HUMAN-IN-THE-LOOP ADAPTIVE OPTIMIZATION FOR
IMPROVED TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-series forecasting models often produce systematic and predictable errors,
even in critical domains such as energy, finance, and healthcare. We introduce a
novel post-training adaptive optimization framework that improves forecast accu-
racy without retraining or architectural changes. Our approach adds a lightweight
model-agnostic correction layer that automatically finds expressive output trans-
formations optimized by reinforcement learning, contextual bandits, or genetic
algorithms. Theoretically, we prove the benefit of an affine correction and quantify
the expected performance gain together with its computational cost. The frame-
work also supports an optional human-in-the-loop component: domain experts
can guide corrections using natural language, which is parsed into actions by a
language model. Across multiple benchmarks (e.g. electricity, weather, traffic),
we observe consistent accuracy gains with minimal computational overhead. Our
interactive demo (link) showcases the usability of the framework in real time. By
combining automated post-hoc refinement with domain-expert corrections to the
base forecasting model, our approach offers a lightweight yet powerful direction
for practical forecasting systems.

1 INTRODUCTION

Time series forecasting is critical in domains such as finance (Krollner et al., 2010), health-
care (Kaushik et al., 2020), and energy management (Palma et al., 2024), where accurate predictions
drive high-stakes decisions. Although modern machine learning models have improved forecasting
performance, they still face two persistent limitations: (1) insufficient model expressiveness to cap-
ture complex, real-world patterns, and (2) difficulty incorporating domain expertise into predictions.
Traditional forecast pipelines (Meisenbacher et al., 2022) often rely on rigid architectures and static
assumptions, leading to systematic errors that domain experts can easily identify.

However, integrating expert feedback remains challenging: manual corrections are time consum-
ing, and existing methods (Geweke & Whiteman, 2006; Girard et al., 2002) require extensive
re-engineering or ensembling techniques (Khashei & Bijari, 2012). These limitations prevent models
from adapting effectively to changing environments.

To address these issues, we propose a flexible, lightweight post-training optimization framework that
improves forecasts without re-training the model. Our preliminary theoretical insight suggests the
opportunity for such a post hoc correction. Building on this, we extend post-training correction into
a broader optimization framework that adaptively adjusts model outputs using approaches such as
reinforcement learning, bandits, or genetic algorithms.

Our proposed approach, illustrated in Figure 1 and Figure 2, is scalable, model-agnostic and accessible
through an interactive web interface, making it practical for both researchers and practitioners.

Our novel approach introduces key features that distinguish it from previous work:

1. Adaptive Model Augmentation: Automatically identifies and applies expressive transfor-
mations that improve the performance of the forecast, expanding the model function class
without architectural changes.

2. Human-in-the-Loop (HITL): Optionally incorporates expert feedback, expressed in natural
language and safely translated into a post-training action code, which is further optimized

https://posttraining-36hr3mewbkbgxbp2hcsgcs.streamlit.app/

Human feedback

A l
Action
——> selection LLM
algorithm
Optimal Specific
X = Initial model =——=—t—p chosen —lP¢ designed —>» Y
action action

Figure 1: Overview of the forecasting pipeline: the initial model generates predictions from input X,
which are refined by an action selection mechanism and optionally adjusted using human feedback
interpreted by a language model (LLM), yielding the final output Y.

6_
o 1
N
4
82]
Q-
2_
o]
O,
T T : T T T T Q -
0 50 100 150 200 250 o N oA S &
SEOENS
- T FL N
Context Ground Truth Post training Q,g, ¢RI

Initial prediction ——— HF + Post training

Figure 2: (Left) Ground truth, initial prediction, and corrected predictions produced by the proposed
forecasting pipeline. The human feedback applied was: “Increase values above a chosen quantile by
10% to 50%.”. (Right) Performance comparison of the different predictions: the base forecast, the
automatically corrected output, and the correction incorporating human feedback.

via reinforcement learning, bandit methods, or genetic algorithms to iteratively improve and
refine forecasts.

2 RELATED WORK

Time Series Forecasting Models Time series forecasting has long been a fundamental task in
statistical modeling. Traditional models such as ARIMA (Newbold, 1983), SARIMA (Korstanje, 2021),
and ETS (Gardner Jr, 1985) work well for simple linear dynamics, but struggle with non-stationary
or highly non-linear signals. Modern deep learning models, including LSTMs (Graves & Graves,
2012; Lin et al., 2023) and Transformers (Liu et al., 2023; Ilbert et al., 2024; Wu et al., 2021; Nie
et al., 2023), offer improved expressiveness by learning long-range dependencies. Recent zero-shot
models such as TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024), and Lag-LLaMA (Rasul
et al., 2023) further generalize across tasks via foundation model scaling. Despite these advances,
existing models often exhibit systematic forecast errors and lack mechanisms to incorporate expert
corrections.

Our work complements existing models by adding a post-training optimization layer that enhances
performance without retraining and is compatible with any forecasting architecture.

Post-Training and Human Feedback in Forecasting Incorporating expert knowledge into
forecasting has a long history, from manual tuning and domain-specific feature engineering (Tavenard
et al., 2020; Zhou, 2020; Verkade et al., 2013; Madadgar et al., 2014) to judgmental forecasting
methods (Armstrong, 1986; Bunn & Wright, 1991; Webby & O’Connor, 1996). However, such
methods are typically manual, hard to scale, and not integrated into learning pipelines. Recent work

MSE Befere and After Correction vs. Regularization Strength

=~ MSE Before Correction
—m~ MSE After Correction

200

150

Figure 3: Illustration of the effect

of affine post-training correction on

ridge regression forecasts. The model

is trained on a synthetic linear tar-

get. Results shown for 100 samples,

e T T T T T T T 100 validation points, and 10,000 test
Reqularization Parameter A points_

100

Mean Squared Errer

on human-in-the-loop learning - primarily in NLP (Liu et al., 2024a) - has explored expert-guided
model refinement. In time series, systems such as DelphAI (Kupferschmidt et al., 2022) allow manual
modification of model outputs and (Arvan et al., 2019) provide a comprehensive review of human
input in forecasting.

Our approach advances this line of work in two key ways. First, it enables automatic post-training
corrections via adaptive optimization using reinforcement learning, bandits, or genetic algorithms.
Secondly, it optionally incorporates expert feedback through natural language, automatically trans-
lated into optimization actions by a large-language model (LLM). Unlike methods such as TimeHF (Qi
et al., 2025), which require fine-tuning large models, our solution is model-agnostic, efficient and
applies corrections at inference time.

3 METHODOLOGY

We propose a framework to improve time series forecasts through post-training optimization. It
operates on any forecasting model, applying lightweight corrections without retraining. The system
combines two components: (1) automated prediction augmentation via dynamic optimization,
and (2) optional human-in-the-loop feedback. We first motivate the theoretical foundation and then
describe the full pipeline.

3.1 THEORETICAL MOTIVATION FOR POST-TRAINING CORRECTION

Forecasting models often display systematic biases. These can be mitigated after training by applying
affine transformations to outputs, leaving model parameters unchanged. For predictions Y4, the
corrected forecast is

* *
Yeorrected = @ Yi)red +b",

with optimal parameters from validation statistics:

* Cov (Yirue, Ypre * *
a = W b* = E[Yie] — a"E[Ypred]-

Theorem 1 (Affine Correction Reduces MSE) The above correction guaranties a lower or equal
mean squared error (MSE):

2
C Krumy)m(
Rbefore — Rafter = (Var(}/'pred) — W) > 0.
pred

This result holds under distributional alignment of validation and test sets. Figure 3 shows the mean
squared error as a function of the ridge regularization parameter for a ridge regression model with
an added linear post-layer correction, illustrating the result of Theorem 1. Although affine post-hoc
adjustments are effective, multi-step forecasts often require richer, dynamic corrections optimized via
reinforcement learning, contextual bandits, or genetic algorithms (see Section 3.3).

3.2 FORECASTING MODEL SETUP

The framework is model-agnostic: it applies to classical (e.g., ARIMA, Prophet), deep learning (e.g.,
LSTM, Transformer), and foundation models (e.g., TimesFM, Chronos). Given a multivariate time
series, of length T, {x, ..., xr} with x; € R?, the base model outputs {$71,...,y7+ 5}, which
are refined post-training. Our objective is to design a post-training method that takes the output of the
base model and produces corrected predictions, improving accuracy and generalization.

3.3 POST-TRAINING OPTIMIZATION VIA ACTION SPACE

To refine model predictions, we define a set of post-training transformations, or actions, each
parameterized continuously. These actions are dynamically selected and tuned to minimize validation
error.

* Scale Amplitude: Multiplies the full prediction series.
* Piecewise Scaling: Modifies high or low quantiles selectively.
* Linear Trend: Adds a slope or intercept term.

* Min/Max Adjustment: Boosts extrema to match observed dynamics.

Linear Trend: Adding a Slope

Scaling: Adjusting Amplitude Piecewise Scaling: Quantile-based Scaling

—— original
— With Trend

— original — oOriginal

Scaled

/\

/
\

Value

1.0

0.5

0.0

-0.5

-1.0

Value

o~
/N
/ \

8 10

a0
— Piecewise Scaled /' \
8 10

7

4 6
Time

1

2
3

4
5
6
7

8

Figure 4: Examples of learned post-training actions. Each transformation operates on the model’s
forecast to reduce prediction error. Full action definitions are in Appendix A.1.

These interpretable actions form a flexible augmentation layer. They can be optimized efficiently and
extended to task-specific needs, as discussed in later sections.

3.3.1 OPTIMIZING ACTIONS AND PARAMETERS

We frame the post-training refinement process as a joint optimization over a discrete set of actions
and their associated continuous parameters. Discrete actions (e.g., scaling, shifting, trend) define
transformation types, while parameters control their magnitude. The goal is to select and tune the
best combination to minimize validation loss.

Algorithm 1: Forecast Augmentation via Post-Training Optimization

Input: Forecasting model M, action space .4, validation data D
Output: Augmented model My, refined prediction y
Generate base predictions y = M(D)
Define the loss function £ (e.g., MSE) on validation set
for each iteration do

Select candidate action(s) from A

Optimize associated parameters (e.g., line search)

Apply transformation(s) to y

Evaluate £ and update strategy

Return best transformation sequence

3.3.2 DYNAMIC OPTIMIZATION STRATEGIES

We explore several strategies to solve this search problem efficiently:

* Random search: For each discrete action, we randomly generate several sets of continuous
parameters. We then evaluate these and keep the set that gives the best performance for that
action.

* Bandit Algorithms (SH-HPO): (Karnin et al., 2013) Each action is a bandit arm; its
parameters are optimized independently (e.g., via line search). UCB balances exploration
and exploitation to select the most rewarding transformations.

* Reinforcement Learning (PPO): (Schulman et al., 2017) Discretizing the parameter space
allows us to train an RL agent that sequentially selects actions to minimize residual error.
We use Proximal Policy Optimization (PPO) for stability.

* Genetic Algorithms (GA): (Holland, 1975) GA evolves action-parameter pairs through
mutation and crossover, well-suited for large, multimodal spaces where gradients are un-
available or unreliable.

These techniques provide trade-offs between exploration depth and runtime. Our framework supports
all three and can switch strategies based on task complexity.

3.3.3 WHY DISCRETE ACTIONS + CONTINUOUS PARAMETERS

The hybrid search space balances flexibility, efficiency, and interpretability without altering the base
model. Advantages include: (i) reduced search complexity, (ii) human-readable corrections, (iii)
faster convergence, and (iv) extensibility to new domains. To mitigate overfitting, we first evaluate
actions on a validation set and then verify that they also improve performance on the training set.
This "consistency check" helps ensure that selected actions yield genuine, generalizable gains rather
than overfitting to the validation set. Empirically, we find that overfitting is rare in our experiments:
cross-metric experiments in Appendix A.5 show strong agreement between training, validation, and
test landscapes across different metrics throughout the episodes.

