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Abstract: Decision-making is challenging in robotics environments with con-
tinuous object-centric states, continuous actions, long horizons, and sparse feed-
back. Hierarchical approaches, such as task and motion planning (TAMP), ad-
dress these challenges by decomposing decision-making into two or more lev-
els of abstraction. In a setting where demonstrations and symbolic predicates
are given, prior work has shown how to learn symbolic operators and neural
samplers for TAMP with manually designed parameterized policies. Our main
contribution is a method for learning parameterized polices in combination with
operators and samplers. These components are packaged into modular neuro-
symbolic skills and sequenced together with search-then-sample TAMP to solve
new tasks. In experiments in four robotics domains, we show that our ap-
proach — bilevel planning with neuro-symbolic skills — can solve a wide range
of tasks with varying initial states, goals, and objects, outperforming six base-
lines and ablations. Video: https://youtu.be/PbFZP8rPuGg Code: https:
//tinyurl.com/skill-learning
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1 Introduction

Decision-making in robotics environments with continuous state and action spaces is especially
challenging when tasks have long horizons and goal-based objectives. A common strategy is to
decompose decision-making into a high level (“what to do””) and a low level (“how to doit”) [1, 2, 3].
Seminal work by Konidaris et al. [4] considers such a hierarchy where symbolic Al planning [5] is
used to sequence together temporally-extended continuous skills [6]. Their main contribution is a
method for learning symbols from known skills. In this work, we study the inverse: learning skills
from known symbols [7, 8, 9, 10, 11]. We are motivated by cases where it is easier to design [12,
13, 14, 15, 16] or learn [17, 18, 19, 20, 21] symbols than it is to design skills. In the long term, we
envision a continually learning robot that uses symbols to learn skills and vice versa.

We consider symbols in the form of predicates — discrete relations between objects. A set of pred-
icates induces a state abstraction [3, 22] of a continuous object-centric state space. For example,
consider the Stick Button environment (Figure 1, third column), where a robot must press buttons
either with its gripper, or by using a stick as a tool. Predicates include Grasped and Pressed, in-
ducing an abstract state such as {Grasped (robot,stick),Pressed(buttonl),...}. We lever-
age symbolic predicates to learn skills that generalize substantially from limited demonstration data.
Concretely, we learn skills that achieve certain symbolic effects (e.g., Grasped (robot, stick))
from states where certain symbolic preconditions hold (e.g., HandEmpty (robot)).

Symbolic scaffolding for skill learning has two major benefits. First, by drawing on Al planning
techniques, we can efficiently chain together long sequences of learned skills [4, 5, 10]. This ben-
efit is key in our setting where planning in the low-level transition space is practically infeasible,
even though a black-box transition function is deterministic and known — actions are continuous,
solutions can exceed 100 actions, and there is no extrinsic feedback available before a task goal is
reached. Second, because each skill acts in a confined region of the state space, learning is easier
than it would be for a monolithic goal-conditioned policy (e.g., with behavioral cloning [23]).
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Figure 1: Environments. Top row: train task examples. Bottom row: evaluation task examples. See
(§6) for descriptions of each environment.

Evaluation Tasks

While symbols offer useful structure for skill learning and planning, they also present challenges. In
particular, symbolic state abstractions are often lossy [12, 13, 24], in that they discard information
that may be important for decision-making, like the reachability of buttons or the relative stick grasp
in Stick Button. This lossiness can be mitigated to some degree by inventing new predicates [4, 21],
but in robotics environments, there are often kinematic and geometric constraints that are hard to
perfectly abstract away [1, 25, 26]. These difficulties lead us to the following key desiderata.

Key Desideratum 1 (KD1). Because the abstraction is lossy, some environment states that corre-
spond to the same symbolic state may be better than others in terms of completing a task. Thus, a
skill should be able to reach many different environment states ( “subgoals”) that correspond to the
same abstract state. For example, a skill that achieves Grasped (robot, stick) should not always
lead to the same relative grasp: the grasp should be lower when buttons are farther away, and higher
if collisions with the gray stick holder would prevent a bottom grasp. This desideratum implies that
lookahead may be necessary, where the choice of skill early in the plan should be influenced by soft
or hard constraints later in the plan. It also implies that we should not rely on the (abstract) subgoal
condition in the framework of Konidaris et al. [4].

