Under review as a conference paper at ICLR 2026

CURIE: TOWARD RIGOROUS AND AUTOMATED
COMPUTER SCIENCE EXPERIMENTATION
WITH AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific experimentation demands rigor in reliability, methodical control, and
interpretability to yield meaningful results. Despite the growing capabilities
of large language models (LLMs) in automating different aspects of the scien-
tific process, automating rigorous experimentation remains a significant chal-
lenge. To address this gap, we propose Curieﬂ , an Al agent framework de-
signed to embed rigor into the experimentation process through three key compo-
nents: an intra-agent rigor module to enhance reliability, an inter-agent rigor
module to maintain methodical control, and an experiment knowledge mod-
ule to enhance interpretability. To evaluate Curie, we design a novel experi-
mental benchmark composed of 46 questions across four computer science do-
mains, derived from influential research papers, and widely adopted open-source
projects. Compared to the strongest baseline tested, we achieve a 3.4 X improve-
ment in correctly answering experimental questions. Curie is open-sourced at
https://anonymous.4open.science/r/Curie—-689B/.

1 INTRODUCTION

Question s Experiment Design
B = ,
How d ber of U Curie Tune the number of samples
&7 otesdnum elr @ and evaluate the accuracy.
generated samples " -
affect response quality [A'&“‘ ch}'“'“z‘\“ Experiment Setup
on GSMSK dataset? N e BTN
~— / tune_num_sample.sh
N Experimental Rigor Module
Context Experiment Trace & Data
(LLM Reasoning Intra-Agent Rigor Primitive [{n 0.6},
Starter Code (Inter-Agent Rigor Primitive ‘
t: README .md > N ——————) Conclusion
| \:a;:,‘{,ek_ txt Experiment Knowledge Manager Increasing the number of
}—:rc/ \ / generated samples improves
! AR) response quality.

Figure 1: Curie overview.

Scientific research drives Al progress, advancing the development of the computer science discipline.
At the heart of this endeavor lies experimentation—a disciplined intellectual pursuit that transforms
human curiosity, expressed through bold hypotheses, into verifiable knowledge. Experimentation
thrives on creativity, as new ideas fuel discovery. Yet it also depends on rigor—ensuring that research
is methodologically sound and its findings are trustworthy (Armour et al.| 2009; |Gill & Gill, 2020).

In recent years, many works (Zhang et al., 2024b; Kramer et al., 2023} [Lu et al.| 2024a)) leveraging
large language models (LLMs) to automate scientific research have emerged (§2.3). These solutions
typically rely on ad-hoc prompt-based methods to mimic scientific workflows, prone to hallucination.
While effective for creative tasks such as literature review and brainstorming, these approaches
remain limited in their ability to support rigorous experimentation, a largely unexplored capability.

'Name disambiguation. The name Curie was used by (Cui et al.l[2025) for evaluating LLMs on scientific
reasoning. In contrast, our work focuses on scientific experimentation, a substantially different problem domain.

https://anonymous.4open.science/r/Curie-689B/

Under review as a conference paper at ICLR 2026

The paper’s methodology to scale test-time

[Reading...] Will increasing the number of generated 'Will higher sampling temperature is ineffecti 4 ling i
. Ml _— . oy h = i Its? compute is ineffective, as repeated sampling in
This finding is interesting! samples improve response quality? enhance repeated sampling results? LLMs ofien leads to duplicate answers.
iginal Findi = 183 7 ¢ New Findi | &3 Challenge Existing Methodology
Original Finding U Reproduce Results =e enerate New Findings = lenge Existing Methodology
Generating more samples improves = [Design --> Setup --> Execute Increasing the sampling temperature [Verify by comparing the number of
response quality - likelihood of --> Analyze and Plot --> Conclude] improves response diversity, which distinct samples to the total

in turn improves response quality. generated samples per
1 OGSMSK (Oracle Verifier)

having 1 correct solution

10 GSMBK (Oracle Verifier)

1, GSMBK (Oracle Verifier)

8
3

— Llama-3-8B-Instruct
—— Llama-3-70B-Instruct

--- Temp. used in the paper

Num. of Distinct Samples
"
&

1 1 0.0 0.5 10 0 50 100

1 T 0o 12 10
Number of Samples (k) Number of Samples (k) Temperature Number of Samples (k)

Figure 2: Case Study. Curie can help researchers validate, expand, and critique existing research
on the benefits of repeated sampling in LLM reasoning (Brown et al.,|2024)). The first panel (Original
Finding) presents a result from the original paper. Curie confirms this finding through rigorous
experimentation in the second panel (Reproduce). The third panel (Extend) has Curie exploring the
impact of sampling temperature on repeated sampling. The final panel (Challenge) shows Curie
identifying a limitation in the original methodology, suggesting an avenue for future research.

More specifically, rigorous experimentation (§2.2)) involves a methodical procedure that includes
formulating hypotheses, designing experiments, executing controlled trials, and analyzing results.
Achieving reliability at every step is essential to ensure that the results are accurate, reproducible, and
scientifically meaningful. Finally, all procedures and results must be documented in a well-structured
and interpretable manner, facilitating verification and collaboration across the community.

