 independent runs.

Dataset Sample budget #Runs Dataset Sample budget #Runs

miniF2F
< 4× 6400 16

ProofNet
< 3200 16

= 4× 6400 4 = 3200 4
> 4× 6400 1 > 3200 1

Checkpoint Selection. The final models are selected from three training runs using different ran-
dom seeds. During each training run, the model is evaluated every 100 training steps, with the
Pass@128 score calculated for the miniF2F-test. Due to computational resource constraints, the
training-time evaluation is conducted using a single trial of 128 samples. We select the checkpoint
that achieves peak performance over several consecutive steps as the candidate for a specific training
run. Upon completing three training runs, we obtain three checkpoint candidates. We then perform
evaluation using 16 independent trials to compute the mean and standard deviation. The results
demonstrate that the effects of random seeds are marginal compared to the overall improvement
achieved during the SFT and RL phases.
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minF2F-test SFT phase (Pass@128)
selected seed-2 seed-3

CoT 50.6%± 0.5% 50.3%± 0.3% 49.9%± 0.4%
non-CoT 49.8%± 0.4% 48.8%± 0.4% 49.6%± 0.3%

minF2F-test RL phase (Pass@128)
selected seed-2 seed-3

CoT 51.4%± 0.5% 51.2%± 0.4% 51.2%± 0.5%
non-CoT 50.5%± 0.4% 50.7%± 0.5% 50.2%± 0.4%

To mitigate the risk of overestimating our evaluation results, we perform cross-validation to en-
sure the reported scores are robust and reliable. Specifically, we first conduct 2 (modes) ×
3 (train seeds)× 16 (eval seeds)× 128 samples to compare the Pass@128 scores of three seed can-
didate. Upon selecting the final model, we perform an additional 2 (modes)×16 (eval seeds)×128
samples to recalculate the µ ± σ scores for the chosen model. The recomputed scores are then
reported in the main text. Note that the recomputed scores provide an unbiased evaluation of the
chosen model, as the evaluation is conducted independently from the selection process. This ad-
ditional evaluation round is crucial to ensure the reported results are rigorous, as maximizing over
random variables inherently leads to an overestimation of expected values.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.2 SUPPLEMENTARY EXPERIMENT RESULTS

Method Model size Sample budget miniF2F-test

Single-pass Whole-Proof Generation Methods

TheoremLlama [64] 8B 128 33.6%

DeepSeek-Prover-V1 [68] 7B 128 46.1%± 0.5%
16× 4096 50.0%

DS-Prover-V1.5-Base 7B
128 29.7%± 0.5%
3200 39.2%
6400 42.2%

DS-Prover-V1.5-SFT 7B

32 48.2%± 0.6%
64 49.6%± 0.7%
128 50.4%± 0.4%
3200 53.3%± 0.5%

4× 6400 55.8%± 0.7%
16× 6400 57.4%

DS-Prover-V1.5-RL 7B

32 50.0%± 0.5%
64 50.7%± 0.4%
128 51.6%± 0.5%
3200 54.9%± 0.7%

4× 6400 58.4%± 0.6%
16× 6400 60.2%

Tree Search Methods

COPRA (Code Llama) [60] 1× 500 5.7%
COPRA (GPT-3.5) [60] 1× 60 9.0%
COPRA (GPT-4) [60] 1× 60 26.6%
Llemma-7B [8] 7B 1× 32× 100 26.2%
Llemma-34B [8] 34B 1× 32× 100 25.8%
ReProver [70] 229M - 26.5%
LLMStep [66] 2.8B 1× 32× 100 27.9%
GPT-f [48] 770M 64× 8× 512 36.6%
Hypertree Proof Search [35] 600M 64× 5000 41.0%
Lean-STaR [38] 7B 64× 1× 50 46.3%
InternLM2-Math-7B [73] 7B 1× 32× 100 30.3%
InternLM2-Math-Plus-7B [73] 7B 1× 32× 100 43.4%

