GPU Implementation of Second-Order Linear and
Nonlinear Programming Solvers

Alexis Montoison Francois Pacaud
Mathematics and Computer Science Division Centre Automatique et Systemes
Argonne National Laboratory Mines Paris-PSL
Lemont, IL 60439 Paris, 75006
amontoison@anl.gov francois.pacaud@minesparis.psl.eu
Sungho Shin Mihai Anitescu
Department of Chemical Engineering Mathematics and Computer Science Division
Massachusetts Institute of Technology Argonne National Laboratory
Cambridge, MA 02139 Lemont, IL 60439
sushin@mit.edu anitescu@mcs.anl.gov
Abstract

In recent years, GPU-accelerated optimization solvers based on second-order meth-
ods (e.g., interior-point methods) have gained momentum with the advent of mature
and efficient GPU-accelerated direct sparse linear solvers, such as cuDSS. This
paper provides an overview of the state of the art in GPU-based second-order
solvers, focusing on pivoting-free interior-point methods for large and sparse linear
and nonlinear programs. We begin by highlighting the capabilities and limitations
of the currently available GPU-accelerated sparse linear solvers. Next, we dis-
cuss different formulations of the Karush-Kuhn-Tucker systems for second-order
methods and evaluate their suitability for pivoting-free GPU implementations. We
also discuss strategies for computing sparse Jacobians and Hessians on GPUs for
nonlinear programming. Finally, we present numerical experiments demonstrating
the scalability of GPU-based optimization solvers. We observe speedups often
exceeding 10x compared to comparable CPU implementations on large-scale in-
stances when solved up to medium precision. Additionally, we examine the current
limitations of existing approaches.

1 Introduction

This paper focuses on the implementation of solvers for problems of the following form:
min f(z) st g(xz) >0, (1

where x € R" is the decision variable, and f : R® — R and g : R™ — R™ are the smooth
objective and constraint functions, respectively. For simplicity, we do not explicitly consider equality
constraints—these can always be reformulated as pairs of inequality constraints. We will discuss both
linear programming (LP) (where f and g are affine) and nonlinear programming (NLP) (where f and
g are nonlinear), with an emphasis on algorithms designed for large, sparse instances.

Despite advances in general-purpose GPU computing, state-of-the-art mathematical programming
solvers have not widely adopted these techniques. GPUs excel in repetitive computations on large
data sets, such as dense matrix multiplication in AI model training. However, many mathematical
programming problems in classical application areas are sparse, lack a uniform memory layout,

Preprint.

and therefore do not benefit from the same kind of parallelism as dense linear algebra. As a
result, integrating GPUs into mathematical programming solvers poses greater challenges and often
necessitates substantial modifications to the overall algorithm.

On the one hand, first-order algorithms have emerged as a suitable class for GPU implementation.
Since these algorithms rely on sparse matrix-vector multiplication and simple vector operations,
implementing GPU acceleration is usually straightforward. Recent successful implementations
include cuPDLP [[18} [17]], cuOSQP [27]], and cuOPT [2]]. However, the linear convergence rate of
first-order methods restricts their effectiveness in applications requiring fast convergence, prompting
the exploration of second-order alternatives for applications that require higher accuracy.

On the other hand, second-order solvers inherently rely on direct linear solvers. For example, within
interior-point method (IPM), each barrier iteration necessitates solving a linear system known as the
Karush-Kuhn-Tucker (KKT) system. These systems become increasingly ill-conditioned as the iterate
approaches the solution, rendering the use of iterative linear solvers, such as preconditioned Krylov
methods, ineffective in most cases. Therefore, a reliable direct linear solver is a prerequisite for the
effectiveness of second-order solvers. For years, the development of GPU-accelerated second-order
solvers has been hindered by the absence of robust and efficient sparse direct linear solvers.

This status quo has changed with NVIDIA’s release of cuDSS, a library of direct sparse linear solvers
for GPUs [21]]. It provides sparse Cholesky, LDL ", and LU factorization routines. While it currently
lacks the LBL " factorization capabilities commonly used for NLP solvers, its LDL " and Cholesky
functionalities are sufficient for implementing modified versions of the IPM. Consequently, cuDSS
has spurred advances in GPU-accelerated second-order solvers, including MadNLP [28]] and Clarabel
[12], achieving significant speedups on large-scale instances [29} 28} 23| [30} 22].

This paper provides an overview of the current state of the art in GPU implementations of second-
order optimization solvers, with an emphasis on the following aspects: (i) The IPM is considered the
primary mechanism for handling inequality constraints, as active-set methods are generally regarded
as less scalable [20]. (ii) We mainly focus on solving KKT systems, since other components, such
as line search and barrier updates, can be ported to GPUs straightforwardly using map or reduce
operations. (iii) We primarily consider NVIDIA GPUs and the CUDA software stack, as they
currently offer the most mature direct sparse solver implementation. (iv) Due to space constraints,
hybrid KKT strategies [25]], reduced-space methods [24], and other domain-specific approaches [3]]
are not covered.

2 Direct Linear Solvers for Optimization

This section provides an overview of the direct linear algebra methods frequently employed in
second-order methods and discusses the rationale behind the development of pivoting-free IPM.

LDL " Factorization. LDLT factorization, a signed variant of Cholesky decomposition, decom-
poses a matrix A into LDL ", where L is lower triangular and D is diagonal (for sparse systems, a
fill-in reducing reordering P must be employed, resulting in PT AP = LDLT). This method can be
utilized to solve Az = b, where the solution is obtained by first solving the lower triangular system
Ly = b, followed by diagonal scaling with D~ and solving the upper triangular system L ' = .

A notable property of LDL " factorization is that, provided the matrix A is symmetric quasi-definite
(SQD), the LDL" factorization exists for any given permutation of the matrix (so-called strongly
factorizable) [33]]. This does not imply that numerical stability is guaranteed for any reordering (see
[33]]), but in practice, strong factorizability is often sufficient to ensure that these methods can be
effectively utilized within optimization solvers [31]]. Many KKT systems in optimization are SQD,
can become SQD with infinitesimal regularization, or can be converted to SQD systems. If the system
is symmetric positive definite (SPD), which is a sufficient condition for SQD, the LDL " factorization
or Cholesky factorization exists in a fill-in reducing manner, and the factorization process is always
numerically stable. SPD systems arise from unconstrained optimization problems or are obtained as
a result of condensation, which will be discussed in Section 3]

Numerical Pivoting. For general indefinite matrices without SQD structure (e.g., augmented
systems arising from nonconvex NLPs [34]), the LDL " factorization is not guaranteed to exist, and
dynamic numerical pivoting is commonly employed to avoid zero pivots and improve the numerical

stability of the factorization process. Dynamic numerical pivoting procedures examine a limited set
of candidate pivots—typically within a row and column—and select the most suitable pivot according
to a stability criterion [26]. Three widely used dynamic pivoting strategies are Bunch—Kaufman,
rook, and delayed pivoting, which select 1 x 1 or 2 X 2 pivots, although other variants and hybrid
approaches also exist [8]. The variant of LDLT with 2 x 2 pivots is often referred to as LBL T
factorization. If none of these methods succeed, the pivot is perturbed by a small value to allow
numerical division [26]. This procedure introduces numerical error, which must be corrected through
iterative refinements. One of the drawbacks of numerical pivoting is that it requires deviating from
the fill-in reducing reordering P, leading to additional fill-in and disrupting potential parallelism.

GPU Direct Solvers for Optimization As described above, the numerical pivoting procedure is
crucial for ensuring the numerical stability of direct sparse linear solvers. However, implementing
numerical pivoting has been recognized as one of the most challenging components of direct sparse
linear solvers on GPUs, as these strategies are serial in nature [32]]. Moreover, since coarse-grained
tree-level parallelism must be employed to exploit GPU parallelism, numerical pivoting should
be applied in a manner that does not disrupt the parallelism at the elimination tree level, further
complicating the implementation. The current version of cuDSS has partial pivoting capabilities, but
it does not support the LBL " factorization as seen in CPU solvers [21].

Therefore, to fully exploit the benefits of existing GPU direct solvers, it is crucial to ensure that
the KKT system can be solved without numerical pivoting, which motivates the development of
pivoting-free interior-point methods. This can be achieved by converting the KKT systems into
an SQD, or even SPD form, where strong factorizability guarantees the existence of the LDL "
factorization for any fill-in reducing reordering, allowing the factorization to succeed without relying
on pivoting. This can be achieved through regularization or condensation, which we elaborate in
Section 3] Once the pivoting requirement is eliminated, numerical factorization and triangular solves
can be efficiently performed on GPUs [19]. Although algorithms for computing fill-in reducing
reorderings (e.g., minimum degree ordering [4] or nested dissection [[15]) are serial (e.g., cuDSS
performs this operation on the CPU [21]), the reordering needs to be computed only once and can be
reused, allowing the overhead to be amortized.