To meet these requirements, we propose Curie, an Al agent framework representing the first
step toward rigorous and automated experimentation (§3). As shown in Fig.[I] Curie takes an
experimental question and relevant context (e.g., domain-specific knowledge or starter code) as input.
The Architect Agent generates high-level experimental plans, coordinates the process, and reflects
on findings to guide subsequent steps. Working in unison, our Technician Agents focus on carefully
implementing and executing controlled experiments following these plans.

At the core of Curie, the Experimental Rigor Engine preserves agent creativity while embedding
rigor throughout the experimentation process. This is achieved via three key modules: (1) The
Intra-Agent Rigor Module safeguards reliability of individual agents with a set of extensible rigor
policies (e.g., validating that experiments align with objectives and setups are reproducible). (2) The
Inter-Agent Rigor Module maintains methodical control over agent coordination, ensuring correct task
transitions and efficient task scheduling. (3) Finally, the Experiment Knowledge Module enhances
interpretability with well-structured documentation, enabling collaboration in large-scale experiments.

Though inspired by scientific research across disciplines, Curie focuses on experimentation in
computer science that come with LLM-friendly interfaces (Anthropic||[2024; Yang et al.l 2024). To
evaluate Curie, we introduce an Experimentation Benchmark comprising 46 tasks of varying
complexity across multiple computer science domains (§4). We derive these questions directly
from influential research papers and practical open-source projects. Fig.[2]shows that Curie could
reproduce, extend, and challenge existing research via rigorous experimentation. We benchmarked
Curie (§5) against state-of-the-art agents like OpenHands (Wang et al [2024d) and Magentic-
one (Fourney et al.|[2024). Curie achieves a 3.4x improvement in correctly answering experimental
questions, underscoring Curie’s ability to automate experiments rigorously.

2 BACKGROUND

2.1 SCIENCE EXPERIMENTATION

Scientific experimentation often starts with researchers posing testable hypotheses based on their past
results, domain knowledge, and intuition. This process then unfolds across three key stages: (1) Exper-
imental Design, where researchers plan the controlled experiment by identifying variables, selecting
methodologies, and outlining procedures to enhance reproducibility and validity; (2) Experiment
Execution, where researchers set up the complex experiment environments and iteratively explore vast
search spaces; and (3) Data Documentation and Analysis, where researchers systematically gather
data, apply analytical techniques, and extract insights to validate or refine their hypotheses. This

Under review as a conference paper at ICLR 2026

process is iterative, as insights gained from data analysis often lead to the refinement of hypotheses,
leading to subsequent rounds of these three steps.

2.2 RIGOR IN EXPERIMENTATION

Rigor is essential in scientific research, ensuring systematic, precise, and reliable findings (Armour
et al.| 2009). If science isn’t rigorous, it’s reckless. (Hofseth, 2018)). Experimental rigor is grounded
in three core principles (Gill & Gill, |[2020):

Methodical Procedure: Experimentation must adhere to a principled and systematic methodology
throughout all aforementioned stages, from hypothesis formulation to data documentation. Such a
structured procedure ensures that no critical procedures are overlooked or performed incompletely,
thereby preserving the integrity of the research.

Reliability: Every stage in the experimental pipeline—such as experiment design and environment
setup—needs to be reliable and reproducible so that any final findings rest on solid ground. For
instance, it encompasses correct variable identification, controlled experimental design, and rigorous
code verification. By meticulously verifying each stage, reliability minimizes the risk of cascading
errors, thereby ensuring that the results are trustworthy.

Interpretability: All processes and outcomes need to be clearly documented in a consistent manner.
This makes it easier for researchers or agents to replicate experiments and understand results.

2.3 RELATED WORK

AI Agents for Science. Prior work leveraged Al to accelerate scientific discovery (Berens et al.}
2023} Kitano, 2021)), focusing on various stages of the research lifecycle, including literature re-
views (Agarwal et al., [2024; [Tyser et al., 2024), brainstorming ideas (Gu & Krenn| 2024; Bran et al.,
2024), hypothesis generation (Sourati & Evans| 2023} Zhou et al., 2024} \Wang et al., | 2024a; Qi et al.,
2024])) and data analysis (Hong et al.| |2024a}; |Chen et al.||2024). However, experimentation—a critical,
rigor-intensive step—remains underexplored. Existing agents for end-to-end scientific research
(Schmidgall et al., 2025} [Lu et al., |2024a; Yuan et al., 2025} |Ghafarollahi & Buehler, |2024) rely
on ad-hoc prompts to guide predefined workflows, from idea generation to paper writing. Their
open-sourced frameworks often require experimental code to follow constrained, framework-specific
formats, adding overhead and hindering their usability. These solutions mimic experimentation
processes using multi-agent systems but lack systematic enforcement of a methodical procedure, reli-
ability, and interpretability. Without these core principles, such agents struggle to deliver meaningful
and reproducible results, limiting their practical utility in real-world scientific research. App.
discusses their relation with Curie.

