
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

HUMAN-IN-THE-LOOP ADAPTIVE OPTIMIZATION FOR
IMPROVED TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-series forecasting models often produce systematic and predictable errors,
even in critical domains such as energy, finance, and healthcare. We introduce a
novel post-training adaptive optimization framework that improves forecast accu-
racy without retraining or architectural changes. Our approach adds a lightweight
model-agnostic correction layer that automatically finds expressive output trans-
formations optimized by reinforcement learning, contextual bandits, or genetic
algorithms. Theoretically, we prove the benefit of an affine correction and quantify
the expected performance gain together with its computational cost. The frame-
work also supports an optional human-in-the-loop component: domain experts
can guide corrections using natural language, which is parsed into actions by a
language model. Across multiple benchmarks (e.g. electricity, weather, traffic),
we observe consistent accuracy gains with minimal computational overhead. Our
interactive demo (link) showcases the usability of the framework in real time. By
combining automated post-hoc refinement with domain-expert corrections to the
base forecasting model, our approach offers a lightweight yet powerful direction
for practical forecasting systems.

1 INTRODUCTION

Time series forecasting is critical in domains such as finance (Krollner et al., 2010), health-
care (Kaushik et al., 2020), and energy management (Palma et al., 2024), where accurate predictions
drive high-stakes decisions. Although modern machine learning models have improved forecasting
performance, they still face two persistent limitations: (1) insufficient model expressiveness to cap-
ture complex, real-world patterns, and (2) difficulty incorporating domain expertise into predictions.
Traditional forecast pipelines (Meisenbacher et al., 2022) often rely on rigid architectures and static
assumptions, leading to systematic errors that domain experts can easily identify.

However, integrating expert feedback remains challenging: manual corrections are time consum-
ing, and existing methods (Geweke & Whiteman, 2006; Girard et al., 2002) require extensive
re-engineering or ensembling techniques (Khashei & Bijari, 2012). These limitations prevent models
from adapting effectively to changing environments.

To address these issues, we propose a flexible, lightweight post-training optimization framework that
improves forecasts without re-training the model. Our preliminary theoretical insight suggests the
opportunity for such a post hoc correction. Building on this, we extend post-training correction into
a broader optimization framework that adaptively adjusts model outputs using approaches such as
reinforcement learning, bandits, or genetic algorithms.

Our proposed approach, illustrated in Figure 1 and Figure 2, is scalable, model-agnostic and accessible
through an interactive web interface, making it practical for both researchers and practitioners.

Our novel approach introduces key features that distinguish it from previous work:

1. Adaptive Model Augmentation: Automatically identifies and applies expressive transfor-
mations that improve the performance of the forecast, expanding the model function class
without architectural changes.

2. Human-in-the-Loop (HITL): Optionally incorporates expert feedback, expressed in natural
language and safely translated into a post-training action code, which is further optimized

1

https://posttraining-36hr3mewbkbgxbp2hcsgcs.streamlit.app/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Initial model
Optimal
chosen
action

LLM

X Y

Action
selection
algorithm

Specific
designed

action

Human feedback

Figure 1: Overview of the forecasting pipeline: the initial model generates predictions from input X ,
which are refined by an action selection mechanism and optionally adjusted using human feedback
interpreted by a language model (LLM), yielding the final output Y .

Figure 2: (Left) Ground truth, initial prediction, and corrected predictions produced by the proposed
forecasting pipeline. The human feedback applied was: “Increase values above a chosen quantile by
10% to 50%.”. (Right) Performance comparison of the different predictions: the base forecast, the
automatically corrected output, and the correction incorporating human feedback.

via reinforcement learning, bandit methods, or genetic algorithms to iteratively improve and
refine forecasts.

2 RELATED WORK

Time Series Forecasting Models Time series forecasting has long been a fundamental task in
statistical modeling. Traditional models such as ARIMA (Newbold, 1983), SARIMA (Korstanje, 2021),
and ETS (Gardner Jr, 1985) work well for simple linear dynamics, but struggle with non-stationary
or highly non-linear signals. Modern deep learning models, including LSTMs (Graves & Graves,
2012; Lin et al., 2023) and Transformers (Liu et al., 2023; Ilbert et al., 2024; Wu et al., 2021; Nie
et al., 2023), offer improved expressiveness by learning long-range dependencies. Recent zero-shot
models such as TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024), and Lag-LLaMA (Rasul
et al., 2023) further generalize across tasks via foundation model scaling. Despite these advances,
existing models often exhibit systematic forecast errors and lack mechanisms to incorporate expert
corrections.

Our work complements existing models by adding a post-training optimization layer that enhances
performance without retraining and is compatible with any forecasting architecture.

Post-Training and Human Feedback in Forecasting Incorporating expert knowledge into
forecasting has a long history, from manual tuning and domain-specific feature engineering (Tavenard
et al., 2020; Zhou, 2020; Verkade et al., 2013; Madadgar et al., 2014) to judgmental forecasting
methods (Armstrong, 1986; Bunn & Wright, 1991; Webby & O’Connor, 1996). However, such
methods are typically manual, hard to scale, and not integrated into learning pipelines. Recent work

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 3: Illustration of the effect
of affine post-training correction on
ridge regression forecasts. The model
is trained on a synthetic linear tar-
get. Results shown for 100 samples,
100 validation points, and 10,000 test
points.

on human-in-the-loop learning - primarily in NLP (Liu et al., 2024a) - has explored expert-guided
model refinement. In time series, systems such as DelphAI (Kupferschmidt et al., 2022) allow manual
modification of model outputs and (Arvan et al., 2019) provide a comprehensive review of human
input in forecasting.

Our approach advances this line of work in two key ways. First, it enables automatic post-training
corrections via adaptive optimization using reinforcement learning, bandits, or genetic algorithms.
Secondly, it optionally incorporates expert feedback through natural language, automatically trans-
lated into optimization actions by a large-language model (LLM). Unlike methods such as TimeHF (Qi
et al., 2025), which require fine-tuning large models, our solution is model-agnostic, efficient and
applies corrections at inference time.

3 METHODOLOGY

We propose a framework to improve time series forecasts through post-training optimization. It
operates on any forecasting model, applying lightweight corrections without retraining. The system
combines two components: (1) automated prediction augmentation via dynamic optimization,
and (2) optional human-in-the-loop feedback. We first motivate the theoretical foundation and then
describe the full pipeline.

3.1 THEORETICAL MOTIVATION FOR POST-TRAINING CORRECTION

Forecasting models often display systematic biases. These can be mitigated after training by applying
affine transformations to outputs, leaving model parameters unchanged. For predictions Ypred, the
corrected forecast is

Ycorrected = a∗Ypred + b∗,

with optimal parameters from validation statistics:

a∗ =
Cov(Ytrue,Ypred)

Var(Ypred)
, b∗ = E[Ytrue]− a∗E[Ypred].

Theorem 1 (Affine Correction Reduces MSE) The above correction guaranties a lower or equal
mean squared error (MSE):

Rbefore −Rafter =

(√
Var(Ypred)− Cov(Ytrue,Ypred)√

Var(Ypred)

)2

≥ 0.

This result holds under distributional alignment of validation and test sets. Figure 3 shows the mean
squared error as a function of the ridge regularization parameter for a ridge regression model with
an added linear post-layer correction, illustrating the result of Theorem 1. Although affine post-hoc
adjustments are effective, multi-step forecasts often require richer, dynamic corrections optimized via
reinforcement learning, contextual bandits, or genetic algorithms (see Section 3.3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 FORECASTING MODEL SETUP

The framework is model-agnostic: it applies to classical (e.g., ARIMA, Prophet), deep learning (e.g.,
LSTM, Transformer), and foundation models (e.g., TimesFM, Chronos). Given a multivariate time
series, of length T , {x1, . . . ,xT } with xt ∈ Rd, the base model outputs {ŷT+1, . . . , ŷT+H}, which
are refined post-training. Our objective is to design a post-training method that takes the output of the
base model and produces corrected predictions, improving accuracy and generalization.

3.3 POST-TRAINING OPTIMIZATION VIA ACTION SPACE

To refine model predictions, we define a set of post-training transformations, or actions, each
parameterized continuously. These actions are dynamically selected and tuned to minimize validation
error.

• Scale Amplitude: Multiplies the full prediction series.

• Piecewise Scaling: Modifies high or low quantiles selectively.

• Linear Trend: Adds a slope or intercept term.

• Min/Max Adjustment: Boosts extrema to match observed dynamics.

Figure 4: Examples of learned post-training actions. Each transformation operates on the model’s
forecast to reduce prediction error. Full action definitions are in Appendix A.1.

These interpretable actions form a flexible augmentation layer. They can be optimized efficiently and
extended to task-specific needs, as discussed in later sections.

3.3.1 OPTIMIZING ACTIONS AND PARAMETERS

We frame the post-training refinement process as a joint optimization over a discrete set of actions
and their associated continuous parameters. Discrete actions (e.g., scaling, shifting, trend) define
transformation types, while parameters control their magnitude. The goal is to select and tune the
best combination to minimize validation loss.

Algorithm 1: Forecast Augmentation via Post-Training Optimization
Input: Forecasting modelM, action space A, validation data D
Output: Augmented modelMopt, refined prediction ŷ

1 Generate base predictions ŷ =M(D)

2 Define the loss function L̄ (e.g., MSE) on validation set
3 for each iteration do
4 Select candidate action(s) from A
5 Optimize associated parameters (e.g., line search)
6 Apply transformation(s) to ŷ

7 Evaluate L̄ and update strategy
8 Return best transformation sequence

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.3.2 DYNAMIC OPTIMIZATION STRATEGIES

We explore several strategies to solve this search problem efficiently:

• Random search: For each discrete action, we randomly generate several sets of continuous
parameters. We then evaluate these and keep the set that gives the best performance for that
action.

• Bandit Algorithms (SH-HPO): (Karnin et al., 2013) Each action is a bandit arm; its
parameters are optimized independently (e.g., via line search). UCB balances exploration
and exploitation to select the most rewarding transformations.

• Reinforcement Learning (PPO): (Schulman et al., 2017) Discretizing the parameter space
allows us to train an RL agent that sequentially selects actions to minimize residual error.
We use Proximal Policy Optimization (PPO) for stability.

• Genetic Algorithms (GA): (Holland, 1975) GA evolves action-parameter pairs through
mutation and crossover, well-suited for large, multimodal spaces where gradients are un-
available or unreliable.

These techniques provide trade-offs between exploration depth and runtime. Our framework supports
all three and can switch strategies based on task complexity.

3.3.3 WHY DISCRETE ACTIONS + CONTINUOUS PARAMETERS

The hybrid search space balances flexibility, efficiency, and interpretability without altering the base
model. Advantages include: (i) reduced search complexity, (ii) human-readable corrections, (iii)
faster convergence, and (iv) extensibility to new domains. To mitigate overfitting, we first evaluate
actions on a validation set and then verify that they also improve performance on the training set.
This "consistency check" helps ensure that selected actions yield genuine, generalizable gains rather
than overfitting to the validation set. Empirically, we find that overfitting is rare in our experiments:
cross-metric experiments in Appendix A.5 show strong agreement between training, validation, and
test landscapes across different metrics throughout the episodes.

3.4 OPTIMIZATION STRATEGY: EMPIRICAL COMPARISON

We compare Random Search, SH-HPO (Successive Halving with UCB), Proximal Policy Optimiza-
tion (PPO), and Genetic Algorithms (GA) on the ETTH1 dataset. All methods improve over the
baseline, with SH-HPO giving the most consistent gains across horizons. Random Search also
performs strongly, often matching SH-HPO while being simpler and more efficient. Their advantage
likely stems from naturally handling discrete–continuous search spaces, whereas PPO and GA require
full discretization, which increases complexity and introduces approximation errors that reduce
effectiveness. Nevertheless, PPO and GA remain valuable for tasks needing long-term optimization,
since they explore trajectories rather than making greedy, step-wise decisions. Despite lower perfor-
mance here, they may be better suited to structured or sequential problems. For the remainder of our
experiments, we adopt Random Search for its simplicity, efficiency, and competitive results. Full
results and additional dataset comparisons are in the Appendix.