Key Desideratum 2 (KD2). When the state abstraction is lossy, it is not always possible to take
actions in the environment that correspond to a particular abstract state sequence. Thus, an agent
should be able to consider multiple skill sequences that reach the same goal from the same initial
abstract state. For example, without a predicate that reflects button reachability, the agent may first
plan to press all buttons without the stick, but if some buttons are unreachable, it will need the stick.

To address these two key desiderata, we propose an approach for learning and planning with neuro-
symbolic skills. A neuro-symbolic skill consists of a symbolic operator [27], a neural subgoal-
conditioned policy, and a neural subgoal sampler [28, 29]. The subgoals produced by the sampler
and consumed by the policy correspond to different environment states that are consistent with the
abstract effects of the operator, addressing KD1. The symbolic operators enable a bilevel planning
algorithm [30, 31, 32], with Al planning in an outer loop and sampling in an inner loop. If sampling
fails for an operator sequence, the outer loop continues to another sequence, addressing KD2. Skills
are learned from demonstrations without any prior knowledge about the number of skills.

Main Contributions. Prior works by Silver et al. [12] and Chitnis et al. [13] propose a pipeline for
learning operators and samplers for bilevel planning when given a set of parameterized policies'.
While some policies may be human-designed and generally reusable, e.g., navigation policies that
use motion planners, others are more domain-specific, such as pouring a pot of coffee or opening a
door (Figure 1). Our main contribution is a method for learning these policies to complete the neuro-
symbolic skills. We conduct experiments in four robotics environments (Figure 1) that require a wide
range of behaviors, such as pouring, opening, pressing, picking, and placing. We find that skills
learned from 100-250 demonstrations generalize to novel states, goals, and objects. Furthermore,
our approach — bilevel planning with neuro-symbolic skills (BPNS) — outperforms six baselines
and ablations, including learning graph neural network-based metacontrollers [15, 33].

!'See (§C.3) for an elaborated discussion on the relationship between this work and [12, 13].



2 Problem Setting

We consider the problem of learning from demonstrations in deterministic, fully-observed envi-
ronments with object-centric states, continuous actions, and a known transition function. An envi-
ronment is characterized by a tuple (A, U, f, ¥). An object rype A € A has a name (e.g., button,
robot) and a tuple of real-valued features (e.g., (%, y, z, radius, color, ...)) of dimension dim(\).
An object o € O has a name (e.g., buttonl) and a type, denoted type(o) € A. A state x € X is an
assignment of objects to feature vectors, that is, z(0) € Rdim(tyre(0)) for o € O. The action space is
denoted U C R™. The transition function is a known, deterministic mapping from a state and action
to a next state, denoted f : X x U — X. A predicate 1) € ¥ has a name (e.g., Touching) and a
tuple of types (e.g., (stick, button)). A ground atom is a predicate and a mapping from its type
tuple to objects (e.g., Touching(stick, buttonl)). A lifted atom instead has a mapping to typed
variables, which are placeholders for objects (e.g., Touching(?s, ?b)). Predicates induce a state
abstraction: abstract(z) denotes the set of ground atoms that hold true in x, with all others assumed
false. We use s € S to denote an abstract state, i.e., abstract : X — S.

An environment is associated with a task distribution T, where each T' € T is characterized by a
tuple (O, o, g, H). The set of objects in the task is denoted @. Importantly, objects vary between
tasks. The initial state of the task is denoted o € X. The goal, a set of ground atoms with predicates
in ¥ and objects in O, is denoted g. A goal represents a set of abstract states: for example, there are
many possible abstract states where g = {Pressed (button2) } holds. The task horizon, the limit
for how many actions can be taken in a task, is denoted H € Z™. A solution to a task is a sequence
of actions that achieves the goal and does not exceed the task horizon, i.e. @ = (uq, ..., ug) such
that k < H, g C abstract(zk), and z; = f(z;—1,u;) for 1 <i < k.

We consider a standard learning setting where train tasks drawn from from 7 are available at training
time, and held-out evaluation tasks drawn from 7 are used for evaluation. Our objective is to
maximize the number of evaluation tasks solved within a wall-clock timeout. Each train task 7" is
associated with one demonstration (T, u, Z), where @ is a solution for T’ and T = (x, ..., zx) is
the sequence of states visited. In experiments, tasks are randomly sampled, and demonstrations are
generated with handcrafted environment-specific policies (but see (§C.4)).