3.4 OPTIMIZATION STRATEGY: EMPIRICAL COMPARISON

We compare Random Search, SH-HPO (Successive Halving with UCB), Proximal Policy Optimiza-
tion (PPO), and Genetic Algorithms (GA) on the ETTHI1 dataset. All methods improve over the
baseline, with SH-HPO giving the most consistent gains across horizons. Random Search also
performs strongly, often matching SH-HPO while being simpler and more efficient. Their advantage
likely stems from naturally handling discrete—continuous search spaces, whereas PPO and GA require
full discretization, which increases complexity and introduces approximation errors that reduce
effectiveness. Nevertheless, PPO and GA remain valuable for tasks needing long-term optimization,
since they explore trajectories rather than making greedy, step-wise decisions. Despite lower perfor-
mance here, they may be better suited to structured or sequential problems. For the remainder of our
experiments, we adopt Random Search for its simplicity, efficiency, and competitive results. Full
results and additional dataset comparisons are in the Appendix.

Evaluation Metric for Post-Training. To assess post-training effectiveness, we use the relative
decrease in mean squared error (MSE). Let MSEpefore and MSE,g., denote the model’s MSE before
and after post-training. The relative improvement is

_ MSEbefore - MSEafler

M
M. SEbefore

ey

Positive M indicates reduced error, higher values reflect greater improvement, and negative M
indicates post-training degraded performance. This normalized metric enables fair comparison across
models and datasets with different MSE scales. Complementary experiments using other metrics are
reported in Appendix A.S5.

Table 1: Performance comparison of different optimization techniques. Reported values are percent-
age improvements in mean squared error (MSE) relative to baseline models, averaged over 10 trials

on the Nature dataset. Standard deviations are shown as uncertainty.

Model Random SH-HPO RL (PPO) GA

AutoFormer 17.19% £53% 1934% £5.1% 335% +12% 6.09% + 1.5%
Crossformer 3.30% £ 2.1% 2.78% £ 1.9% 1.11% £ 1.4% 1.52% £+ 1.3%
DLinear 1.96% =+ 0.8% 1.57% £ 0.7% 2.20% £1.1% 1.61% + 0.9%
PatchTST —133% £12% —081% £1.0% 0.26% +0.5% 0.29% + 0.4%
SegRNN 1.70% + 0.6% 259% +0.8% 0.61% £0.4% 0.59% + 0.5%
iTransformer 3.10% £ 1.1% 3.85% £ 1.3% 1.33% £0.7% 1.50% £ 0.8%
TimesFM 4.94% + 2.3% 543% +2.1% 348% £ 1.5% 2.62% + 1.4%
Average 484% +19% 4.96% +=19% 1.76% £11% 2.32% +1.3%

4 THEORETICAL ANALYSIS OF OUR BANDIT-BASED CORRECTION

Our method evaluates a large set of corrective actions (Section 3.3) and selects the best one using
several candidate selection strategies. Among them, the bandit-based approach with the Successive
Halving algorithm consistently achieves the strongest results in our experiments.

Natural questions are: how quickly does this algorithm identify the best correction? and How does
the validation budget affect its performance? This section answers those questions theoretically. We
focus on the simplest non-trivial setting of two corrective actions to present the key result; the general
case (K > 2 actions) and all proofs are deferred to Appendix A.

Why Successive Halving. Successive Halving is a near-optimal best-arm identification algo-
rithm (Karnin et al., 2013). It allocates more evaluations to promising actions while discarding the
worse ones. This matches our setting, where evaluating each correction on the validation set is costly,
and explains its superior empirical performance compared to uniform allocation.

Corollary 1 (Convergence to the Best Correction) Consider two corrective actions g, g~ and
g2.5+ with R(g1,5- 0 fg) < R(g2p-© fg) and a validation budget of T evaluations. Under As-
sumption 1 (Appendix A.11), the correction selected by our bandit-based procedure satisfies:

E[R(gry 5 © fo)] < 2R(g1,5- o fo) + 2A (—AVT), A = R(ga,p- o fo) — R(g1,5- © fo),

where ® is the standard Gaussian CDF.

This bound shows that the expected risk of the selected correction converges exponentially fast in
VT to the risk of the best correction. Larger risk gaps A (i.e. more distinct corrective actions) lead to
faster convergence.

Corollary 2 (Budget to Outperform the Base Model) 7o guarantee that the selected correction
improves on [y, it suffices to allocate T evaluations, with

T > %[(Dﬂ(R(fe) - QSA(glﬁ* o fe))r |

These results directly explain our empirical findings (Table 6): with a reasonable validation budget and
sufficiently distinct corrective actions, the Successive Halving algorithm quickly identifies the best
correction and improves forecasting accuracy. The general case and all proofs appear in Appendix
A.ll.

1

[Z 3 SN

N

5 HUMAN-IN-THE-LOOP FEEDBACK INTEGRATION

Our framework operates autonomously but supports optional human-in-the-loop (HITL) refinement.
Domain experts can provide natural language suggestions (e.g., "Increase values above the 80th
percentile"), which are translated into candidate actions via an LLM (e.g., Qwen2-72B-32K).
Crucially, human feedback never directly modifies predictions; instead, it must pass through the same
optimization and validation pipeline as automated actions, ensuring safety and performance.

From Natural Language to Candidate Actions User prompts are converted into executable
Python code and added to the candidate pool only after validation (Algorithm 2, Figure 5). If the
initial suggestion fails, users can refine their input iteratively.

Algorithm 2: Human-in-the-Loop Feedback Integration

Input: User prompt p
while true do
a + LLM(p)
if Test(a) then
AddActionToPool(a)
break

p < RequestNewPrompt()

function_type, params):
ype = function_type

. ntage']
Provide Feedback rn pre * / 100)

needed
Enter your feedback for the model's predictions

self.function_type)

The amplitude of the predictions should be increased between 5% and 10% of the actual valug| er .
ef generate
if actiol
As

import r

Select the channel to provide feedback for

0 v

(a) User input prompt (b) Generated code for adaptive optimization

Figure 5: HITL pipeline: prompts are converted to code and validated before entering the candidate
pool.

Interactive Refinement and Safety Users can iteratively refine prompts to improve candidate
quality. All proposed actions undergo strict validation (7es#()) for API compliance, execution, and
forecast validity. The LLM never accesses raw time series data, preventing leakage or overfitting.

Integration with Optimization Validated human-proposed actions are evaluated alongside auto-
mated candidates in the optimization loop (Section 3.3). Only actions that improve performance are
retained, ensuring robustness. Case studies in Section A.6.1 demonstrate this mechanism in practice.

6 EXPERIMENTS

We evaluate our framework across diverse real-world time series tasks, demonstrating consistent
improvements in forecast accuracy using standard benchmarks and open-source implementations. All
experiments were conducted on a server equipped with 2x Intel Xeon E5-2690 v4 CPUs (56 cores
total), 512 GB RAM, and 6x NVIDIA Tesla P100 GPUs (16 GB each), though only one GPU was
used per run.

6.1 SETUP

We evaluate our post-training optimization framework on energy consumption and OpenTS bench-
mark datasets (Zhou et al., 2021; Qiu et al., 2024) (details in Appendix A.2.1), across a wide range of
forecasting models—from simple deep learning models such as DLinear (Zeng et al., 2023) to modern

Value

architectures including SegRNN (Lin et al., 2023), iTransformer (Liu et al., 2023), PatchTST (Nie
et al., 2023), Autoformer (Wu et al., 2021), Crossformer (Zhang & Yan, 2023), and Informer (Zhou
et al., 2021). Forecast accuracy is reported using Mean Squared Error (MSE), averaged across
multiple horizons (96, 192, 336, 720). Although performance is measured in MSE, our model-
agnostic framework is compatible with any optimization or evaluation metric (e.g., MAE, MAPE,
R?); Section A.5 presents complementary experiments confirming its robustness and showing that it
mitigates overfitting to the validation set.

While our framework can work with training samples alone, it generally requires for better perfor-
mance a representative validation set for time series forecasting, in line with established practices. For
benchmark datasets like ETTh1, ETTh2, ETTm1, and ETTm2, which provide an explicit validation
set (designated by a 'val’ flag), we use these validation sets directly. For datasets without an explicit
validation set, we apply the standard approach of temporally splitting the training data, allocating
30% to the validation set. This method aligns with common practices in the field of time series
forecasting. We conduct a robustness analysis of the training-validation ratio in Section A.3.

6.2 RESULTS: ADAPTIVE OPTIMIZATION IMPROVES FORECASTING

Table 2 summarizes the impact of our post-training optimization. Across nearly all models and
datasets, we observe significant MSE reductions with no retraining and minimal overhead (and very
few cases of overfitting in orange). Rare cases of negative improvement can mostly be attributed
to the stochastic nature of the search. The search algorithm iteratively evaluates the performance of
actions on the validation set. As discussed in Subsection 3.3.3 and Appendix A.5, our approach is
not prone to overfitting to the validation set; however, as shown in Section 4, it still induces a failure
probability §.

6.2.1 HUMAN-IN-THE-LOOP FEEDBACK

Human feedback can further enhance forecast accuracy by introducing domain knowledge not
captured by the base model. Users provide natural language instructions (e.g., "increase the amplitude
of predictions below 0.5"), which are converted into executable transformations via a large language
model (LLM).

Increase the amplitude of predictions

below 0.5 so they exceed 0.5. Code Generated by LLM RMSE decrease
2.5 — i i 0.8-
— ﬁ?:;;?ﬁ_:;cct;;f:lstoncal Data) ﬂ # Example of generated code based on human feedback
N o [class GenericFunction:
Optimized Predictions ﬁ def _init (self, function type, params): 07
20 Ground Truth I self.function_type = function_type
=+ Forecast Start P‘ self.params = params

| def apply(self, prediction, batch x):

if self.function type == 'increase amplitude':
Apply the transformation on the prediction

o modified prediction = prediction * (prediction >= 0.5) +

n (1 - (prediction >= 0.5)) * (prediction + self.params['increase factor'])
return modified prediction

else:
raise ValueError(f"Unknown function type: {self.function type}")

ol

def generate random params for action(action, batch x):
if action == ‘'increase_amplitude':
Generate a random increase factor based on the feedback
increase factor = 0.5 + (1 - 0.5) * np.random.rand()

0.0-

return {'increase factor': increase factor}
else:
raise ValueError(f"Unknown action: {action}")

0 50 100 150 200 250 efor ack After Feedback
Time Model State

Figure 6: (a) Initial prediction vs. human-refined forecast. (b) Action code generated from natural
language via LLM (Qwen2-72B-32K). (¢) RMSE improvement post-feedback.