3 Pivoting-Free Interior-Point Methods

We now explain how the IPM can be adapted to avoid numerical pivoting, thereby enabling the use of
GPU direct solvers relying only on static pivoting. We first provide a brief overview of the IPM and
its KKT system formulation, followed by a discussion about condensed KKT systems.

Interior-Point Methods and KKT Systems. The IPM is a class of optimization algorithms
designed to solve inequality-constrained optimization problems [20]]. The IPM transforms () into a
sequence of log-barrier subproblems and attempts to solve its KKT conditions:

Vfx)—Vg(x)"A=0, SAe—pe=0, g(z)—s=0,)

where s € R™ denotes the slack variable used to reformulate the inequality constraints as equality
constraints, i > 0 is the barrier parameter, A € R™ are the Lagrange multipliers, S = diag(s),
A = diag()\), and e is the vector of ones.

The system (2) is solved using Newton’s method. At each iteration, we obtain the search direction by
solving the following (regularized and symmetrized) KKT system:

V2. L(x,8,\) + 6,1 Vg(z) T dy Vf(x) —Vg(z)TA
S1A —I de| =— Ae — uS—le , 3)
Vg(x) —I —oq1 —d glx) —s

where £(z, s, A) := f(z) — A" (g9(z) — s) and &, 64 are the primal-dual regularization parameters.

Regularization. The regularization parameters are used to ensure (i) the well-posedness of
and/or (ii) the descent property of the Newton step. For convex problems, infinitesimal ¢,,, 64 > 0
ensures the SQD condition for the matrix in (3), thus ensuring strong factorizability. This idea has led
to several robust IPM implementations on CPUs [11]]. In nonconvex cases, primal-dual regularization

provides a mechanism to impose not only the SQD structure but also (for NLPs) to ensure that the
Newton step is a descent direction for a merit function [34]]. IPM solvers typically utilize a procedure
known as inertia correction, where the regularization parameters (d,, d4) are increased until the
number of positive, negative, and zero eigenvalues (collectively referred to as inertia, and available as
a byproduct of the LDL." and LBL " factorizations) equals (n + m,m, 0). Excessive regularization
is undesirable, as it can potentially distort the step direction, leading to slow convergence.

Condensed KKT Systems. While is directly addressed by some solvers (e.g., Ipopt [34]),
the system can be further condensed into a so-called condensed KKT system. In the context of
GPU implementation, condensation offers advantages by either (i) reducing the system size and
increasing its density—thereby providing more opportunities for parallelism—or (ii) enforcing
the SPD structure, which enables a pivoting-free implementation. However, depending on the
sparsity pattern, the condensed system can become significantly denser, leading to higher memory
requirements and computational overhead. Moreover, since the eliminated blocks are often highly
ill-conditioned near the solution, the resulting condensed system may also suffer from ill-conditioning.
Below, we outline several condensation strategies.

o Augmented System: Since the S~ A block in (3] is always invertible due to the nature of the IPM,
we can eliminate it to obtain the so-called augmented KKT system [20]:

V2, L(x,8,\) + 0,1 Vg(x)T d.| [Vf(x)—=Vg(z)T) 4
V() —Sal ~A1S| |~dx| T | g(z) — phte)

This elimination does not incur significant computational overhead, and the number of non-zero
entries in the resulting system does not increase.

s Primal Condensed System: The 641+ A~1S block within (4) is always invertible, and its elimination
gives rise to a primal condensed KKT system:

(V2,L(2,8,A) + 6,I + Vg(z)" (64 + A71S)'Vg(x)) dy = —1p , 5)
where 7, is an appropriate right-hand side derived from (E]) This condensation has one key
advantage for NLPs: the system becomes SPD under the application of primal-dual regularization
(0p, 6a) chosen based on the standard inertia correction procedure [28]], meaning that the system
can be factorized using Cholesky factorization without numerical pivoting or any reordering
in a numerically stable manner. However, since the Jacobian Vg(x) can have dense rows, the
condensed system can become arbitrarily dense, necessitating specialized treatment.

* Dual Condensed System: When the problem is strongly convex or when the regularization parameter
8, is sufficiently large, the V2L (z, s, A) + 6,1 block is invertible, and by eliminating it, we obtain
the dual condensed KKT system:

(5dl +AT'S + Vg(2) (V2 L(x,5,\) + (5p1)71 Vg(x)T) dyx = —ra, (6)

where 4 is an appropriate right-hand side. The formulation in (6)) is often used as the default option
for LP solvers with §,, > 0, and this system is often referred to as the normal equations. Assuming
that the primal Hessian is SPD, this system is also SPD, meaning that it can be stably factorized
using Cholesky factorization without numerical pivoting. However, this system can also become
arbitrarily dense when there is a dense column in Vg(z), which requires special treatment.

Pivoting-Free IPM. We now explain which KKT system formulation among (3) to (6) is suitable
for pivoting-free IPM implementations. The key requirement is that the KKT system matrix must be
at least SQD without aggressive regularization. We detail the conditions below.

* Convex Case: For convex programs, all four formulations (3) to (6) are appropriate, as any of these
systems can become SQD for infinitesimal d,,, d; > 0. However, (5 and @ may achieve better
numerical stability due to their SPD structure. MadIPM, an existing GPU IPM solver, employs
with fixed primal-dual regularization.

* Nonconvex Case: For nonconvex problems, the primal condensed system (3)) is the most suitable,
as it can be made SPD by choosing the primal-dual regularization parameters (d,, d4) based solely
on inertia correction. The augmented systems (3) and (@) are not suitable because they are not
guaranteed to be SQD unless aggressive (beyond what is necessary to ensure the descent condition)
regularization parameters (d,, d4) are used. The dual condensed system @ is also unsuitable, as
(V2,.L(z,s,\) +d,1)~ ! is difficult to compute due to nonlinear constraints. MadNLP, an existing
GPU NLP solver, employs (5) with primal-dual regularization based on inertia correction.

4 Algebraic Modeling Systems and Automatic Differentiation

NLP solvers require external oracles to evaluate f, g, and their first and second-order derivatives.
In most modern optimization software stacks, the derivative evaluation code (either compiled or
interpreted) is generated in a fully automated fashion through the so-called algebraic modeling
systems, which are typically equipped with automatic differentiation (AD) capabilities, such as
AMPL [10], CasADi [3], JuMP [9], Pyomo [13], and Gravity [14]]. As classical instances of
mathematical programming problems are typically sparse, these systems have historically been
developed independently of machine learning frameworks, which tend to focus more on dense
problems.

To enable efficient derivative evaluations and ensure a fully GPU-resident optimization workflow, it is
crucial to develop algebraic modeling systems that provide derivative evaluation code in the form of
GPU kernels. To achieve this, one can concentrate on the observation that many practical instances
of large-scale sparse mathematical programs exhibit highly repetitive structures. For example, f
may be a sum of many terms (e.g., f(z) = >_ cp f(2;p)), and g may be a collection of numerous
constraints generated from a common template (e.g., 9(z) = {g(2;p)},¢ p). If such a structure exists,
the evaluation and differentiation of f and g become embarrassingly parallel, making it feasible to
construct GPU kernels for them. Emerging algebraic modeling systems, such as ExaModels.jl [28] or
PyOptInterface [35], are designed to capture this; for instance, ExaModels.jl requires users to specify
the objective and constraint functions in the form of an iterator, such as

objective(c, 100 * (x[i-1]1"2 - x[i])~2 + (x[i-1] - 1)~2 for i = 2:N)

which allows the user to inform the modeling system of repeated structures in the model. Then, the
reverse-mode AD is applied to the template, and the resulting code is compiled into a GPU kernel.
This approach enables efficient evaluation of the objective and constraints on GPUs, as well as the
computation of their derivatives [28]].

5 Numerical Results

We benchmarked the performance of two GPU implementations (MadIPM for LPs and MadNLP
for NLPs) against reference CPU solvers (Gurobi for LPs and Ipopt for NLPs). We conducted
the benchmark using MIPLIB 2010 (for LPs) [16], PGLIB-OPF (for NLPs) [6]], and COPS (for
NLPs) [7]. The results are summarized in Table E], and more details can be found in Appendix @
These results can be reproduced using the source code available at https://github.com/MadNLP/
neurips2025-mathprog-on-gpu. Disclaimer: The numerical results presented herein aim to
demonstrate the current capabilities of GPU solvers by providing a comparison with comparable im-
plementations on CPUs. This benchmark is not intended for a head-to-head performance comparison
of the solvers. For example, some performance-critical options for CPU solvers, such as presolve
and crossover, have been disabled to allow for a focused comparison of barrier iteration performance.
Additionally, the convergence criteria for each solver differ slightly, and performance comparisons
are based on user-facing tolerance options.