3 Neuro-Symbolic Skills

How can we leverage the available demonstrations, predicates, and known transition model to max-
imize the number of evaluation tasks solved before timeout? We propose to learn and plan with
neuro-symbolic skills. In this section, we define these skills formally; in (§4), we discuss planning;
and in (§5), we address learning. See Figure 2 for a summary of the architecture.

A skill is a tuple ¢ = (T, w, 7, o) where T is a tuple of arguments; w is an operator; 7 is a subgoal-
conditioned policy; and o is a subgoal sampler. A set of skills is denoted . Arguments are variables
with types in A and are shared by w, 7, and 0. An operator is a tuple w = (v, P, ET, E~) where
P,E*, E~ are preconditions, add effects, and delete effects respectively, each a set of lifted atoms
over the predicates W and arguments T. A subgoal-conditioned policy is a mapping 7 : Ol x X' x
X — U that takes as input a tuple of objects for the arguments v, the current state x, and a subgoal
state «’, and maps it to an action u. A subgoal sampler is a generator of elements from a distribution
of subgoal states conditioned on object arguments and a current state, that is, o : O/"l x X — A(X).
A ground skill is a skill with objects that match its arguments, denoted by a tuple ¢ = (¢, 5) where
0 is a tuple of objects in O with types matching 7. (We use underlines to denote grounded entities.)
The corresponding ground operator, ground policy, and ground sampler are defined analogously,

[ Abstract state | -|Opera'morg| Abstract state s,
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Figure 2: Architecture. Given learned symbolic operators, an Al planner is used to generate a
candidate sequence of abstract states and skills. For each skill in the sequence, the learned sampler
proposes a specific subgoal state in the next abstract state for the learned policy to pursue.
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Figure 3: Planning example. First, an abstract plan that directly presses both buttons fails. Later,
an abstract plan that uses the stick initially fails due to collisions, but succeeds on the next sample.

each associated with objects that match their typed variables, denoted w = (P, Et, E- ), 7, and
o respectively. A set of ground skills @ induces an abstract transition function F : S X & — S
over the abstract state space through the add and delete effects of operators, given by F'(s,¢) =

(s \ EZ) U ET, defined only when P C s (where \ is set subtraction). B

The contract between a skill’s operator, policy, and sampler is the following: in states where the
preconditions of a ground skill hold, i.e., P C abstract(z), the sampler should generate a subgoal
x’ ~ o(x) that satisfies the skill’s effects, i.e. F'(abstract(x),¢) = abstract(z’), and the actions
proposed by the policy 7 (-, z’) should lead to 2’ from x. In practice, we initiate a ground skill only
when the ground operator preconditions hold, and terminate at corresponding abstract successor
state (cf. options [6]). Next, we show how to leverage this contract for efficient planning.

4 Bilevel Planning with Neuro-Symbolic Skills

Given skills and a new task, we search for a solution with bilevel planning. See Figure 3, Algo-
rithm 1, and [13] for an extended description. Bilevel planning begins with an outer loop (Line 2),
where skill operators are used to generate up to Napsract abstract plans. An abstract plan for task
T = (O, g, g, H) is a sequence of ground skills that achieves the goal, i.e. ¢ = (¢,:---,9,) such
that sg = abstract(xg), g C s, £ < H+ 1,and s; = F(Si—hg) forl <i<U/.

Much work in the Al planning literature is de-

plan(T, @, f) voted to efficiently generating these abstract
// Params: Nabstract, Hski1l, Nsamples plans, with most state-of-the-art techniques

1 8o «— abstract(xg) building on heuristic search. In experiments,
// Uses operators we use A* search with the LMCut heuris-

2 for ¢ in top-k(so, g, ®, Nupsirac) do tic [34]. The Al planner details are not impor-

tant for this work; we have also experimented

// Uses samplers and policies ! VD CAPL :
with other planners and heuristics including

3 .ui—'reflne(?, T, ®, f, Hyitl, Nsamples) GBFS, K* [35], FF [36], and various configu-
4 if w is not nU”‘ then rations of the Fast Downward planner [5]. Un-
// Planning succeeded like typical Al planning, we continue the search
5 return u after the first plan is found, generating a poten-
// Planning failed tially infinite sequence of candidate plans (cf.