Figure 6 shows that integrating expert suggestions via HITL leads to tangible performance gains.
Additional examples are presented in Appendix A.6 (see Figures 13, 14 and 15). The interface
supports real-time experimentation, making human-guided optimization practical and intuitive. It is
important to emphasize that the code generated by the LLM is guided by a strict template, which is
detailed in the Appendix (Section A.6). This template constrains the possible code outputs, ensuring

Methods

Autoformer

Crossformer

iTransformer

PatchTST

DLinear

SegRNN

Informer

0.6140.01 — 0.5140.02

0.5440.01 = 0.5240.01

0451001 = 0.4410.01

0.4640.01 — 0.4710.01

0.4740.01 — 0.4510.01

0.4740.01 — 0.4540.01

ETThi
(16.76 %) (2.20%) (2.58%) (-2.25%) (1.38%) (1.31%)
ETTh2 0.6540.01 = 0.55£0.01 0.60£0.01 — 0.57+0.01 0.6040.01 — 0.57+0.01 0-6040.01 — 0.5740.01 0.6040.01 — 0.570.01 0.6040.01 — 0.57£0.01
(15.48%) 3.7%) 4.0%) 4.2%) (3.8%) (3.8%)
ETTml 0.6040.01 = 0.5740.01 0.6040.01 — 0.5740.01 0.6040.01 — 0-57:40.01 0-6010,01 = 0-5710.01 0-6040.01 — 0.5740.01 0.6040.01 — 0.5740.01
(7.37%) 3.7%) 4.0%) 4.2%) 3.8%) (3.8%)
ETTm?2 0.60.40.01 = 0.57£0.01 3:8240.01 = 3.8140.01 0.60£0.01 — 0.57£0.01 0.60£0.01 — 0.57£0.01 0.60£0.01 — 0.57£0.01 0-60£0.01 — 0-57+0.01
(20.25%) 3.7%) 4.0%) 4.2%) 3.8%) (3.8%)
Dominick 0o 7 Mi0%001 142001 5 110k0.01 1255001 7 1280001 12540.01 2 1204001 124001 = 185001 1924001 1400.01
(15.42%) (1.00%) (0.89%) (3.83%) (7.97%) (27.21%)
Human 0.4040.01 = 0.3340.01 0-3040.01 — 0.2540.01 0.60£0.01 — 0.1510.01 0.62£0.01 — 0.15£0.01 0.96:0.01 — 0.26£0.01 0-60£0.01 — 0-25+0.01
(20.24 %) (13.34%) (51.26%) (51.74%) (57.85%) (43.02%)
KDD 1251001 = 0.9510.01 0.80£0.01 — 0.80+0.01 1134001 — 0.8840.01 1144001 — 0.89.40.01 0.93:0.01 — 0.8540.01 1.1010.01 = 0.8810.01
(23.50%) (-0.03%) (21.09%) (21.83%) (8.54%) (19.14%)
Nature 1.2540.01 = 0.961:0.01 0.6540.01 = 0.6640.01 0.340.01 = 0.3340.01 0.2640.01 — 0254001 095:0.01 — 0.9140.01 1.0240.01 — 0-9410.01
(21.69%) (-1.17%) (3.26%) 3.72%) (4.31%) (8.67%)
NASDAQ 0.9140.01 = 0.7040.01 0.4640.01 — 0464001 0.80:0.01 — 0.6310.01 0.79:0.01 — 0.68:0.01 0-74x0.01 — 0.68:0.01 0-78+0.01 — 0-6240.01
(22.39%) (-0.33%) 19.77 %) (14.76 %) (7.59%) (19.19%)
Pedestrian 0.4640.01 —+ 0.2740.01 0.1440.01 — 0.1840.01 0.1440.01 — 0.1240.01 0.2240.01 —+ 0.1940.01 0.69140.01 — 0.60+0.01 0.20+0.01 — 0.1840.01
(40.01%) (0.26%) (9.43%) (9.54%) (14.20%) (6.94%)
Tourism 0.2440.01 =+ 0.2240.01 0.1610.01 — 0.1440.01 0.3140.01 — 0.1410.01 0.31tp.01 —+ 0.1410.01 0.5210.01 — 0.2510.01 0.2440.01 — 0.1240.01
(10.88%) (11.48%) (40.08%) (39.20%) (48.91%) (48.14%)
Vehicle tripu 1.3940.01 = 1.1840.01 0.83+0.01 —+ 0.8210.01 1.0240.01 = 0.8410.01 0.98+0.01 — 0.8040.01 1.35+0.01 & 1.15:0.00 1.6840.01 — 1.05+0.01
(18.13%) (0.89%) (17.14%) (18.00%) (14.37%) (38.46 %)

Table 2: Mean squared error (MSE) + standard deviation across multiple forecast horizons, before
and after applying Adaptive Optimization (—). Improvements are reported in teal when positive and
orange when negative. The overall improvement across all models and datasets is 14.84%, with a
peak improvement of 57.85%. This is based on 12 datasets and 7 time series models, with only 4
cases (out of 84) showing a performance decline, averaging -0.94% and a maximum of -2.25%.

that only valid and meaningful actions are generated. Additionally, the LLM not only generates the
transformation code but also a function that creates a pool of candidate parameters. These parameters
are then subject to optimization (as decribed in details in the automated optimization framework),
with ineffective candidates being discarded if they do not improve the model’s performance.

To assess the robustness of the framework, we provide several failure cases where the user’s
prompt is ambiguous or nonsensical. We investigate three cases in Figure 16, 17 and 18
with the prompt given in the title (e.g., Optimize model to make it model like and
being unoptimized, Replace everything by random noise and Taratata
las palsma reality bonnegur selar). In these cases, the system either discards the
resulting action (if it does not lead to improvements) or the generated code fails to execute prop-
erly (improvement being 0%). These scenarios demonstrate the framework’s ability to handle poor
feedback and ensure that only actions leading to performance enhancement are retained.

The corresponding code generated by the LLM in these failure cases, along with additional examples,
is provided in Appendix A.6.

Remark 1 (On the safety of the human-in-the-loop framework) In addition to the automated op-
timization procedures, we provide an optional "safe mode". This mode displays the Python source
code of the proposed actions for manual inspection by the user. The code is then automatically
scanned using the malicious-source-code detector of Tsfaty & Fire (2023) before execution. This

0.674+0.01 — 0.6540.01
(3.00%)
0.604+0.01 — 0.5740.01
(3.9%)
0.6040.01 = 0.5740.01
(3.9%)
0.6040.01 = 0.5740.01
(3.9%)
1.1440.01 = 1.0940.01
(4.28%)
0.3040.01 = 0.2140.01
(21.93%)
1.1249.01 — 0.8740.01
(22.15%)
0.914+0.01 — 0.9040.01
(0.86%)
0.85+0.01 = 0.79+0.01
(8.96%)
0.3310.01 — 0.2710.01
(15.87%)
0.2240.01 — 0.1840.01
(20.57%)

1.2140.01 — 0.9540.01

(21.54%)

detection step incurs only a small overhead, since each newly generated action is analyzed once at
creation time, rather than at every inference step, and the corresponding code snippets are short.

6.2.2 COMPUTATIONAL EFFICIENCY AND SCALABILITY

We evaluate optimization time across varying forecast horizons and action space sizes on the ETThl
dataset. Table 8 compares our post-training augmentation time against the minimum and maximum
training times of standard forecasting models.

Table 3: Adaptive optimization time vs. base model training time (10 epochs).

Horizon 2 Actions 4 Actions 7 Actions DLinear (min) PatchTST (max)

96 32s+0.1 54s+02 12.0s+1.3 20.3s 144.4s
192 6.1s+03 97s+04 227s+15 22.3s 146.2s
336 127s 0.5 183s+0.6 30.1s+1.0 24.4s 148.8s
720 243s+1.1 352s+14 45.1s+1.8 27.3s 151.8s

Even for long horizons and expanded action spaces, our optimization time remains well below the
training cost of most models, confirming the framework’s suitability for real-time applications and
large-scale deployment.

7 CONCLUSION

We presented a model-agnostic framework for time series forecasting that enhances predictions
through post-training optimization and optional human-in-the-loop refinement. Unlike retraining-
based methods, our approach applies lightweight, interpretable transformations, yielding consistent
accuracy gains across diverse models and datasets at low cost. The framework is broadly compatible,
fast, and interpretable, allowing for seamless integration of natural language feedback through LLMs.
Its effectiveness depends on the quality of the base model, and LLM-based feedback translation
may vary with prompt clarity; robustness to ambiguous instructions and access to a representative
validation set remain open challenges.

Future work includes richer transformations (e.g. monotone, piecewise-affine, uncertainty-aware),
stronger LLM alignment via structured prompting and automatic tests/guardrails, and applications to
multimodal and streaming time series with online updates and drift handling.

10

REPRODUCIBILITY STATEMENT

We detail the complete methodology and experimental settings in section 3 and section 6, with
theoretical assumptions and results in section 4 and proofs in subsubsection A.10.3. The action space,
search strategies, additional analyzes, datasets, preprocessing, splits, and model configurations appear
in the main paper and are detailed in the beginning of the appendix. We provide an interactive demo
to reproduce and test our approach. The hardware details for our runs are reported in section 6. To
ease verification, we include: (i) fixed seeds, (ii)) YAML configs for hyper-parameters, (iii) a single
entry-point script for each experiment, and (iv) checks that validate data splits and metrics.

LLM USAGE STATEMENT

We used large language models solely for language editing (grammar and clarity). An LLM did not
generate technical claims, equations, algorithms, hyperparameters, or experimental decisions. All
content was verified by the authors. We disclose this limited use here and in the submission form.

11

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

J Scott Armstrong. The ombudsman: research on forecasting: A quarter-century review, 1960—1984.
Interfaces, 16(1):89-109, 1986.

Meysam Arvan, Behnam Fahimnia, Mohsen Reisi, and Enno Siemsen. Integrating human judgement
into quantitative forecasting methods: A review. Omega, 86:237-252, 2019.

Derek Bunn and George Wright. Interaction of judgemental and statistical forecasting methods:
issues & analysis. Management science, 37(5):501-518, 1991.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):1-28,
1985.

John Geweke and Charles Whiteman. Bayesian forecasting. Handbook of economic forecasting, 1:
3-80, 2006.

Agathe Girard, Carl Rasmussen, Joaquin Q Candela, and Roderick Murray-Smith. Gaussian process
priors with uncertain inputs application to multiple-step ahead time series forecasting. Advances in
neural information processing systems, 15, 2002.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pp. 37-45, 2012.

John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis
Palpanas, and Ievgen Redko. Samformer: Unlocking the potential of transformers in time se-
ries forecasting with sharpness-aware minimization and channel-wise attention. arXiv preprint
arXiv:2402.10198, 2024.

Zohar S. Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In Proceedings of the 30th International Conference on Machine Learning, pp. 1238-1246. PMLR,
2013.

Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, Nataraj Dasgupta, Sayee Natarajan,
Larry A Pickett, and Varun Dutt. Ai in healthcare: time-series forecasting using statistical, neural,
and ensemble architectures. Frontiers in big data, 3:4, 2020.

Mehdi Khashei and Mehdi Bijari. A new class of hybrid models for time series forecasting. Expert
Systems with Applications, 39(4):4344-4357, 2012.

Joos Korstanje. The sarima model. In Advanced Forecasting with Python: With State-of-the-Art-
Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR, pp. 115-122. Springer,
2021.

Bjoern Krollner, Bruce Vanstone, and Gavin Finnie. Financial time series forecasting with ma-
chine learning techniques: A survey. In European Symposium on Artificial Neural Networks:
Computational Intelligence and Machine Learning, pp. 25-30, 2010.

Kristina L Kupferschmidt, Joshua G Skorburg, and Graham W Taylor. Delphai: A human-centered
approach to time-series forecasting. In 2022 IEEE International Conference on Big Data (Big
Data), pp. 4014-4020. IEEE, 2022.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
rnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint
arXiv:2308.11200, 2023.

12

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd: A new
multi-domain multimodal dataset for time series analysis. arXiv preprint arXiv:2406.08627, 2024b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Shahrbanou Madadgar, Hamid Moradkhani, and David Garen. Towards improved post-processing of
hydrologic forecast ensembles. Hydrological Processes, 28(1):104—122, 2014.

Stefan Meisenbacher, Marian Turowski, Kaleb Phipps, Martin Ritz, Dirk Miiller, Veit Hagenmeyer,
and Ralf Mikut. Review of automated time series forecasting pipelines. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 12(6):e1475, 2022.

Paul Newbold. Arima model building and the time series analysis approach to forecasting. Journal
of forecasting, 2(1):23-35, 1983.

Yugqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Giulia Palma, Elna Sara Joy Chengalipunath, and Antonio Rizzo. Time series forecasting for
energy management: Neural circuit policies (ncps) vs. long short-term memory (Istm) networks.
Electronics, 13(18):3641, 2024.

Yongzhi Qi, Hao Hu, Dazhou Lei, Jianshen Zhang, Zhengxin Shi, Yulin Huang, Zhengyu Chen,
Xiaoming Lin, and Zuo-Jun Max Shen. Timehf: Billion-scale time series models guided by human
feedback. arXiv preprint arXiv:2501.15942, 2025.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proc. VLDB Endow., 17:2363 — 2377, 2024.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
Hassen, et al. Lag-llama: Towards foundation models for probabilistic time series forecasting.
arXiv preprint arXiv:2310.08278, 2023.

Jeffrey R Sampson. Adaptation in natural and artificial systems (john h. holland), 1976.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz,
Marie Payne, Roman Yurchak, Marc RuBwurm, Kushal Kolar, et al. Tslearn, a machine learning
toolkit for time series data. Journal of machine learning research, 21(118):1-6, 2020.