AI Agent Task Benchmarks. A wide range of benchmarks have been developed to assess the
capabilities of Al agents across diverse domains. Existing benchmarks primarily focus on logical rea-
soning (Cobbe et al.| [2021; |Hendrycks et al.||2021a; |Bang et al., 2023), problem-solving (Hendrycks
et al.l |2021b; [Frieder et al.l 2023} [Wang et al.| [2024b; |Sun et al. |2024a}; (Chevalier et al.| [2024]),
knowledge retrieval tasks (Sun et al.| 2024b)) and machine learning training (Huang et al.|[2024;|Zhang
et al., 2023;2024a). These benchmarks evaluate agents on well-defined tasks that typically have
clear, deterministic solutions (see App. @]) In contrast, our benchmark focuses on experimentation,
which requires a more rigorous and systematic approach beyond problem-solving. Experimental tasks
require iterative hypothesis refinement, complex experiment setup and execution, and robust result
interpretation. Our benchmark captures these challenges by evaluating Al systems on real-world
experiments derived from influential research papers and widely adopted open-source projects.

3 CurIEk: RIGOROUS EXPERIMENTATION

3.1 ARCHITECTURAL OVERVIEW

As shown in Fig.[3] Curie is composed of two types of LLM-based agents (an Architect Agent and
a host of Technician Agents), sandwiched between them is our main innovation, the Experimental
Rigor Engine that injects rigor throughout the experimental process.

Under review as a conference paper at ICLR 2026

Inter-Agent Rigor Module (Methodical Control) ~
(2) Controlled Experiment Setup
> Ex imental Plan Desig ‘e ": {’dataset=GSM8K'}, ... ©
(D) Experimental Plan Design ‘constant’: {'dataset)
i (- Setup the LLM reasoning experiment. dent vars': (‘o =’ o e-10}, .}
| - Vary the sample count (c.g., 1, 5, 10) while maintaining B S AT «—
other variable constant © ®
| - Measure response quality in terms of accuracy. [Comml Flow] [i i] éZﬁ
i | - Analyze the results using statistical methods. \ .
(@) Result Analysis ¢ ¢® Verify Architect / Technican
| [{ num_sample: 1, quality: 0.60}, Increasing the number -
i {num_sample: 5, quality: 0.70}, of generated samples [Setup Validators [Design Validators]J[Exec Validators l][Custom 1] (3®) Experiment Exceution
{num_sample: 10, quality: 0.77] improves response quality - sy
: . 9 . /tune-nun-sample.sh 1
£ B New tive Refinement + ¢ Intra-AgentRigor Module (Reliability) ST e
Update t des - a N . ~num-: . 'cvu‘
--.... Updat S Conclude —> END |, o [Structured Knowledge Reads | (Tiered Write Access | (Experiment Knowledge Bank 8] «- Jtunezpumzassple.shisil0)

Experiment Architect Experiment Knowledge Module (Interpretability) Experiment Technicians

Figure 3: Curie workflow with an example task in LLM reasoning. The Architect designs high-level
plans and reflects on findings. The Technician implements and executes the experiments based on
the plans. Whenever an agent completes its action (step (D, @), @), @, O)), the Experimental Rigor
Engine (steps @—B—©) validates the action, determines next steps, assigns tasks and maintains
interpretable experimental progress, ensuring rigor throughout the entire process.

High-level workflow. Given an experimental question, our Architect will (D) designs high-level
experimental plans (e.g., defining hypotheses, variables), completing its turn. Our Inter-Agent Rigor
Module (Inter-ARM) will @) intercept and enforce methodical procedure. Since the plan is new, it is
broken into smaller partitions for finer-grained execution. Inter-ARM applies control flow policies to
determine the next step for each partition. In this case, it decides to go through the B) the Intra-Agent
Rigor Module (Intra-ARM) validation, which enhances reliability by verifying partition integrity
(e.g., assessing relevance to the experimental question). Similarly, Inter-ARM repeats this process
based on the validation results, eventually © forwarding the partition to a Technician to) set up
the controlled experiment. The remaining steps are omitted for brevity, but at a high level, every
agent action follows the same structured workflow: @) interception by Inter-ARM, B) validation by
Intra-ARM, and © forwarding to the next appropriate agent. Finally, all of the above components will
make use of our Experiment Knowledge Module for storing and tracking experimental progress,
providing interpretability. For example, the Architect stores refined experimental plans in a structured,
metadata-enriched format, making them easier to analyze, track, and validate over time.

3.2 INTRA-AGENT RIGOR MODULE - RELIABILITY

Large-scale and long-running experiments involve complex, interdependent steps where early-stage
errors can propagate and compromise final results. This is especially critical to LLM-based experi-
mentation since: (1) LLM-based agents are prone to hallucination, and (2) experimental processes are
inherently exploratory, requiring iterative refinements to hypotheses, setups, and designs in response
to new or unexpected findings. Despite this, existing works (Lu et al., 2024a; |Schmidgall et al.| 2025)
largely overlook the need for continuous validation throughout the experimental process. A naive
approach is to perform end-to-end validation only after an experiment concludes. However, this
lacks the ability to backtrack to intermediate stages, preventing error isolation and correction, and
forcing researchers to either discard progress or rerun the entire experiment—an inefficient and costly
approach. To address this, we introduce Infra-ARM, a validation module that verifies the assigned
tasks of our Architect and Technicians step by step, improving reliability and reproducibility to align
with the overarching experimental objectives. Inspired by process supervision (Lightman et al., 2023]),
Intra-ARM utilizes modular validation, where a suite of validators continuously verifies each stage
of the experiment (Fig[3)), so that errors can be proactively detected and addressed early. Moreover,
Intra-ARM’s validators are extensible, allowing new ones to be incorporated as needed. We focus on
two key validators here for brevity:

Experimental Setup Validator. This component (see App. [H] Fig.[I0) verifies that the experimental
setup by our technicians aligns with the plan before execution, ensuring methodological soundness and
logical consistency. Each enforced policy checks alignment within a specific part of the experiment
setup. This includes (see App. [H] Fig.[TTa): (1) confirming the setup aligns with the experimental plan,
including the research question and all specified variables (independent, dependent, and constant). (2)
Analyzing all procedures for correct handling of input/output arguments; and detecting placeholders,

Under review as a conference paper at ICLR 2026

Fine-Grained Plan Partitioning ' Control Flow Enforcement : Partition Scheduling
1 1
partition 1: { ' Current State Next Permissible State !
wg . ' '
1ngﬁz;r‘:a&]p{e": , ———— If success Sl?tup ' / —
p 1 P Validator ! — \
[5,20] }, ,| Technician ' Technician
"priority": 3 } 1 (Setup) Else ' Plan 2 | INode g |
Plan 1: { » Progress: @ Plan : Architect : Partition 3 O
an1: { .. - Prooress \ J
"ind_vars": { ' ' Plan 1 | |
"num_sample": ' If reproducible -— Partition 2 — Exec
[5,20,50] N = \ & consistent (Technician| , Plan 1 | |verifier |
fgrntlonnl’: {) I (Analysis)] 1 Partition 1 Node ¢
* e | (o | e =l
ts01 3, ' | Execution | fail_count<n Technician| | | _| |
"priority": 2 } 1| Validator (Setup) 1+ Priority Queue !
Progress: ' ' .~ == -
Else
© Plan © setup ' Architect| | O Avilable (X) Busy
1 1

Figure 4: Simplified Inter-ARM workflow with a partition state snapshot.

hardcoded values, or incomplete variables to ensure meaningful results. (3) Checking that the setup
documents all intermediate steps and results, including any identified issues for future analysis.

Execution Validator. Once the setup passes the experimental setup validator, this validator enhances
reproducibility by executing it in a controlled and clean environment to detect and resolve potential
errors, a sample of which is illustrated in App. [H] Fig.[T1] (1) Error-Free Execution: The setup is
executed in a clean environment, verifying that it operates without errors. Any encountered errors
are logged in detail, providing actionable feedback for debugging and iterative refinement. (2)
Reproducibility Checks: The workflow is also run multiple times to enhance consistency in outputs
and detect anomalies or hidden dependencies. Finally, the results are validated to ensure alignment
with the experimental plan and compliance with predefined quality standards.

3.3 INTER-AGENT RIGOR MODULE - METHODICAL CONTROL

Experimental processes must follow a methodical procedure (§2.2) while balancing resource con-
straints (e.g., GPU availability), and experiment priorities. Traditional agentic conversational pat-
terns (AutoGen, |2024)—such as naive LLM-based coordination, sequential, or round-robin execu-
tion—are thus ill-suited for such a workflow. To ensure task coordination and optimize resource
efficiency, Inter-ARM enables seamless collaboration between our Architect, Technicians and Intra-
ARM through three key functions presented in Fig.[d] We discuss each in turn.

Fine-grained Plan Partitioning. Infer-ARM first breaks down new complex experimental plans
generated by the Architect into smaller, independent partitions: defined as a distinct subset of
independent variable values within the plan. By creating smaller, self-contained tasks, this facilitates
modular execution and enables parallelization, making experimentation more scalable. In addition,
this enables our Architect to track intermediate progress and results, making real-time decisions as
new insights emerge (e.g., reprioritizing partitions by updating their execution priority).

Control Flow Enforcement. This component ensures that transitions between our Architect,
Technicians, and Intra-ARM follow a logical sequence aligned with the experimentation lifecycle. This
is critical to maintaining consistent, error-free progress. Without structured coordination, tasks may
be executed out of order or without necessary dependencies, leading to wasted effort and erroneous
conclusions. For instance, it prevents Technicians from directly executing experiment setups before
validation by Intra-ARM’s setup validator, to reduce the risk of erroneous data propagation. This is
done in two steps: (1) State Evaluation, which evaluates whether the current state of each partition
(within an experimental plan) has been modified by an agent, e.g., a Technician who produced
experimental results and recorded its progress via the Experiment Knowledge Module. (2) Permissible
State Transitions, which produces a set of allowed state transitions for a partition based on its current
state, e.g., newly produced experimental results for a given partition need to be validated by Intra-ARM
first. It also gathers relevant context that would be useful if the transition were to be executed. This
state transition information will be consumed by our scheduler (defined below).

Under review as a conference paper at ICLR 2026

Partition Scheduling. Large-scale experiments can be resource-intensive and time-consuming,
requiring careful scheduling and prioritization of tasks to improve efficiency. Our scheduler currently
utilizes three knobs for partition scheduling: (1) partition execution priorities set by our Architect, (2)
allowed partition state transitions, and (3) the availability of our agents (that may be busy handling
other partitions). Overall, this adaptive scheduling strategy enables large-scale experimentation by
improving resource efficiency while adhering to methodical experimental procedures.