MIPLIB. We have performed the benchmark against a curated subset of instances within the
MIPLIB 2010 library by selecting 174 instances that are sufficiently large and not trivially solved.
The results in Table [T] indicate that the GPU solver can achieve, on average, approximately 4x
speed-up for the 28 largest instances (with more than 22° non-zeros) when the problems are solved
to medium precision. The speed-up is relatively modest for medium-sized instances, and there is
practically no advantage for small instances. This is expected, as the GPU solver is designed to
handle large-scale problems, and small-scale problems cannot fully utilize the available parallel cores.
In such cases, the overhead related to parallelism, such as task scheduling and thread launching,
dominates the computation time rather than providing actual performance gains. For high precision,
however, the speed-up is less pronounced, and the GPU solver solved significantly fewer instances.

PGLIB-OPF. We have benchmarked the performance of the solver for solving AC OPF problems
based on polar power flow formulations [[1]. The results in Table|l|indicate that the GPU solver can
achieve an average speed-up of more than 10x for large instances when the problems are solved
to medium precision. The speed-up is relatively modest for medium-sized instances, and there is

https://github.com/MadNLP/neurips2025-mathprog-on-gpu
https://github.com/MadNLP/neurips2025-mathprog-on-gpu

Small

Medium

Large

Tol Solver nnz < 2'8 218 < nnz < 220 220 < nnz Total
Solved Time Solved Time Solved Time Solved Time

& 104 MadIPM 87 1.3013 56 5.0480 27 19.7925 170 4.5319
— Gurobi 88 1.5439 58 10.4671 23 78.5783 169 9.3939
= 10-8 MadIPM 85 2.8157 48 18.2642 25 33.1676 158 10.2820
= Gurobi 88 1.5708 58 10.6148 24 76.3206 170 9.3826
104 MadNLP 31 0.4166 24 2.6380 11 3.7040 66 1.6979
E Ipopt 31 0.3970 24 5.0697 11 38.5053 66 5.3817
=} 10-8 MadNLP 30 2.5037 24 4.6016 10 12.8040 64 4.6228
Ipopt 31 0.5100 24 5.4292 11 37.7818 66 5.5541
w | 10-* MadNLP 13 0.8665 15 4.8665 16 3.8194 44 3.2314
= Ipopt 13 5.2315 15 15.9701 15 45.8411 43 19.2243
8 10-8 MadNLP 13 0.8575 16 1.5572 16 8.3549 45 3.3797
Ipopt 13 5.9413 15 17.6758 15 40.8639 43 19.2999

Table 1: Solution times for CPU solvers (Gurobi and Ipopt) and GPU solvers (MadIPM and MadNLP)
are represented using SGM10, defined as ([, (t; + 10))'/™ — 10, where ¢; denotes the solve time
for the ¢-th instance (in seconds; unsolved instances are assigned a maximum wall time of 900
seconds) across various datasets: MIPLIB (88 small, 58 medium, and 28 large LPs), PGLIB-OPF (31
small, 24 medium, and 11 large NLPs), and COPS (13 small, 16 medium, and 16 large NLPs). For
Gurobi, the Barrier method is used, with both the Presolve and Crossover options disabled. MadNLP
is configured with cuDSS, while Ipopt is configured with either Ma27 (for PGLIB-OPF) or Ma57
(for COPS). All NLPs are modeled using ExaModels, which supports NLP function evaluation on
both CPU and GPU. The benchmarking was conducted on a workstation equipped with two Intel
Xeon Gold 6130 CPUs, two Quadro GV 100 GPUs, and 128 GB of memory.

practically no advantage for small instances. However, for high precision, the GPU solver does
not reach the same level of robustness as the CPU solver, as the condensed system utilized by the
GPU solvers often encounters worse conditioning; the GPU solver fails on two more instances.
Nevertheless, the overall speed-up remains significant (3x on average for large instances).

COPS Benchmark. We conducted benchmarks using the COPS benchmark library on curated
instances. The COPS benchmark instances are scalable, allowing users to specify the problem size.
For each instance type, we formulated the problem in five different sizes, approximately doubling the
number of variables and constraints each time. The results are similar to those of the PGLIB-OPF
benchmark, but the speed-up is more pronounced in these instances. Again, for large instances, we
can achieve more than a 10x speed-up on average.

6 Conclusions and Future Outlook

We have presented an overview of the current landscape of GPU-accelerated second-order opti-
mization solvers. With two specific existing solvers—MadIPM and MadNLP—and a modeling
environment—ExaModels—we have demonstrated that GPU acceleration can achieve more than an
order of magnitude speed-up for large instances when solved to medium precision. Solving problems
robustly to high precision remains a challenge for both LP and NLP solvers. Some open questions
and implementation challenges are summarized below.

* Numerical Precision of Condensed KKT Systems: Condensed KKT systems are often preferred in
pivoting-free implementations; however, stability can be compromised. Further research is needed
to develop strategies to mitigate stability issues, especially for high-precision solves.

* Batch Solvers: GPU solvers can solve many small- and medium-sized problems in parallel,
which can be facilitated through the implementation of batch solvers. Implementing second-order
algorithms is feasible, as batch solutions (with or without uniform sparsity patterns) have been
supported by CUDSS since version 0.6.

* Hardware Portability: Currently, most existing optimization and linear solvers are limited to
NVIDIA GPUs. However, there is interest in developing hardware-agnostic solvers that can run on
various GPU architectures, including AMD and Intel GPUs. A key requirement for this will be the
development of portable sparse LDL " factorizations.

References

[1] PowerModels. JL: An Open-Source Framework for Exploring Power Flow Formulations | IEEE
Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8442948.

[2] NVIDIA/cuopt. NVIDIA Corporation, August 2025.

[3] Emre Adabag, Miloni Atal, William Gerard, and Brian Plancher. MPCGPU: Real-Time
Nonlinear Model Predictive Control through Preconditioned Conjugate Gradient on the GPU,
March 2024.

[4] Patrick R. Amestoy, Timothy A. Davis, and lain S. Duff. An Approximate Minimum Degree
Ordering Algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886-905,
October 1996.

[5] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl. CasADi: A
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1):1-36, March 2019.

[6] Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D. Christie, Carleton Coffrin, Christo-
pher DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke
Huang, Cedric Josz, Roman Korab, Bernard Lesieutre, Jean Maeght, Terrence W. K. Mak,
Daniel K. Molzahn, Thomas J. Overbye, Patrick Panciatici, Byungkwon Park, Jonathan Snod-
grass, Ahmad Tbaileh, Pascal Van Hentenryck, and Ray Zimmerman. The Power Grid Library
for Benchmarking AC Optimal Power Flow Algorithms, January 2021.

[7] E. D. Dolan and J. J. More. Benchmarking optimization software with COPS. Technical Report
ANL/MCS-TM-246, Argonne National Lab., IL (US), January 2001.

[8] L. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, March 2017.

[9] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A Modeling Language for Mathematical
Optimization. SIAM Review, 59(2):295-320, January 2017.

[10] Robert Fourer, David M. Gay, and Brian W. Kernighan. A Modeling Language for Mathematical
Programming. Management Science, 36(5):519-554, May 1990.

[11] M. P. Friedlander and D. Orban. A primal—dual regularized interior-point method for convex
quadratic programs. Mathematical Programming Computation, 4(1):71-107, March 2012.

[12] Paul J. Goulart and Yuwen Chen. Clarabel: An interior-point solver for conic programs with
quadratic objectives, May 2024.

[13] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo: Modeling and solving
mathematical programs in Python. Mathematical Programming Computation, 3(3):219-260,
September 2011.

[14] Hassan Hijazi, Guanglei Wang, and Carleton Coffrin. Gravity: A Mathematical Modeling
Language for Optimization and Machine Learning. October 2018.

[15] George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices.
1997.

[16] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E.
Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz, Andrea Lodi, Hans
Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and Kati Wolter. MIPLIB
2010. Mathematical Programming Computation, 3(2):103-163, June 2011.

[17] Haihao Lu, Zedong Peng, and Jinwen Yang. cuPDLP+: A Further Enhanced GPU-Based
First-Order Solver for Linear Programming, July 2025.

[18] Haihao Lu, Jinwen Yang, Haodong Hu, Qi Huangfu, Jinsong Liu, Tianhao Liu, Yinyu Ye,
Chuwen Zhang, and Dongdong Ge. cuPDLP-C: A Strengthened Implementation of cuPDLP
for Linear Programming by C language, January 2024.

[19] Maxim Naumov. Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned
Iterative Methods on the GPU.

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, New York, 2nd ed edition, 2006.

[21] NVIDIA. NVIDIA cuDSS (Preview): A high-performance CUDA Library for Direct Sparse
Solvers — NVIDIA cuDSS documentation. https://docs.nvidia.com/cuda/cudss/index.html.