Chen Tsfaty and Michael Fire. Malicious source code detection using a translation model. Patterns,
4(7), 2023.

JS Verkade, JD Brown, P Reggiani, and AH Weerts. Post-processing ecmwf precipitation and
temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales.
Journal of Hydrology, 501:73-91, 2013.

Richard Webby and Marcus O’Connor. Judgemental and statistical time series forecasting: a review
of the literature. International Journal of forecasting, 12(1):91-118, 1996.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419-22430, 2021.

13

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

Yanlai Zhou. Real-time probabilistic forecasting of river water quality under data missing situation:
Deep learning plus post-processing techniques. Journal of Hydrology, 589:125164, 2020.

14

A APPENDIX

TABLE OF CONTENTS

1 Introduction 1
2 Related Work 2
3 Methodology 3
3.1 Theoretical Motivation for Post-Training Correction 3

3.2 ForecastingModel Setup L 4

3.3 Post-Training Optimization via Action Space 4
3.3.1 Optimizing Actions and Parameters 4

3.3.2 Dynamic Optimization Strategies 5

3.3.3 Why Discrete Actions + Continuous Parameters 5

3.4 Optimization Strategy: Empirical Comparison 5

4 Theoretical Analysis of Our Bandit-Based Correction 6
5 Human-in-the-Loop Feedback Integration 7
6 Experiments 7
6.1 Setup e e 7

6.2 Results: Adaptive Optimization Improves Forecasting 8
6.2.1 Human-in-the-Loop Feedback 8

6.2.2 Computational Efficiency and Scalability 10

7 Conclusion 10
A Appendix 15
A.1 Mathematical definitions and visualizations of the pool of actions 16
A.2 Details on experimental setup: Datasetsand models 17
A.3 More experiments on the reinforcement automatedloop 18

A.4 Experiments on Performance Improvement as a Function of the Number of Actions 25

A.5 Cross-Metric Evaluation of Optimization Strategies 26
A.6 More experiments on the human feedback 26
A7 Codeand Reproducibility o 31
A.8 Code Usage and API Documentation 31
A.9 Installation and usage for development 34
A.10 Theoretical motivation for post training in time series forecasting 35
A.11 Proof of the Upper Bound on the Risk of the Corrected Prediction Theorem 36

15

ABSTRACT

This supplementary material provides an extended discussion and additional details supporting the
main paper on Human-in-the-Loop Adaptive Optimization for Improved Time Series Forecasting. We
first delve deeper into the mathematical formulation of the different actions used in our framework,
offering visualizations to better illustrate their roles and impacts on model performance.

Next, we provide an in-depth exploration of the adaptive optimization algorithms employed within
our approach, detailing their integration into state-of-the-art time series forecasting models. Sup-
plementary experiments are included to showcase the effectiveness of our adaptive optimization
-enhanced models across various datasets, comparing them against baseline methods to highlight
performance improvements.

Human feedback is also a central aspect of our framework. In this section, we demonstrate how
human feedback can be integrated into the post-training process through several real-world examples,
illustrating the subjective nature of human input and its positive impact on model fine-tuning.

Finally, we offer detailed instructions on how to reproduce the experiments and results presented in
this work. This includes guidance on using the provided code and graphical interface, enabling users
to easily test and customize our framework for their own time series forecasting tasks. All code and
resources are made publicly available for further exploration and use by the research community.

A.1 MATHEMATICAL DEFINITIONS AND VISUALIZATIONS OF THE POOL OF ACTIONS

Before presenting the mathematical definitions in the table, let’s define the notation used in the
transformations:

* x: The original time series or predictions (before transformation), where each z; is the value
at time .

e y: The transformed time series or predictions, resulting from applying one of the post-
training actions.

e x;: The value at time step ¢ in the original time series.

* y;: The transformed value at time step ¢ in the new series.

* Tmax: The maximum value in the time series x across all time steps.
* ZTnin: The minimum value in the time series x across all time steps.
» Z: The average value of the time series x over all time steps.

* (Qs5: The J-th quantile of the values in x, which corresponds to the value at the specified
percentile of the distribution of x.

* A: The amount by which to shift the time series in the "Shift Series" action (in terms of
time steps).

* s: The slope parameter for adding a linear trend to the time series, representing a change in
the amplitude of the series over time.

* b: The intercept parameter for adding a linear trend to the time series, adjusting the average
level of the series.

e f: The factor used in scaling operations, such as scaling the amplitude or adjusting the
minimum/maximum values.

* o: The standard deviation parameter for noise addition, influencing the spread of the
generated noise.

¢ t: The time step index, which ranges from 1 to H, where H is the total number of time steps
(the horizon) in the time series.

The following table summarizes each action’s mathematical operation and the continuous parameters
involved, along with their respective ranges.

These post-training actions modify time series predictions through mathematical transformations
targeting trends, amplitudes, and frequency/phase. Each transformation is defined mathematically,
with adjustable parameters like scaling factors and thresholds to optimize performance.

16

Action Name

Mathematical Definition

Continuous Parameters
(Range)

Trend Modifications
Linear Trend Slope

Linear Trend Intercept

Yy =X+ (ﬁ : (xmax - xmin)) 1

y:x+(ﬁ-9‘c)

s € (=5,5),t € [H|

be (=5,5)

Piecewise Scaling

Piecewise Scale High

Piecewise Scale Low

y:x~<1+1—£0> for z; < Qs

y:Xo<1+1—£0> for z;y > Qs

§ € (70,100), f € (—1,10)

§ € (0,30), f € (—1,10)

Frequency and Phase
Swap Series

Shift Series

None

A € (=200, 200)

Amplitude Modifications

Scale Amplitude y=x- (1 + %00) fe(=5,5)
Add Noise y = X + € where € ~ N(0, 155 - [2]) o € (10, 30)
Increase Minimum Factor 'y =x-(1+ Wfo) for z; < Q0% f € (-1,10)

Table 4: Mathematical definitions and continuous parameters for each post-training action. The range
for each parameter is specified to guide the tuning of each transformation. Note: x; is the initial
prediction and y;, is the transformed prediction for each sample and each dimension. x,,x and zyiy
are minimum and maximum values of x; over all horizons H and T is the average value. ()s is the
d-quantile of the vector x.

Figure 7 shows the original time series alongside the transformed series, with each subplot illustrating
a different post-training action applied.

A.2 DETAILS ON EXPERIMENTAL SETUP: DATASETS AND MODELS
A.2.1 DATASETS
In this section, we provide a summary of the datasets used in our analysis. The following table

outlines the dataset names, their sources, key characteristics, and the corresponding references for the
papers that describe each dataset.

Table 5: Datasets Overview

Dataset Name

Source and Reference

Characteristics

ETThl

ETTh2

ETTml

ETTh (Electricity)
Benchmark Zhou et al.
(2021)

ETTh (Electricity)
Benchmark Zhou et al.
(2021)

ETTh (Electricity)
Benchmark Zhou et al.
(2021)

1-hour-level time-series with 6 features
and "oil temperature” as the target.
Train/val/test split: 12/4/4 months.
1-hour-level time-series with 6 features
and "oil temperature” as the target.
Includes more features than ETThI.
15-minute-level time-series with 6
features and "oil temperature" as the
target. Train/val/test split: 12/4/4
months.

17

Datasets Overview (Continued)

Dataset Name

Source and Reference

Characteristics

ETTm2 ETTh (Electricity) 15-minute-level time-series, similar to
Benchmark Zhou et al. ETTm1, with different subsets for
(2021) long-term forecasting.
Dominick Open TS Benchmark Qiu 115704 weekly time series representing
et al. (2024) the profit of individual stock keeping
units from a retailer.
Nature Open TS Benchmark Qiu
et al. (2024)
Human Open TS Benchmark Qiu Time-series data for human activity
et al. (2024) recognition, captured by wearable
devices.
NASDAQ Open TS Benchmark Qiu Stock market data from NASDAQ.
et al. (2024) Used for financial forecasting
challenges.
KDD Cup Open TS Benchmark Qiu
et al. (2024)
Pedestrian Open TS Benchmark Qiu Pedestrian count data from urban
et al. (2024) settings, used for mobility prediction.
Tourism Open TS Benchmark Qiu Tourism demand data, used for

Vehicle Trips

et al. (2024)
Open TS Benchmark Qiu
et al. (2024)

forecasting seasonal trends.
Vehicle trip data, used for urban
mobility and traffic pattern forecasting.

A.2.2 TIME SERIES MODELS

In this work, we utilize several state-of-the-art time series forecasting models, all of which are part of
the framework described in Liu et al. (2024b). These models are trained for 10 epochs, with early
stopping applied on the validation set to prevent overfitting. Below, we briefly describe each of the
models used:

* Autoformer Wu et al. (2021): A deep learning model designed to capture long-term
dependencies and seasonality in time-series data by leveraging an attention mechanism.

* Crossformer Zhang & Yan (2023): This model integrates cross-attention mechanisms to
effectively model both long-range and local dependencies in time-series forecasting.

e PatchTST Nie et al. (2023): A vision transformer-based model that divides time-series
data into patches to capture temporal dependencies, providing superior performance in
forecasting.

* DLinear Zeng et al. (2023): A linear decomposition model that separates the time series
into trend and seasonal components for more interpretable and efficient forecasting.

e Informer Zhou et al. (2021): A transformer-based model that focuses on efficiency for
long-term forecasting by using a self-attention mechanism and probabilistic forecast outputs.

* SegRNN Lin et al. (2023): A sequential deep learning model that combines segmentation
with recurrent neural networks to handle irregular time-series data.

Each of these models has demonstrated strong performance in time series forecasting tasks, and we
have used them to compare their abilities on the datasets described earlier.

A.3 MORE EXPERIMENTS ON THE REINFORCEMENT AUTOMATED LOOP

A.3.1 ROBUSTNESS ANALYSIS WITH RESPECT TO VALIDATION SETS

In our framework, the choice of the validation set is quite important. For well-known benchmark
datasets like ETTh1l, ETTh2, ETTml, and ETTm2, we use the provided validation sets as specified

18

-

1.0

0.5

0.0

-0.5

Scale Amplitude

Swap Series

10 Inosn,
sl A
- Y ol . .
» == QOriginal Series
0.0 -
— = Original Series Yo sa N 05 swap Se‘r‘les RS
—— Scale Amplitude 10 ""\.\h‘l\’
v
0 20 40 60 80 100 0 20 40 60 80 100
Shift Series Add Noise

Original Series ey
— Shift Series

Original Series
= Add Noise

0 20 40 60 80
Piecewise Scale High

100

0 20 40 60 80
Piecewise Scale Low

U4
~~ Al 1 A IrYn— Piecewise Scale Low
Jvl
LN qf"’ 0

-—— 1ai i ‘v’V

O.rlglna.l Series \ | ., ar®
—— Piecewise Scale High
0 20 40 60 80 100 -2 0 20 40 60 80 100

Add Linear Trend Slope

Add Linear Trend Intercept

A pa b 0.5
A/

— N 0.0 — - .

== Original Series s = Original Series /,l
. , - .
— Add Linear Trend Slope oY S 10/ = Add Linear Trend Intercept S
1 ' ¥

0 20 40 60 80 100 0 20 40 60 80 100

Figure 7: Visual representation of the time series transformations. Each subplot illustrates a different
post-training action applied to the original time series.

19

in the dataset documentation. For datasets without a predefined validation set, we split the training
data temporally, using 30% of the data for validation, in line with common practices.

To assess the robustness of our approach, we conduct additional experiments on the ETTm1 dataset.
While ETTm1 provides an explicit validation set, we discard it for this analysis and perform our own
temporal split. This allows us to investigate how model performance varies with different validation
set sizes. We experiment with three models DLinear, PatchTST, and SegRNN and test multiple
validation set sizes, from smaller to larger subsets. The results reveal a consistent improvement of
approximately 10% as the validation set size increases, with a monotonic improvement over larger
validation sets observed across all models.

Each experiment is repeated 5 times, with train-validation splits shuffled to ensure robustness. The
standard deviation is shown as a shaded region around the mean performance, providing a clear view
of variability.