3.4 EXPERIMENT KNOWLEDGE MODULE - INTERPRETABILITY

Interpretability is fundamental to experimentation—not only for scientific accountability but also for
effective experiment management. Specifically, all other components within Curie require this for
real-time visibility, enabling informed decision-making, efficient troubleshooting, and adaptability as
new insights emerge. A naive approach would be to delegate experimental knowledge management
entirely to LLM-based agents. However, LLMs alone are ill-suited for this task for two reasons: (1)
Inconsistent Reads: LLMs have inconsistent recall and are prone to forgetting (Xu et al.,|2024). With-
out a structured and verifiable record of experimental progress, they may retrieve outdated, irrelevant,
or hallucinated information, leading to misinterpretations, flawed conclusions, and compounding
errors over time. (2) Inconsistent Writes: LLMs tend to hallucinate, particularly when managing
large-scale experimental data. This lack of structured control risks corrupting experimental records,
propagating inaccuracies, and ultimately compromising the integrity of the experimentation process.
Unlike databases, LLMs do not inherently track provenance (Hoque et al.| 2024), making it difficult
to reconstruct how conclusions were reached. We address these two challenges in turn:

Structured Knowledge Reads. This mechanism organizes experimental progress in a structured
format. The process begins by restructuring new experimental plans that were written by our
Architect into an enriched format with critical metadata—such as setups, execution status, and results.
Subsequent modifications to any part of the plan are recorded as a time machine (see App. [H| Fig.[T2)
for experimental progression, maintaining a structured, DAG-like history of changes. This historical
record captures hypotheses tested, variable changes, and the reasoning behind key decisions. By
preserving this evolution, Curie can reconstruct past states, trace decision rationales, and diagnose
issues with greater precision.

Tiered Write Access. To maintain experimental integrity and minimize the risk of errors, the interface
enforces a tiered write access policy that restricts and validates updates made to the experimental
plan. This ensures that each component can only modify the portions of the plan they are responsible
for, while all changes undergo rigorous validation. For example, Technicians are permitted to
append experimental results to their assigned partitions but cannot modify unrelated sections of
the plan. Similarly, architects have broader write access, including the ability to create or remove
entire partitions, but their modifications are still constrained to specific attributes, such as updating
variable values or marking partitions for re-execution. Every write operation is validated before being
committed to the knowledge bank. This process ensures proper structuring of inputs and enforces
semantic integrity (e.g., that result file paths are valid). If errors are detected, the system returns
concise error messages, enabling agents to quickly identify and resolve issues. Through this, Curie
enhances robustness and error resistance in collaboration.

4 EXPERIMENTATION BENCHMARK

We design a novel benchmark to stress test Curie’s ability to automate experiments while en-
forcing rigor in front of real-world challenges. As shown in App. [E| Table 4] (with full details in
App.[F), our benchmark consists of 46 tasks across 4 domains within computer science (reasoning in
App. . Our tasks are derived directly from real-world influential research papers and use-cases
within popular open-source projects. We have open-sourced our benchmark alongside the agent
framework.

4.1 EXPERIMENT-CENTRIC TASK DESIGN

Instead of treating tasks as isolated problems with fixed solutions, we structure each task as a full
experimental process. This means that tasks require hypothesis formation, iterative refinement, and
rigorous validation, mirroring real-world experiment workflows rather than one-shot problem-solving.

Under review as a conference paper at ICLR 2026

Table 1: Main benchmark results in terms of four metrics introduced in We aggregate and average
the success rate among all tasks within each domain. The final row presents the weighted average,
computed based on the number of tasks in each domain. The standard error of success rate across
random trials are shown in App. [C.2| Table[3|

. Curie OpenHands ‘ Microsoft Magentic-One
Domain

Des. Exe. Alig. Con. | Des. Exe. Alig. Con. | Des. Exe. Alig. Con.

LLM Reason. 983 833 767 449 | 867 246 367 142|720 93 140 6.7
Vector DB 97.8 717 772 256 | 85.0 483 523 11.7 |8.0 64 636 00
Cloud Comp. 100.0 927 969 323|969 252 492 50 |950 63 338 0.0
ML Training 952 667 393 417 | 63.1 243 167 57 | 900 29 257 00

Weighted Avg. | 97.9 78.1 734 361 | 83.6 324 402 105|829 68 352 23

The process begins with distilling high-level contributions from research papers (e.g., theoretical
insights or empirical findings), or core system behaviors from open-source projects (e.g., the interplay
between configuration parameters and performance). These insights are then translated into testable
questions framed with explicit configurations, metrics, and expected outcomes. Ground truth data
is derived from published results or official benchmarks provided by open-source projects. We use
these findings to design tasks with three key components:

1. Experiment Formulation: Each task specifies the (a) Experiment Question (e.g., optimizing
performance); (b) Practical constraints (e.g., resource budgets); (c) High-level Setup Requirements -
Contextual details such as datasets, and experimental environments. This framing ensures that tasks
are open-ended, requiring iterative exploration rather than one-shot solutions.

2. Experimental Context: To ensure agents correctly interpret and execute tasks, the benchmark
provides detailed context for each question. This includes: (a) Domain Knowledge — Background
information essential for interpreting the problem. (b) Starter Code & Tools — Predefined scaffolding
to simulate real-world research workflows.