6 return null top-k planning [35, 37, 38]).

Given a candidate abstract plan, we use the
samplers and policies to perform a backtrack-
ing search over action sequences (Line 3). For each ground skill in the abstract plan, we use the
ground sampler to produce a subgoal, and simulate the ground policy until either (1) the abstract
transition is completed; or (2) a maximum skill horizon Hggj is reached. In case (1), we continue on
to the next ground skill, or terminate if the goal is reached (Line 5), while in case (2) we backtrack
up to Ngamples times per step. If backtracking fails, we continue on to the next abstract plan 2,

Algorithm 1: Bilevel planning.

>This planning strategy is not probabilistically complete, but see [32, 39] for complete variations.



5 Learning Neuro-Symbolic Skills from Demonstrations

We now address the problem of learning skills ® from a dataset of demonstrations D = {{(T,u, Z) }.
Recall that the data comprise raw sequences of states and actions for entire tasks. We preprocess the
data in three steps: segmenting trajectories temporally, partitioning the segments into skill datasets,
and lifting the objects within each skill dataset to variables. Then, for each skill dataset, we learn
an operator, a subgoal-conditioned policy, and a subgoal sampler. We detail these steps below. This
pipeline extends that of Chitnis et al. [13], who assume parameterized policies are given.

5.1 Data Preprocessing

Segmentation. For each demonstration (T, w, T) € D, we identify a set of switch points 1 < i1 <
-+ < iy < |u|. Each pair of consecutive switch points (j, k) induces a segment v = (Uj., Tj—1:k)>
where @;., = (uj, uj41,. .., Uk—1) is a subsequence of actions from @ and Z;_1.;, is defined analo-
gously. Temporal segmentation is a much studied problem in the literature [40, 41, 42]. In this work,
inspired by the notion of contact-based modes (e.g., [43]), we create a new switch point whenever
there is a change in the truth-value of any contact-related ground atom (§A). Intuitively, using more
(fewer) predicates here instead would lead to finer (coarser) temporal abstractions.

Partitioning. Next, we partition the set of all segments into a collection of skill datasets. We group
segments into the same skill dataset if their abstract effects are equivalent up to object substitution.
Formally, given a segment v = (Uj.x,T;—1.x), let s = abstract(z;_1) and s’ = abstract(z_1).
The effects of the segment are (eT,e”) = (s’ \ s,s \ §'). The affected object set O¢ comprises
all objects that appear in either et or e~. Two segments 71,72 with effects (e],e]’), (ed, e; ) and
affected objects OF, OF are equivalent (y; = ;) if there exists an injective mapping § : Of — Of
such that §(e]") = e and §(e] ) = e, and where each object in Of shares the type of the object it is
mapped to in OF. The relation = induces the partition: each partition contains equivalent segments.

Lifting. The segments in each skill dataset involve different objects. When we perform lifting, we
replace all the objects in a segment with variables that have the objects’ types. For example, in
Stick Button, the robot may use the stick to press buttonl in some segment, and the robot may
use the stick to press button?2 in another segment. After lifting, these objects would be replaced
with ?robot, ?stick, and ?button. Formally, for each skill dataset ®;, for an arbitrary segment
Yo € ®; with affected object set OF, we create one placeholder variable v for each object in OF. We
order these variables arbitrarily into a tuple . Using the injective mappings § described above, it is
then possible to map the affected object set for any segment in ®; to the variables v. In addition to
aligning segments with different objects, variables define the skill scope: when computing abstract
transitions, subgoals, and actions, the skills will reference only the object states for those variables.
The final output of preprocessing is a set of lifted skill datasets, i.e., skill datasets ¢;, variables v,
and mappings from segment objects to variables that we will use in skill learning, described next.

5.2 Skill Learning

Operator Learning. Following previous work [13, 18, 21, 44], we use a simple linear-time ap-
proach to learn symbolic operators. We induce one operator from each lifted skill dataset ®;. The
variables U constructed via lifting comprise the operator arguments. The operator add and delete
effects follow immediately from lifting a segment’s effects (e, e~ ): we replace all objects with the
corresponding variables in 7, to arrive at lifted atom sets (£, E~). To compute preconditions, we
use all common lifted atoms in the initial segment states. For a segment v € ®; with states T;_1.,
let s, = abstract(x j_l), and let s¥ denote the corresponding lifted atom set, with all affected ob-
jects in s, replaced with variables in v, and with any ground atoms in s, involving objects not in
v discarded. The preconditions P are then the intersection of lifted atom sets for each segment,

denoted P =, g, 57, completing the operator w = (7, P, E*, E~).