DLinear PatchTST SegRNN

-
Iy

Performance Metric
= -
15 S

 _

0.9/0.1 0.8/0.2 0.7/0.3 0.5/0.5 0.9/0.1 0.8/0.2 0.7/0.3 0.5/0.5 0.9/0.1 0.8/0.2 0.7/0.3 0.5/0.5
Splitting Ratio

Figure 8: Quantitative MSE reduction (Performance metric) with respect to validation set size for
DLinear, PatchTST, and SegRNN. We observe an MSE reduction of around 10% across different
validation splits.

A.3.2 QUANTITATIVE ANALYSIS OF THE OPTIMIZATION PROCESS

We present a qualitative analysis of the optimization process, illustrating the improvement in forecast-
ing at different stages. The initial forecast is shown in red, representing the model’s performance at
the beginning of the optimization. The middle prediction, made after 5 episodes, is also shown to
demonstrate the progress. Finally, the forecast after the optimization process is completed shows the
model’s final performance.

The model used for this prediction is PatchTST, and the dataset is ETTm1. In black, we highlight all
the unsuccessful actions attempted during the optimization process.

From this analysis, we can clearly observe the improvement in forecast accuracy over time, driven by
the optimization process, which refines the predictions based on a fixed set of actions.

A.3.3 COMPARISON BETWEEN OPTIMIZATION STRATEGY OVER THE POOL OF ACTIONS

We compare the performance of four different classes of algorithms:
1. Random search where each discrete action is evaluated by randomly sampling continuous
parameters and selecting the best-performing configuration.

2. Bandit algorithm, which considers each class of actions as an arm and optimizes using line
search the parameter called SH-HPO.

3. Reinforcement learning algorithm (PPQO), which discretizes the set of actions and imple-
ments the PPO algorithm (Schulman et al., 2017) denoted RL (PPO) .

4. Genetic algorithm (GA) (Sampson, 1976), which discretizes the set of actions and performs
a genetic algorithm denoted GA.

20

= True values
—— First Prediction

Middle Prediction Jontextual Bandit Optimization
= Last Prediction H

10

0.5

0.0

Prediction Value

-1.0

0 50 100 150 200 250 300
Time Steps

Figure 9: Qualitative improvement during the optimization process. The base learner is PatchTST
on ETTmI. The validation set is the one explicitly provided by the benchmark. One sample from a
specific channel is provided for illustration.

We present the result for several time series models and for five different datasets in Table 6.

The metric used to measure the efficiency of post-training is the relative decrease in Mean Squared
Error (MSE) observed after post-training. Specifically, given the MSE before post-training, MSEpefore,
and the MSE after post-training, MSE g, the relative decrease in MSE, M, is calculated as:

M= MSEpetore — MSEqier
MSEbefore

2

A positive value of M indicates that post-training has reduced the MSE, with larger positive values

signifying greater improvement. Conversely, a negative value indicates degradation compared to the
initial prediction.

6 5.65
¥ 5| 483
=
Q
5
> 4|
e
o
k|
g 3
<
o 2.12
< 2r 1.62

Random SH-HPO RL (PPO) GA

Oo Average Improvement ‘

Figure 10: Average improvement across all models and datasets for each method.

21

Models Datasets Random SH-HPO RL (PPO) GA
ETThl (96) 12.77% 19.85% 2.71% 6.76%
ETThl (192) 18.42% 17.32% 3.14% 6.20%
ETThl (336) 13.09% 12.91% 3.54% 4.43%
Autoformer ETThl (792) 24.48% 27.26% 4.02% 6.96%
Average 17.19% 19.34% 3.35% 6.09 %
ETThl (96) 5.49% 4.01% 2.71% 0.16%
ETThl (192) 2.05% 3.80% 1.71% 3.48%
ETThl (336) 3.13% 3.13% 0.14% 1.37%
Crossformer ETThl (792) 2.53% 0.17% -0.14% 1.07%
Average 3.30% 2.78% 1.11% 1.52%
ETThl (96) -0.99% 0.15% 0.40% 0.62%
ETThl (192) -0.06% -1.13% 0.12% 0.23%
ETThl (336) -3.13% 0.23% 0.41% 0.19%
PatchTST ETThl (772) -1.12% -2.50% 0.12% 0.14%
Average -1.33% -0.81% 0.26% 0.29 %
ETThl (96) 0.80% 1.22% 0.13% 0.06%
ETThl (192) 1.24% 1.56% 0.73% 0.68%
ETThl (336) 2.38% 3.76% 0.71% 0.36%
SegRNN ETThl (772) 2.39% 3.81% 0.87% 1.26%
Average 1.70% 2.59 % 0.61% 0.59 %
ETThl (96) 1.50% 1.40% 0.97% 1.24%
ETThl (192) 2.03% 2.18% 1.39% 2.35%
ETThl (336) 2.96% 5.07% 4.62% 3.96%
DLinear ETThl (772) 1.33% -2.37% 1.82% -1.11%
Average 1.96 % 1.57% 2.20% 1.61%
ETThl (96) 12.98% 6.83% 6.12% 4.87%
ETThl (192) 8.89% 7.28% 3.74% 2.17%
ETThl (336) 1.68% 4.01% 3.81% 2.49%
Informer ETThl (772) -3.80% 3.61% 0.26% 0.94%
Average 4.94 % 5.43 % 3.48% 2.62%
ETThl (96) 2.16% 4.83% 0.41% 1.05%
ETThl (192) 2.79% 1.89% 1.26% 1.03%
ETThl (336) 3.22% 4.01% 1.32% 1.78%
iTransformer ETThl (772) 4.23% 4.67% 2.34% 2.15%
Average 3.10% 3.85% 1.33% 1.50%
Overall Average 4.83% 5.65% 1.62% 2.12%

Table 6: Results of applying different algorithms (Random, SH-HPO, RL (PPO), GA) to various time
series forecasting models and datasets. Each cell shows the observed improvement for the respective
algorithm, model, and dataset. The improvements are measured in percentage points.

22

A.3.4 EXPERIMENTS FOR THE SH-HPO ON ALL DATASETS AND HORIZONS

In the table, for each dataset, we evaluate performance at different horizon lengths (96, 192, 336, and
720), which are shown in the first four rows. The last row for each dataset represents the average
performance improvement across all horizon lengths.

Methods

Autoformer

Crossformer

iTransformei

PatchTST

DLinear

SegRNN

Informer

ETThi

"l20a0) "
sy
s
"aassy

0.6140.01 — 0.5140.02

(16.76 %)

“Gatw)
CGasw)
C067%)
T26%)

0.5440.01 —+ 0.5240.01

(2.20%)

“a91%)
“ema
C205%)

0.4540.01 — 0.4410.01

(2.58%)

0.4040.02 = 0.4140.01
(-1.31%)
0.4440.03 — 0.44.40.02
(-0.94%)
0.4749.02 —+ 0.4810.01
(-3.38%)
0.554+0.02 = 0.5610.01
(-3.37%)
0.4640.01 —* 0.47+0.01

(-2.25%)

Caare)
AT
C258%)
C0.68%)

0.4740.01 — 0.45+0.01

(1.38%)

T2
Cs8%)
RO
Toan)

0.4740.01 —+ 0.454+0.01

(1.31%)

T
AT
"05%)

0.6740.01 —+ 0.6540.01

(3.00%)

ETTh2

2087%)
"(18.65%)
o0
NS

0.65+0.01 — 0.55+0.01

(15.48%)

(538%)

(0.58%)
(0.00%)
(-0.01%)

0.60+0.01 — 0.57+0.01

3.7%)

C2as%)
“ds0%)
C298%)
C@13%)

0.60+0.01 — 0.57+0.01

(4.0%)

3.23%)
0.4040.03 = 0-3910.02
(1.87%)
0.4340.02 — 0.4440.01
(-2.40%)
(5.05%)

0.604+0.01 = 0.57+0.01

(4.2%)

“(1512%)
C65a%)
o
C670%)

0.60+0.01 — 0.574+0.01

(3.8%)

NEETT S
C(5.88%)
REGTA
RO

0.60+0.01 — 0.57+0.01

(3.8%)

(1.89%)

0.5140.03 =+ 0.47+0.02

(7.13%)
(3.84%)
(0.44%)

0.6040.01 —+ 0.5740.01

3.9%)

ETTml

373%)
T3t
" 083%)

0.6040.01 — 0.57+0.01

(7.37%)

C2.60%)
(524%)
NEATU S
T089%)

0.6040.01 —+ 0.57+0.01

3.7%)

C2s2%)
“ea)
" (5:96%)
088%)

0.60+0.01 = 0.57+0.01

(4.0%)

Casn)
“ex)
0847
st

0.6040.01 — 0.57+0.01

4.2%)

(5.05%)
" (3.66%)
CG97%)

0.6040.01 — 0.5740.01

3.8%)

e
"G4y
i
i

0.60+0.01 — 0-57+0.01

(3.8%)

" 0.98%)
C2ma)
T2t
C(156%)

0.6040.01 —+ 0.57+0.01

3.9%)

ETTm2

N2
"(22.58%)
"(2354%)
27.00%)

0.60+0.01 = 0-57+0.01

(20.25%)

0.3340.02 — 0.-3140.01
(4.01%)
0.8740.03 —+ 0.4540.02
(4.8%)
0.9940.02 —+ 0.47+0.01
3.6%)
0.5540.02 — 0.5240.01
(3.1%)

3.8210.01 — 3.8140.01

3.7%)

“G13%)
s
596%)
Cas1%)

0.60+0.01 — 0.5740.01

(4.0%)

"G99%)
C7.69%)
Ca82%)
"736%)

0.6010.01 — 0.5740.01

(4.2%)

(8.00%)

0.3140.03 =+ 0.2540.02

(18.97%)
(13.81%)
(6.78%)

0.6040.01 — 0.5740.01

(3.8%)

"G4
o
o

0.60+0.01 = 0-57+0.01

(3.8%)

T35
C188%)
“T0a)
(699.9%)

0.6010.01 — 0.57£0.01

3.9%)

Weather

0.461+0.02 — 0.4310.01
(6.2%)
0.4840.03 — 0.454+0.02
(5.4%)
0.5040.02 = 0.4740.01
4.1%)
0.55+0.02 = 0.5210.01

(2.4%)

0.6040.01 — 0.57+0.01

0.460.02 = 0.4310.01
(2.5%)
0.4840.03 — 0.4540.02
(4.8%)
0.504£0.02 = 0.470.01
3.6%)
0.5510.02 = 0.5240.01

3.1%)

0.6010.01 — 0.5710.01

0.194+0.02 — 0.18+0.01
(7.64%)
0.2340.03 — 0.2140.02
(7.89%)
0.504+0.02 — 0.47+0.01
(6.57%)
0.55+0.02 = 0.52+0.01

(8.92%)

0.6040.01 — 0.5740.01

23

0.2140.02 = 0.1940.01
(5.13%)
0.2340.03 = 0.2140.02
(6.09%)
0.2940.02 = 0.27+0.01
(5.55%)
0.5540.02 = 0.5210.01

(7.44%)

0.3640.01 — 0.831+0.01

0.46+0.02 —+ 0.4310.01
(8.88%)
0.2440.03 —+ 0.2240.02
(8.14%)
0.2940.02 = 0.2740.01
(5.61%)
0.3540.02 =+ 0-3340.01

4.07%)

0.6040.01 — 0.5740.01

0.46+0.02 — 0-4310.01
(6.0%)
0.4840.03 — 0.454+0.02
(5.0%)
0.5040.02 = 0.4740.01
(3.7%)
0.55+0.02 = 0.5210.01

(2.7%)

0.60+0.01 — 0.57+0.01

0.4640.02 = 0.4310.01
(5.1%)
0.4840.03 — 0.4540.02
(5.3%)
0.50440.02 = 0.470.01
3.8%)
0.5510.02 = 0.5240.01

(2.9%)

0.604+0.01 —* 0.57+0.01

(4.4%)

3.7%)

4.0%)

4.2%)

3.8%)

(3.8%)

3.9%)

Dominick

(12.93%)