Evaluation Metric for Post-Training. To assess post-training effectiveness, we use the relative
decrease in mean squared error (MSE). Let MSEbefore and MSEafter denote the model’s MSE before
and after post-training. The relative improvement is

M =
MSEbefore −MSEafter

MSEbefore
. (1)

Positive M indicates reduced error, higher values reflect greater improvement, and negative M
indicates post-training degraded performance. This normalized metric enables fair comparison across
models and datasets with different MSE scales. Complementary experiments using other metrics are
reported in Appendix A.5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Performance comparison of different optimization techniques. Reported values are percent-
age improvements in mean squared error (MSE) relative to baseline models, averaged over 10 trials
on the Nature dataset. Standard deviations are shown as uncertainty.

Model Random SH-HPO RL (PPO) GA

AutoFormer 17.19% ± 5.3% 19.34% ± 5.1% 3.35% ± 1.2% 6.09% ± 1.5%

Crossformer 3.30% ± 2.1% 2.78% ± 1.9% 1.11% ± 1.4% 1.52% ± 1.3%

DLinear 1.96% ± 0.8% 1.57% ± 0.7% 2.20% ± 1.1% 1.61% ± 0.9%

PatchTST −1.33% ± 1.2% −0.81% ± 1.0% 0.26% ± 0.5% 0.29% ± 0.4%

SegRNN 1.70% ± 0.6% 2.59% ± 0.8% 0.61% ± 0.4% 0.59% ± 0.5%

iTransformer 3.10% ± 1.1% 3.85% ± 1.3% 1.33% ± 0.7% 1.50% ± 0.8%

TimesFM 4.94% ± 2.3% 5.43% ± 2.1% 3.48% ± 1.5% 2.62% ± 1.4%

Average 4.84% ± 1.9% 4.96% ± 1.9% 1.76% ± 1.1% 2.32% ± 1.3%

4 THEORETICAL ANALYSIS OF OUR BANDIT-BASED CORRECTION

Our method evaluates a large set of corrective actions (Section 3.3) and selects the best one using
several candidate selection strategies. Among them, the bandit-based approach with the Successive
Halving algorithm consistently achieves the strongest results in our experiments.

Natural questions are: how quickly does this algorithm identify the best correction? and How does
the validation budget affect its performance? This section answers those questions theoretically. We
focus on the simplest non-trivial setting of two corrective actions to present the key result; the general
case (K > 2 actions) and all proofs are deferred to Appendix A.

Why Successive Halving. Successive Halving is a near-optimal best-arm identification algo-
rithm (Karnin et al., 2013). It allocates more evaluations to promising actions while discarding the
worse ones. This matches our setting, where evaluating each correction on the validation set is costly,
and explains its superior empirical performance compared to uniform allocation.

Corollary 1 (Convergence to the Best Correction) Consider two corrective actions g1,β∗ and
g2,β∗ with R(g1,β∗ ◦fθ) < R(g2,β∗ ◦fθ) and a validation budget of T evaluations. Under As-
sumption 1 (Appendix A.11), the correction selected by our bandit-based procedure satisfies:

E
[
R(gkT ,β∗ ◦ fθ)

]
≤ 2R(g1,β∗ ◦ fθ) + 2∆Φ

(
−∆
√
T
)
, ∆ = R(g2,β∗ ◦ fθ)−R(g1,β∗ ◦ fθ),

where Φ is the standard Gaussian CDF.

This bound shows that the expected risk of the selected correction converges exponentially fast in√
T to the risk of the best correction. Larger risk gaps ∆ (i.e. more distinct corrective actions) lead to

faster convergence.

Corollary 2 (Budget to Outperform the Base Model) To guarantee that the selected correction
improves on fθ, it suffices to allocate T evaluations, with

T ≳
4

∆2

[
Φ−1

(R(fθ)− 2R(g1,β∗ ◦ fθ)
2∆

)]2
.

These results directly explain our empirical findings (Table 6): with a reasonable validation budget and
sufficiently distinct corrective actions, the Successive Halving algorithm quickly identifies the best
correction and improves forecasting accuracy. The general case and all proofs appear in Appendix
A.11.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

5 HUMAN-IN-THE-LOOP FEEDBACK INTEGRATION

Our framework operates autonomously but supports optional human-in-the-loop (HITL) refinement.
Domain experts can provide natural language suggestions (e.g., "Increase values above the 80th
percentile"), which are translated into candidate actions via an LLM (e.g., Qwen2-72B-32K).
Crucially, human feedback never directly modifies predictions; instead, it must pass through the same
optimization and validation pipeline as automated actions, ensuring safety and performance.

From Natural Language to Candidate Actions User prompts are converted into executable
Python code and added to the candidate pool only after validation (Algorithm 2, Figure 5). If the
initial suggestion fails, users can refine their input iteratively.

Algorithm 2: Human-in-the-Loop Feedback Integration
Input: User prompt p

1 while true do
2 a← LLM(p)
3 if Test(a) then
4 AddActionToPool(a)
5 break
6 p← RequestNewPrompt()

(a) User input prompt (b) Generated code for adaptive optimization

Figure 5: HITL pipeline: prompts are converted to code and validated before entering the candidate
pool.

Interactive Refinement and Safety Users can iteratively refine prompts to improve candidate
quality. All proposed actions undergo strict validation (Test()) for API compliance, execution, and
forecast validity. The LLM never accesses raw time series data, preventing leakage or overfitting.

Integration with Optimization Validated human-proposed actions are evaluated alongside auto-
mated candidates in the optimization loop (Section 3.3). Only actions that improve performance are
retained, ensuring robustness. Case studies in Section A.6.1 demonstrate this mechanism in practice.

6 EXPERIMENTS

We evaluate our framework across diverse real-world time series tasks, demonstrating consistent
improvements in forecast accuracy using standard benchmarks and open-source implementations. All
experiments were conducted on a server equipped with 2× Intel Xeon E5-2690 v4 CPUs (56 cores
total), 512 GB RAM, and 6× NVIDIA Tesla P100 GPUs (16 GB each), though only one GPU was
used per run.

6.1 SETUP

We evaluate our post-training optimization framework on energy consumption and OpenTS bench-
mark datasets (Zhou et al., 2021; Qiu et al., 2024) (details in Appendix A.2.1), across a wide range of
forecasting models—from simple deep learning models such as DLinear (Zeng et al., 2023) to modern

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

architectures including SegRNN (Lin et al., 2023), iTransformer (Liu et al., 2023), PatchTST (Nie
et al., 2023), Autoformer (Wu et al., 2021), Crossformer (Zhang & Yan, 2023), and Informer (Zhou
et al., 2021). Forecast accuracy is reported using Mean Squared Error (MSE), averaged across
multiple horizons (96, 192, 336, 720). Although performance is measured in MSE, our model-
agnostic framework is compatible with any optimization or evaluation metric (e.g., MAE, MAPE,
R2); Section A.5 presents complementary experiments confirming its robustness and showing that it
mitigates overfitting to the validation set.

While our framework can work with training samples alone, it generally requires for better perfor-
mance a representative validation set for time series forecasting, in line with established practices. For
benchmark datasets like ETTh1, ETTh2, ETTm1, and ETTm2, which provide an explicit validation
set (designated by a ’val’ flag), we use these validation sets directly. For datasets without an explicit
validation set, we apply the standard approach of temporally splitting the training data, allocating
30% to the validation set. This method aligns with common practices in the field of time series
forecasting. We conduct a robustness analysis of the training-validation ratio in Section A.3.

6.2 RESULTS: ADAPTIVE OPTIMIZATION IMPROVES FORECASTING

Table 2 summarizes the impact of our post-training optimization. Across nearly all models and
datasets, we observe significant MSE reductions with no retraining and minimal overhead (and very
few cases of overfitting in orange). Rare cases of negative improvement can mostly be attributed
to the stochastic nature of the search. The search algorithm iteratively evaluates the performance of
actions on the validation set. As discussed in Subsection 3.3.3 and Appendix A.5, our approach is
not prone to overfitting to the validation set; however, as shown in Section 4, it still induces a failure
probability δ.

6.2.1 HUMAN-IN-THE-LOOP FEEDBACK

Human feedback can further enhance forecast accuracy by introducing domain knowledge not
captured by the base model. Users provide natural language instructions (e.g., "increase the amplitude
of predictions below 0.5"), which are converted into executable transformations via a large language
model (LLM).

Figure 6: (a) Initial prediction vs. human-refined forecast. (b) Action code generated from natural
language via LLM (Qwen2-72B-32K). (c) RMSE improvement post-feedback.

Figure 6 shows that integrating expert suggestions via HITL leads to tangible performance gains.
Additional examples are presented in Appendix A.6 (see Figures 13, 14 and 15). The interface
supports real-time experimentation, making human-guided optimization practical and intuitive. It is
important to emphasize that the code generated by the LLM is guided by a strict template, which is
detailed in the Appendix (Section A.6). This template constrains the possible code outputs, ensuring

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Methods Autoformer Crossformer iTransformer PatchTST DLinear SegRNN Informer

ETTh1
0.61±0.01 → 0.51±0.02 0.54±0.01 → 0.52±0.01 0.45±0.01 → 0.44±0.01 0.46±0.01 → 0.47±0.01 0.47±0.01 → 0.45±0.01 0.47±0.01 → 0.45±0.01 0.67±0.01 → 0.65±0.01

(16.76%) (2.20%) (2.58%) (-2.25%) (1.38%) (1.31%) (3.00%)

ETTh2
0.65±0.01 → 0.55±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

(15.48%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

ETTm1
0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

(7.37%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

ETTm2
0.60±0.01 → 0.57±0.01 3.82±0.01 → 3.81±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

(20.25%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

Dominick
1.38±0.01 → 1.16±0.01 1.12±0.01 → 1.10±0.01 1.25±0.01 → 1.23±0.01 1.25±0.01 → 1.20±0.01 1.24±0.01 → 1.13±0.01 1.92±0.01 → 1.40±0.01 1.14±0.01 → 1.09±0.01

(15.42%) (1.00%) (0.89%) (3.83%) (7.97%) (27.21%) (4.28%)

Human
0.40±0.01 → 0.33±0.01 0.30±0.01 → 0.25±0.01 0.60±0.01 → 0.15±0.01 0.62±0.01 → 0.15±0.01 0.96±0.01 → 0.26±0.01 0.60±0.01 → 0.25±0.01 0.30±0.01 → 0.21±0.01

(20.24%) (13.34%) (51.26%) (51.74%) (57.85%) (43.02%) (21.93%)

KDD
1.25±0.01 → 0.95±0.01 0.80±0.01 → 0.80±0.01 1.13±0.01 → 0.88±0.01 1.14±0.01 → 0.89±0.01 0.93±0.01 → 0.85±0.01 1.10±0.01 → 0.88±0.01 1.12±0.01 → 0.87±0.01

(23.50%) (-0.03%) (21.09%) (21.83%) (8.54%) (19.14%) (22.15%)

Nature
1.25±0.01 → 0.96±0.01 0.65±0.01 → 0.66±0.01 0.34±0.01 → 0.33±0.01 0.26±0.01 → 0.25±0.01 0.95±0.01 → 0.91±0.01 1.02±0.01 → 0.94±0.01 0.91±0.01 → 0.90±0.01

(21.69%) (-1.17%) (3.26%) (3.72%) (4.31%) (8.67%) (0.86%)

NASDAQ
0.91±0.01 → 0.70±0.01 0.46±0.01 → 0.46±0.01 0.80±0.01 → 0.63±0.01 0.79±0.01 → 0.68±0.01 0.74±0.01 → 0.68±0.01 0.78±0.01 → 0.62±0.01 0.85±0.01 → 0.79±0.01

(22.39%) (-0.33%) (19.77%) (14.76%) (7.59%) (19.19%) (8.96%)

Pedestrian
0.46±0.01 → 0.27±0.01 0.14±0.01 → 0.13±0.01 0.14±0.01 → 0.12±0.01 0.22±0.01 → 0.19±0.01 0.69±0.01 → 0.60±0.01 0.20±0.01 → 0.18±0.01 0.33±0.01 → 0.27±0.01

(40.01%) (0.26%) (9.43%) (9.54%) (14.20%) (6.94%) (15.87%)

Tourism
0.24±0.01 → 0.22±0.01 0.16±0.01 → 0.14±0.01 0.31±0.01 → 0.14±0.01 0.31±0.01 → 0.14±0.01 0.52±0.01 → 0.25±0.01 0.24±0.01 → 0.12±0.01 0.22±0.01 → 0.18±0.01

(10.88%) (11.48%) (40.08%) (39.20%) (48.91%) (48.14%) (20.57%)

Vehicle trips
1.39±0.01 → 1.13±0.01 0.83±0.01 → 0.82±0.01 1.02±0.01 → 0.84±0.01 0.98±0.01 → 0.80±0.01 1.35±0.01 → 1.15±0.01 1.68±0.01 → 1.05±0.01 1.21±0.01 → 0.95±0.01

(18.13%) (0.89%) (17.14%) (18.00%) (14.37%) (38.46%) (21.54%)

Table 2: Mean squared error (MSE) ± standard deviation across multiple forecast horizons, before
and after applying Adaptive Optimization (→). Improvements are reported in teal when positive and
orange when negative. The overall improvement across all models and datasets is 14.84%, with a
peak improvement of 57.85%. This is based on 12 datasets and 7 time series models, with only 4
cases (out of 84) showing a performance decline, averaging -0.94% and a maximum of -2.25%.

that only valid and meaningful actions are generated. Additionally, the LLM not only generates the
transformation code but also a function that creates a pool of candidate parameters. These parameters
are then subject to optimization (as decribed in details in the automated optimization framework),
with ineffective candidates being discarded if they do not improve the model’s performance.