InternLM2-StepProver [67] 7B 1× 32× 100 48.8%
64× 32× 100 54.5%

DS-Prover-V1.5-SFT + RMaxTS 7B

1× 3200 53.5%± 0.4%
4× 6400 56.3%± 0.3%
16× 6400 59.0%
32× 6400† 60.2%

DS-Prover-V1.5-RL + RMaxTS 7B

1× 3200 55.0%± 0.7%
4× 6400 59.6%± 0.6%
16× 6400 62.7%
32× 6400† 63.5%

Table 3: Comparison with state-of-the-art methods on the miniF2F-test dataset. The notation µ±σ
denotes the average accuracy µ and the standard deviation σ. Unless otherwise specified, DS-Prover-
V1.5-Base results are based on 3-shot prompting, while DS-Prover-V1.5-SFT and RL employ CoT
mode prompting. The symbol † indicates performance using a mixture strategy with two guiding
prompts.
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Prompt mode Sample budget DS-Prover-V1.5
SFT RL

non-CoT 4× 6400 54.7%± 0.4% 56.5%± 0.5%
16× 6400 56.1% 57.4%

Single-Pass CoT 4× 6400 55.8%± 0.7% 58.4%± 0.5%

Generation 16× 6400 57.4% 60.2%

non-CoT & CoT
(2 + 2)× 6400 56.1%± 0.8% 58.3%± 0.6%
(8 + 8)× 6400 58.2% 60.7%

(16 + 16)× 6400 58.6% 61.1%

RMaxTS

non-CoT 4× 6400 55.7%± 0.6% 58.4%± 0.6%
16× 6400 57.8% 59.4%

CoT 4× 6400 56.3%± 0.3% 59.6%± 0.6%
16× 6400 59.0% 62.7%

non-CoT & CoT
(2 + 2)× 6400 56.1%± 0.8% 60.0%± 0.8%
(8 + 8)× 6400 59.0% 63.1%

(16 + 16)× 6400 60.2% 63.5%

Table 4: A large-scale ablation study to investigate the effectiveness of several algorithmic designs
on model training. The results are evaluated on the miniF2F-test dataset. The notation µ±σ denotes
the average accuracy µ and the standard deviation σ.

C PROBLEM CATEGORIES ON MINIF2F BENCHMARK

miniF2F-test DeepSeek-Prover-V1 DS-Prover-V1.5-SFT DS-Prover-V1.5-RL
single-pass generation 16× 4096 4× 6400 16× 6400 4× 6400 16× 6400

Olympiad
IMO 1/20 2/20 2/20 2/20 2/20

AIME 4/15 5/15 6/15 5/15 6/15
AMC 12/45 13/45 14/45 15/45 16/45

MATH Algebra 53/70 55/70 56/70 55/70 56/70
Number Theory 45/60 47/60 49/60 49/60 51/60

Custom
Algebra 4/18 8/18 8/18 9/18 9/18

Number Theory 1/8 2/8 2/8 4/8 4/8
Induction 2/8 3/8 3/8 3/8 3/8

Table 5: Problems solved by DS-Prover-V1.5 on miniF2F-test, grouped by miniF2F categories. The
experiments are conducted in CoT mode and incorporate single-pass whole-proof generation.

miniF2F-test DS-Prover-V1.5-SFT DS-Prover-V1.5-RL
RMaxTS 4× 6400 16× 6400 4× 6400 16× 6400

Olympiad
IMO 2/20 2/20 2/20 2/20

AIME 5/15 6/15 5/15 6/15
AMC 13/45 14/45 14/45 16/45

MATH Algebra 55/70 58/70 57/70 59/70
Number Theory 48/60 49/60 52/60 53/60

Custom
Algebra 8/18 9/18 9/18 10/18

Number Theory 3/8 3/8 3/8 4/8
Induction 3/8 3/8 3/8 3/8

Table 6: Problems solved by DS-Prover-V1.5 on miniF2F-test, grouped by miniF2F categories. The
experiments are conducted in CoT mode and incorporate RMaxTS.
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miniF2F-valid miniF2F-test