[22] Frangois Pacaud and Sungho Shin. GPU-accelerated dynamic nonlinear optimization with
ExaModels and MadNLP. In 2024 IEEE 63rd Conference on Decision and Control (CDC),
pages 5963-5968, December 2024.

[23] Frangois Pacaud, Sungho Shin, Alexis Montoison, Michel Schanen, and Mihai Anitescu.
Condensed-space methods for nonlinear programming on GPUs, May 2024.

[24] Frangois Pacaud, Sungho Shin, Michel Schanen, Daniel Adrian Maldonado, and Mihai Anitescu.
Accelerating Condensed Interior-Point Methods on SIMD/GPU Architectures. Journal of
Optimization Theory and Applications, February 2023.

[25] Shaked Regev, Nai-Yuan Chiang, Eric Darve, Cosmin G. Petra, Michael A. Saunders, Kasia
Swirydowicz, and Slaven PeleS. HyKKT: A hybrid direct-iterative method for solving KKT
linear systems. Optimization Methods and Software, 38(2):332-355, March 2023.

[26] Olaf Schenk. ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMET-
RIC INDEFINITE SYSTEMS.

[27] Michel Schubiger, Goran Banjac, and John Lygeros. GPU acceleration of ADMM for large-
scale quadratic programming. Journal of Parallel and Distributed Computing, 144:55-67,
October 2020.

[28] Sungho Shin, Mihai Anitescu, and Frangois Pacaud. Accelerating optimal power flow with
GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods.
Electric Power Systems Research, 236:110651, November 2024.

[29] Sungho Shin, Francgois Pacaud, Alexis Montoison, Mark Wolf, and Becca Zand-
stein. NVIDIA cuDSS Library Removes Barriers to Optimizing the US Power
Grid. https://developer.nvidia.com/blog/nvidia-cudss-library-removes-barriers-to-optimizing-
the-us-power-grid/, November 2024.

[30] Sungho Shin, Vishwas Rao, Michel Schanen, D. Adrian Maldonado, and Mihai Anitescu.
Scalable Multi-Period AC Optimal Power Flow Utilizing GPUs with High Memory Capacities,
May 2024.

[31] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An operator splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637-672, December 2020.

[32] Kasia Swirydowicz, Eric Darve, Wesley Jones, Jonathan Maack, Shaked Regev, Michael A.
Saunders, Stephen J. Thomas, and Slaven PeleS. Linear solvers for power grid optimization
problems: A review of GPU-accelerated linear solvers. Parallel Computing, 111:102870, July
2022.

[33] Robert J. Vanderbei. Symmetric Quasidefinite Matrices. SIAM Journal on Optimization,
5(1):100-113, February 1995.

[34] Andreas Wichter and Lorenz T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25-57, March 2006.

[35] Yue Yang, Chenhui Lin, Luo Xu, and Wenchuan Wu. PyOptlnterface: Design and implementa-
tion of an efficient modeling language for mathematical optimization, May 2024.

A More Details on Numerical Results

A.1 Solver Options
A.2 Gurobi

FeasibilityTol = le-4 or le-8
OptimalityTol = le-4 or le-8
TimeLimit = 900.0

Method = 2

Presolve = 0

Crossover = 0

Threads = 16

A.3 Ipopt

tol = 1le-4 or 1le-8
bound_relax_factor = le-4 or 1le-8
max_wall_time = 900.0
linear_solver = "ma27" or "mab7"
mab7_automatic_scaling = "yes"
dual_inf_tol = 10000.0
constr_viol_tol = 10000.0
compl_inf_tol = 10000.0
honor_original_bounds = "no"
print_timing_statistics = "yes"

A4 MadIPM

tol = le-4 or le-8

max_wall_time = 900.0

max_iter = 500

linear_solver = MadNLPGPU.CUDSSSolver

cudss_algorithm = MadNLP.LDL

regularization = MadIPM.FixedRegularization(le-8, -1e-8)
print_level = MadNLP.INFO

rethrow_error = true

A.5 MadNLP

tol = 1le-4 or 1le-8
max_wall_time = 900.0

A.6 Full Numerical Results

problem | log2(nnz) | MadIPM | Gurobi
| | solved| time | solved]| time
n3-3 | 15.15 | 1 | 0.30 | 1 | 0.26
neos-506422 | 15.26 | 1 | 0.14 | 1 | 0.15
ramos3 | 15.26 | 1 | 0.30 | 1| 0.39
iis-bupa-cov | 15.42 | 1| 0.22 | 1 | 0.27
neos-777800 | 15.47 | 1 | 0.22 | 1 | 0.17
d10200 | 15.54 | 1 | 0.24 | 1 | 0.16
hanoib | 15.69 | 1 | 0.35 | 1 | 0.78
ns1778858 | 15.69 | 1 | 0.22 | 1 | 0.28
eil33-2 | 15.70 | 1 | 0.14 | 1 | 0.17
neos-941262 | 15.76 | 1 | 0.40 | 1 | 0.42
lectsched-4-obj | 15.77 | 1 | 0.19 | 1 | 0.24
neos-984165 | 15.79 | 1 | 0.41 1 1 | 0.44
neos-935769 | 15.80 | 1 | 0.32 | 1 | 0.37
neos-948126 | 15.85 | 1 | 0.39 | 1 | 0.44
reblock166 | 15.87 | 1 | 0.51 | 1 | 2.31
1rsal20 | 15.91 | 1 | 0.22 | 1 | 0.79
neos-935627 | 15.95 | 1 | 0.40 | 1 | 0.44
rococoC12-111000 | 15.96 | 1 | 0.83 1 1 | 1.50
neos-1171737 | 15.99 | 1| 0.29 | 1 | 0.21
neos-937511 | 16.08 | 1 | 0.43 | 1 | 0.44
sp98ir | 16.14 | 1 | 0.25 | 1 | 0.22
atm20-100 | 16.18 | 0 | 0.13 | 1 | 0.43
methanosarcina | 16.18 | 1 | 0.21 | 1 | 0.95
neos-937815 | 16.19 | 1 | 0.54 | 1 | 0.53
neos-826812 | 16.22 | 1 | 0.57 | 1 | 0.38
satellites1-25 | 16.26 | 1 | 0.86 | 1 | 1.14
wachplan | 16.27 | 1 | 0.28 1 1 | 0.27
iis-pima-cov | 16.30 | 1 | 0.35 | 1 | 0.82
dano3mip | 16.34 | 1 | 0.85 | 1 | 4.34
biellal | 16.35 | 1 | 0.75 | 1 | 0.46
30n20b8 | 16.39 | 1 | 0.37 | 1 | 0.44
air04 | 16.47 | 1 | 0.41 | 1 | 0.47
neos-826694 | 16.52 | 1 | 0.50 | 1 | 0.35
queens-30 | 16.55 | 1 | 0.14 | 1 | 0.22
neos-1605075 | 16.64 | 1 | 0.77 | 1 | 1.15
neos-1605061 | 16.66 | 1 | 0.99 | 1 | 1.27
ash608gpia-3col | 16.68 | 1 | 0.64 | 1 | 1.31
blp-ic97 | 16.74 | 1 | 0.32 | 1 | 0.28
sts405 | 16.75 | 1 | 0.36 | 1 | 0.39
sct32 | 16.77 | 1 | 0.74 | 1 | 0.86
opm2-z7-s2 | 16.82 | 1 | 2.11 1 1 | 5.64
rmatr200-p20 | 16.85 | 1 | 0.50 | 1| 1.86
neos-693347 | 16.86 | 1 | 0.47 | 1 | 0.64
lectsched-2 | 16.87 | 1 | 0.37 | 1 | 0.55
neos-1109824 | 16.89 | 1 | 0.74 | 1 | 12.48
sctl | 16.89 | 1 | 1.70 | 1 | 1.68
netl12 | 16.90 | 1 | 1.00 | 1 | 3.85
momentuml | 17.04 | 1 | 0.99 | 1 | 14.44
shipsched | 17.06 | 1 | 0.77 | 1 | 0.87
dclc | 17.07 | 1 | 1.16 | 1 | 1.12
neos-916792 | 17.07 | 1 | 0.21 | 1 | 0.71
leol | 17.08 | 1 | 0.51 | 1 | 0.90
rmatr200-p10 | i7.10 | 1 | 0.55 | 1| 2.35

neos-738098
rmatr200-p5
neos-952987
ex1010-pi
mzzvil
neos-934278
neos808444
d20200
lectsched-3
scth
germanrr
satellites2-60-fs
babb
lectsched-1
lectsched-1-obj
neos-824661
t1722
core2536-691
dolomil
ns930473
reblock420
sing?2
ns1456591
blp-ar98
stockholm
leo2

babil
rminelQ
neos-933966
uc-casell
roclI-4-11
neos-933638
neos-885086
appl-2
neos6
core4872-1529
ns1685374
neosi3
sp97ar
ns2124243
ns1905797
ns1952667
sp98ic
tanglegraml
momentum?2
atlanta-ip
circ10-3
sts729
mapl4

map20

map06

mapl10
uc-case3
mapl8
satellites2-60
neos-520729
neos-957389
nsr8k
neos-885524

17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.