1.311+0.03 = 1.18+0.02

(29.38%)

1.4340.02 — 1.0140.01

(9.76%)
9.61%)

1.3840.01 — 1.1640.01

(15.42%)

1.2540.02 — 1.2540.01
(0.00%)
0.9740.03 — 0.97+0.02

(0.00%)

1.0940.02 — 1.0619.01

(2.56%)
(141%)

1.1240.01 — 1.1040.01

(1.00%)

000%)
C0.00%)
0.00%) "
356%)

1.2540.01 — 1.2840.01

(0.89%)

(0.00%)

1.08+40.03 = 1.0840.02

(0.00%)

1.2340.02 — 1.1840.01

(8.01%)
(1.34%)

1.2540.01 — 1.2040.01

(3.83%)

(6.73%)
(8.10%)

1.2540.02 = 1.1340.01

(9.08%)
(1.97%)

1.2440.01 — 1.1340.01

(7.97%)

(22.76%)

1.66+0.03 = 1.20+0.02

(27.52%)

1.9740.02 — 1.83940.01

(28.94%)
(29.63%)

1.9240.01 — 1.4040.01

(27.21%)

1.2641.23 — 0.4340.01
(2.35%)
0.9240.03 — 0.8840.02

(3.81%)

1.1540.02 — 1.0940.01

(3.81%)
(5.68%)

1.1440.01 — 1.0940.01

(4.28%)

Human

"1419%)
"(16.59%)
"40.52%)
"o

0.40+0.01 — 0-33+0.01

(20.24%)

(13.66%)
"(1186%)
((1628%)
(11.58%)

0.30£0.01 = 0.2540.01

(13.34%)

(274%)
"(2488%)
(58.95%)
88.50%)

0.60+0.01 — 0.1540.01

(51.26 %)

(35.22%)

0.1440.03 = 0.11+0.02

(17.79%)
(68.20%)
(85.76%)

0.6240.01 — 0.15+0.01

(51.74%)

C(2022%)
((5235%)
7156%)
(87.30%)

0.9640.01 —+ 0.2640.01

(57.85%)

(15.68%)
2657%)
"(5210%)
(1175%)

0.60+0.01 = 0-2510.01

(43.02%)

(-276%)

0.1940.03 = 0.14+0.02

(25.19%)
(25.10%)
(40.17%)

0.30£0.01 = 0.2140.01

(21.93%)

KDD

20.98%)
r11%)
2358%)
0832%)

1.2540.01 = 0.95+0.01

(23.50%)

0.7140.02 —+ 0.70+0.01

0.19%)

C(0.06%)
016%)
T 0.00%)

0.804+0.01 —* 0-8040.01

(-0.03%)

C1714%)
o8
ot
sy

1.1310.01 — 0.8810.01

(21.09%)

0.9440.02 = 0.7610.01
(19.18%)

1.1140.03 — 0.8840.02
(20.64%)

1.2140.02 — 0.9340.01

(22.58%)

(24.92%)

1.1440.01 — 0.8940.01

(21.83%)

C81%)
C(189%)
122%)

0.9340.01 —+ 0.85+0.01

(8.54%)

ey
se1a "
o
e

1.10+0.01 — 0.88+0.01

(19.14%)

0.9610.02 = 0.77+0.01
(19.59%)

1.08.40.03 — 0.8540.02
(20.86%)

1.1840.02 = 0.9610.01

(23.52%)

1.2840.02 — 0.9640.01

(24.66%)

(22.15%)

Nature

(35.00%)

1.7410.03 = 1.1940.02

(31.15%)
(5.80%)
(7.44%)

1.2540.01 = 0.9610.01

(21.69%)

)
ST
o
REXEAN

0.65+0.01 — 0.66.+0.01

(-1.17%)

C195%)
C283%)
"G99%)
4309

0.3440.01 = 0.3310.01

(3.26%)

Ca31%)
C238%)
Carsa
“6a0%) "

0.2640.01 = 0.2510.01

(3.72%)

C(16%)
TG25%)
oo
CG6s%)

0.9540.01 = 0.9140.01

(4.31%)

(1990%)
(686%)
63
REGTS

1.021+0.01 — 0.9410.01

(8.67%)

038%)
T039%)
Y0629
C206%)

0.9140.01 = 0.90+0.01

(0.86%)

NASDAQ

"(23.38%)
"19.76%)
"@170%)
04m2%)

0.9140.01 = 0.70+0.01

(22.39%)

e
RERY o
00
006"

0.4640.01 —+ 0.4640.01

(-0.33%)

16.14%)
18.99%)
19.70%)
"(24.26%)

0.804+0.01 — 0.6340.01

19.77%)

"(1496%)
(18.08%)
(19.63%)
0458%)

0.7940.01 —* 0.6840.01

(14.76%)

C524%)
813%)
(1040%)

0.7440.01 — 0.68.40.01

(7.59%)

"1521%)
"18.34%)
1947%)
0374%)

0.7840.01 —* 0.62+0.01

(19.19%)

0.5740.02 — 0.4810.01
(15.20%)

0.7540.03 —+ 0.6140.02
(17.99%)

0.96£0.02 = 0.91+0.01

(21.48%)

(23.76%)

0.8540.01 —+ 0.794+0.01

(8.96%)

Pedestrian

0.38+0.02 = 0.22+0.01
(41.72%)
0.3840.03 — 0.2410.02

(34.76%)

0.5240.02 — 0.80+0.01

0.1140.02 —+ 0.11490.01

(-0.03%)

(0.43%)

0.1540.02 —+ 0.1440.01

0.0940.02 — 0.0840.01
(2.85%)
0.1440.03 = 0.1210.02

(11.79%)

0.1640.02 — 0.1440 01

24

0.1440.02 = 0.1310.01
(3.68%)
0.2240.03 = 0.1840.02

(11.82%)

0.2540.02 = 0.22+0.01

0.3340.02 = 0.27+0.01
(18.21%)
0.7440.03 = 0.63.£0.02

(14.79%)

0.77+0.02 —+ 0.6640.01

0.1449.02 = 0.13+0.01
(1.53%)
0.2040.03 — 0.18+0.02

(9.37%)

0.2240.02 —+ 0.20+0.01

0.2140.02 =+ 0.18+0.01
(18.38%)
0.3940.03 = 0.3310.02

(15.51%)

0.35+0.02 —+ 0.2940.01

(41.30%)
4227%)

0.4640.01 — 0.2740.01

(40.01%)

0.37%)
(0.30%)

0.1449.01 — 0.1340.01

0.26%)

(12.15%)
(10.94%)

0.1440.01 — 0.12409.01

(9.43%)

(11.49%)
(11.18%)

0.2240.01 = 0.19+0.01

(9.54%)

(13.38%)
(13.88%)

0.6940.01 — 0.6040.01

(14.20%)

(8.83%)
(8.01%)

0.2040.01 — 0.1840.01

(6.94%)

(18.22%)
(19.35%)

0.3340.01 =+ 0.2740.01

(15.87%)

Tourism

219"
"T0sy
RET AN
a0

0.2440.01 — 0.2240.01

(10.88%)

“(2500%)
C879%)
C610%)

0.1640.01 —+ 0.1440.01

(11.48%)

(26.16%)

(8.96%)
(47.99%)
(77.23%)

0.3140.01 — 0.1440.01

(40.08%)

0.1640.02 = 0-11+0.01

(28.55%)
T
s
RGN

0.3140.01 — 0.1410.01

(39.20%)

"(374%)
"(56.60%)
“@429%)
6101%)

0.5240.01 — 0.2540.01

(48.91%)

(50.06%)
“@2%)
((53.09%)
"4632%)

0.2440.01 — 0.124+0.01

(48.14%)

0.1740.02 —+ 0.1249.01

(27.43%)

0.1440.03 —+ 0.104+0.02
(22.82%)
0.3340.02 = 0.83140.01

(4.90%)

0.2610.02 — 0.19.49.01

(27.16%)

(20.57%)

Vehicle trips

1.4040.02 — 1.134+0.01

(19.00%)

1.3940.03 = 1.144+0.02

(17.78%)
(19.65%)
(16.09%)

1.3940.01 = 1.13+0.01

(18.13%)

223%)
C0829%)

0.83+0.01 — 0.8210.01

(0.89%)

0.8910.02 — 0.7840.01
(11.63%)

0.8140.03 — 0.6840.02
(15.09%)

1.0840.02 = 0.8710.01

(18.82%)

(23.03%)

1.0210.01 — 0.8410.01

(17.14%)

"16.60%)
"1195%)
(2085%)
22.63%)

0.9840.01 — 0.80+0.01

(18.00%)

(7.46%)

1.2540.03 = 1.1040.02

(11.83%)

1.3440.02 = 1.1140.01

(16.47%)
(21.70%)

1.3540.01 — 1.1540.01

(14.37%)

(26.95%)

1.3740.03 = 0.77+0.02

(21.34%)

(27.59%)

33.07%)

1.68+0.01 = 1.0510.01

(38.46%)

(8.02%)

1.0540.03 = 0.81+0.02

(6.77%)

1.2540.02 = 1.0440.01

(16.29%)

(19.63%)

1.2140.01 — 0.9540.01

(21.54%)

Weather

210"
AL
idas ™
isaan

1.1240.01 — 0.9610.01

(14.29%)

004
C003%)
"0:002%)
0.08%)

0.8540.01 —+ 0.8440.01

(0.03%)

1092%)
(1354%)
515%)

1.10+0.01 —+ 0.9540.01

(13.07%)

(9.32%)
(10.80%)
(13.48%)

1.34.0.02 = 1.0940.01

(18.24%)

(12.96 %)

C207%)
oo
681

0.9710.01 — 0.9340.01

(3.47%)

5%
T 9.95%)
(1243%)
17.63%)

1.06+0.01 — 0.93+0.01

(12.13%)

(10.07%)

1.0140.03 — 0.89+0.02

(11.32%)
(13.90%)

(18.57%)

1.1140.01 — 0.95+0.01

(13.47 %)

A.4 EXPERIMENTS ON PERFORMANCE IMPROVEMENT AS A FUNCTION OF THE NUMBER OF

ACTIONS

In this section, we analyze the performance improvements achieved by post-training optimization
on the DLinear model for the ETTm1 dataset. Specifically, we examine how the performance varies
with different prediction horizons and different numbers of actions. The results are summarized in

the table below:

Table 8: Adaptive optimization improved performance.

Horizon

2 Actions

4 Actions

7 Actions

96

192
336
720

3.63+0.54
2.10+0.26
3.25+0.93
2.37+0.78

3.74+0.93
2.80 +0.47
3.45+0.61
3.29+£0.47

5.05+0.39
3.62 +0.66
3.66 £0.71
3.97+0.78

The table displays the performance improvements (in terms of error reduction) achieved through
adaptive optimization at various prediction horizons (96, 192, 336, and 720) and with different
numbers of actions (2, 4, and 7). The values are presented as mean =+ standard deviation, providing
an indication of the variability in performance.

25

A.5 CROSS-METRIC EVALUATION OF OPTIMIZATION STRATEGIES

To systematically investigate whether optimizing a single metric (e.g., Mean Squared Error, MSE)
can lead to artificial or misaligned improvements in other metrics, we designed a comprehensive
evaluation framework.

METHODOLOGY

We constructed a cross-metric evaluation matrix with the following structure:

* Rows: Metrics used for optimization, including MSE, Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and R?.

¢ Columns: Metrics used for evaluation.

For each cell, we report the relative improvement per episode across the training, validation, and
test sets, quantifying how optimizing one metric affects the others.

RESULTS AND VISUALIZATION

Figure 12 provides a visual summary. We observe two interesting phenomena:

* Consistent landscapes: Across most optimization settings, the training, validation, and test
losses share similar landscapes, indicating that overfitting is empirically mitigated. This
aligns with the theoretical rationale that our small, interpretable action set limits overfitting.

* Cross-metric agreement: Improvements generalize well across metrics, confirming that
our approach is not merely metric-specific gaming but delivers genuine gains across multiple
evaluation criteria.

* Aligned metrics: When metrics are well-aligned, improvements generally transfer across
metrics.