Policy Learning. Recall the responsibility of a ground policy 7 (z, z') is to output an action u that
will lead the agent closer to the subgoal 2’ from the state x. At this point in the pipeline, for each
skill, we have available a dataset of subgoals being achieved: the final state of each segment in the
skill dataset is a subgoal, and the preceding states and actions demonstrate behavior towards that
subgoal. We can therefore use these data for supervised learning of a subgoal-conditioned policy.
First, we use the skill scope to convert the segment states into fixed-dimensional vectors by concate-



nating the features of the objects in the scope together with the subgoal. Formally, for each state =
in each segment v € ®;, we construct a vector ¥ = z(vy) o - o x(vy,), where v = (v1,...,v,),
x(v;) = x(o0;) for the corresponding o; under lifting, and o denotes vector concatenation. We then
create a dataset of input-output pairs (z¥_, oz} _,,u;) for j < i < k in each segment with states
Tj_1.x» where z}_; is the segment subgoal. We are now left with the problem of learning a policy
from vector-based supervised data. In this work, we use behavioral cloning with fully-connected
neural networks (see (§B) for details), but many other choices are possible®. At evaluation time, if
the policy is grounded with objects o = (01, . .., 0,,), and queried in state x, then x(01) o - -0 x(0,)
is the state input to the neural network, while the subgoal input is generated by the ground sampler.

Sampler Learning. The role of the subgoal sampler is to propose different specific states, among
the infinitely many consistent with the effects of the operator, for the policy to pursue. This flexibility
is important for KD1 (§1). To learn samplers, we can largely reuse the datasets from policy learning:
for each (zoy, u) in the policy learning dataset, with y denoting the subgoal, we create a (x, y) input-
output pair for sampler learning. Following [13], we learn two neural networks for each sampler.
The first network outputs the mean and diagonal covariance of a Gaussian distribution. The second
network is a binary classifier that takes a candidate (z,y) sampled from the Gaussian as input and
accepts or rejects. These two networks are capable of modeling a richer class of distributions than
the Gaussian alone, e.g., multimodal distributions. See (§B) for architecture and training details*.

We make two modifications to the approach described above to promote generalization. First, we use
the relative subgoal 7} _; — x¥ for each step i in the segment, rather than the absolute subgoal 7} _;
(cf. goal relabelling [29, 46]). At evaluation time, we derive the absolute subgoal from the relative
subgoal when the policy is first initialized, and update the relative subgoal after each transition.
Second, we detect and remove subgoal dimensions that are static across all data (e.g., object mass).

Limitations. Our approach assumes that the given predicates comprise a useful state abstraction of
the underlying state space with respect to the task distribution. With random or meaningless predi-
cates, we would not expect to outperform non-symbolic baselines. However, previous work [12, 21]
suggests that operator and sampler learning are robust to a limited degree to predicate ablation or
addition; we expect the same for policy learning’. We assume that effective behavior can be deter-
mined from the skill scope alone and do not learn skills that handle a variable number of objects. Our
method would create a separate skill for each unique skill dataset arising from affected object sets of
different sizes, which might be preferred in some scenarios (picking up one, vs. ten, vs. two-hundred
coins off the ground) but not others (tying multiple sticks together with a piece of string). Relational
neural networks (e.g., GNNs) offer one possible path to address these two limitations. Through the
lens of parameterized policy learning [47, 48, 49, 50], subgoals are just one form of parameteriza-
tion among many possible alternatives. We also aspire to learn from human demonstrations on real
robots; data efficiency results in the next section suggest that this is feasible.

6 Experimental Results

Our experiments address five questions about bilevel planning with neuro-symbolic skills (BPNS):

Q1. How many train tasks are required by BPNS to effectively solve held-out evaluation tasks?
Q2. Does BPNS generalize to unseen numbers of objects?

Q3. Can BPNS learn skills to complement existing general-purpose skills?

Q4. How important is the ability to sample multiple subgoals per abstract plan step (KD1)?
Q5. How important is the ability to generate multiple candidate abstract plans (KD2)?