14
20
22
23
30
43
44
44
48
50
51
59
63
64
64
65
65
68
68
68
68
70
71
73
81
82
87
90
92
92
96
98
01
01
04
05
o7
09
29
30
32
36
37
39
43
44
44
44
45
45
45
45
45
45
46
47
51
73
75

P ORRPRPRPRRRPEPRPRPEPPBPRRERPPORRPRERBPRRERRPRPERBPRERBPRRPREBPPBPRERPBPRERRBRPRERBRRERBREREBRBRRERBRRERBREBRERRERRBERRRRBR B B B

11

P OO PPPRLDPPDAEPNOPPLPOOORPRPOOFRPRNOOORPRORPREPNOOPOOONORLR P OFRPROOORLRORLROOORr,rEF,OOOO

.57
.55
.54
.99
.15
.13
.84
.41
.59
.34
.44
.61
.88
.59
.61
.16
.66
.03
.28
.99
.31
.95
77
.53
.06
.68
.84
.94
.83
.69
.76
.83
.67
.92
.59
.16
.38
.55
.74
.34
.35
.21
.59
.83
.14
.87
.97
.48
.22
.36
.19
.14
.69
.58
.30
.25
77
.51
.37

PR PR RRRPRRRERRPRRERRPRRRERRPRRERBRRERRPRRPAERBPRRERBPRREREBPPBPRERBPRERRBPRERBRRERBRERREBRBRRERBRRERBRERRERBRERBRERERRERRR R B

N =
P P, OONPOPRPOFRLRONFPOFRPROOOORFRPROFREFEFNOOFRPLROONONOOOR,NEFEOWO

¢

= =
Orr P PNN~L OO

=
= N

= Ol R, N O W

.68
.45
.81
.08
.14
.16
.82
.43
.86
.19
.91
.37
.81
.96
.13
.70
.89
.20
.11
.14
.20
.95
.35
.49
.09
.45
.23
.49
.19
.26
.83
.42
.61
.54
.64
.09
.74
.47
.63
.16
.37
.13
.59
.04
.72
.60
.49
.16
.68
.01
.88
.30
.44
.98
.45
.15
.08
.43
.19

satellites3-40-fs | 18.80 | 1 | 4.34 | 1 | 10.44
rocII-7-11 | 18.83 | 1 | 1.36 | 1 | 1.39
vpphard | 18.85 | 1 | 2.07 1 1 | 6.26
t1717 | 18.85 | 1 | 1.87 | 1 | 2.22

ex9 | 18.93 | 1 | 1.75 | 1 | 22.39

van | 18.99 | 1 | 1.80 | 1 | 5.37

dcil | 18.99 | 1 | 1.63 | 1 | 2.63
opm2-z10-s2 | 19.05 | 1 | 6.91 | 1 | 387.96
triptiml | 19.08 | 1 | 2.80 | 1 | 7.54
triptim2 | 19.09 | 1 | 3.41 | 1 | 7.50
neos-506428 | 19.09 | 1 | 1.81 | 1 | 4.44
neos-932816 | 19.09 | 1 | 2.21 | 1 | 2.81
triptim3 | 19.10 | 1 | 3.24 1 1 | 6.72
ns1116954 | 19.11 | 1 | 20.40 | 1 | 468.65
ns1904248 | 19.18 | 1 | 1.90 | 1 | 9.19
railso7 | 19.18 | 1 | 2.92 | 1 | 2.45
ns1111636 | 19.19 | 1 | 1.92 | 1 | 1.82
rocII-9-11 | 19.20 | 1 | 1.87 | 1 | 1.85
ni15-3 | 19.23 | 1 | 2.83 | 1 | 2.90

railOl | 19.26 | 1 | 7.10 | 1 | 9.42
gmut-75-50 | 19.30 | 1 | 2.28 | 1 | 2.52
pb-simp-nonunif | 19.41 | 1 | 1.93 1 1 | 4.16
opm2-z11-s8 | 19.52 | 1 | 10.95 | 1 | 395.59
neos-941313 | 19.67 | 1 | 3.87 | 1 | 2.76
satellites3-40 | 19.73 | 1 | 17.3¢ | 1 | 18.92
neos-859770 | 19.76 | 1 | 0.83 | 1 | 1.03
neos-1140050 | 19.76 | 1 | 1.15 | 1 | 62.57
netdiversion | 19.89 | 1 | 5.16 | 1 | 9.36
rminels | 19.92 | 1 | 17.69 | 1 | 177.85
momentum3 | 19.98 | 1 | 3.14 | 1 | 136.43
buildingenergy | 19.99 | 1 | 6.5 | 1 | 21.72
rvb-sub | 20.00 | 1 | 1.81 | 1 | 3.16
opm2-z12-s14 | 20.02 | 1 | 13.010 | 0 | 905.66
opm2-z12-s7 | 20.02 | 1 | 16.17 | 0 | 903.53
vpphard2 | 20.03 | 1 | 5.81 | 1 | 23.73
stp3d | 20.05 | 1 | 13.54 | 1 | 22.59
eilA101-2 | 20.06 | 1 | 2.27 | 1 | 3.56
npmv07 | 20.07 | 0 | 47.94 | 1 | 12.03
ns2118727 | 20.10 | 1 | 7.03 | 1 | 31.67
sing245 | 20.10 | 1 | 8.00 | 1 | 100.44
ns2137859 | 20.11 | 1 | 7.51 | 1 | 5.41
ex10 | 20.17 | 1 | 5.01 | 1 | 136.32
ns1854840 | 20.27 | 1 | 6.48 | 1 | 13.41
railOo2 | 20.31 | 1 | 18.35 | 1 | 32.93
neos-631710 | 20.35 | 1 | 4.41 | 1 | 6.49
datt256 | 20.53 | 1 | 8.10 | 0 | 900.34
ns1758913 | 20.89 | 1 | 11.03 | 1 | 886.11
neos-1429212 | 20.93 | 1 | 4.19 | 1 | 11.67
wng-n100-mw99-14 | 20.94 1 1 | 25,02 | 1 | 809.00
ns1853823 | 20.94 | 1 | 13.41 | 1 | 82.23
co-100 | 21.00 | 1 | 3.00 | 1 | 4.28
railo3 | 21.63 | 1 | 48.47 | 1 | 98.37
n3seq24 | 21.73 | 1 | 7.47 | 1| 15.93
neos-476283 | 21.92 | 1 | 46.87 | 1 | 29.43
bab3 | 21.97 | 1 | 22.44 | 1 | 24.84

rmine21 | 22.33 | 1 | 233.02 | 0 | 922.05
ivu06-big | 24.72 | 1 | 337.38 | 1 | 150.96
mspp16 | 24.74 | 1 | 57.65| 1 | 544.68