Olympiad
IMO 3/20 3/20

AIME 4/15 6/15
AMC 25/45 16/45

MATH Algebra 64/70 59/70
Number Theory 51/60 53/60

Custom
Algebra 17/18 10/18

Number Theory 5/8 4/8
Induction 7/8 4/8

Table 7: The results of miniF2F-valid is collected through the expert iteration. The results of
miniF2F-test refer to experiment of DS-Prover-V1.5-RL + RMaxTS with 32 × 6400 sample size
that incorporates both CoT and non-CoT generation modes.

D EXPERIMENTS ON SLIDING WINDOW UCB

We conduct experiments on RMaxTS with sliding-window UCB (SWUCB; Garivier & Moulines,
2011), another variant of upper confidence bound to tackle non-stationary rewards.

QSWUCB(s, a) =
Ww(s, a)

Nw(s, a)
+

√
2 ln

∑
a′ Nw(s, a′)∑

a′ Nw(s, a′)
, (10)

Ww(s, a) =
∑N(s,a)

t=max(1, N(s,a)−w+1) R(τt), (11)

Nw(s, a) = min (|Γ(s, a)|, w) , (12)

where w denotes the window size. The SWUCB described above is a slight modification of Garivier
& Moulines (2011), leveraging the fact that non-stationarity is independent across different state-
action pairs. The results indicate that, with a proper window size w = 64, the SWUCB outperforms
the standard UCB1 but performs slightly worse than DUCB. To explain this performance gap, we
note that, in the implementation, most tree nodes do not trigger the sliding window mechanism
due to the sample budget constraints. In contrast, DUCB enables smoother value discounting than
SWUCB, which helps to achieve better performance.

minF2F-test DS-Prover-V1.5-RL (CoT)
4× 6400 16× 6400

UCB1 58.6%± 0.3% 61.1%

SWUCB (w = 32) 58.2%± 0.5% 61.1%
SWUCB (w = 64) 59.1%± 0.4% 61.9%
SWUCB (w = 128) 58.4%± 0.4% 61.5%

DUCB (default) 59.6%± 0.6% 62.7%

Table 8: The experiments of RMaxTS with sliding-window UCB on miniF2F-test. The notation
µ± σ denotes the average accuracy µ and the standard deviation σ.
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E EXTENDING CONTEXT LENGTH FOR SFT

During the SFT phase, we use a context window of 4K tokens, which is sufficient to cover all our
training prompts for formal languages. The longest data sequences are sourced from the mathlib
dataset, the standard library used for constructing proofs in Lean. As we extract the theorem depen-
dencies, the lengthy files in mathlib can also fit within a 4K-token context length.

We conduct an ablation study using a 16K-token context length and raw mathlib files for training.
The SFT performance shows a slight drop, or at least no significant benefits observed from extending
the context length for training formal languages. One possible explanation for this result is that the
raw mathlib files may not align with the distribution of the Olympiad problems in testset.

Pass@128 miniF2F-test

4K (default) 50.4%± 0.4%
16K (with raw mathlib) 49.6%± 0.6%

Table 9: The experiments on extending the context length for SFT. The notation µ ± σ denotes the
average accuracy µ and the standard deviation σ.

F STATISTICS OF AVERAGE OUTPUT TOKENS

We compare the average output tokens generated by our RL model across four settings: (1) with
and without RMaxTS; (2) with and without chain-of-thought. The results show that the CoT mode
consumes significantly more tokens compared to the non-CoT mode. However, nearly half of the
output tokens can be saved through tree search, as the generation leverages existing nodes with
partial code.

avg. #tokens / sample CoT non-CoT

single-pass generation 495.7 109.6
RMaxTS 244.6 76.1

Table 10: The sampling procedure are conducted on miniF2F-test with a sample budget of 3200.
The statistics are averaged across all 244 problems in the miniF2F-test dataset.