To assess the robustness of the framework, we provide several failure cases where the user’s
prompt is ambiguous or nonsensical. We investigate three cases in Figure 16, 17 and 18
with the prompt given in the title (e.g., Optimize model to make it model like and
being unoptimized, Replace everything by random noise and Taratata
las palsma reality bonnegur selar). In these cases, the system either discards the
resulting action (if it does not lead to improvements) or the generated code fails to execute prop-
erly (improvement being 0%). These scenarios demonstrate the framework’s ability to handle poor
feedback and ensure that only actions leading to performance enhancement are retained.

The corresponding code generated by the LLM in these failure cases, along with additional examples,
is provided in Appendix A.6.

Remark 1 (On the safety of the human-in-the-loop framework) In addition to the automated op-
timization procedures, we provide an optional "safe mode". This mode displays the Python source
code of the proposed actions for manual inspection by the user. The code is then automatically
scanned using the malicious-source-code detector of Tsfaty & Fire (2023) before execution. This

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

detection step incurs only a small overhead, since each newly generated action is analyzed once at
creation time, rather than at every inference step, and the corresponding code snippets are short.

6.2.2 COMPUTATIONAL EFFICIENCY AND SCALABILITY

We evaluate optimization time across varying forecast horizons and action space sizes on the ETTh1
dataset. Table 8 compares our post-training augmentation time against the minimum and maximum
training times of standard forecasting models.

Table 3: Adaptive optimization time vs. base model training time (10 epochs).

Horizon 2 Actions 4 Actions 7 Actions DLinear (min) PatchTST (max)
96 3.2s ± 0.1 5.4s ± 0.2 12.0s ± 1.3 20.3s 144.4s
192 6.1s ± 0.3 9.7s ± 0.4 22.7s ± 1.5 22.3s 146.2s
336 12.7s ± 0.5 18.3s ± 0.6 30.1s ± 1.0 24.4s 148.8s
720 24.3s ± 1.1 35.2s ± 1.4 45.1s ± 1.8 27.3s 151.8s

Even for long horizons and expanded action spaces, our optimization time remains well below the
training cost of most models, confirming the framework’s suitability for real-time applications and
large-scale deployment.

7 CONCLUSION

We presented a model-agnostic framework for time series forecasting that enhances predictions
through post-training optimization and optional human-in-the-loop refinement. Unlike retraining-
based methods, our approach applies lightweight, interpretable transformations, yielding consistent
accuracy gains across diverse models and datasets at low cost. The framework is broadly compatible,
fast, and interpretable, allowing for seamless integration of natural language feedback through LLMs.
Its effectiveness depends on the quality of the base model, and LLM-based feedback translation
may vary with prompt clarity; robustness to ambiguous instructions and access to a representative
validation set remain open challenges.

Future work includes richer transformations (e.g. monotone, piecewise-affine, uncertainty-aware),
stronger LLM alignment via structured prompting and automatic tests/guardrails, and applications to
multimodal and streaming time series with online updates and drift handling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

We detail the complete methodology and experimental settings in section 3 and section 6, with
theoretical assumptions and results in section 4 and proofs in subsubsection A.10.3. The action space,
search strategies, additional analyzes, datasets, preprocessing, splits, and model configurations appear
in the main paper and are detailed in the beginning of the appendix. We provide an interactive demo
to reproduce and test our approach. The hardware details for our runs are reported in section 6. To
ease verification, we include: (i) fixed seeds, (ii) YAML configs for hyper-parameters, (iii) a single
entry-point script for each experiment, and (iv) checks that validate data splits and metrics.

LLM USAGE STATEMENT

We used large language models solely for language editing (grammar and clarity). An LLM did not
generate technical claims, equations, algorithms, hyperparameters, or experimental decisions. All
content was verified by the authors. We disclose this limited use here and in the submission form.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

J Scott Armstrong. The ombudsman: research on forecasting: A quarter-century review, 1960–1984.
Interfaces, 16(1):89–109, 1986.

Meysam Arvan, Behnam Fahimnia, Mohsen Reisi, and Enno Siemsen. Integrating human judgement
into quantitative forecasting methods: A review. Omega, 86:237–252, 2019.

Derek Bunn and George Wright. Interaction of judgemental and statistical forecasting methods:
issues & analysis. Management science, 37(5):501–518, 1991.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):1–28,
1985.

John Geweke and Charles Whiteman. Bayesian forecasting. Handbook of economic forecasting, 1:
3–80, 2006.

Agathe Girard, Carl Rasmussen, Joaquin Q Candela, and Roderick Murray-Smith. Gaussian process
priors with uncertain inputs application to multiple-step ahead time series forecasting. Advances in
neural information processing systems, 15, 2002.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pp. 37–45, 2012.

John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis
Palpanas, and Ievgen Redko. Samformer: Unlocking the potential of transformers in time se-
ries forecasting with sharpness-aware minimization and channel-wise attention. arXiv preprint
arXiv:2402.10198, 2024.

Zohar S. Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In Proceedings of the 30th International Conference on Machine Learning, pp. 1238–1246. PMLR,
2013.

Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, Nataraj Dasgupta, Sayee Natarajan,
Larry A Pickett, and Varun Dutt. Ai in healthcare: time-series forecasting using statistical, neural,
and ensemble architectures. Frontiers in big data, 3:4, 2020.

Mehdi Khashei and Mehdi Bijari. A new class of hybrid models for time series forecasting. Expert
Systems with Applications, 39(4):4344–4357, 2012.

Joos Korstanje. The sarima model. In Advanced Forecasting with Python: With State-of-the-Art-
Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR, pp. 115–122. Springer,
2021.

Bjoern Krollner, Bruce Vanstone, and Gavin Finnie. Financial time series forecasting with ma-
chine learning techniques: A survey. In European Symposium on Artificial Neural Networks:
Computational Intelligence and Machine Learning, pp. 25–30, 2010.

Kristina L Kupferschmidt, Joshua G Skorburg, and Graham W Taylor. Delphai: A human-centered
approach to time-series forecasting. In 2022 IEEE International Conference on Big Data (Big
Data), pp. 4014–4020. IEEE, 2022.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
rnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint
arXiv:2308.11200, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd: A new
multi-domain multimodal dataset for time series analysis. arXiv preprint arXiv:2406.08627, 2024b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Shahrbanou Madadgar, Hamid Moradkhani, and David Garen. Towards improved post-processing of
hydrologic forecast ensembles. Hydrological Processes, 28(1):104–122, 2014.

Stefan Meisenbacher, Marian Turowski, Kaleb Phipps, Martin Rätz, Dirk Müller, Veit Hagenmeyer,
and Ralf Mikut. Review of automated time series forecasting pipelines. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 12(6):e1475, 2022.

Paul Newbold. Arima model building and the time series analysis approach to forecasting. Journal
of forecasting, 2(1):23–35, 1983.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Giulia Palma, Elna Sara Joy Chengalipunath, and Antonio Rizzo. Time series forecasting for
energy management: Neural circuit policies (ncps) vs. long short-term memory (lstm) networks.
Electronics, 13(18):3641, 2024.

Yongzhi Qi, Hao Hu, Dazhou Lei, Jianshen Zhang, Zhengxin Shi, Yulin Huang, Zhengyu Chen,
Xiaoming Lin, and Zuo-Jun Max Shen. Timehf: Billion-scale time series models guided by human
feedback. arXiv preprint arXiv:2501.15942, 2025.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proc. VLDB Endow., 17:2363 – 2377, 2024.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
Hassen, et al. Lag-llama: Towards foundation models for probabilistic time series forecasting.
arXiv preprint arXiv:2310.08278, 2023.

Jeffrey R Sampson. Adaptation in natural and artificial systems (john h. holland), 1976.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz,
Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, et al. Tslearn, a machine learning
toolkit for time series data. Journal of machine learning research, 21(118):1–6, 2020.

Chen Tsfaty and Michael Fire. Malicious source code detection using a translation model. Patterns,
4(7), 2023.

JS Verkade, JD Brown, P Reggiani, and AH Weerts. Post-processing ecmwf precipitation and
temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales.
Journal of Hydrology, 501:73–91, 2013.

Richard Webby and Marcus O’Connor. Judgemental and statistical time series forecasting: a review
of the literature. International Journal of forecasting, 12(1):91–118, 1996.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Yanlai Zhou. Real-time probabilistic forecasting of river water quality under data missing situation:
Deep learning plus post-processing techniques. Journal of Hydrology, 589:125164, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A APPENDIX

TABLE OF CONTENTS

1 Introduction 1

2 Related Work 2

3 Methodology 3

3.1 Theoretical Motivation for Post-Training Correction 3

3.2 Forecasting Model Setup . 4

3.3 Post-Training Optimization via Action Space . 4

3.3.1 Optimizing Actions and Parameters . 4

3.3.2 Dynamic Optimization Strategies . 5

3.3.3 Why Discrete Actions + Continuous Parameters 5

3.4 Optimization Strategy: Empirical Comparison . 5

4 Theoretical Analysis of Our Bandit-Based Correction 6

5 Human-in-the-Loop Feedback Integration 7

6 Experiments 7

6.1 Setup . 7

6.2 Results: Adaptive Optimization Improves Forecasting 8

6.2.1 Human-in-the-Loop Feedback . 8

6.2.2 Computational Efficiency and Scalability 10

7 Conclusion 10

A Appendix 15

A.1 Mathematical definitions and visualizations of the pool of actions 16

A.2 Details on experimental setup: Datasets and models 17

A.3 More experiments on the reinforcement automated loop 18

A.4 Experiments on Performance Improvement as a Function of the Number of Actions 25

A.5 Cross-Metric Evaluation of Optimization Strategies 26

A.6 More experiments on the human feedback . 26

A.7 Code and Reproducibility . 31

A.8 Code Usage and API Documentation . 31

A.9 Installation and usage for development . 34

A.10 Theoretical motivation for post training in time series forecasting 35

A.11 Proof of the Upper Bound on the Risk of the Corrected Prediction Theorem 36

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ABSTRACT

This supplementary material provides an extended discussion and additional details supporting the
main paper on Human-in-the-Loop Adaptive Optimization for Improved Time Series Forecasting. We
first delve deeper into the mathematical formulation of the different actions used in our framework,
offering visualizations to better illustrate their roles and impacts on model performance.

Next, we provide an in-depth exploration of the adaptive optimization algorithms employed within
our approach, detailing their integration into state-of-the-art time series forecasting models. Sup-
plementary experiments are included to showcase the effectiveness of our adaptive optimization
-enhanced models across various datasets, comparing them against baseline methods to highlight
performance improvements.

Human feedback is also a central aspect of our framework. In this section, we demonstrate how
human feedback can be integrated into the post-training process through several real-world examples,
illustrating the subjective nature of human input and its positive impact on model fine-tuning.

Finally, we offer detailed instructions on how to reproduce the experiments and results presented in
this work. This includes guidance on using the provided code and graphical interface, enabling users
to easily test and customize our framework for their own time series forecasting tasks. All code and
resources are made publicly available for further exploration and use by the research community.

A.1 MATHEMATICAL DEFINITIONS AND VISUALIZATIONS OF THE POOL OF ACTIONS

Before presenting the mathematical definitions in the table, let’s define the notation used in the
transformations:

• x: The original time series or predictions (before transformation), where each xt is the value
at time t.