3. Ground Truth: This is defined in two key areas: (a) Experimental Design: Does the agent
correctly formulate the experiment, identifying relevant variables and methodologies? (b) Result
Analysis: Does the agent correctly interpret findings, and justify its conclusions? We outline the
expected outcomes or acceptable solution ranges.

4.2 EXPERIMENTAL COMPLEXITY

Experimental research varies in complexity across different dimensions. Our benchmark reflects this
by structuring tasks into a hierarchical framework, assessing an agent’s ability to handle increasingly
sophisticated experimentation tasks. Unlike standard benchmarks that classify tasks by a single
difficulty metric (e.g., easy, medium, hard), ours structures complexity along experiment-driven
dimensions (detailed definitions in App.[A):

1). Design Complexity: The complexity of structuring an experiment (e.g., requiring hypothesis
refinement), including defining the scope of exploration, selecting key variables, and structuring
parameter spaces—ranging from discrete to continuous and from sparse to dense configurations.

2). Experiment Setup Complexity: The difficulty of initializing and configuring the experimental envi-
ronment, from simple predefined setups to intricate dependencies requiring multi-step configuration.

3). Relationship Complexity: The interactions between variables and outcomes, from simple linear
dependencies to complex non-monotonic relationships.

4). Experiment Goal Complexity: The number of competing objectives and trade-offs involved, from
single-metric optimization to multi-objective balancing under constraints.

5 EVALUATION

We evaluate Curie using our experimentation benchmark, which consists of 46 research tasks
spanning varying complexity levels across four key domains (§4). To enhance statistical robustness,

Under review as a conference paper at ICLR 2026

©
S

:_\ 754 // // 77, CURIE X OpPENHANDS Mac ENTK‘/ //

t |2 % R B Z u B B 2

s lv zo . g =w 7 7 . z e B

$ 5017/ 7 B % 7 v 7 / % 7 7 7 7 7, ||

LR Bl B Bk B

PR R A X RRBRBFRR 2
Easy Medium Hdr(l Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hdl(]
Overall Complexity Design Complexity Setup Complexity Rel hip Complexity Goal Complexity

Figure 5: Average scores across different complexity dimensions at varying difficulty levels. Curie
outperforms baselines consistently, with performance generally dropping as complexity increases.

each task is executed independently for five trials for each of our baselines (below) and Curie, and
we report the average performance across these trials. Apart from our main results described in §5.1]
our evaluation includes our case studies (Fig.[2]and App.[B), and additional results (App. [C.T).

Baselines. We compare Curie with two state-of-the-art Al agents as our baselines: Open-
Hands (Wang et al., 2024d)), a top-performing coding agent, and Microsoft Magentic (Fourney
et al.,|2024), a generalist multi-agent system. These baselines were selected because our benchmark
primarily focuses on coding-related tasks within computer science, where both models demonstrate
strong performance, with the expectation that Magentic, as a generalist multi-agent system, may be
able to generalize to experimental tasks too. To ensure fairness, each baseline is provided with a
detailed system prompt instructing them to act as a professional experimenter (see App.[G.I). All
baselines and Curie utilize GPT-40 as the underlying LLM.

Performance Metrics. We assess performance using four key metrics, each evaluated as a binary
score per task, ensuring rigor at every stage of the experimentation process:

1. Experiment Design — Ability to design the high-level experiment plan to address the question.

2. Execution Setup — Ensuring that the generated code (experiment setup) is executable and produces
consistent results across multiple runs.

3. Implementation Alignment — Faithfulness of the experimental setup with the proposed plan.

4. Conclusion Correctness — Accuracy in reflecting the ground truth answer to the question.

Evaluator. We employ an LLM judge (Zheng et al., 2023) for straightforward verification such
as checking design, setup and conclusion, where the ground truth is known. However, we manually
assess the implementation alignment, as detecting semantic discrepancies between the intended
methodology and code is non-trivial (reasoning in App.[D.5). To ensure accuracy, we also verify the
LLM judge’s assessments by cross-checking a subset of its evaluations against expert annotations,
measuring agreement rates, and refining the judge system prompt. Details of the evaluation prompts
are provided in App.[G.2] This hybrid evaluation approach enables reliable and scalable assessment
of experimentation performance.

5.1 BENCHMARK PERFORMANCE

Table [T] shows aggregated success rates across all performance metrics and benchmark task domains.

Performance Breakdown By Metric. Across all four metrics, Curie consistently outperforms the
baselines, demonstrating the benefits of our Experimental Rigor Engine in improving experimentation
performance. (i) For experiment design correctness, all frameworks perform well since the current
tasks are relatively straightforward and do not require iterative refinement. However, for more
complex research tasks, Curie holds an advantage by dynamically refining hypotheses based on
intermediate observations, whereas baselines rely on static planning. Our experimental knowledge
module further enhances performance by improving recall and adaptation. (ii) For execution setup
and implementation alignment, Curie demonstrates higher reliability, as Intra-ARM proactively
validates and corrects execution steps, while Inter-ARM guarantees that we follow methodical task
transitions. This results in particularly strong execution setup performance, from 66.7% to 92.7%.