G ILLUSTRATIVE EXAMPLES OF NON-COT AND COT PROMPTING FOR
PROOF COMPLETION

In this section, we present examples of non-CoT and CoT prompting and the generated proofs for
aime 1983 p9, a problem from the miniF2F benchmark (Zheng et al., 2022). These examples refer
to the data format used in the SFT phase. For clarity, inline LaTeX expressions are utilized. Firstly,
here is an example of whole-proof generation in non-CoT prompting mode:

Input:

Complete the following Lean 4 code:

‘‘‘lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Show that 9x2 sin2 x+4
x sin x

≥ 12 for 0 < x < π.-/
theorem aime_1983_p9 (x : R) (h0 : 0 < x ∧ x < Real.pi) :
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12 ≤ (9 * (x ˆ 2 * Real.sin x ˆ 2) + 4) / (x * Real.sin x) := by

Output:

rw [le_div_iff (mul_pos h0.1 (Real.sin_pos_of_pos_of_lt_pi h0.1 h0.2))]
nlinarith [mul_self_nonneg (3 * x * Real.sin x - 2)]

‘‘‘

Next, here is an example of whole-proof generation in CoT prompting mode. This proof was found
using a Monte-Carlo tree search with a truncate-and-resume mechanism (see Section 4 for details).
The model receives a prompt including a proof code in progress, ending with a comment block
containing the intermediate tactic state from the Lean 4 prover. The subsequent code is generated
with guidance from this annotated code prefix.

Input:

Complete the following Lean 4 code with explanatory comments preceding
each line of code:

‘‘‘lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Show that 9x2 sin2 x+4
x sin x

≥ 12 for 0 < x < π.-/
theorem aime_1983_p9 (x : R) (h0 : 0 < x ∧ x < Real.pi) :

12 ≤ (9 * (x ˆ 2 * Real.sin x ˆ 2) + 4) / (x * Real.sin x) := by
/-

To find the minimum value of 9x2 sin2 x+4
x sin x

for 0 < x < π, we need to show
that it is at least 12. We start by noting that the expression can
be rewritten using the division property of inequalities. We then
use the fact that sinx and x are positive in the given range to
establish the necessary inequalities. Finally, we apply these
results to conclude that the minimum value is indeed 12.

-/
-- We start by ensuring that the product x ∗ sinx is positive in the
given range.

have h1 : 0 < x * Real.sin x := by
apply mul_pos
-- x is positive in the range (0, π).
exact h0.1
-- sinx is positive in the range (0, π).
exact Real.sin_pos_of_pos_of_lt_pi h0.1 h0.2

-- Using the division property of inequalities, we rewrite the
expression.

rw [le_div_iff h1]
/- tactic state:
x : R
h0 : 0 < x ∧ x < π
h1 : 0 < x * x.sin
⊢ 12 * (x * x.sin) ≤ 9 * (x ˆ 2 * x.sin ˆ 2) + 4

-/

Output:

-- This is equivalent to showing that 9x2 sin2 x− 12x sinx+ 4 ≥ 0, and the
left-hand side can be rewritten as a perfect square (3x sinx− 2)2.

-- We use the fact that (3x sinx− 2)2 is non-negative to establish this.
nlinarith [sq_nonneg (3 * x * Real.sin x - 2)]

‘‘‘
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In this case, the proof completion model first extracts the goal expression from the tactic state, i.e.,
the inequality 12(x sinx) ≤ 9(x2 sin2 x)+4 at the last line of the comment block, and then arranges
it into the form 9x2 sin2 x− 12x sinx+ 4 ≥ 0 as part of the chain-of-thought process. Finally, the
left-hand side is rewritten as a square term to establish non-negativity, closing the proof.

H EXAMPLE SOLUTIONS TO MINIF2F-TEST PROBLEMS

To illustrate the different advantages and complementary of non-CoT mode and CoT mode of
prompting, we provide examples where non-CoT mode succeeds while CoT mode fails, and vice
versa.