• y: The transformed time series or predictions, resulting from applying one of the post-
training actions.

• xt: The value at time step t in the original time series.
• yt: The transformed value at time step t in the new series.
• xmax: The maximum value in the time series x across all time steps.
• xmin: The minimum value in the time series x across all time steps.
• x̄: The average value of the time series x over all time steps.
• Qδ: The δ-th quantile of the values in x, which corresponds to the value at the specified

percentile of the distribution of x.
• ∆: The amount by which to shift the time series in the "Shift Series" action (in terms of

time steps).
• s: The slope parameter for adding a linear trend to the time series, representing a change in

the amplitude of the series over time.
• b: The intercept parameter for adding a linear trend to the time series, adjusting the average

level of the series.
• f : The factor used in scaling operations, such as scaling the amplitude or adjusting the

minimum/maximum values.
• σ: The standard deviation parameter for noise addition, influencing the spread of the

generated noise.
• t: The time step index, which ranges from 1 to H , where H is the total number of time steps

(the horizon) in the time series.

The following table summarizes each action’s mathematical operation and the continuous parameters
involved, along with their respective ranges.

These post-training actions modify time series predictions through mathematical transformations
targeting trends, amplitudes, and frequency/phase. Each transformation is defined mathematically,
with adjustable parameters like scaling factors and thresholds to optimize performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Action Name Mathematical Definition Continuous Parameters
(Range)

Trend Modifications
Linear Trend Slope y = x+

(
s

100 · (xmax − xmin)
)
· t s ∈ (−5, 5), t ∈ [H]

Linear Trend Intercept y = x+
(

b
100 · x̄

)
b ∈ (−5, 5)

Piecewise Scaling
Piecewise Scale High y = x ·

(
1 + f

100

)
for xt ≤ Qδ δ ∈ (70, 100), f ∈ (−1, 10)

Piecewise Scale Low y = x ·
(
1 + f

100

)
for xt > Qδ δ ∈ (0, 30), f ∈ (−1, 10)

Frequency and Phase
Swap Series yt = − (x− x̄) + x̄ None

Shift Series yt = xt+∆ ∆ ∈ (−200, 200)

Amplitude Modifications
Scale Amplitude y = x ·

(
1 + f

100

)
f ∈ (−5, 5)

Add Noise y = x+ ϵ where ϵ ∼ N (0, σ
100 · |xt|) σ ∈ (10, 30)

Increase Minimum Factor y = x · (1 + f
100) for xt ≤ Q10% f ∈ (−1, 10)

Table 4: Mathematical definitions and continuous parameters for each post-training action. The range
for each parameter is specified to guide the tuning of each transformation. Note: xt is the initial
prediction and yt is the transformed prediction for each sample and each dimension. xmax and xmin

are minimum and maximum values of xt over all horizons H and x̄ is the average value. Qδ is the
δ-quantile of the vector x.

Figure 7 shows the original time series alongside the transformed series, with each subplot illustrating
a different post-training action applied.

A.2 DETAILS ON EXPERIMENTAL SETUP: DATASETS AND MODELS

A.2.1 DATASETS

In this section, we provide a summary of the datasets used in our analysis. The following table
outlines the dataset names, their sources, key characteristics, and the corresponding references for the
papers that describe each dataset.

Table 5: Datasets Overview

Dataset Name Source and Reference Characteristics
ETTh1 ETTh (Electricity)

Benchmark Zhou et al.
(2021)

1-hour-level time-series with 6 features
and "oil temperature" as the target.
Train/val/test split: 12/4/4 months.

ETTh2 ETTh (Electricity)
Benchmark Zhou et al.
(2021)

1-hour-level time-series with 6 features
and "oil temperature" as the target.
Includes more features than ETTh1.

ETTm1 ETTh (Electricity)
Benchmark Zhou et al.
(2021)

15-minute-level time-series with 6
features and "oil temperature" as the
target. Train/val/test split: 12/4/4
months.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Datasets Overview (Continued)
Dataset Name Source and Reference Characteristics
ETTm2 ETTh (Electricity)

Benchmark Zhou et al.
(2021)

15-minute-level time-series, similar to
ETTm1, with different subsets for
long-term forecasting.

Dominick Open TS Benchmark Qiu
et al. (2024)

115704 weekly time series representing
the profit of individual stock keeping
units from a retailer.

Nature Open TS Benchmark Qiu
et al. (2024)

Human Open TS Benchmark Qiu
et al. (2024)

Time-series data for human activity
recognition, captured by wearable
devices.

NASDAQ Open TS Benchmark Qiu
et al. (2024)

Stock market data from NASDAQ.
Used for financial forecasting
challenges.

KDD Cup Open TS Benchmark Qiu
et al. (2024)

Pedestrian Open TS Benchmark Qiu
et al. (2024)

Pedestrian count data from urban
settings, used for mobility prediction.

Tourism Open TS Benchmark Qiu
et al. (2024)

Tourism demand data, used for
forecasting seasonal trends.

Vehicle Trips Open TS Benchmark Qiu
et al. (2024)

Vehicle trip data, used for urban
mobility and traffic pattern forecasting.

A.2.2 TIME SERIES MODELS

In this work, we utilize several state-of-the-art time series forecasting models, all of which are part of
the framework described in Liu et al. (2024b). These models are trained for 10 epochs, with early
stopping applied on the validation set to prevent overfitting. Below, we briefly describe each of the
models used:

• Autoformer Wu et al. (2021): A deep learning model designed to capture long-term
dependencies and seasonality in time-series data by leveraging an attention mechanism.

• Crossformer Zhang & Yan (2023): This model integrates cross-attention mechanisms to
effectively model both long-range and local dependencies in time-series forecasting.

• PatchTST Nie et al. (2023): A vision transformer-based model that divides time-series
data into patches to capture temporal dependencies, providing superior performance in
forecasting.

• DLinear Zeng et al. (2023): A linear decomposition model that separates the time series
into trend and seasonal components for more interpretable and efficient forecasting.

• Informer Zhou et al. (2021): A transformer-based model that focuses on efficiency for
long-term forecasting by using a self-attention mechanism and probabilistic forecast outputs.

• SegRNN Lin et al. (2023): A sequential deep learning model that combines segmentation
with recurrent neural networks to handle irregular time-series data.

Each of these models has demonstrated strong performance in time series forecasting tasks, and we
have used them to compare their abilities on the datasets described earlier.

A.3 MORE EXPERIMENTS ON THE REINFORCEMENT AUTOMATED LOOP

A.3.1 ROBUSTNESS ANALYSIS WITH RESPECT TO VALIDATION SETS

In our framework, the choice of the validation set is quite important. For well-known benchmark
datasets like ETTh1, ETTh2, ETTm1, and ETTm2, we use the provided validation sets as specified

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 7: Visual representation of the time series transformations. Each subplot illustrates a different
post-training action applied to the original time series.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

in the dataset documentation. For datasets without a predefined validation set, we split the training
data temporally, using 30% of the data for validation, in line with common practices.

To assess the robustness of our approach, we conduct additional experiments on the ETTm1 dataset.
While ETTm1 provides an explicit validation set, we discard it for this analysis and perform our own
temporal split. This allows us to investigate how model performance varies with different validation
set sizes. We experiment with three models DLinear, PatchTST, and SegRNN and test multiple
validation set sizes, from smaller to larger subsets. The results reveal a consistent improvement of
approximately 10% as the validation set size increases, with a monotonic improvement over larger
validation sets observed across all models.

Each experiment is repeated 5 times, with train-validation splits shuffled to ensure robustness. The
standard deviation is shown as a shaded region around the mean performance, providing a clear view
of variability.

Figure 8: Quantitative MSE reduction (Performance metric) with respect to validation set size for
DLinear, PatchTST, and SegRNN. We observe an MSE reduction of around 10% across different
validation splits.

A.3.2 QUANTITATIVE ANALYSIS OF THE OPTIMIZATION PROCESS

We present a qualitative analysis of the optimization process, illustrating the improvement in forecast-
ing at different stages. The initial forecast is shown in red, representing the model’s performance at
the beginning of the optimization. The middle prediction, made after 5 episodes, is also shown to
demonstrate the progress. Finally, the forecast after the optimization process is completed shows the
model’s final performance.

The model used for this prediction is PatchTST, and the dataset is ETTm1. In black, we highlight all
the unsuccessful actions attempted during the optimization process.

From this analysis, we can clearly observe the improvement in forecast accuracy over time, driven by
the optimization process, which refines the predictions based on a fixed set of actions.

A.3.3 COMPARISON BETWEEN OPTIMIZATION STRATEGY OVER THE POOL OF ACTIONS

We compare the performance of four different classes of algorithms:

1. Random search where each discrete action is evaluated by randomly sampling continuous
parameters and selecting the best-performing configuration.

2. Bandit algorithm, which considers each class of actions as an arm and optimizes using line
search the parameter called SH-HPO.

3. Reinforcement learning algorithm (PPO), which discretizes the set of actions and imple-
ments the PPO algorithm (Schulman et al., 2017) denoted RL(PPO).

4. Genetic algorithm (GA) (Sampson, 1976), which discretizes the set of actions and performs
a genetic algorithm denoted GA.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 9: Qualitative improvement during the optimization process. The base learner is PatchTST
on ETTm1. The validation set is the one explicitly provided by the benchmark. One sample from a
specific channel is provided for illustration.

We present the result for several time series models and for five different datasets in Table 6.

The metric used to measure the efficiency of post-training is the relative decrease in Mean Squared
Error (MSE) observed after post-training. Specifically, given the MSE before post-training, MSEbefore,
and the MSE after post-training, MSEafter, the relative decrease in MSE,M, is calculated as:

M =
MSEbefore −MSEafter

MSEbefore
(2)

A positive value ofM indicates that post-training has reduced the MSE, with larger positive values
signifying greater improvement. Conversely, a negative value indicates degradation compared to the
initial prediction.

Random SH-HPO RL (PPO) GA

2

3

4

5

6

4.83

5.65

1.62

2.12

A
ve

ra
ge

Im
pr

ov
em

en
t(

%
)

Average Improvement

Figure 10: Average improvement across all models and datasets for each method.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Models Datasets Random SH-HPO RL (PPO) GA

Autoformer

ETTh1 (96) 12.77% 19.85% 2.71% 6.76%
ETTh1 (192) 18.42% 17.32% 3.14% 6.20%
ETTh1 (336) 13.09% 12.91% 3.54% 4.43%
ETTh1 (792) 24.48% 27.26% 4.02% 6.96%

Average 17.19% 19.34% 3.35% 6.09%

Crossformer

ETTh1 (96) 5.49% 4.01% 2.71% 0.16%
ETTh1 (192) 2.05% 3.80% 1.71% 3.48%
ETTh1 (336) 3.13% 3.13% 0.14% 1.37%
ETTh1 (792) 2.53% 0.17% -0.14% 1.07%

Average 3.30% 2.78% 1.11% 1.52%

PatchTST

ETTh1 (96) -0.99% 0.15% 0.40% 0.62%
ETTh1 (192) -0.06% -1.13% 0.12% 0.23%
ETTh1 (336) -3.13% 0.23% 0.41% 0.19%
ETTh1 (772) -1.12% -2.50% 0.12% 0.14%

Average -1.33% -0.81% 0.26% 0.29%

SegRNN

ETTh1 (96) 0.80% 1.22% 0.13% 0.06%
ETTh1 (192) 1.24% 1.56% 0.73% 0.68%
ETTh1 (336) 2.38% 3.76% 0.71% 0.36%
ETTh1 (772) 2.39% 3.81% 0.87% 1.26%

Average 1.70% 2.59% 0.61% 0.59%

DLinear

ETTh1 (96) 1.50% 1.40% 0.97% 1.24%
ETTh1 (192) 2.03% 2.18% 1.39% 2.35%
ETTh1 (336) 2.96% 5.07% 4.62% 3.96%
ETTh1 (772) 1.33% -2.37% 1.82% -1.11%

Average 1.96% 1.57% 2.20% 1.61%

Informer

ETTh1 (96) 12.98% 6.83% 6.12% 4.87%
ETTh1 (192) 8.89% 7.28% 3.74% 2.17%
ETTh1 (336) 1.68% 4.01% 3.81% 2.49%
ETTh1 (772) -3.80% 3.61% 0.26% 0.94%

Average 4.94% 5.43% 3.48% 2.62%

iTransformer

ETTh1 (96) 2.16% 4.83% 0.41% 1.05%
ETTh1 (192) 2.79% 1.89% 1.26% 1.03%
ETTh1 (336) 3.22% 4.01% 1.32% 1.78%
ETTh1 (772) 4.23% 4.67% 2.34% 2.15%

Average 3.10% 3.85% 1.33% 1.50%
Overall Average 4.83% 5.65% 1.62% 2.12%

Table 6: Results of applying different algorithms (Random, SH-HPO, RL (PPO), GA) to various time
series forecasting models and datasets. Each cell shows the observed improvement for the respective
algorithm, model, and dataset. The improvements are measured in percentage points.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

A.3.4 EXPERIMENTS FOR THE SH-HPO ON ALL DATASETS AND HORIZONS

In the table, for each dataset, we evaluate performance at different horizon lengths (96, 192, 336, and
720), which are shown in the first four rows. The last row for each dataset represents the average
performance improvement across all horizon lengths.