12

problem | log2(nnz) | MadIPM | Gurobi
| | solved| time | solved]| time
n3-3 | 15.15 | 1 | 0.31 | 1 | 0.23
neos-506422 | 15.26 | 1 | 0.20 | 1 | 0.10
ramos3 | 15.26 | 1 | 0.32 1 1 | 0.42
iis-bupa-cov | 15.42 | 1| 0.22 | 1 | 0.28
neos-777800 | 15.47 | 1 | 0.22 | 1 | 0.15
d10200 | 15.54 | 1 | 0.28 | 1 | 0.17
ns1778858 | 15.69 | 1 | 3.59 | 1 | 0.31
hanoib | 15.69 | 1 | 0.33 | 1 | 0.76
eil33-2 | 15.70 | 1 | 0.15 | 1 | 0.14
neos-941262 | 15.76 | 1 | 0.44 | 1 | 0.41
lectsched-4-obj | 15.77 | 1| 0.21 | 1 | 0.23
neos-984165 | 15.79 | 1 | 0.45 | 1 | 0.43
neos-935769 | 15.80 | 1 | 0.37 | 1 | 0.37
neos-948126 | 15.85 | 1 | 0.38 | 1 | 0.42
reblock166 | 15.87 | 1 | 0.94 | 1 | 2.40
1rsal20 | 15.91 | 1 | 0.26 | 1 | 0.36
neos-935627 | 15.95 | 1 | 0.44 | 1 | 0.45
rococoC12-111000 | 15.96 | 1 | 0.98 | 1 | 1.56
neos-1171737 | 15.99 | 1 | 0.30 | 1 | 0.21
neos-937511 | 16.08 | 1 | 0.42 | 1 | 0.41
sp98ir | 16.14 | 1 | 0.27 | 1 | 0.20
methanosarcina | 16.18 | 1 | 0.33 | 1 | 5.63
atm20-100 | 16.18 | 0 | 0.14 | 1 | 0.41
neos-937815 | 16.19 | 1 | 0.52 | 1 | 0.53
neos-826812 | 16.22 | 1 | 0.61 | 1 | 0.39
satellites1-25 | 16.26 | 1 | 7.92 | 1 | 1.06
wachplan | 16.27 | 1 | 0.3t 1 1 | 0.26
iis-pima-cov | 16.30 | 1 | 0.37 | 1 | 0.76
dano3mip | 16.34 | 1| 1.06 | 1 | 1.48
biellal | 16.35 | 1 | 0.79 | 1 | 0.46
30n20b8 | 16.39 | 1 | 0.41 | 1 | 0.45
airo4 | 16.47 | 1 | 0.50 | 1 | 0.40
neos-826694 | 16.52 | 1 | 0.51 | 1 | 0.34
queens-30 | 16.55 | 1 | 0.14 | 1 | 0.23
neos-1605075 | 16.64 | 1 | 1.00 | 1 | 1.22
neos-1605061 | 16.66 | 1 | 0.96 | 1 | 1.28
ash608gpia-3col | 16.68 | 1 | 0.72 | 1 | 2.15
blp-ic97 | 16.74 | 1 | 0.30 | 1 | 0.29
sts405 | 16.75 | 1 | 0.38 | 1 | 0.37
sct32 | 16.77 | 0 | 5.31 | 1 | 0.86
opm2-z7-s2 | 16.82 | 1 | 2.20 | 1 | 5.70
rmatr200-p20 | 16.85 | 1 | 0.93 1 1 | 1.97
neos-693347 | 16.86 | 1 | 0.49 | 1 | 0.59
lectsched-2 | 16.87 | 1 | 0.41 1 1 | 0.57
sctl | 16.89 | 0 | 10.24 | 1 | 1.65
neos-1109824 | 16.89 | 1 | 0.73 | 1 | 12.76
netl12 | 16.90 | 1 | 1.01 | 1 | 3.76
momentuml | 17.04 | 1 | 1.44 | 1 | 14.47
shipsched | 17.06 | 1 | 0.60 | 1 | 0.88
neos-916792 | 17.07 | 1 | 0.22 | 1 | 0.27
dclc | 17.07 | 1 | 4.77 | 1 | 1.13
leol | 17.08 | 1 | 0.37 | 1 | 0.26
rmatr200-p10 | i7.10 | 1 | 1.08 1 1 | 2.38

neos-738098
rmatr200-p5
neos-952987
ex1010-pi
mzzvil
neos-934278
neos808444
d20200
lectsched-3
scth
germanrr
satellites2-60-fs
babb
lectsched-1
lectsched-1-obj
t1722
neos-824661
core2536-691
ns930473
reblock420
doloml
sing?2
ns1456591
blp-ar98
stockholm
leo2

bab1l
rminelQ
uc-casell
neos-933966
roclI-4-11
neos-933638
neos-885086
appl-2
neos6
core4872-1529
ns1685374
neosl3
sp97ar
ns2124243
ns1905797
ns1952667
sp98ic
tanglegraml
momentum?2
sts729
circl10-3
atlanta-ip
map20
mapl4

mapl8
uc-case3
map10

map06
satellites2-60
neos-520729
neos-957389
nsr8k
neos-885524

17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.

14
20
22
23
30
43
44
44
48
50
51
59
63
64
64
65
65
68
68
68
68
70
71
73
81
82
87
90
92
92
96
98
01
01
04
05
o7
09
29
30
32
36
37
39
43
44
44
44
45
45
45
45
45
45
46
47
51
73
75

P ORRPPRPOOROOOORRPRREPRPRRERBRRERRPBPRPERBPRRERRBPRREBPPBPRERBRERREBRPRERBPRRERBREREBRBPRRERBRRERBREBPRERBRERBRRERERRERRRB R B

14

NP OOOR,RRFRPOOFRNOFRROFRORFPLPWORLRWOOREPEPNRPPLPPOOORLRPOPODOORLRERLEPL,LORLO

= N e
00 00 O O©0WWWHE

= 01 O =

.69
.13
.67
.21
.41
.23
.82
.47
.53
.20
.48
.30
.10
.55
.64
.78
.26
.34
.08
.17
.33
.24
.94
.60
.82
.05
.90
.33
.89
.96
.90
.83
.71
.19
.59
.95
.44
.67
.93
.49
.44
.52
.63
.91
.50
.53
.12
.35
.16
.57
.42
.84
.66
.64
.63
.44
77
.41
.31

PR PR RRRRPRRPRRERRRERRPRRRERRPBPRRERBRRERRPRPAERBPRERBPRREREBPBPRERBRERPBPBRERBRRERBRERREBRBRRERBRERBRERRERBRERBRRERRERRRBR R B B

==

[ErY

=
P OFRLRNOOFRPFPOWOONONPP,PANNODODODORFRPROOWPOHPROORLROFRPLPNIOFRPLPROOODORLRFPOFPRNOOFRPROONONOOORr,r P, P, OWOo

.72
.07
.85
.14
.89
.11
.76
.46
.88
.15
.93
.60
.81
.94
.24
.89
.75
.27
.22
.07
.13
.96
.39
.49
.31
.94
.21
.39
.28
.21
.86
.42
.61
.37
.61
.87
.81
.52
.64
.21
.25
.13
.68
.99
.80
.19
.33
.24
.95
.04
.71
.54
.79
.85
.61
.21
.08
.31
.27

satellites3-40-fs | 18.80 | 0 | 39.26 | 1 | 11.04
rocII-7-11 | 18.83 | 1 | 1.37 | 1 | 1.41
vpphard | 18.85 | 1 | 2.23 | 1 | 6.22
t1717 | 18.85 | 1 | 2.01 | 1 | 2.49

ex9 | 18.93 | 1 | 1.84 | 1 | 19.90

van | 18.99 | 1 | 2.01 | 1 | 5.49

dcil | 18.99 | 1 | 2.63 | 1 | 2.61
opm2-z10-s2 | 19.05 | 1 | 33.31 | 1 | 390.08
triptiml | 19.08 | 0 | 29.71 | 1 | 7.69
neos-506428 | 19.09 | 1 | 1.84 | 1 | 4.35
neos-932816 | 19.09 | 1 | 2.50 | 1 | 2.75
triptim2 | 19.09 | 1 | 4.32 | 1 | 7.49
triptim3 | 19.10 | 1 | 4.14 | 1 | 6.70
ns1116954 | 19.11 | 1 | 21.46 | 1 | 472.68
rail507 | 19.18 | 1 | 2.97 | 1 | 2.49
ns1904248 | 19.18 | 1 | 2.09 | 1 | 9.54
ns1111636 | 19.19 | 1 | 2.10 | 1 | 1.83
rocII-9-11 | 19.20 | 1 | 1.94 | 1 | 1.99
ni15-3 | 19.23 | 1 | 2.71 | 1 | 2.94

railOl | 19.26 | 1 | 8.13 | 1 | 9.57
gmut-75-50 | 19.30 | 1 | 2.58 | 1 | 2.45
pb-simp-nonunif | 19.41 | 1 | 191 | 1 | 4.06
opm2-z11-s8 | 19.52 | 1 | 45.95 | 1 | 393.77
neos-941313 | 19.67 | 1 | 4.94 | 1 | 2.60
satellites3-40 | 19.73 | 0 | 221.62 | 1 | 20.07
neos-1140050 | 19.76 | 1 | 9.59 | 1 | 150.90
neos-859770 | 19.76 | 1 | 0.88 | 1 | 1.03
netdiversion | 19.89 | 1 | 5.33 | 1 | 8.88
rminels | 19.92 | 1 | 19.97 | 1 | 179.57
momentum3 | 19.98 | 1 | 4.30 | 1 | 89.99
buildingenergy | 19.99 | 1 | 9.61 | 1 | 17.10
rvb-sub | 20.00 | 1 | 1.87 | 1 | 3.23
opm2-z12-s14 | 20.02 | 1 | 90.17 | 0 | 904.86
opm2-z12-s7 | 20.02 | 0 | 168.88 | 0 | 903.73
vpphard2 | 20.03 | 1 | 5.10 | 1 | 24.21
stp3d | 20.05 | 1 | 14.57 | 1 | 25.07
eilA101-2 | 20.06 | 1 | 2.59 | 1 | 3.49
npmv07 | 20.07 | 0 | 48.03 | 1 | 12.66
sing245 | 20.10 | 1 | 8.81 | 1 | 106.63
ns2118727 | 20.10 | 1 | 11.31 | 1 | 32.39
ns2137859 | 20.11 | 1 | 7.75 | 1 | 5.27
ex10 | 20.17 | 1 | 4.31 | 1 | 59.36
ns1854840 | 20.27 | 1 | 6.67 | 1 | 13.37
railOo2 | 20.31 | 1 | 19.56 | 1 | 33.68
neos-631710 | 20.35 | 1 | 4.26 | 1 | 7.58
datt256 | 20.53 | 1 | 8.29 | 1 | 709.67
ns1758913 | 20.89 | 1 | 12.05 | 1 | 872.01
neos-1429212 | 20.93 | 1 | 4.08 | 1 | 9.32
wnq-n100-mw99-14 | 20.94 | 1 | 25.63 | 1 | 775.53
ns1853823 | 20.94 | 1 | 18.23 | 1 | 85.47
co-100 | 21.00 | 1 | 3.55 | 1 | 4.23
railo3 | 21.63 | 1 | 51.85 | 1 | 102.11
n3seq24 | 21.73 | 1 | 7.41 1 1 | 16.68
neos-476283 | 21.92 | 1 | 93.77 | 1 | 32.56
bab3 | 21.97 | 1 | 23.74 | 1 | 24.50

rmine21 | 22.33 | 1 | 265.36 | 0 | 919.34
ivu06-big | 24.72 | 1 | 353.88 | 1 | 148.94
msppl6 | 24.74 | 1 | 59.55 | 1 | 559.65