Under review as a conference paper at ICLR 2026

OpenHands (with 32.4% and 40.2%), as a coding-specialized agent, outperforms Magentic in this
aspect. However, it still struggles with incomplete or erroneous setups, including getting stuck in
loops, syntax errors, logic mistakes, and unresolved dependencies—Ieading to execution failures
in complex environments. Magentic, in particular, performs poorly in locating the correct files in
the task starter file and handling script input/output. (iii) Finally, for conclusion correctness, its
accuracy is largely constrained by earlier errors, as conclusions rely on the correctness of experimental
results. However, Curie maintains a strong lead due to its Experiment Knowledge Module, which
systematically documents experimental results for structured data analysis. This enables Curie to
achieve a significantly higher conclusion score of 36.1%, compared to 10.5% for OpenHands and
2.3% for Magentic. While Magentic demonstrates relatively decent alignment, it struggles to translate
this into meaningful conclusions because of previous cascading errors.

Performance Breakdown By Domain. Across all four task domains, Curie consistently outper-
forms the baselines, demonstrating Curie’s ability to adapt to different research domains. (i) First,
for LLM reasoning tasks, Curie performed exceptionally well, achieving the highest conclusion
accuracy at 44.9%. OpenHands had its best performance in this category (14.2%), while Magentic
attained its only non-zero score of 6.7%. We attribute this to the inherent intuitiveness of conclusions
for our tasks in this domain. (ii) For Vector DB tasks, both OpenHands and Magentic achieved their
highest alignment scores—>52.3% and 63.6%, respectively—Ilikely due to the familiarity of the task.
Alignment was also easier given the availability of well-established open-source benchmarks and
shorter execution runs, which provided faster feedback. (iii) For Cloud Computing tasks, Curie
outperformed OpenHands significantly in all aspects (e.g., 6.5 x the conclusion accuracy). This is
because these tasks often involve long-running experiments, which requires robust execution tracking
and dynamical experimentation workflows adjustment based on partial results. (iv) Finally, for ML
Training tasks, all agents underperformed in alignment and execution as the detailed environment
setup instructions are not provided for these tasks. Despite this, Curie can figure out the correct
setup by reflection and refinement, achieving a 7.3 x higher conclusion accuracy than OpenHands.

Performance Breakdown by Complexity. Next, we analyze how each framework performs as we
increase difficulty within each complexity dimension. Fig. [5|reports the aggregated performance score,
computed as the average across all four evaluation metrics. We observe that increasing complexity
difficulties across all dimensions correlates with a decline in performance across all agents. However,
the rate of degradation varies across complexity types and agent architectures. Notably, Magentic
consistently underperforms across all complexity levels, highlighting the robustness of our complexity-
based difficulty scaling in distinguishing agent capabilities. Further, we observe a sublinear decline in
performance as task complexity increases, suggesting that our hardest tasks could be made even more
challenging. Despite this, our current results demonstrate Curie’s capabilities, supported by our
case studies. Exploring the limit of experimentation difficulty and its impact on model performance
remains an open direction for future work.

In summary, our findings underscore the importance of rigorous evaluation across experimentation
stages, shedding light on each framework’s strengths and limitations under varying conditions.

6 CONCLUSION AND FUTURE WORK

We introduced Curie, an Al agent designed to automate and enhance the rigor of scientific ex-
perimentation. Central to its design is the Experimental Rigor Engine, which enforces methodical
control, reliability, and interpretability. To assess Curie’s effectiveness, we developed a new
Experimentation Benchmark featuring real-world research challenges. Our empirical evaluation,
comparing Curie against state-of-the-art agents, demonstrated its capability to automate rigorous
experimentation.

We hope Curie inspires further advancements toward fully autonomous and rigorous experimenta-
tion in the era of Al agent-driven scientific research. Several open research challenges remain: For
instance, adapting Curie for interdisciplinary research requires accommodating domain-specific
methodologies, uncertainty control, and extended time scales, such as long-term biological stud-
ies (Hilty et al.,|2021). Moreover, enabling knowledge reuse (Wang et al.,|2024¢) across experiments
could enhance efficiency and further accelerate discovery.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All code and data supporting our work are available through an anonymous repository at https://
anonymous.4open.science/r/Curie-689B/, and will be open-sourced upon acceptance.
Details of our benchmark are provided in App. [Fland §4] while details of our system architecture are
described in The benchmark complexity and task selection process are described in App.|A]and
App.[D.3] respectively. Curie’s system prompts and evaluation prompts are provided in App.[G.|
and App. [G.2] respectively. Various case studies for Curie are described in App. [B] Finally,
additional evaluation results and analyses are provided in App.

8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 guidelines on LLM usage, we disclose that LLMs were used solely
for grammar and style checking during the preparation of this manuscript. No LLMs contributed to
research ideation, experimental design, analysis, or substantive writing.

10

https://anonymous.4open.science/r/Curie-689B/
https://anonymous.4open.science/r/Curie-689B/

Under review as a conference paper at ICLR 2026

REFERENCES

Shubham Agarwal, Issam H Laradji, Laurent Charlin, and Christopher Pal. Litllm: A toolkit for
scientific literature review. arXiv preprint arXiv:2402.01788, 2024.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku. 2024.
https://www.anthropic.com/news/3-5-models—and-computer—-use.

Marilyn Armour, Stephanie L. Rivaux, and Holly Bell. Using context to build rigor: Application to
two hermeneutic phenomenological studies. Qualitative Social Work, 8(1):101-122, Mar 2009.
ISSN 1473-3250. doi: 10.1177/1473325008100424. URL https://doi.org/10.1177/
1473325008100424.