Methods Autoformer Crossformer iTransformer PatchTST DLinear SegRNN Informer

ETTh1

0.52±0.04 → 0.45±0.03 0.41±0.02 → 0.39±0.01 0.41±0.02 → 0.40±0.01 0.40±0.02 → 0.41±0.01 0.41±0.02 → 0.40±0.01 0.39±0.02 → 0.38±0.01 0.57±0.02 → 0.56±0.01

(12.94%) (3.41%) (1.97%) (-1.31%) (1.47%) (1.22%) (1.55%)
0.59±0.03 → 0.48±0.02 0.48±0.02 → 0.46±0.02 0.45±0.03 → 0.44±0.02 0.44±0.03 → 0.44±0.02 0.46±0.03 → 0.45±0.02 0.43±0.03 → 0.42±0.02 0.67±0.03 → 0.62±0.02

(17.75%) (3.43%) (2.77%) (-0.94%) (2.15%) (1.58%) (7.10%)
0.65±0.02 → 0.57±0.01 0.59±0.02 → 0.58±0.01 0.49±0.02 → 0.47±0.01 0.47±0.02 → 0.48±0.01 0.50±0.02 → 0.48±0.01 0.50±0.02 → 0.47±0.01 0.70±0.02 → 0.68±0.01

(11.51%) (0.67%) (3.54%) (-3.38%) (2.58%) (1.31%) (2.56%)
0.71±0.02 → 0.53±0.03 0.70±0.02 → 0.68±0.01 0.48±0.02 → 0.47±0.01 0.55±0.02 → 0.56±0.01 0.51±0.02 → 0.50±0.01 0.55±0.02 → 0.52±0.01 0.75±0.02 → 0.74±0.01

(24.85%) (2.76%) (2.05%) (-3.37%) (-0.68%) (1.04%) (0.75%)
0.61±0.01 → 0.51±0.02 0.54±0.01 → 0.52±0.01 0.45±0.01 → 0.44±0.01 0.46±0.01 → 0.47±0.01 0.47±0.01 → 0.45±0.01 0.47±0.01 → 0.45±0.01 0.67±0.01 → 0.65±0.01

(16.76%) (2.20%) (2.58%) (-2.25%) (1.38%) (1.31%) (3.00%)

ETTh2

0.55±0.02 → 0.44±0.01 1.10±0.02 → 1.04±0.01 0.33±0.02 → 0.32±0.01 0.32±0.02 → 0.31±0.01 0.38±0.02 → 0.33±0.01 0.31±0.02 → 0.30±0.01 0.38±0.02 → 0.37±0.01

(20.87%) (5.38%) (2.45%) (3.23%) (15.12%) (3.51%) (1.89%)
0.78±0.03 → 0.64±0.02 1.59±0.03 → 1.58±0.02 0.40±0.03 → 0.39±0.02 0.40±0.03 → 0.39±0.02 0.50±0.03 → 0.47±0.02 0.39±0.03 → 0.38±0.02 0.51±0.03 → 0.47±0.02

(18.65%) (0.58%) (1.60%) (1.87%) (6.54%) (-5.88%) (7.13%)
0.75±0.02 → 0.63±0.01 6.57±0.02 → 6.57±0.01 0.44±0.02 → 0.43±0.01 0.43±0.02 → 0.44±0.01 0.61±0.02 → 0.57±0.01 0.50±0.02 → 0.47±0.01 0.46±0.02 → 0.44±0.01

(16.69%) (0.00%) (2.98%) (-2.40%) (6.15%) (3.61%) (3.84%)
0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01 0.49±0.02 → 0.48±0.01 0.43±0.02 → 0.40±0.01 0.85±0.02 → 0.79±0.01 0.55±0.02 → 0.52±0.01 0.43±0.02 → 0.42±0.01

(5.69%) (-0.01%) (4.13%) (5.05%) (6.70%) (1.31%) (0.44%)
0.65±0.01 → 0.55±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

(15.48%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

ETTm1

0.43±0.02 → 0.40±0.01 0.39±0.02 → 0.38±0.01 0.21±0.02 → 0.20±0.01 0.36±0.02 → 0.34±0.01 0.37±0.02 → 0.35±0.01 0.35±0.02 → 0.34±0.01 0.71±0.02 → 0.64±0.01

(3.73%) (2.60%) (2.52%) (4.53%) (5.05%) (2.71%) (9.98%)
0.67±0.03 → 0.62±0.02 0.53±0.03 → 0.50±0.02 0.27±0.03 → 0.25±0.02 0.38±0.03 → 0.37±0.02 0.40±0.03 → 0.38±0.02 0.38±0.03 → 0.37±0.02 0.72±0.03 → 0.70±0.02

(6.31%) (5.24%) (2.42%) (2.27%) (3.62%) (2.34%) (2.92%)
0.73±0.02 → 0.68±0.01 0.72±0.02 → 0.68±0.01 0.33±0.02 → 0.31±0.01 0.41±0.02 → 0.40±0.01 0.42±0.02 → 0.40±0.01 0.50±0.02 → 0.47±0.01 0.73±0.02 → 0.71±0.01

(7.29%) (5.14%) (5.96%) (0.84%) (3.66%) (3.7%) (2.37%)
0.78±0.02 → 0.70±0.01 0.96±0.02 → 0.85±0.01 0.42±0.02 → 0.39±0.01 0.46±0.02 → 0.45±0.01 0.48±0.02 → 0.46±0.01 0.55±0.02 → 0.52±0.01 0.84±0.02 → 0.77±0.01

(9.83%) (0.89%) (0.88%) (2.8%) (3.97%) (2.7%) (7.56%)
0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

(7.37%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

ETTm2

0.27±0.02 → 0.24±0.01 0.33±0.02 → 0.31±0.01 0.46±0.02 → 0.43±0.01 0.20±0.02 → 0.19±0.01 0.21±0.02 → 0.19±0.01 0.19±0.02 → 0.18±0.01 0.25±0.02 → 0.23±0.01

(7.87%) (4.01%) (3.73%) (3.99%) (8.00%) (3.24%) (5.35%)
0.42±0.03 → 0.32±0.02 0.87±0.03 → 0.45±0.02 0.48±0.03 → 0.45±0.02 0.26±0.03 → 0.24±0.02 0.31±0.03 → 0.25±0.02 0.25±0.03 → 0.24±0.02 0.31±0.03 → 0.28±0.02

(22.58%) (4.8%) (6.18%) (7.69%) (18.97%) (5.20%) (7.88%)
0.46±0.02 → 0.35±0.01 0.99±0.02 → 0.47±0.01 0.50±0.02 → 0.47±0.01 0.32±0.02 → 0.29±0.01 0.38±0.02 → 0.33±0.01 0.50±0.02 → 0.47±0.01 0.37±0.02 → 0.34±0.01

(23.54%) (3.6%) (5.96%) (7.82%) (13.81%) (3.7%) (7.04%)
1.15±0.02 → 0.84±0.01 0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01 0.41±0.02 → 0.38±0.01 0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01 0.47±0.02 → 0.43±0.01

(27.00%) (3.1%) (7.51%) (7.36%) (6.78%) (2.7%) (6.99.9%)
0.60±0.01 → 0.57±0.01 3.82±0.01 → 3.81±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

(20.25%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

Weather

0.46±0.02 → 0.43±0.01 0.46±0.02 → 0.43±0.01 0.19±0.02 → 0.18±0.01 0.21±0.02 → 0.19±0.01 0.46±0.02 → 0.43±0.01 0.46±0.02 → 0.43±0.01 0.46±0.02 → 0.43±0.01

(6.2%) (2.5%) (7.64%) (5.13%) (8.88%) (6.0%) (5.1%)
0.48±0.03 → 0.45±0.02 0.48±0.03 → 0.45±0.02 0.23±0.03 → 0.21±0.02 0.23±0.03 → 0.21±0.02 0.24±0.03 → 0.22±0.02 0.48±0.03 → 0.45±0.02 0.48±0.03 → 0.45±0.02

(5.4%) (4.8%) (7.89%) (6.09%) (8.14%) (5.0%) (5.3%)
0.50±0.02 → 0.47±0.01 0.50±0.02 → 0.47±0.01 0.50±0.02 → 0.47±0.01 0.29±0.02 → 0.27±0.01 0.29±0.02 → 0.27±0.01 0.50±0.02 → 0.47±0.01 0.50±0.02 → 0.47±0.01

(4.1%) (3.6%) (6.57%) (5.55%) (5.61%) (3.7%) (3.8%)
0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01 0.35±0.02 → 0.33±0.01 0.55±0.02 → 0.52±0.01 0.55±0.02 → 0.52±0.01

(2.4%) (3.1%) (8.92%) (7.44%) (4.07%) (2.7%) (2.9%)
0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.36±0.01 → 0.33±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01 0.60±0.01 → 0.57±0.01

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

(4.4%) (3.7%) (4.0%) (4.2%) (3.8%) (3.8%) (3.9%)

Dominick

1.22±0.02 → 1.10±0.01 1.25±0.02 → 1.25±0.01 1.40±0.02 → 1.40±0.01 1.37±0.02 → 1.37±0.01 1.34±0.02 → 1.24±0.01 1.80±0.02 → 1.39±0.01 1.26±1.23 → 0.43±0.01

(12.93%) (0.00%) (0.00%) (0.00%) (6.73%) (22.76%) (2.35%)
1.31±0.03 → 1.18±0.02 0.97±0.03 → 0.97±0.02 1.05±0.03 → 1.05±0.02 1.08±0.03 → 1.08±0.02 1.03±0.03 → 0.94±0.02 1.66±0.03 → 1.20±0.02 0.92±0.03 → 0.88±0.02

(29.38%) (0.00%) (0.00%) (0.00%) (8.10%) (27.52%) (3.81%)
1.43±0.02 → 1.01±0.01 1.09±0.02 → 1.06±0.01 1.23±0.02 → 1.23±0.01 1.23±0.02 → 1.13±0.01 1.25±0.02 → 1.13±0.01 1.97±0.02 → 1.39±0.01 1.15±0.02 → 1.09±0.01

(9.76%) (2.56%) (0.00%) (8.01%) (9.08%) (28.94%) (3.81%)
1.55±0.02 → 1.34±0.01 1.17±0.02 → 1.15±0.01 1.30±0.02 → 1.25±0.01 1.32±0.02 → 1.22±0.01 1.32±0.02 → 1.21±0.01 2.28±0.02 → 1.60±0.01 1.26±0.02 → 1.18±0.01

(9.61%) (1.41%) (3.56%) (7.34%) (7.97%) (29.63%) (5.68%)
1.38±0.01 → 1.16±0.01 1.12±0.01 → 1.10±0.01 1.25±0.01 → 1.23±0.01 1.25±0.01 → 1.20±0.01 1.24±0.01 → 1.13±0.01 1.92±0.01 → 1.40±0.01 1.14±0.01 → 1.09±0.01

(15.42%) (1.00%) (0.89%) (3.83%) (7.97%) (27.21%) (4.28%)

Human

0.37±0.02 → 0.31±0.01 0.26±0.02 → 0.22±0.01 0.18±0.02 → 0.12±0.01 0.17±0.02 → 0.11±0.01 0.36±0.02 → 0.28±0.01 0.30±0.02 → 0.25±0.01 0.13±0.02 → 0.14±0.01