15

problem | log2(nnz) | MadNLP | Ipopt
| | solvedl| time | solved| time
case3_lmbd 7.93 12 01
case5_pjm 8.91 18 01
caseld_ieee 10.60 09 01
case24_ieee_rts 11.55 15 02
case30_as 11.63 10 02
case30_ieee 11.63 11 03
case39_epri 11.81 25 03
caseb7_ieee 12.59 14 02
case60_c 12.74 20 04
case73_ieee_rts 13.21 16 04
casell8_ieee 13.81 16 05
case89_pegase 13.96 22 06
case200_activ 14.22 12 03
casel79_goc 14.31 23 10
casel62_ieee_dtc 14.41 36 08
casel97_snem 14 .43 13 04
case300_ieee 14.96 43 11
case240_pserc 15.08 52 63
caseb88_sdet 15.70 28 15
caseb500_goc 15.78 34 21
case793_goc 16.12 31 23
casel354_pegase 17.23 41 63
casel888_rte 17.58 92 41
casel951_rte 17.62 o7 40
casel803_snem 17.71 21
case2383wp_k 17.78 57

-
WOORPFPROOFRNOOOONROOOODOOOOOORNOOOOROOO0OO0ODO0OO0OO0ODO0OO0ODOOO0OOOOOO
NS
[e0]
N OO WRWIAINNEFEFNNMNNR,RPR,PR,POOROREPRPPE,PPL,PO00000000000000000000O0O0
N
(0]

| |
[|
| |
[|
| |
[|
[|
[|
| |
| |
[|
| |
[|
| |
| |
| |
[|
| |
| |
[|
| |
[|
| |
[|
| |
[|
case2312_goc | 17.83 |
| |
| |
| |
| |
| |
[|
| |
[|
[|
[|
| |
[|
| |
| |
| |
| |
[|
| |
[|
[|
[|
| |
[|
| |
| |
| |

PR PR RRRPRRPRRERRRERPRRPRAERPBPRRERBRRPREPPBPRERBPRREBPRPRERBRERBRERRERRERBRERRERRERREBRRBRRBRRRR B B B 2
PR PR RRRPRRPRRERRRERPBPRRPRAERPBPRRERABRRPREPPBPRERBPRREBPRPERBRERBRERRERBRRERBRERRERRERREBRRBRRBRRRR B B B 9

02

case2737sop_k 17.95 46 82
case2736sp_k 17.95 50 12
case2746wp_k 17.96 44 99
case2746wop_k 17.97 40 86
case2000_goc 18.08 44 24
case3012wp_k 18.08 65 83
case3120sp_k 18.13 59 67
case2848_rte 18.16 49 45
case2868_rte 18.17 09 81
case2853_sdet 18.21 60 11
case3022_goc 18.28 53 67
case3375wp_k 18.30 63 03
case2869_pegase 18.43 70 04
case2742_goc 18.45 01 59
case4661_sdet 18.83 01 76
case3970_goc 18.96 70 70
case4917_goc 18.99 69 42
case4020_goc 19.03 08 51
case4601_goc 19.08 01 92
case4837_goc 19.18 90 01
case4619_goc 19.25 91 89
case6468_rte 19.40 65 15.39
case6495_rte 19.41 32.78 15.96
case6470_rte 19.41 18.65 71
case6515_rte 19.41 5.59 11.69
caseb658_epigrids 19.41 0.94 5.22

case7336_epigrids | 19.75 | 1 | 1.06 | 1 | 6.63
casel10000_goc | 19.96 | 1| 1.06 | 1 | 11.87
case8387_pegase | 20.09 | 1 | 1.69 | 1 | 11.61
case9591_goc | 20.22 | 1 | 1.82 1 1 | 20.10
case9241_pegase | 20.23 | 1 | 1.64 | 1 | 12.14
casel0192_epigrids | 20.31 | 1 | 1.60 | 1 | 15.12
casel0480_goc | 20.44 | 1 | 2.21 | 1 | 21.72
casel3659_pegase | 20.59 | 1 | 2.37 | 1| 20.39
case20758_epigrids | 21.29 | 1 | 3.18 1 1 | 27.56
casel9402_goc | 21.34 | 1 | 4.02 1 1 | 60.80
case30000_goc | 21.39 | 1 | 5.64 | 1 | 203.64
case24464_goc | 21.47 | 1| 5.09 | 1 | 40.54
case78484_epigrids | 23.20 | 1 | 16.23 | 1 | 339.30

17

problem | log2(nnz) | MadNLP | Ipopt
| | solvedl| time | solved| time
case3_lmbd 7.93 25 01
case5_pjm 8.91 54 02
caseld_ieee 10.60 13 02
case24_ieee_rts 11.55 38 02
case30_ieee 11.63 17 02
case30_as 11.63 12 01
case39_epri 11.81 43 02
caseb7_ieee 12.59 22 02
case60_c 12.74 30 03
case73_ieee_rts 13.21 39 04
casell8_ieee 13.81 30 05
case89_pegase 13.96 24 07
case200_activ 14.22 30 05
casel79_goc 14.31 33 13
casel62_ieee_dtc 14.41 36 08
casel97_snem 14 .43 48 o7
case300_ieee 14.96 73 12
case240_pserc 15.08 00 65
caseb88_sdet 15.70 39 19
caseb500_goc 15.78 60 23
case793_goc 16.12 81 28
casel354_pegase 17.23 83 76
casel888_rte 17.58 13.39 43
casel951_rte 17.62 1 71
casel803_snem 17.71 14
case2383wp_k 17.78 73 46

PP NP PRPRPNNRPRORPRPOONOO0O00000O0O0ORIUINIWOOOONOOODODO0OO0OOO0OO0OO0OO0OO0OO0OOO OO
IS
Ye]
OO WORHUONPROAPDRONNNRPNNRRRRERRERRREERRL,WDOOOO00000000000O0O0O0O0OO0OOOO0
S
o

| |
[|
| |
[|
| |
[|
[|
[|
| |
| |
[|
| |
[|
| |
| |
| |
[|
| |
| |
[|
| |
[|
| |
[|
| |
[|
case2312_goc | 17.83 |
[|
| |
| |
| |
| |
[|
| |
[|
[|
[|
| |
[|
| |
| |
| |
| |
[|
| |
[|
[|
[|
| |
[|
| |
| |
[|

PR PR RRRPRRRERRRERPBPRRAERBPRRERRARRPRPEPPBPRERBPRRPEBPRPREPBRERPBPORRPRERBPRERERRERBRRERREBRRERRERRRRR R B 9
PR PR RRRPRRPRRERRRERPBPRRPRAEPBPRERRABRRPRREPPBPRERBPRREBPRPRAERBRERBPBRERRERRERBRERRERRERREPRRRRRBRRRRB B B B2