Environments. We describe environments here at a high level, with details in (§A). The Cover
environment was introduced by [12, 13, 21]. A robot must pick and place blocks to cover target
regions on a 1D line. The robot can only initiate and release grasps in certain allowed regions. For
example, if the robot grasps a block on the left side, it may not be able to place it to completely
cover a target, depending on the allowed regions. Tasks have two blocks and two targets. There is
random variation in the initial poses of the blocks, targets, allowed regions, and robot gripper.

3We also experimented briefly with implicit behavioral cloning [45] but did not notice any improvements.

*The policy and sampler for a skill are trained separately. In preliminary experiments, we observed that
training them jointly sometimes performs better if training is stopped early, but is otherwise similar.

3See (§C.5) and (§C.6) for results with superfluous predicates and objects.
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Figure 4: Main results. Evaluation task success rates versus number of demonstrations. Lines are
means and error bars are standard deviation over 10 random seeds. GNN BC is excluded because its
performance is consistently very poor, and its training is the most expensive; see the table below.

Doors is loosely inspired by the classic Four Rooms [6]. A robot must navigate to a target room
while avoiding obstacles and opening doors. Doors have handles that require different rotations to
open. In this environment, to address (Q3), a skill that moves the robot between configurations using
a motion planner (BiRRT) is provided; door opening must be learned. Tasks have 4-25 rooms with
random connectivity. The goals, obstacles, initial robot pose, and door parameters also vary.

The Stick Button environment is described in (§1). Train tasks have 1-2 buttons and evaluation tasks
have 3—4 buttons. Tasks vary in the initial poses of the stick, holder, robot, and buttons.

In Coffee, a robot must move a pot of coffee to a hot plate, turn on the hot plate by pressing a button,
and then move to pour the coffee into cups. The cups have different sizes and require different
amounts of coffee. Depending on its orientation, the pot may need to be rotated before the handle
can be grasped; the orientation is not reflected in the predicates. Overfilling a cup or pouring from
too far results in a spill (failure). Train tasks have 1-2 cups and evaluation tasks have 2-3 cups.
Tasks vary in the poses of the robot, pot, and cups, and in cup sizes. The goal is to fill all cups.

Approaches. We briefly describe the approaches we evaluate, with details in (§B).

e BPNS: Our main approach, bilevel planning with learned neuro-symbolic skills.

e BPNS No Subgoal: Our main approach, but with no samplers, and with subgoal-conditioned
policies replaced with regular policies 7w : X — /. This approach is inspired by [7, 9, 51].

e GNN Meta: Instead of Al planning, this approach learns a graph neural network (GNN) meta-
controller [9, 15, 33] that outputs a next skill based on the current state, abstract state, and goal.

e GNN Meta No Subgoal: Same as GNN Meta, but without samplers, and with regular policies.
This baseline is the closest to existing methods in the Al planning literature [9, 10, 51, 52].

e GNN BC: Learns a monolithic goal-conditioned GNN policy by behavioral cloning (BC).

e Samples=1: An ablation of BPNS where Ngympies = 1 during planning.

e Abstract Plans=1: An ablation of BPNS where Nypsirace = 1 during planning.

All approaches are trained with the same demonstration data and use the same predicates. All
approaches also use the transition function f, except for GNN BC, which is model-free.

Experimental Setup. For all environments and approaches, we use 50 evaluation tasks and 10
random seeds. The timeout for each evaluation task is 300 seconds and the horizon H = 1000.
Experiments were run on Ubuntu 18.04 using 4 CPU cores of an Intel Xeon Platinum 8260 processor.

Results and Analysis. Figure 4 shows performance as a function of demonstration count. BPNS
performs well in all environments after 100-250 demonstrations (Q1). Stick Button is the most
challenging because many considered abstract plans are infeasible, which can lead to timeouts. The
strong performance in Stick Button and Coffee, which have more objects than seen during training,
also allows us to affirmatively resolve (Q2). Strong performance in Doors, where motion planners
are provided, confirms that BPNS is capable of incorporating general-purpose skills (Q3).

The importance of generating multiple samples per abstract plan step (Q4) is reflected in the No
Subgoal baselines and the Samples=1 ablation. The ablation performs worse than BPNS in all
environments, while the No Subgoal baselines perform worse in all except Doors with 1000 demon-
strations. We found evidence for two explanations in our analysis. First, skill policies may fail to
terminate with certain parameters, but succeed with others. Second, even if a policy terminates, the



agent may or may not be able to finish the rest of the task from that subgoal. These results confirm
that KD1 (§1) is important for the strong performance of BPNS.