(14.19%) (13.66%) (32.74%) (35.22%) (20.22%) (15.68%) (-2.76%)
0.32±0.03 → 0.26±0.02 0.26±0.03 → 0.22±0.02 0.17±0.03 → 0.12±0.02 0.14±0.03 → 0.11±0.02 0.52±0.03 → 0.24±0.02 0.28±0.03 → 0.20±0.02 0.19±0.03 → 0.14±0.02

(16.59%) (11.86%) (24.88%) (17.79%) (52.35%) (26.57%) (25.19%)
0.30±0.02 → 0.17±0.01 0.29±0.02 → 0.24±0.01 0.48±0.02 → 0.19±0.01 0.52±0.02 → 0.16±0.01 1.01±0.02 → 0.28±0.01 0.56±0.02 → 0.26±0.01 0.26±0.02 → 0.19±0.01

(40.52%) (16.28%) (58.95%) (68.20%) (71.56%) (52.10%) (25.10%)
0.62±0.02 → 0.56±0.01 0.40±0.02 → 0.35±0.01 1.60±0.02 → 0.18±0.01 1.66±0.02 → 0.23±0.01 1.97±0.02 → 0.25±0.01 1.27±0.02 → 0.28±0.01 0.64±0.02 → 0.38±0.01

(9.67%) (11.58%) (88.50%) (85.76%) (87.30%) (77.75%) (40.17%)
0.40±0.01 → 0.33±0.01 0.30±0.01 → 0.25±0.01 0.60±0.01 → 0.15±0.01 0.62±0.01 → 0.15±0.01 0.96±0.01 → 0.26±0.01 0.60±0.01 → 0.25±0.01 0.30±0.01 → 0.21±0.01

(20.24%) (13.34%) (51.26%) (51.74%) (57.85%) (43.02%) (21.93%)

KDD

1.06±0.02 → 0.83±0.01 0.71±0.02 → 0.70±0.01 0.90±0.02 → 0.74±0.01 0.94±0.02 → 0.76±0.01 0.84±0.02 → 0.77±0.01 0.92±0.02 → 0.76±0.01 0.96±0.02 → 0.77±0.01

(20.98%) (0.19%) (17.14%) (19.18%) (7.81%) (16.63%) (19.59%)
1.20±0.03 → 0.94±0.02 0.81±0.03 → 0.81±0.02 1.08±0.03 → 0.86±0.02 1.11±0.03 → 0.88±0.02 0.93±0.03 → 0.86±0.02 1.08±0.03 → 0.87±0.02 1.08±0.03 → 0.85±0.02

(21.11%) (-0.06%) (19.98%) (20.64%) (7.24%) (18.61%) (20.86%)
1.29±0.02 → 0.98±0.01 0.84±0.02 → 0.84±0.01 1.19±0.02 → 0.93±0.01 1.21±0.02 → 0.93±0.01 0.95±0.02 → 0.87±0.01 1.17±0.02 → 0.93±0.01 1.18±0.02 → 0.96±0.01

(23.58%) (-0.16%) (21.71%) (22.58%) (7.89%) (19.71%) (23.52%)
1.47±0.02 → 1.05±0.01 0.83±0.02 → 0.83±0.01 1.33±0.02 → 0.99±0.01 1.31±0.02 → 0.88±0.01 1.01±0.02 → 0.89±0.01 1.24±0.02 → 0.97±0.01 1.28±0.02 → 0.96±0.01

(28.32%) (0.00%) (25.51%) (24.92%) (11.22%) (21.63%) (24.66%)
1.25±0.01 → 0.95±0.01 0.80±0.01 → 0.80±0.01 1.13±0.01 → 0.88±0.01 1.14±0.01 → 0.89±0.01 0.93±0.01 → 0.85±0.01 1.10±0.01 → 0.88±0.01 1.12±0.01 → 0.87±0.01

(23.50%) (-0.03%) (21.09%) (21.83%) (8.54%) (19.14%) (22.15%)

Nature

1.22±0.02 → 0.79±0.01 0.28±0.02 → 0.28±0.01 0.29±0.02 → 0.28±0.01 0.27±0.02 → 0.26±0.01 0.87±0.02 → 0.80±0.01 1.04±0.02 → 0.83±0.01 0.78±0.02 → 0.7±0.01

(35.00%) (-1.74%) (1.95%) (1.37%) (7.16%) (19.90%) (0.38%)
1.74±0.03 → 1.19±0.02 0.63±0.03 → 0.66±0.02 0.30±0.03 → 0.29±0.02 0.24±0.03 → 0.23±0.02 0.99±0.03 → 0.95±0.02 1.05±0.03 → 0.97±0.02 0.96±0.03 → 0.95±0.02

(31.15%) (-3.91%) (2.83%) (2.38%) (3.25%) (6.86%) (0.39%)
1.01±0.02 → 0.95±0.01 0.83±0.02 → 0.81±0.01 0.30±0.02 → 0.28±0.01 0.22±0.02 → 0.20±0.01 0.98±0.02 → 0.94±0.01 1.04±0.02 → 0.98±0.01 0.95±0.02 → 0.94±0.01

(5.80%) (1.10%) (3.99%) (4.75%) (3.19%) (5.33%) (0.62%)
1.01±0.02 → 0.93±0.01 0.88±0.02 → 0.87±0.01 0.49±0.02 → 0.47±0.01 0.34±0.02 → 0.31±0.01 0.99±0.02 → 0.95±0.01 0.98±0.02 → 0.95±0.01 0.96±0.02 → 0.94±0.01

(7.44%) (-0.13%) (4.30%) (6.40%) (3.65%) (2.61%) (2.06%)
1.25±0.01 → 0.96±0.01 0.65±0.01 → 0.66±0.01 0.34±0.01 → 0.33±0.01 0.26±0.01 → 0.25±0.01 0.95±0.01 → 0.91±0.01 1.02±0.01 → 0.94±0.01 0.91±0.01 → 0.90±0.01

(21.69%) (-1.17%) (3.26%) (3.72%) (4.31%) (8.67%) (0.86%)

NASDAQ

0.72±0.02 → 0.55±0.01 0.36±0.02 → 0.36±0.01 0.51±0.02 → 0.42±0.01 0.50±0.02 → 0.42±0.01 0.56±0.02 → 0.53±0.01 0.51±0.02 → 0.43±0.01 0.57±0.02 → 0.48±0.01

(23.38%) (-1.05%) (16.14%) (14.96%) (5.24%) (15.21%) (15.20%)
0.78±0.03 → 0.62±0.02 0.41±0.03 → 0.41±0.02 0.70±0.03 → 0.56±0.02 0.67±0.03 → 0.54±0.02 0.67±0.03 → 0.62±0.02 0.67±0.03 → 0.54±0.02 0.75±0.03 → 0.61±0.02

(19.76%) (-0.24%) (18.99%) (18.08%) (6.62%) (18.34%) (17.99%)
0.98±0.02 → 0.76±0.01 0.51±0.02 → 0.51±0.01 0.88±0.02 → 0.70±0.01 0.87±0.02 → 0.70±0.01 0.82±0.02 → 0.75±0.01 0.87±0.02 → 0.70±0.01 0.96±0.02 → 0.91±0.01

(21.70%) (-0.09%) (19.70%) (19.63%) (8.13%) (19.47%) (21.48%)
1.18±0.02 → 0.88±0.01 0.57±0.02 → 0.56±0.01 0.80±0.02 → 0.63±0.01 1.12±0.02 → 0.83±0.01 0.93±0.02 → 0.83±0.01 1.10±0.02 → 0.83±0.01 1.14±0.02 → 1.11±0.01

(24.72%) (0.06%) (24.26%) (24.58%) (10.40%) (23.74%) (23.76%)
0.91±0.01 → 0.70±0.01 0.46±0.01 → 0.46±0.01 0.80±0.01 → 0.63±0.01 0.79±0.01 → 0.68±0.01 0.74±0.01 → 0.68±0.01 0.78±0.01 → 0.62±0.01 0.85±0.01 → 0.79±0.01

(22.39%) (-0.33%) (19.77%) (14.76%) (7.59%) (19.19%) (8.96%)

Pedestrian

0.38±0.02 → 0.22±0.01 0.11±0.02 → 0.11±0.01 0.09±0.02 → 0.08±0.01 0.14±0.02 → 0.13±0.01 0.33±0.02 → 0.27±0.01 0.14±0.02 → 0.13±0.01 0.21±0.02 → 0.18±0.01

(41.72%) (-0.03%) (2.85%) (3.68%) (18.21%) (1.53%) (18.38%)
0.38±0.03 → 0.24±0.02 0.13±0.03 → 0.12±0.02 0.14±0.03 → 0.12±0.02 0.22±0.03 → 0.18±0.02 0.74±0.03 → 0.63±0.02 0.20±0.03 → 0.18±0.02 0.39±0.03 → 0.33±0.02

(34.76%) (0.43%) (11.79%) (11.82%) (14.79%) (9.37%) (15.51%)
0.52±0.02 → 0.30±0.01 0.15±0.02 → 0.14±0.01 0.16±0.02 → 0.14±0.01 0.25±0.02 → 0.22±0.01 0.77±0.02 → 0.66±0.01 0.22±0.02 → 0.20±0.01 0.35±0.02 → 0.29±0.01

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(41.30%) (0.37%) (12.15%) (11.49%) (13.38%) (8.83%) (18.22%)
0.55±0.02 → 0.31±0.01 0.16±0.02 → 0.15±0.01 0.18±0.02 → 0.16±0.01 0.27±0.02 → 0.25±0.01 0.77±0.02 → 0.66±0.01 0.25±0.02 → 0.22±0.01 0.38±0.02 → 0.31±0.01

(42.27%) (0.30%) (10.94%) (11.18%) (13.88%) (8.01%) (19.35%)
0.46±0.01 → 0.27±0.01 0.14±0.01 → 0.13±0.01 0.14±0.01 → 0.12±0.01 0.22±0.01 → 0.19±0.01 0.69±0.01 → 0.60±0.01 0.20±0.01 → 0.18±0.01 0.33±0.01 → 0.27±0.01

(40.01%) (0.26%) (9.43%) (9.54%) (14.20%) (6.94%) (15.87%)

Tourism

0.38±0.02 → 0.33±0.01 0.11±0.02 → 0.08±0.01 0.16±0.02 → 0.11±0.01 0.16±0.02 → 0.11±0.01 0.34±0.02 → 0.22±0.01 0.17±0.02 → 0.08±0.01 0.17±0.02 → 0.12±0.01

(12.79%) (25.00%) (26.16%) (28.55%) (33.74%) (50.06%) (27.43%)
0.13±0.03 → 0.10±0.02 0.08±0.03 → 0.07±0.02 0.11±0.03 → 0.10±0.02 0.12±0.03 → 0.10±0.02 0.40±0.03 → 0.17±0.02 0.20±0.03 → 0.11±0.02 0.14±0.03 → 0.10±0.02

(17.05%) (8.79%) (8.96%) (3.10%) (56.60%) (43.12%) (22.82%)
0.30±0.02 → 0.31±0.01 0.15±0.02 → 0.14±0.01 0.50±0.02 → 0.26±0.01 0.50±0.02 → 0.26±0.01 0.68±0.02 → 0.37±0.01 0.33±0.02 → 0.15±0.01 0.33±0.02 → 0.31±0.01

(-3.60%) (6.10%) (47.99%) (47.75%) (44.29%) (53.09%) (4.90%)
0.18±0.02 → 0.14±0.01 0.31±0.02 → 0.29±0.01 0.48±0.02 → 0.11±0.01 0.49±0.02 → 0.11±0.01 0.66±0.02 → 0.25±0.01 0.28±0.02 → 0.15±0.01 0.26±0.02 → 0.19±0.01

(17.30%) (6.04%) (77.23%) (77.41%) (61.01%) (46.32%) (27.16%)
0.24±0.01 → 0.22±0.01 0.16±0.01 → 0.14±0.01 0.31±0.01 → 0.14±0.01 0.31±0.01 → 0.14±0.01 0.52±0.01 → 0.25±0.01 0.24±0.01 → 0.12±0.01 0.22±0.01 → 0.18±0.01

(10.88%) (11.48%) (40.08%) (39.20%) (48.91%) (48.14%) (20.57%)

Vehicle trips

1.40±0.02 → 1.13±0.01 0.64±0.02 → 0.62±0.01 0.89±0.02 → 0.78±0.01 0.86±0.02 → 0.71±0.01 1.24±0.02 → 1.14±0.01 1.45±0.02 → 0.72±0.01 1.15±0.02 → 0.83±0.01