* Incompatible metrics: Optimization may slightly degrade performance on incompatible
metrics; for example, optimizing MAPE can reduce R?.

A.6 MORE EXPERIMENTS ON THE HUMAN FEEDBACK

Detailed principle of the human in the loop framework The system generates executable code
based on user feedback using a language model (LLM). The process is as follows:

 User Feedback: The user provides a natural language description of the desired transforma-
tion (e.g., scaling predictions).

* Prompt Generation: The feedback is passed through a function that creates a structured
prompt for the LLM.

* LLM Code Generation: The LLM generates a Python class and function based on the
feedback. The class includes a transformation function and a parameter generation function.

* Optimization: Following code generation, the system optimizes the transformation via
bandit, RL or genetic algorithms to improve performance.

The generated prompt is structured as follows:

def build_feedback_prompt(feedback):
return """
Given the following feedback about a time series prediction model:

Feedback: "{feedback}"

Please generate a Python class called ‘GenericFunction * that represents a transfc

26

Relative Change in Forecasting Metrics Over Episodes
Model: DLinear | Dataset: NASDAQ

A MSE (%), | better A MAE (%), ! better A RMSE (%), | better A MAPE (%), | better A SMAPE (%), | better AR2 (%), 1 better
000 00 00 s 250

0s
3
00
Swoos 2
Z 0 -
1
15
20 o

,,,,,,,,,,,,,,,,

10
B

Ne

< o0

£s

@
-5
-10

e
i

3 6 9 1215 o1 3 6 9 2 o1 o1 3 6 9 121 o 3 6 9 o2 o151 36 9 2 o1 o1 3 6 9 1215 o1
Episode Episode Episode Episode Episode Episode

Figure 11: Cross-metric relative improvements. Rows correspond to the optimization metric, columns
correspond to the evaluation metric.

1. A constructor (‘__init__ ‘) that accepts:
— ‘function_type ‘: The type of transformation.
— ‘params ‘: A dictionary containing parameters for the transformation.

2. An ‘apply * method that modifies the prediction or context vector and outputs
Additionally , generate a function ‘generate_random_params_for_action ° that returi
——— START OF GENERATED CODE ———

Class Definition:

class GenericFunction:

<class—-body>

Function Definition:

def generate_random_params_for_action(action, batch_x):

<function —body>

——— END OF GENERATED CODE ——-

"o

The system then optimizes the generated code using the proposed optimization schemes, ensuring
that the generated transformations lead to performance improvements.

27

Relative Change in Forecasting Metrics Over Episodes
Model: DLinear | Dataset: ETThl

A MSE (%), ¢ better A MAE (%), ! better A RMSE (%), ¢ better A MAPE (%), ! better A SMAPE (%), | better AR2 (%), T better
00 1

3 6 9 12 15 18 3 06 o 1 15 1 3 06 9 12 15 18 3 06 5 12 15 18 3 6 9 12 15 18 3 06 9 12 15 18
Episode Episode Episode Episode Episode Episode

[Diagonal: Metric optimized = metric evaluated (best-case alignment)
[Off-diagonal: Training on one metric, testing on others (generalization)
[Similar trends across Train/Val/Test: Low overfitting, consistent performance
[] Framework supports flexible metric optimization with consistent validation reliability

Figure 12: Cross-metric relative improvements. Rows correspond to the optimization metric, columns
correspond to the evaluation metric.

A.6.1 HUMAN FEEDBACK IN ACTION

In this section, we illustrate the practical impact of human feedback through three representative
examples, each consisting of a triplet of subplots. These examples demonstrate how natural language
insights from a human user can be translated into targeted post-training actions, improving forecasting
accuracy beyond automated optimization alone.

Each example includes the following three visualizations:

* Forecast Comparison with Feedback Summary: The first subplot presents the full fore-
casting context: the historical context vector, the model’s initial predictions, the predictions
after reinforcement learning (RL)-based optimization, and the final forecast incorporating
human feedback. The title of each subplot includes the specific textual instruction provided
by the human. This view emphasizes how the feedback alters the forecasted trajectory.

* Generated Code from Human Instruction: The second subplot displays the code snippet
generated by a lightweight language model (LLM) based on the human’s textual feed-
back. This demonstrates the interpretability and direct translatability of natural language
instructions into executable post-processing transformations.

* RMSE Improvement Visualization: The third subplot shows the reduction in RMSE
achieved by applying the human-guided correction compared to the RL-only optimization.
This quantifies the value added by the human-in-the-loop mechanism.

Each of the three examples showcases a different type of human insight—such as noise reduction,
trend adjustment, or outlier suppression—emphasizing both the flexibility and effectiveness of

28

incorporating human feedback in the post-training phase. These case studies highlight the potential
of combining automated learning with domain expertise to refine time series forecasts in practice.

Smooth high-frequency noise (preserve mean)
Reduce fluctuation by 10-100% of original std Code Generated by LLM RMSE decrease

, —— Context Vector (Historical Data) 1
'
5600 % 161 to 1004 of original st dev o
ath)

m== Human feedback

—:~ Optimized Predictions RL
== Ground Truth
Forecast Start

Value
RMSE

Initial Predictions.
Model State

Time

Figure 13: Human feedback integration example 1: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: Dominick, Model: PatchTST

extreme values (high/low quantiles) by 10%-100% of current values. Code Generated by LLM RMSE decrease

~—— Context Vector (Historical Data)
Initial Predictions.

m== Human feedback

—:- Optimized Predictions RL

= Ground Truth
Forecast Start

Value
RMSE

Model State

Time

Figure 14: Human feedback integration example 2: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: Nature, Model: DLLinear

Adjust the trend by £10% to +50% of its current value. Code Generated by LLM RMSE decrease
—— Context Vector (Historical Data)
Initial Predictions
m= Human feedback
—- Optimized Predictions RL
== Ground Truth
Forecast Start

Value
RMSE

Model State

Time

Figure 15: Human feedback integration example 3: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).
Dataset: Tourism, Model: PatchTST

29

A.6.2 ROBUSTNESS ANALYSIS WITH RESPECT TO THE PROMPT

To demonstrate the robustness of the proposed framework, we analyze failure cases where the prompt
is either ambiguous or nonsensical. These cases are intentionally designed to test the system’s ability
to handle invalid or poorly defined feedback. The framework is robust in that it identifies and discards
actions that do not lead to performance improvements, ensuring that only meaningful transformations

are applied.

Optimize model to make it model like and unoptimized # txample of generated code based on human feedback
class Generichunction
def _init_(self, function type, params):
elf. function type = function type
self parans = parans

~—— Context (History)
Initial Prediction

—e— With Human Feedback

—:- Optimized (RL)

—— Ground Truth

Forecast Start

25

dat spplytastt. prediction. bateh x):
import numpy as

add_ne

2106, ®selt params('std'], prediction.shape)

if self.functior

noise = np. rand
return predicti
€lif self.function_type == 'scal

scate factar = self.porams| s(ale factor']
eturn prediction * scale_fac:

Value

else
raise ValueError(f-Unknown function type: {self.function type}")

def generate. randon parass_for_sction(action, batch x)
numpy as
1f action ==
andon.uniforn(0.01, 0.1) # Randon standard deviation for noise
Teturn {'std': sta)

euif action == 'scate
scale factor -
7 {*scale_factor

dom.unifor(0.5, 1.5) # Random scale factor between 0.5 and 1.5
scale_factor}

else
raise ValueError(f-Unknown action type: {action}")

: Time :

RMSE

RMSE decrease

Model State

Figure 16: Human feedback integration example 4: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).

Dataset: ETTm1, Model: DL.inear

Replace everything by random noise

—— Context (History)
Initial Prediction

—e— With Human Feedback
—-~ Optimized (RL)

29" —e Ground Truth

Forecast Start

Example of generated code based on human feedback
class GenericFunction:
def _init (self, function type, params):
self.function type = function_type
self.params = params

def apply(self, prediction, batch x):
if self.function_type == "replace by _random_noise":
import numpy as np

Value

return noise
else

def generate_random params for action(action, batch x):
if action == "replace by random noise":

return {}
else:
raise ValueError(f*Unsupported action: {action}")

Time

Generate random noise with the same shape as the prediction
noise = np.random.randn(*prediction.shape).astype(prediction. dtype) ¢

No specific parameters needed for generating random noise

raise ValueError(f*Unsupported function type: {self.function type}")

00

RMSE decrease

Figure 17: Human feedback integration example 3: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).

Dataset: ETTm1, Model: DLLinear

Taratata las palsmas reality bonnegur selar

—— Context (History) # Exanple of generated code based on human feedback
class GenericFunction

Initial Prediction def __init_(self, function type, params):
—— With Human Feedback el fnction’type = function. type
—:- Optimized (RL) self parans = para
—— Ground Truth
Forecast Start

o def apply(self, prediction, batch x)
selffunction type o= add gaussian noise’
inport numpy a

eturn prediction + noise
elif self-function type —=. - scale

retorn prediction s self parans|*factor’]
e

raise ValueError(f*Unsupported function type: {self.function type}*)

Value

def generate_randoa parans for_action(action, batch x):
import numpy a:
i action = “add gaussian_noise’

}
elif action == ‘scale’
{

1se
raise ValueError(f*Unsupported action: {action}*)

CTime

223" np. randon.uniforn(0.01, .1) # Randon standard deviation between 0.01 and 0.1

factor': np.random.uniform(0.5, 1.5) # Random scaling factor between 0.5 and 1.5

RMSE

RMSE decrease

noise = . Yandom. nornal (Loc=self .parans| ‘mean], scalesself.params(std'], sizesprediction.shape)

‘Before Feedback Afer Feedbac
Model State

Figure 18: Human feedback integration example 6: Forecast comparison with RL and human
feedback (top), code generated from human feedback (middle), and RMSE improvement (bottom).

Dataset: ETTm1, Model: DL.inear

30

A.7 CODE AND REPRODUCIBILITY

To enable full reproducibility of our results, we provide detailed instructions for using the code
associated with our framework. This section includes guidelines for setting up the environment,
running the experiments, and utilizing the graphical user interface (GUI) for easy interaction with the
framework. We also provide links to the repository, ensuring that interested readers can freely access
and experiment with our code.

A.8 CODE USAGE AND API DOCUMENTATION

This appendix provides instructions for using the codebase and the API for time series model
post-training and human feedback exploration. The framework provides a method for users to
adjust model predictions using human feedback and contextual bandit algorithms, allowing the
model to dynamically adapt its behavior. The code is available at https://github.com/
posttraining/post_training.

GOAL

The primary goal of this project is to provide an interactive environment where users can fine-tune
time series model predictions based on human feedback. The framework leverages a contextual
bandit approach, allowing users to explore different actions and see their impact on the model’s
predictions.

FEATURES

* Time Series Model Exploration: Train and explore various time series models with
different parameters and datasets.

* Optimization Framework: Dynamically apply actions and evaluate their effects on the
model’s prediction accuracy.

* Human Feedback Integration: Users can provide feedback on the predictions to improve
the model’s output over time.

* Streamlit Interface: An interactive frontend for exploring and providing feedback on model
predictions.

A.8.1 EXAMPLES TO USE THE STREAMLIT APPLICATION

To experiment with the Streamlit application, follow these steps:

1. Click on the following (link): Go to the webpage. You should see the configuration page as
in Figure 19.

Configuration

Figure 19: Configuration page

2. Upload CSYV File: Upload a CSV file containing the time series data. The file should
be in CSV format, with rows representing different time steps and columns representing
different features for multivariate datasets. A sample file, train.csv, is provided in the
supplementary materials. You can see an example in Figure 20

31

https://github.com/posttraining/post_training
https://github.com/posttraining/post_training
https://posttraining-36hr3mewbkbgxbp2hcsgcs.streamlit.app/

Configuration

Upload Training CSV

Drag and drop file here
Limit 200MB per file + CS

Browse files

train.csv

Figure 20: Example of upload file

. Select Model and Options: Choose the model and other options. For the model, use
DLinear, as other models require a GPU to run or will take longer. The server currently
supports CPU only as in Figure 21

‘ DLinear v
Upload Custom Model (optional, model.py)

Drag and drop file here
Limit 200MB per file « PY

Browse files

sliding Window Size (T)

96 -+
Prediction Horizon (T)

144 -+
Method

random v

Explore Instructions

Figure 21: Configuration Options

. Explore Instructions: Click on the "Explore Instructions" button. After some time, you
will see the optimization process (with the successful actions over the episodes) as in Figure
22 and the reduced MSE after each episode on the validation set as in Figure 23

C Bandit Optimizati C Bandit Optimizati
i

Prediction Value
Prediction Value

ime Steps.