To analyze the importance of generating multiple candidate abstract plans (QS), we can examine
the GNN Meta baselines and the Abstract Plans=1 ablation. These approaches perform well in
Cover and Doors, where the first abstract plan is usually refinable into a solution. In Coffee, the first
abstract plan does not rotate the pot, and therefore fails when the handle is out of reach. See Figure 3
for an example of failure in Stick Button. These results confirm the importance of KD2 (§1).

We also compare BPNS with GNN BC, a purely model- g’;”:f"’”g"’ Bgl;li% Eggx) 4061;1?136‘23)
. Vi . .| .| B
free approach. .The table on the rlght reports the mean Doors 98.80 (0.80) | 9.20 (4.05)
(standard deviation) percent of evaluation tasks solved per Stick Button | 83.60 (1.78) | 0.20 (0.30)
environment after training with 1000 demonstrations. We Coffee 98.00(1.18) | 23.80(4.76)

also experimented with fewer demonstrations for GNN BC and saw consistently poor performance.
The failure of GNN BC is unsurprising given the limited data and the high degree of task variability.

In the appendix, we present additional results that investigate the planning time of BPNS (§C.1),
the poor performance of GNN Meta (§C.2), comparison to [12, 13] (§C.3), learning from human
demonstrations (§C.4), the impact of irrelevant predicates (§C.5) or objects (§C.6), the filtering of
low-data skills (§C.7), comparison to oracle skills (§C.8), the structure of the learned operators
(§C.9), and skill learning with invented predicates (§C.10).

7 Related Work

Our work contributes to a long line of research in skill learning for robotics, with prior works con-
sidering both reinforcement learning [53, 54, 55, 56, 57, 58, 59, 60, 61, 62] and learning from
demonstrations [8, 40, 63, 64, 65, 66, 67, 68, 33]. In the context of hierarchical RL [28, 29, 69],
it is possible to interpret our skill samplers as managers and policies as workers. Our work is
also related to parameterized skill learning [47, 70, 48, 71, 49, 50] if we view subgoals as pa-
rameters. In the Al planning literature, prior works use a set of given planning operators to learn
skills [7, 9, 10, 72, 73, 51, 52, 74]. Achterhold et al. [75] pursue a similar approach in a robotics
setting. Recent work by Guan et al. [15] is closest to our contribution in that they use given operators
to learn skills with latent parameters that can be used to reach a diverse set of terminal states [61],
and then learn a metacontoller over the skills. The “GNN Meta” baseline is inspired by this work.
Instead of operators, recent works have also used pretrained language models to generate abstract
“instructions” and then learn language-conditioned skills [68, 76, 77, 78].

Our work can also be viewed as learning components of a task and motion planning (TAMP) system.
In this line, other work has concentrated on learning operators [79, 80, 81, 82, 44, 12, 83], learning
samplers [39, 84, 85, 86, 13, 87], or learning predicates [17, 88, 4, 89, 90, 91, 18, 19, 20, 92, 21]. Our
operator and sampler learning algorithms are most directly related to that of Chitnis et al. [13], who
assume given parameterized policies. Driess et al. [26] use given operators to learn energy-based
controllers from images in the context of constraint-based TAMP [43]. Wang et al. [86] learn to
sample continuously parameterized skills to accomplish symbolic operator effects, such as pouring
at a certain angle to fill a cup. To the best of our knowledge, our work is the first to learn operators,
samplers, and policies for search-then-sample TAMP [30, 31, 32].

8 Conclusion

In this work, we proposed bilevel planning with learned neuro-symbolic skills as a framework for
decision-making in object-centric robotics environments. We confirmed experimentally that this ap-
proach leads to strong generalization and data efficiency. There are many interesting open questions
for future work. (1) Can neuro-symbolic skills be learned from invented predicates? In (§C.10), we
offer preliminary evidence suggesting the viability of this direction. (2) Can neuro-symbolic skills
be learned with reinforcement learning? (3) Can latent object feature learning [16] be used to drive
skill learning? Answering these questions will help us leverage hierarchical planning at scale.
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