22

case2736sp_k 17.95 57 17
case2737sop_k 17.95 52 04
case2746wp_k 17.96 60 19
case2746wop_k 17.97 67 05
case3012wp_k 18.08 91 97
case2000_goc 18.08 81 35
case3120sp_k 18.13 85 92
case2848_rte 18.16 06 76
case2868_rte 18.17 29.18 99
case2853_sdet 18.21 91 82
case3022_goc 18.28 15 03
case3375wp_k 18.30 41 37
case2869_pegase 18.43 94 50
case2742_goc 18.45 43 01
case4661_sdet 18.83 13 16
case3970_goc 18.96 47 18
case4917_goc 18.99 48 24
case4020_goc 19.03 88 04
case4601_goc 19.08 13 23
case4837_goc 19.18 46 23
case4619_goc 19.25 50 15
case6468_rte 19.40 11.27 13.55
case6470_rte 19.41 20.15 39
caseb658_epigrids 19.41 1.65 90
case6495_rte 19.41 50.00 16.25
case6515_rte 19.41 13.51 12.47

case7336_epigrids | 19.75 | 1 | 1.89 | 1 | 7.64
casel10000_goc | 19.96 | 1| 2.39 | 1| 13.54
case8387_pegase | 20.09 | 1 | 3.28 | 1 | 13.16
case9591_goc | 20.22 | 1 | 3.21 1 1 | 22.01
case9241_pegase | 2023 o | 114.25 | 1 | 13.93
casel0192_epigrids | 20.31 | 1 | 2.84 | 1 | 17.14
casel0480_goc | 20.44 | 1 | 3.24 | 1 | 23.52
casel3659_pegase | 20.59 | 1 | 3.41 1 1 | 17.56
case20758_epigrids | 21.29 | 1 | 7.98 | 1 | 31.55
casel9402_goc | 21.34 | 1 | 5.27 | 1 | 62.56
case30000_goc | 21.39 | 1 | 9.59 | 1 | 98.95
case24464_goc | 21.47 | 1| 4.96 | 1 | 43.97
case78484_epigrids | 23.20 | 1 | 19.62 | 1 | 365.90

19

problem | log2(nnz) | MadNLP | Ipopt
| | solved| time | solved| time
camshape-1600 | 14.10 | 1 | 0.19 | 1 | 0.66
camshape-3200 | i5.10 | 1 | 0.23 | 1 | 3.56
robot-400 | 15.24 | 1 | 0.37 | 1 | 8.34
camshape-6400 | 16.10 | 1 | 0.37 | 1 | 16.63
marine-400 | 16.10 | 1 | 0.26 | 1 | 0.26
robot-800 | 16.24 | 1 | 3.91 | 1 | 9.54
elec-100 | 16.67 | 1 | 0.90 | 1 | 1.49
steering-3200 | i7.10 | 1 | 0.29 | 1 | 0.45
camshape-12800 | i7.10 | 1 | 0.27 | 1 | 66.00
marine-800 | 17.10 | 1 | 0.29 | 1 | 0.61
gaso0il-800 | 17.22 | 1 | 0.23 | 1 | 0.46
robot-1600 | 17.24 | 1 | 4.61 | 1 | 3.59
rocket-3200 | 17.93 | 1 | 0.38 1 1 | 2.19
pinene-800 | 18.01 | 1 | 0.48 | 1 | 0.97
marine-1600 | 18.10 | 1 | 0.46 | 1 | 2.88
steering-6400 | i8.10 | 1 | 0.62 | 1 | 1.06
camshape-25600 | 18.10 | 1 | 0.30 | 1 | 301.15
gasoil-1600 | 18.22 | 1| 0.47 | 1 | 1.22
robot-3200 | 18.24 | 0 | 19.21 | 1 | 103.29
bearing-200,200 | 18.63 | 1 | 0.34 | 1 | 0.78
elec-200 | 18.68 | 1 | 0.74 | 1 | 4.52
rocket-6400 | 18.93 | 1 | 0.91 | 1 | 11.88
pinene-1600 | 19.01 | 1 | 0.80 | 1 | 2.52
marine-3200 | 19.10 | 1 | 1.05 | 1 | 12.61
steering-12800 | i9.10 | 1| 0.97 | 1 | 3.66
gaso0il-3200 | 19.22 | 1 | 0.99 | 1 | 6.14
robot-6400 | 19.24 | 1 | 11.48 | 0 | 177.21
bearing-300,300 | 19.79 | 1 | 1.31 | 1 | 1.95
rocket-12800 | 19.93 | 1 | 1.76 | 1 | 19.82
pinene-3200 | 20.01 | 1 | 217 1 1 | 4.87
marine-6400 | 20.10 | 1 | 2.07 | 1 | 59.12
steering-25600 | 20.10 | 1 1.78 | 1 7.89
gasoil-6400 | 20.21 | 1 | 1.63 | 1 | 18.30
bearing-400,400 | 20.62 | 1 | 0.99 | 1 | 3.73
elec-400 | 20.68 | 1 | 1.90 | 1 | 28.20
rocket-25600 | 20.93 | 1 | 3.64 | 1 | 113.01
pinene-6400 | 21,001 1 | 2.95 | 1 | 15.86
steering-51200 | 21.10 | 1| 3.652 | 1 | 20.09
gaso0il-12800 | 21.21 | 1 | 3.33 | 1 | 24.19
bearing-600,600 | 21.79 | 1 | 2.30 | 1 | 9.47
rocket-51200 | 21.93 1 1 | 6.19 1 1 | 856.66
pinene-12800 | 22.01 | 1 | 5,79 | 1 | 71.92
bearing-800,800 | 22.61 | 1 | 4.17 | 1 | 19.09
elec-800 | 22.68 | 1 | 9.27 | 1 | 263.42
elec-1600 | 24.68 | 1 | 14.56 | 0 | 909.28

20

problem | log2(nnz) | MadNLP | Ipopt
| | solved| time | solved| time
camshape-1600 | 14.10 | 1 | 0.36 | 1 | 1.13
camshape-3200 | i5.10 | 1 | 0.45 | 1 | 3.89
robot-400 | 15.24 | 1 | 1.05 | 1 | 1.00
marine-400 | 16.10 | 1 | 0.30 I 1 | 0.28
camshape-6400 | 16.10 | 1 | 107 | 1 | 17.16
robot-800 | 16.24 | 1 | 0.74 | 1 | 2.41
elec-100 | 16.67 | 1 | 0.53 | 1 | 1.50
steering-3200 | 17.10 | 1 0.53 | 1 0.52
camshape-12800 | i7.10 | 1 | 1.20 | 1 | 95.98
marine-800 | 17.10 | 1 | 0.36 | 1 | 0.81
gaso0il-800 | 17.22 | 1 | 0.55 | 1 | 0.53
robot-1600 | 17.24 | 1 | 1.73 | 1 | 33.31
rocket-3200 | 17.93 | 1 | 2.48 | 1 | 1.53
pinene-800 | 18.01 | 1 | 0.50 | 1 | 1.09
marine-1600 | 18.10 | 1 | 0.58 1 1 | 3.37
steering-6400 | i8.10 | 1 | 0.99 | 1 | 1.32
camshape-25600 | 18.10 | 1 | 1.02 | 1 | 451.05
gasoil-1600 | 18.22 | 1| 0.83 1 1 | 1.26
robot-3200 | 18.24 | 1 | 2.22 | 1 | 147.12
bearing-200,200 | 18.63 | 1 | 0.39 | 1 | 1.23
elec-200 | 18.68 | 1 | 2.14 | 1 | 4.58
rocket-6400 | 18.93 | 1 | 1.50 | 1 | 3.63
pinene-1600 | 19.01 | 1 | 0.67 | 1 | 2.66
marine-3200 | 19.10 | 1 | 1.26 | 1 | 23.98
steering-12800 | i9.10 | 1| 3.06 | 1 | 4.04
gaso0il-3200 | 19.22 | 1 | 1.66 | 1 | 5.64
robot-6400 | 19.24 | 1 | 5.72 | 0 | 900.32
bearing-300,300 | 19.79 | 1 | 0.63 | 1 | 3.17
rocket-12800 | 19.93 | 1 | 2.81 | 1 | 24.24
pinene-3200 | 20.01 | 1 | 1.47 | 1 | 5.18
marine-6400 | 20.10 | 1 | 3.39 | 1 | 123.19
steering-25600 | 20.10 | 1 | 2.99 | 1 | 8.88
gasoil-6400 | 20.21 | 1 | 7.75 | 1 | 11.23
bearing-400,400 | 20.62 | 1 | 1.12 | 1 | 5.82
elec-400 | 20.68 | 1 | 2.99 | 1 | 28.05
rocket-25600 | 20.93 | 1 | 19.02 | 1 | 33.88
pinene-6400 | 21,001 1 | 3.64 | 1 | 19.28
steering-51200 | 21.10 | 1| 6.69 | 1 | 23.00
gaso0il-12800 | 21.21 | 1 | 24.91 | 1 | 28.71
bearing-600,600 | 21.79 | 1 | 2.40 | 1 | 14.62
rocket-51200 | 21.93 | 1 | 27.43 | 1 | 81.64
pinene-12800 | 22.01 | 1 | 6.35 | 1 | 81.15
bearing-800,800 | 22.61 | 1 | 4.30 | 1 | 29.51
elec-800 | 22.68 | 1 | 10.56 | 1 | 329.08
elec-1600 | 24.68 | 1 | 53.04 | 0 | 909.32

21

	Introduction
	Direct Linear Solvers for Optimization
	Pivoting-Free Interior-Point Methods
	Algebraic Modeling Systems and Automatic Differentiation
	Numerical Results
	Conclusions and Future Outlook
	More Details on Numerical Results
	Solver Options
	Gurobi
	Ipopt
	MadIPM
	MadNLP
	Full Numerical Results