(19.00%) (2.71%) (11.63%) (16.60%) (7.46%) (26.95%) (8.02%)
1.39±0.03 → 1.14±0.02 0.84±0.03 → 0.85±0.02 0.81±0.03 → 0.68±0.02 0.79±0.03 → 0.69±0.02 1.25±0.03 → 1.10±0.02 1.37±0.03 → 0.77±0.02 1.05±0.03 → 0.81±0.02

(17.78%) (-2.23%) (15.09%) (11.95%) (11.83%) (21.34%) (6.77%)
1.48±0.02 → 1.18±0.01 0.95±0.02 → 0.94±0.01 1.08±0.02 → 0.87±0.01 1.02±0.02 → 0.80±0.01 1.34±0.02 → 1.11±0.01 1.78±0.02 → 1.28±0.01 1.25±0.02 → 1.04±0.01

(19.65%) (0.82%) (18.82%) (20.85%) (16.47%) (27.59%) (16.29%)
1.30±0.02 → 1.09±0.01 0.90±0.02 → 0.87±0.01 1.32±0.02 → 1.01±0.01 1.27±0.02 → 0.98±0.01 1.59±0.02 → 1.24±0.01 2.13±0.02 → 1.42±0.01 1.40±0.02 → 1.12±0.01

(16.09%) (2.27%) (23.03%) (22.63%) (21.70%) (33.07%) (19.63%)
1.39±0.01 → 1.13±0.01 0.83±0.01 → 0.82±0.01 1.02±0.01 → 0.84±0.01 0.98±0.01 → 0.80±0.01 1.35±0.01 → 1.15±0.01 1.68±0.01 → 1.05±0.01 1.21±0.01 → 0.95±0.01

(18.13%) (0.89%) (17.14%) (18.00%) (14.37%) (38.46%) (21.54%)

Weather

1.01±0.02 → 0.88±0.01 0.83±0.02 → 0.82±0.01 0.96±0.02 → 0.86±0.01 0.96±0.02 → 0.87±0.01 0.91±0.02 → 0.89±0.01 0.93±0.02 → 0.85±0.01 0.97±0.02 → 0.87±0.01

(12.10%) (0.04%) (9.69%) (9.32%) (2.07%) (8.54%) (10.07%)
1.03±0.03 → 0.90±0.02 0.86±0.03 → 0.85±0.02 1.01±0.03 → 0.89±0.02 1.01±0.03 → 0.90±0.02 0.93±0.03 → 0.90±0.02 0.98±0.03 → 0.88±0.02 1.01±0.03 → 0.89±0.02

(12.15%) (0.03%) (10.92%) (10.80%) (2.18%) (9.95%) (11.32%)
1.13±0.02 → 0.96±0.01 0.87±0.02 → 0.86±0.01 1.10±0.02 → 0.95±0.01 1.10±0.02 → 0.95±0.01 0.98±0.02 → 0.94±0.01 1.06±0.02 → 0.92±0.01 1.12±0.02 → 0.96±0.01

(14.46%) (0.002%) (13.54%) (13.48%) (3.76%) (12.43%) (13.90%)
1.33±0.02 → 1.08±0.01 0.85±0.02 → 0.84±0.01 1.34±0.02 → 1.09±0.01 1.34±0.02 → 1.09±0.01 1.07±0.02 → 1.00±0.01 1.29±0.02 → 1.06±0.01 1.35±0.02 → 1.09±0.01

(18.43%) (0.08%) (18.15%) (18.24%) (5.87%) (17.63%) (18.57%)
1.12±0.01 → 0.96±0.01 0.85±0.01 → 0.84±0.01 1.10±0.01 → 0.95±0.01 1.10±0.01 → 0.95±0.01 0.97±0.01 → 0.93±0.01 1.06±0.01 → 0.93±0.01 1.11±0.01 → 0.95±0.01

(14.29%) (0.03%) (13.07%) (12.96%) (3.47%) (12.13%) (13.47%)

A.4 EXPERIMENTS ON PERFORMANCE IMPROVEMENT AS A FUNCTION OF THE NUMBER OF
ACTIONS

In this section, we analyze the performance improvements achieved by post-training optimization
on the DLinear model for the ETTm1 dataset. Specifically, we examine how the performance varies
with different prediction horizons and different numbers of actions. The results are summarized in
the table below:

Table 8: Adaptive optimization improved performance.

Horizon 2 Actions 4 Actions 7 Actions
96 3.63 ± 0.54 3.74 ± 0.93 5.05 ± 0.39
192 2.10 ± 0.26 2.80 ± 0.47 3.62 ± 0.66
336 3.25 ± 0.93 3.45 ± 0.61 3.66 ± 0.71
720 2.37 ± 0.78 3.29 ± 0.47 3.97 ± 0.78

The table displays the performance improvements (in terms of error reduction) achieved through
adaptive optimization at various prediction horizons (96, 192, 336, and 720) and with different
numbers of actions (2, 4, and 7). The values are presented as mean ± standard deviation, providing
an indication of the variability in performance.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

A.5 CROSS-METRIC EVALUATION OF OPTIMIZATION STRATEGIES

To systematically investigate whether optimizing a single metric (e.g., Mean Squared Error, MSE)
can lead to artificial or misaligned improvements in other metrics, we designed a comprehensive
evaluation framework.

METHODOLOGY

We constructed a cross-metric evaluation matrix with the following structure:

• Rows: Metrics used for optimization, including MSE, Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and R2.

• Columns: Metrics used for evaluation.

For each cell, we report the relative improvement per episode across the training, validation, and
test sets, quantifying how optimizing one metric affects the others.

RESULTS AND VISUALIZATION

Figure 12 provides a visual summary. We observe two interesting phenomena:

• Consistent landscapes: Across most optimization settings, the training, validation, and test
losses share similar landscapes, indicating that overfitting is empirically mitigated. This
aligns with the theoretical rationale that our small, interpretable action set limits overfitting.

• Cross-metric agreement: Improvements generalize well across metrics, confirming that
our approach is not merely metric-specific gaming but delivers genuine gains across multiple
evaluation criteria.

• Aligned metrics: When metrics are well-aligned, improvements generally transfer across
metrics.

• Incompatible metrics: Optimization may slightly degrade performance on incompatible
metrics; for example, optimizing MAPE can reduce R2.

A.6 MORE EXPERIMENTS ON THE HUMAN FEEDBACK

Detailed principle of the human in the loop framework The system generates executable code
based on user feedback using a language model (LLM). The process is as follows:

• User Feedback: The user provides a natural language description of the desired transforma-
tion (e.g., scaling predictions).

• Prompt Generation: The feedback is passed through a function that creates a structured
prompt for the LLM.

• LLM Code Generation: The LLM generates a Python class and function based on the
feedback. The class includes a transformation function and a parameter generation function.

• Optimization: Following code generation, the system optimizes the transformation via
bandit, RL or genetic algorithms to improve performance.

The generated prompt is structured as follows:

def b u i l d _ f e e d b a c k _ p r o m p t (f e e d b a c k) :
re turn f " " "
Given t h e f o l l o w i n g f e e d b a c k abou t a t i m e s e r i e s p r e d i c t i o n model :

Feedback : " { f e e d b a c k } "

P l e a s e g e n e r a t e a Python c l a s s c a l l e d ‘ G e n e r i c F u n c t i o n ‘ t h a t r e p r e s e n t s a t r a n s f o r m a t i o n f u n c t i o n . The c l a s s s h o u l d i n c l u d e :

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 11: Cross-metric relative improvements. Rows correspond to the optimization metric, columns
correspond to the evaluation metric.

1 . A c o n s t r u c t o r (‘ _ _ i n i t _ _ ‘) t h a t a c c e p t s :
− ‘ f u n c t i o n _ t y p e ‘ : The t y p e o f t r a n s f o r m a t i o n .
− ‘ params ‘ : A d i c t i o n a r y c o n t a i n i n g p a r a m e t e r s f o r t h e t r a n s f o r m a t i o n .

2 . An ‘ apply ‘ method t h a t m o d i f i e s t h e p r e d i c t i o n or c o n t e x t v e c t o r and o u t p u t s t h e t r a n s f o r m e d t i m e s e r i e s .

A d d i t i o n a l l y , g e n e r a t e a f u n c t i o n ‘ g e n e r a t e _ r a n d o m _ p a r a m s _ f o r _ a c t i o n ‘ t h a t r e t u r n s p a r a m e t e r s f o r t h e t r a n s f o r m a t i o n .

−−− START OF GENERATED CODE −−−

C l a s s D e f i n i t i o n :
c l a s s G e n e r i c F u n c t i o n :
<c l a s s −body>

F u n c t i o n D e f i n i t i o n :
d e f g e n e r a t e _ r a n d o m _ p a r a m s _ f o r _ a c t i o n (a c t i o n , b a t c h _ x) :
< f u n c t i o n −body>

−−− END OF GENERATED CODE −−−
" " "

The system then optimizes the generated code using the proposed optimization schemes, ensuring
that the generated transformations lead to performance improvements.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 12: Cross-metric relative improvements. Rows correspond to the optimization metric, columns
correspond to the evaluation metric.

A.6.1 HUMAN FEEDBACK IN ACTION

In this section, we illustrate the practical impact of human feedback through three representative
examples, each consisting of a triplet of subplots. These examples demonstrate how natural language
insights from a human user can be translated into targeted post-training actions, improving forecasting
accuracy beyond automated optimization alone.

Each example includes the following three visualizations:

• Forecast Comparison with Feedback Summary: The first subplot presents the full fore-
casting context: the historical context vector, the model’s initial predictions, the predictions
after reinforcement learning (RL)-based optimization, and the final forecast incorporating
human feedback. The title of each subplot includes the specific textual instruction provided
by the human. This view emphasizes how the feedback alters the forecasted trajectory.

• Generated Code from Human Instruction: The second subplot displays the code snippet
generated by a lightweight language model (LLM) based on the human’s textual feed-
back. This demonstrates the interpretability and direct translatability of natural language
instructions into executable post-processing transformations.

• RMSE Improvement Visualization: The third subplot shows the reduction in RMSE
achieved by applying the human-guided correction compared to the RL-only optimization.
This quantifies the value added by the human-in-the-loop mechanism.

Each of the three examples showcases a different type of human insight—such as noise reduction,
trend adjustment, or outlier suppression—emphasizing both the flexibility and effectiveness of

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

incorporating human feedback in the post-training phase. These case studies highlight the potential
of combining automated learning with domain expertise to refine time series forecasts in practice.

Figure 13: Human feedback integration example 1: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: Dominick, Model: PatchTST

Figure 14: Human feedback integration example 2: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: Nature, Model: DLinear

Figure 15: Human feedback integration example 3: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: Tourism, Model: PatchTST

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

A.6.2 ROBUSTNESS ANALYSIS WITH RESPECT TO THE PROMPT

To demonstrate the robustness of the proposed framework, we analyze failure cases where the prompt
is either ambiguous or nonsensical. These cases are intentionally designed to test the system’s ability
to handle invalid or poorly defined feedback. The framework is robust in that it identifies and discards
actions that do not lead to performance improvements, ensuring that only meaningful transformations
are applied.

Figure 16: Human feedback integration example 4: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: ETTm1, Model: DLinear

Figure 17: Human feedback integration example 3: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: ETTm1, Model: DLinear

Figure 18: Human feedback integration example 6: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: ETTm1, Model: DLinear

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

A.7 CODE AND REPRODUCIBILITY

To enable full reproducibility of our results, we provide detailed instructions for using the code
associated with our framework. This section includes guidelines for setting up the environment,
running the experiments, and utilizing the graphical user interface (GUI) for easy interaction with the
framework. We also provide links to the repository, ensuring that interested readers can freely access
and experiment with our code.

A.8 CODE USAGE AND API DOCUMENTATION

This appendix provides instructions for using the codebase and the API for time series model
post-training and human feedback exploration. The framework provides a method for users to
adjust model predictions using human feedback and contextual bandit algorithms, allowing the
model to dynamically adapt its behavior. The code is available at https://github.com/
posttraining/post_training.

GOAL

The primary goal of this project is to provide an interactive environment where users can fine-tune
time series model predictions based on human feedback. The framework leverages a contextual
bandit approach, allowing users to explore different actions and see their impact on the model’s
predictions.

FEATURES

• Time Series Model Exploration: Train and explore various time series models with
different parameters and datasets.

• Optimization Framework: Dynamically apply actions and evaluate their effects on the
model’s prediction accuracy.