H.1 PROBLEMS THAT NON-COT OUTPERFORMS COT

theorem induction_pord1p1on2powklt5on2 (n : N) (h0 : 0 < n) :
(Π k in Finset.Icc 1 n, 1 + (1 : R) / 2 ˆ k) < 5 / 2 := by

rw [Finset.Icc]
simp_all [Nat.succ_le_iff, Nat.one_le_iff_ne_zero]
have h1 : 0 < 2 ˆ k := by apply pow_pos <;> norm_num
norm_num
have h2 : (2 : R) ̸= 0 := by norm_num
field_simp
rw [div_lt_div_iff]
ring_nf
norm_cast
nlinarith
all_goals norm_cast
all_goals linarith

theorem imo_1960_p2 (x : R) (h0 : 0 ≤ 1 + 2 * x) (h1 : (1 - Real.sqrt (1
+ 2 * x)) ˆ 2 ̸= 0)
(h2 : 4 * x ˆ 2 / (1 - Real.sqrt (1 + 2 * x)) ˆ 2 < 2 * x + 9) : -(1
/ 2) ≤ x ∧ x < 45 / 8 := by

norm_num at h0 h1 h2

have h3 : 0 ≤ 1 + 2 * x := by linarith
have h4 : 0 < 1 + Real.sqrt (1 + 2 * x) := by
nlinarith [Real.sqrt_nonneg (1 + 2 * x)]

have h5 : 4 * x ˆ 2 / (1 - Real.sqrt (1 + 2 * x)) ˆ 2 < 2 * x + 9 :=
by linarith

have h6 : 1 - Real.sqrt (1 + 2 * x) ̸= 0 := by
intro h
apply h1

nlinarith
have h7 : 4 * x ˆ 2 / (1 - Real.sqrt (1 + 2 * x)) ˆ 2 = (1 + Real.sqrt
(1 + 2 * x)) ˆ 2 := by
field_simp [h6]
nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by linarith)]

rw [h7] at h5

constructor <;> nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by linarith)]

H.2 PROBLEMS THAT COT OUTPERFORMS NON-COT

theorem mathd_algebra_459 (a b c d : Q) (h0 : 3 * a = b + c + d) (h1 : 4
* b = a + c + d)
(h2 : 2 * c = a + b + d) (h3 : 8 * a + 10 * b + 6 * c = 24) : ↑d.den +
d.num = 28 := by

/-
Given the system of equations involving the times that Anna (a),
Bertram (b), Carli (c), and David (d) can hold their breaths:

1. 3a = b+ c+ d
2. 4b = a+ c+ d

28
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3. 2c = a+ b+ d
4. 8a+ 10b+ 6c = 24
We need to find the sum of the numerator and the denominator of the
fraction representing David’s time in minutes, simplified to its
lowest terms, and show that it is 28.

First, we solve the system of equations step by step:
- From the first equation, we can express d in terms of a, b, and c:

d = 3a− b− c
- Substitute d into the second equation:

4b = a+ c+ (3a− b− c)
Simplifying, we get:
4b = 4a− b
5b = 4a
b = 4a

5
- Substitute b into the third equation:

2c = a+ 4a
5
+ (3a− b− c)

Simplifying, we get:
2c = a+ 4a

5
+ 3a− 4a

5
− c

2c = 4a− c
3c = 4a
c = 4a

3
- Substitute b and c into the fourth equation:

8a+ 10
(
4a
5

)
+ 6

(
4a
3

)
= 24

Simplifying, we get:
8a+ 8a+ 8a = 24
24a = 24
a = 1

Now, we find b and c:
- b = 4a

5
= 4

5

- c = 4a
3

= 4
3

Finally, we find d:
- d = 3a− b− c = 3 · 1− 4

5
− 4

3
= 3− 4

5
− 4

3
= 45

15
− 12

15
− 20

15
= 13

15

The fraction 13
15

is already in its simplest form, and the sum of the
numerator and the denominator is:

13 + 15 = 28
-/
have h4 : a = 1 := by
have h5 : 8 * a + 10 * b + 6 * c = 24 := h3

have h6 : 24 * a = 24 := by
-- Solve the system of equations to find the value of a
linarith

exact mul_right_cancel0 (show (24 : Q) ̸= 0 by norm_num)
(by linarith)

have h5 : b = 4 / 5 := by
-- Solve for b using the value of a
linarith

have h6 : c = 4 / 3 := by
-- Solve for c using the value of a
linarith

have h7 : d = 13 / 15 := by
-- Solve for d using the values of a, b, and c
linarith

-- Sum the numerator and the denominator of d
norm_num [h7]
<;> rfl

theorem numbertheory_x5neqy2p4 (x y : Z) : x ˆ 5 ̸= y ˆ 2 + 4 := by
/-
To show that for any two integers x and y, x5 ̸= y2 + 4, we can use
modular arithmetic to demonstrate that the equation x5 ≡ y2 + 4 (mod 11)
has no solutions. Specifically, we will consider the possible values
of x and y modulo 11 and show that none of these combinations satisfy
the equation.

-/
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-- Use modular arithmetic to show that the equation has no solutions
modulo 11.

have : ¬(x ˆ 5 % 11 = (y ˆ 2 + 4) % 11) := by
-- Consider all possible values of x modulo 11.
have : x % 11 = 0 ∨ x % 11 = 1 ∨ x % 11 = 2 ∨ x % 11 = 3 ∨ x % 11 =
4 ∨ x % 11 = 5 ∨

x % 11 = 6 ∨ x % 11 = 7 ∨ x % 11 = 8 ∨ x % 11 = 9 ∨ x % 11 = 10
:= by

omega
-- Consider all possible values of y modulo 11.
have : y % 11 = 0 ∨ y % 11 = 1 ∨ y % 11 = 2 ∨ y % 11 = 3 ∨ y % 11 =
4 ∨ y % 11 = 5 ∨

y % 11 = 6 ∨ y % 11 = 7 ∨ y % 11 = 8 ∨ y % 11 = 9 ∨ y % 11 = 10
:= by

omega
-- For each combination of x and y modulo 11, check if the equation
holds.
rcases this with (h | h | h | h | h | h | h | h | h | h | h) <;>

rcases this with (h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’)
<;>

simp [h, h’, pow_succ, Int.mul_emod, Int.add_emod]
-- Use the result from modular arithmetic to conclude the theorem.
omega

theorem amc12_2000_p12 (a m c : N) (h0 : a + m + c = 12) :
a * m * c + a * m + m * c + a * c ≤ 112 := by

/-
Given nonnegative integers A,M, and C such that A+M + C = 12, we need
to find the maximum value of A ·M · C +A ·M +M · C +A · C.

To solve this, we can use the fact that the expression
A ·M · C +A ·M +M · C +A · C is a polynomial in terms of A,M, and C.
We can try different values of A,M, and C that sum to 12 and compute
the value of the polynomial for each combination. The maximum value
of the polynomial will then be the solution.

-/
-- We use a lemma that states if the sum of three numbers is less than
or equal to a certain value, then the product of these numbers is
also less than or equal to a certain value.

have h1 : a ≤ 12 ∧ m ≤ 12 ∧ c ≤ 12 := by
constructor
· -- Since a + m + c = 12, a cannot be greater than 12.

omega
· constructor

· -- Similarly, m cannot be greater than 12.
omega

· -- And c cannot be greater than 12.
omega

-- Using the lemma, we compute the value of the polynomial for
different values of a, m, and c that sum to 12.

cases’ h1 with h1_left h1_right
cases’ h1_right with h1_middle h1_right
-- We use interval_cases to try different values of a, m, and c.
interval_cases a <;> interval_cases m <;> interval_cases c <;>
-- For each combination, we compute the value of the polynomial and
check if it is less than or equal to 112.
simp_all (config := {decide := true})
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