Figure 22: Successfull and failed actions during optimization

. Provide Feedback: Enter your feedback in text, in any language. Be as descriptive as
possible to guide the model. For example, you could say, "The amplitude of the predictions
should be increased between 5% and 10% of the actual values." as in Figure 24

. Submit Feedback: Click on "Submit Feedback" and then "Finalize Feedback." You will
see the percentage improvement and details per channel as in Figure 25

32

Total MSE Across Episodes

—e— Total MsE
0.036

0.035

0.034

Total MSE

0032

0.031

4
Episode

Figure 23: MSE as function of the number of episodes

Provide Feedback

Enter your feedback

The amplitude of the predictions should be increased between 5% and 10% of the actual values

Press Curi+Enter to apply

Submit Feedback

Figure 24: Example of user prompt

#4## MSE Improvement Summary

- *xTotal Initial MSEx+: 0.0502

- xxTotal Final MSExx: 0.0308

- xxTotal Improvementsx: ©.0194

- #xOverall MSE Improvementsx: 38.70%

#xChannel-wise MSE Improvements s:

e Channel 1:0.0188 MSE
* Channel 2:0.0166 MSE
e Channel 3:0.0193 MSE
* Channel 4: 0.0225 MSE
* Channel 5:0.0196 MSE
* Channel 6:0.0214 MSE
* Channel 7:0.0180 MSE

Figure 25: Improvement Details

33

A.9 INSTALLATION AND USAGE FOR DEVELOPMENT
INSTALLATION INSTRUCTIONS

Set Up the Environment To install the required dependencies, create and activate the conda
environment:

conda env create —-f environment.yml

USAGE

Running the Code with Command-Line Arguments To run the post-training process and adjust
the model, execute the following command:

python main.py —-—-train_path <path_to_train_data
—--model <model_name> --window_size <window_size> —--prediction_horizon <prediction_ho:

—-batch_size <batch_size> --n_samples <n_samples>

The available command-line arguments are as follows:

Argument Description Example
—train_path Path to the training data CSV file data/train.csv
-model Name of the model to use DLinear, PatchTST, etc.
-model_path (Optional) Path to a custom pre-trained model | models/custom_model .py
-window_size Sliding window size for time series 96
-prediction_horizon Prediction horizon in terms of time steps 144
-batch_size Batch size for training 32
-n-jobs Number of CPU for parallel computing 1
—episodes Number of episodes for RL training 5

Running the Streamlit App To interact with the framework using the Streamlit interface, launch
the app as follows:

streamlit run app_test.py

This will start a local server, and you can access the interface by navigating to the URL provided in
the terminal.

Workflow Overview The following steps outline the workflow of the post-training process:

1. Train the Model: Train the model using the provided training data and validate it using the
validation dataset. Optionally, load a custom pre-trained model if specified.

2. Exploration Phase: After training, explore various actions on top of the model’s predictions.
These actions include adjusting amplitudes, trends, or shifting values.

3. Human Feedback: Provide feedback on the predictions to guide the model towards im-
provements. Precise feedback, such as "increase the amplitude by 5-10%", allows the model
to understand the desired adjustments.

4. Model Adaptation: Based on the feedback, the model adapts its behavior and re-tests the
adjusted predictions.

5. Plotting Results: The results of the model’s predictions are visualized through plots, which
are saved for further analysis.

API Documentation The API for the framework is structured as follows:

1. app_test.py: Main script to run the Streamlit interface. Provides functionalities to
explore and give feedback on model predictions.

34

2. contextual_bandit.py: Implements the contextual bandit logic for dynamically
adjusting predictions based on feedback.

3. data_extraction.py: Contains functions for loading and preprocessing time series
data.

4. 11m_interaction.py: Functions for interacting with language models to interpret and
apply human feedback.

5. model_extraction.py: Extracts and loads pre-trained models.

6. plot_script.py: Provides plotting utilities for visualizing predictions and feedback
results.

A.10 THEORETICAL MOTIVATION FOR POST TRAINING IN TIME SERIES FORECASTING

A.10.1 PROBLEM SETUP

Consider a supervised learning problem where we want to estimate a target variable Y, using a
linear model. We assume that a ridge regression predictor Y4 has already been obtained, and we
aim to improve its accuracy through an optimal affine correction of the form:

Yeorrected = a'Yi)red +0. 3)

The goal is to determine the optimal values of ¢ and b that minimize the expected mean squared error
(MSE):
£(a,b) = E [[|Yine — (a¥prea + 0)II] - “)

A.10.2 DERIVATION OF OPTIMAL CORRECTION PARAMETERS

Expanding the loss function:

L(a,b) = E [Yime — 2aYirueYired — 26Yinue + 0*Yireq + 2abYreq + b7] . 5)
Step 1: Compute b* by setting %—f =0.
O 9R[¥ie] + 20E[Via] + 20 ®)
Setting this derivative to zero and solving for b* gives:
b* = E[Yine] — a"E[Ypred]- (N

Step 2: Compute o™ by setting % =0.
oL
% = _2E[Y;rueyl-3red] + 2GE[Y£ed] + 2bE[Y;)red]~ (8)

Substituting b* and solving for a* gives:
_ COV(Krum Yi)red)

* ©))
Val"(Y})red)
Thus, the optimal correction parameters are:
(l* _ E[(Y;rue - E[Krue])(y;)red - E[Y;Jred])] (]O)
E[(Yired — E[Yprea])?] ’
b* = E[Y;rue} - a*E[Y;)red]' (1D

A.10.3 THEORETICAL RISK BEFORE AND AFTER CORRECTION

Risk Before Correction: The mean squared error (MSE) of the original predictor is given by:
Rbefore = E[(Y;rue - Y;Jred)2]' (12)

Expanding:
Ryefore = Var()/true) + Var(}/pred) - 2C0V(Krue7 }/pred)~ (13)

35

Risk After Correction: The mean squared error of the optimally corrected predictor is:

Rafler = E[(}/true - corrected)Z}- (14)
Substituting Yeorrected = @ Yprea + 0*:

COV(Ytruey }/pred) 2

Rager = Var(Yyue) — 15
afte ar(t) Var (YI) red) ()
A.10.4 COMPARISON OF RISKS
To understand the effect of the correction, we compute the difference:
Rbefore - Rafter~ (16)
Substituting the expressions:
Reuefore — Rafter = [Var(Krue) + Var(YI)red) - 2C0V(Krue; Yi)red)]
COV(Krue Yred)2
— | Var(Y; _ "\~ truey “pred/ 17
ar(true) Var(Y;)red) ()
Simplifying:
Cov(Yiue, Yored)?
Rpetore — Rafter = Var(Ypred) — 2COV(Kme,)/pred) + \(]a:(;;)rej;ed) (18)
Rewriting using the identity:
2
(x - 9) >0 forallz >0, (19)
T

by setting z = Var(Ypreq) and a = Cov(Yie, Yprea)?, we obtain:

2
COV(Kruea 1/pred)
Riefore — Ratrer = Var(Yyeq) — — ———— . 20
be fi (\/ (Yprea) Var (V) (20)

Since the square of any real number is always non-negative:

Rbefore - Rafter Z 0. (2])

A.10.5 CONCLUSION

This derivation shows that the correction always reduces the risk (or at worst, leaves it unchanged).
The correction is most effective when Yjeq is correlated with Y, and it does not increase the error
in any case. This result shows that the correction always reduces the mean squared error.

A.11 PROOF OF THE Upper Bound on the Risk of the Corrected Prediction THEOREM
For completeness we give here the general theorem (for K > 2) and its assumptions.

Assumption 1 (Gaussian Squared-Error Model) For all indices k, hyperparameters (3, and the
base model fy, we assume that for (X,Y) ~ D,
((gr,sofo) (X)fY)2 follows a Gaussian distribution with mean R(gy, g0 fo) and variance o* > 0.

This provides a convenient concentration model for the empirical risk estimates used by the algorithm.

Theorem 2 (Upper Bound on the Risk of the Corrected Prediction) Let fy be a base predictor,
(gr.5+)K_| a set of corrective actions, and assume a total evaluation budget T under M = 1.
Under Assumption 1, applying Successive Halving to select a correction yields:

K log, K—1

R(k) H |:(k_]‘) (I)(_A;in,deCC(r))—’—(K_k) q)(_Ar:lin,kTiUC(T))})

k=1 r=0

E [R(ng,ﬁ* Ofﬁ)] <

36

where
‘K'log2 K

R(k) == min{R(fo), R(gr,p- © fo)}, v:=

2\/Elogz K(log, K+1)’

Y N R SR -z
Tdec\T) ‘= 20’2K10g2K 20_2a Tinc\T) ‘= 20_2(K IOgQK _9r 10g2 K)’

A:‘un k" 1};&12 (R(k) - R(]))’ Ar;in,k: = 1};2 (R(k) - R(]))
R(k)>R(j) R(k)<R(4)

Proof 1 (Sketch of the proof) We provide here a self-contained outline; the full derivation follows
the style of Karnin et al. (2013) for Successive Halving.

Step 1: Decomposition. Each corrective action gy, g+ has a fixed true risk R(gy g+ o fg). Only the
index kr selected by the algorithm is random because it depends on noisy empirical risk estimates.
Hence,

K
E[R(gkrp- © fo)] = Y _min(R(fo), R(gr,p+ © fo)) Plkr = k].
k=1

Step 2: Bounding the selection probability. Successive Halving proceeds over n, = logy K rounds.
At round r, each remaining action in the set S, is evaluated t,. times and half of them are discarded.
For a fixed k, the number of competing actions with lower empirical risk than k can be expressed as
a sum of Bernoulli variables whose expectations are Gaussian tail probabilities:

Ak ViEr
E[N, 4] = jz#%@(_’i@a).

+

min,

Using Markov’s inequality and introducing the smallest positive and negative risk gaps A

A-

min,k’

x and

we obtain a product-form upper bound on Plkr = k| across all rounds.

Step 3: Plug into the risk expression. Substituting this bound on Plkr = k] into the decomposition
above yields the stated inequality.

Discussion. This theorem formalizes how Successive Halving selects the best correction under
limited evaluation budget. The bound shows that the expected risk converges to the risk of the optimal
correction at an exponentially fast rate, with the convergence speed determined by the risk gaps
Aiin’ . and the budget T'. In particular, larger gaps between actions accelerate the identification of
the optimal correction—exactly mirroring the empirical behavior observed in our experiments.

37

	Introduction
	Related Work
	Methodology
	Theoretical Motivation for Post-Training Correction
	Forecasting Model Setup
	Post-Training Optimization via Action Space
	Optimizing Actions and Parameters
	Dynamic Optimization Strategies
	Why Discrete Actions + Continuous Parameters

	Optimization Strategy: Empirical Comparison

	Theoretical Analysis of Our Bandit-Based Correction
	Human-in-the-Loop Feedback Integration
	Experiments
	Setup
	Results: Adaptive Optimization Improves Forecasting
	Human-in-the-Loop Feedback
	Computational Efficiency and Scalability

	Conclusion
	Appendix
	Mathematical definitions and visualizations of the pool of actions
	Details on experimental setup: Datasets and models
	More experiments on the reinforcement automated loop
	Experiments on Performance Improvement as a Function of the Number of Actions
	Cross-Metric Evaluation of Optimization Strategies
	More experiments on the human feedback
	Code and Reproducibility
	Code Usage and API Documentation
	Installation and usage for development
	Theoretical motivation for post training in time series forecasting
	Proof of the Upper Bound on the Risk of the Corrected Prediction Theorem