• Human Feedback Integration: Users can provide feedback on the predictions to improve
the model’s output over time.

• Streamlit Interface: An interactive frontend for exploring and providing feedback on model
predictions.

A.8.1 EXAMPLES TO USE THE STREAMLIT APPLICATION

To experiment with the Streamlit application, follow these steps:

1. Click on the following (link): Go to the webpage. You should see the configuration page as
in Figure 19.

Figure 19: Configuration page

2. Upload CSV File: Upload a CSV file containing the time series data. The file should
be in CSV format, with rows representing different time steps and columns representing
different features for multivariate datasets. A sample file, train.csv, is provided in the
supplementary materials. You can see an example in Figure 20

31

https://github.com/posttraining/post_training
https://github.com/posttraining/post_training
https://posttraining-36hr3mewbkbgxbp2hcsgcs.streamlit.app/

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 20: Example of upload file

3. Select Model and Options: Choose the model and other options. For the model, use
DLinear, as other models require a GPU to run or will take longer. The server currently
supports CPU only as in Figure 21

Figure 21: Configuration Options

4. Explore Instructions: Click on the "Explore Instructions" button. After some time, you
will see the optimization process (with the successful actions over the episodes) as in Figure
22 and the reduced MSE after each episode on the validation set as in Figure 23

Figure 22: Successfull and failed actions during optimization

5. Provide Feedback: Enter your feedback in text, in any language. Be as descriptive as
possible to guide the model. For example, you could say, "The amplitude of the predictions
should be increased between 5% and 10% of the actual values." as in Figure 24

6. Submit Feedback: Click on "Submit Feedback" and then "Finalize Feedback." You will
see the percentage improvement and details per channel as in Figure 25

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure 23: MSE as function of the number of episodes

Figure 24: Example of user prompt

Figure 25: Improvement Details

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

A.9 INSTALLATION AND USAGE FOR DEVELOPMENT

INSTALLATION INSTRUCTIONS

Set Up the Environment To install the required dependencies, create and activate the conda
environment:

conda env create -f environment.yml

USAGE

Running the Code with Command-Line Arguments To run the post-training process and adjust
the model, execute the following command:

python main.py --train_path <path_to_train_data
--model <model_name> --window_size <window_size> --prediction_horizon <prediction_horizon>
--batch_size <batch_size> --n_samples <n_samples>

The available command-line arguments are as follows:

Argument Description Example
-train_path Path to the training data CSV file data/train.csv

-model Name of the model to use DLinear, PatchTST, etc.
-model_path (Optional) Path to a custom pre-trained model models/custom_model.py
-window_size Sliding window size for time series 96

-prediction_horizon Prediction horizon in terms of time steps 144
-batch_size Batch size for training 32

-n-jobs Number of CPU for parallel computing 1
-episodes Number of episodes for RL training 5

Running the Streamlit App To interact with the framework using the Streamlit interface, launch
the app as follows:

streamlit run app_test.py

This will start a local server, and you can access the interface by navigating to the URL provided in
the terminal.

Workflow Overview The following steps outline the workflow of the post-training process:

1. Train the Model: Train the model using the provided training data and validate it using the
validation dataset. Optionally, load a custom pre-trained model if specified.

2. Exploration Phase: After training, explore various actions on top of the model’s predictions.
These actions include adjusting amplitudes, trends, or shifting values.

3. Human Feedback: Provide feedback on the predictions to guide the model towards im-
provements. Precise feedback, such as "increase the amplitude by 5-10%", allows the model
to understand the desired adjustments.

4. Model Adaptation: Based on the feedback, the model adapts its behavior and re-tests the
adjusted predictions.

5. Plotting Results: The results of the model’s predictions are visualized through plots, which
are saved for further analysis.

API Documentation The API for the framework is structured as follows:

1. app_test.py: Main script to run the Streamlit interface. Provides functionalities to
explore and give feedback on model predictions.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

2. contextual_bandit.py: Implements the contextual bandit logic for dynamically
adjusting predictions based on feedback.

3. data_extraction.py: Contains functions for loading and preprocessing time series
data.

4. llm_interaction.py: Functions for interacting with language models to interpret and
apply human feedback.

5. model_extraction.py: Extracts and loads pre-trained models.
6. plot_script.py: Provides plotting utilities for visualizing predictions and feedback

results.

A.10 THEORETICAL MOTIVATION FOR POST TRAINING IN TIME SERIES FORECASTING

A.10.1 PROBLEM SETUP

Consider a supervised learning problem where we want to estimate a target variable Ytrue using a
linear model. We assume that a ridge regression predictor Ypred has already been obtained, and we
aim to improve its accuracy through an optimal affine correction of the form:

Ycorrected = aYpred + b. (3)

The goal is to determine the optimal values of a and b that minimize the expected mean squared error
(MSE):

L(a, b) = E
[
∥Ytrue − (aYpred + b)∥2

]
. (4)

A.10.2 DERIVATION OF OPTIMAL CORRECTION PARAMETERS

Expanding the loss function:

L(a, b) = E
[
Y 2

true − 2aYtrueYpred − 2bYtrue + a2Y 2
pred + 2abYpred + b2

]
. (5)

Step 1: Compute b∗ by setting ∂L
∂b = 0.

∂L
∂b

= −2E[Ytrue] + 2aE[Ypred] + 2b. (6)

Setting this derivative to zero and solving for b∗ gives:

b∗ = E[Ytrue]− a∗E[Ypred]. (7)

Step 2: Compute a∗ by setting ∂L
∂a = 0.

∂L
∂a

= −2E[YtrueYpred] + 2aE[Y 2
pred] + 2bE[Ypred]. (8)

Substituting b∗ and solving for a∗ gives:

a∗ =
Cov(Ytrue, Ypred)

Var(Ypred)
. (9)

Thus, the optimal correction parameters are:

a∗ =
E[(Ytrue − E[Ytrue])(Ypred − E[Ypred])]

E[(Ypred − E[Ypred])2]
, (10)

b∗ = E[Ytrue]− a∗E[Ypred]. (11)

A.10.3 THEORETICAL RISK BEFORE AND AFTER CORRECTION

Risk Before Correction: The mean squared error (MSE) of the original predictor is given by:

Rbefore = E[(Ytrue − Ypred)
2]. (12)

Expanding:
Rbefore = Var(Ytrue) + Var(Ypred)− 2Cov(Ytrue, Ypred). (13)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Risk After Correction: The mean squared error of the optimally corrected predictor is:

Rafter = E[(Ytrue − Ycorrected)
2]. (14)

Substituting Ycorrected = a∗Ypred + b∗:

Rafter = Var(Ytrue)−
Cov(Ytrue, Ypred)

2

Var(Ypred)
. (15)

A.10.4 COMPARISON OF RISKS

To understand the effect of the correction, we compute the difference:

Rbefore −Rafter. (16)

Substituting the expressions:

Rbefore −Rafter = [Var(Ytrue) + Var(Ypred)− 2Cov(Ytrue, Ypred)]

−
[

Var(Ytrue)−
Cov(Ytrue, Ypred)

2

Var(Ypred)

]
. (17)

Simplifying:

Rbefore −Rafter = Var(Ypred)− 2Cov(Ytrue, Ypred) +
Cov(Ytrue, Ypred)

2

Var(Ypred)
. (18)

Rewriting using the identity: (
x− a

x

)2
≥ 0 for all x > 0, (19)

by setting x = Var(Ypred) and a = Cov(Ytrue, Ypred)
2, we obtain:

Rbefore −Rafter =

(√
Var(Ypred)−

Cov(Ytrue, Ypred)√
Var(Ypred)

)2

. (20)

Since the square of any real number is always non-negative:

Rbefore −Rafter ≥ 0. (21)

A.10.5 CONCLUSION

This derivation shows that the correction always reduces the risk (or at worst, leaves it unchanged).
The correction is most effective when Ypred is correlated with Ytrue, and it does not increase the error
in any case. This result shows that the correction always reduces the mean squared error.

A.11 PROOF OF THE Upper Bound on the Risk of the Corrected Prediction THEOREM

For completeness we give here the general theorem (for K > 2) and its assumptions.

Assumption 1 (Gaussian Squared-Error Model) For all indices k, hyperparameters β, and the
base model fθ, we assume that for (X,Y) ∼ D,(
(gk,β◦fθ)(X)−Y

)2
follows a Gaussian distribution with mean R(gk,β◦fθ) and variance σ2 > 0.

This provides a convenient concentration model for the empirical risk estimates used by the algorithm.

Theorem 2 (Upper Bound on the Risk of the Corrected Prediction) Let fθ be a base predictor,
(gk,β∗)Kk=1 a set of corrective actions, and assume a total evaluation budget T under M = 1.
Under Assumption 1, applying Successive Halving to select a correction yields:

E
[
R(gkT ,β∗◦fθ)

]
≤ 1

ν

K∑
k=1

R̄(k)

log2 K−1∏
r=0

[
(k−1)Φ

(
−∆+

min,kτdec(r)
)
+(K−k) Φ

(
−∆−

min,kτinc(r)
)]
,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

where

R̄(k) := min{R(fθ), R(gk,β∗ ◦ fθ)}, ν :=
K log2 K

2
√
2
log2 K(log2 K+1)

,

τdec(r) :=

√
T2r

2σ2K log2 K
− 1

2σ2
, τinc(r) :=

√
T2r

2σ2(K log2 K − 2r log2 K)
,

∆+
min,k := min

j ̸=k
R(k)>R(j)

(
R(k)−R(j)

)
, ∆−

min,k := min
j ̸=k

R(k)<R(j)

(
R(k)−R(j)

)
.

Proof 1 (Sketch of the proof) We provide here a self-contained outline; the full derivation follows
the style of Karnin et al. (2013) for Successive Halving.

Step 1: Decomposition. Each corrective action gk,β∗ has a fixed true risk R(gk,β∗ ◦ fθ). Only the
index kT selected by the algorithm is random because it depends on noisy empirical risk estimates.
Hence,

E
[
R(gkT ,β∗ ◦ fθ)

]
=

K∑
k=1

min
(
R(fθ), R(gk,β∗ ◦ fθ)

)
P[kT = k].

Step 2: Bounding the selection probability. Successive Halving proceeds over nr = log2 K rounds.
At round r, each remaining action in the set Sr is evaluated tr times and half of them are discarded.
For a fixed k, the number of competing actions with lower empirical risk than k can be expressed as
a sum of Bernoulli variables whose expectations are Gaussian tail probabilities:

E[Nr,k] =
∑
j ̸=k

Φ
(
−∆k,j

√
tr√

2σ

)
.

Using Markov’s inequality and introducing the smallest positive and negative risk gaps ∆+
min,k and

∆−
min,k, we obtain a product-form upper bound on P[kT = k] across all rounds.

Step 3: Plug into the risk expression. Substituting this bound on P[kT = k] into the decomposition
above yields the stated inequality.

Discussion. This theorem formalizes how Successive Halving selects the best correction under
limited evaluation budget. The bound shows that the expected risk converges to the risk of the optimal
correction at an exponentially fast rate, with the convergence speed determined by the risk gaps
∆±

min,k and the budget T . In particular, larger gaps between actions accelerate the identification of
the optimal correction—exactly mirroring the empirical behavior observed in our experiments.

37

	Introduction
	Related Work
	Methodology
	Theoretical Motivation for Post-Training Correction
	Forecasting Model Setup
	Post-Training Optimization via Action Space
	Optimizing Actions and Parameters
	Dynamic Optimization Strategies
	Why Discrete Actions + Continuous Parameters

	Optimization Strategy: Empirical Comparison

	Theoretical Analysis of Our Bandit-Based Correction
	Human-in-the-Loop Feedback Integration
	Experiments
	Setup
	Results: Adaptive Optimization Improves Forecasting
	Human-in-the-Loop Feedback
	Computational Efficiency and Scalability

	Conclusion
	Appendix
	Mathematical definitions and visualizations of the pool of actions
	Details on experimental setup: Datasets and models
	More experiments on the reinforcement automated loop
	Experiments on Performance Improvement as a Function of the Number of Actions
	Cross-Metric Evaluation of Optimization Strategies
	More experiments on the human feedback
	Code and Reproducibility
	Code Usage and API Documentation
	Installation and usage for development
	Theoretical motivation for post training in time series forecasting
	Proof of the Upper Bound on the Risk of the Corrected Prediction Theorem