AutoGen. Conversation patterns. 2024. https://microsoft.github.io/autogen/0.2/
docs/tutorial/conversation-patterns.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity, 2023.
URLhttps://arxiv.org/abs/2302.04023.

Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, and Jessica Montgomery. Ai
for science: An emerging agenda, 2023. URL https://arxiv.org/abs/2303.04217.

Andres M Bran, Zlatko Joncev, and Philippe Schwaller. Knowledge graph extraction from total
synthesis documents. In Proceedings of the 1st Workshop on Language+ Molecules (L+ M 2024),
pp. 74-84, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents
for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024.

Alexis Chevalier, Jiayi Geng, Alexander Wettig, Howard Chen, Sebastian Mizera, Toni Annala,
Max Jameson Aragon, Arturo Rodriguez Fanlo, Simon Frieder, Simon Machado, Akshara Prab-
hakar, Ellie Thieu, Jiachen T. Wang, Zirui Wang, Xindi Wu, Mengzhou Xia, Wenhan Xia, Jiatong
Yu, Jun-Jie Zhu, Zhiyong Jason Ren, Sanjeev Arora, and Danqi Chen. Language models as science
tutors, 2024. URL https://arxiv.org/abs/2402.11111.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168l

Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter
Norgaard, Nayantara Mudur, Martyna Plomecka, Paul Raccuglia, Yasaman Bahri, Victor V. Albert,
Pranesh Srinivasan, Haining Pan, Philippe Faist, Brian Rohr, Ekin Dogus Cubuk, Muratahan
Aykol, Amil Merchant, Michael J. Statt, Dan Morris, Drew Purves, Elise Kleeman, Ruth Alcantara,
Matthew Abraham, Muqthar Mohammad, Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorfman,
Eun-Ah Kim, Michael P Brenner, Viren Jain, Sameera Ponda, and Subhashini Venugopalan. Curie:
Evaluating llms on multitask scientific long context understanding and reasoning, 2025. URL
https://arxiv.orqg/abs/2503.13517.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

11

https://www.anthropic.com/news/3-5-models-and-computer-use
https://doi.org/10.1177/1473325008100424
https://doi.org/10.1177/1473325008100424
https://microsoft.github.io/autogen/0.2/docs/tutorial/conversation-patterns
https://microsoft.github.io/autogen/0.2/docs/tutorial/conversation-patterns
https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2303.04217
https://arxiv.org/abs/2402.11111
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2503.13517

Under review as a conference paper at ICLR 2026

Simon Frieder, Luca Pinchetti, , Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 27699-27744. Curran Associates, Inc., 2023.
URL |https://proceedings.neurips.cc/paper_files/paper/2023/file/
58168e8a92994655d6da3939%e7cc0918-Paper-Datasets_and_Benchmarks.
pdf.

Alireza Ghafarollahi and Markus J. Buehler. Sciagents: Automating scientific discovery through multi-
agent intelligent graph reasoning, 2024. URL https://arxiv.org/abs/2409.05556,

T. Gill and Tommy Gill. What is research rigor? lessons for a transdiscipline. Informing Science: The
International Journal of an Emerging Transdiscipline, 23:047-076, 01 2020. doi: 10.28945/4528.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul
Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim
Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs Kegl,
Haitham Bou-Ammar, and Jun Wang. Large language models orchestrating structured reasoning
achieve kaggle grandmaster level, 2024. URL https://arxiv.org/abs/2411.03562,

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
Pan, Teng Wu, Jiagian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A. Merrill, Jeffrey
Heer, and Tim Althoff. Blade: Benchmarking language model agents for data-driven science, 2024.
URL https://arxiv.org/abs/2408.09667.

Xuemei Gu and Mario Krenn. Generation and human-expert evaluation of interesting research ideas
using knowledge graphs and large language models. arXiv preprint arXiv:2405.17044, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021a. URL https://
arxiv.orqg/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.
URLhttps://arxiv.org/abs/2103.03874.

Jonas Hilty, Bertrand Muller, Florent Pantin, and Sebastian Leuzinger. Plant growth: the what, the how,
and the why. New Phytologist, 232(1):25-41, 2021. doi: https://doi.org/10.1111/nph.17610. URL
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.17610.

Lorne J Hofseth. Getting rigorous with scientific rigor. Carcinogenesis, 39(1):21-25, January 2018.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=VtmBAGCN7ol

Md Naimul Hoque, Tasfia Mashiat, Bhavya Ghai, Cecilia D Shelton, Fanny Chevalier, Kari Kraus,
and Niklas Elmqvist. The hallmark effect: Supporting provenance and transparent use of large
language models in writing with interactive visualization. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pp. 1-15, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/2310.
03302.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2409.05556
https://arxiv.org/abs/2411.03562
https://arxiv.org/abs/2408.09667
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.17610
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302

Under review as a conference paper at ICLR 2026

Hiroaki Kitano. Nobel turing challenge: creating the engine for scientific discovery. npj Systems
Biology and Applications, 7(1):29, Jun 2021. ISSN 2056-7189. doi: 10.1038/s41540-021-00189-3.
URLhttps://doi.org/10.1038/s41540-021-00189-3.

Stefan Kramer, Mattia Cerrato, Saso DZeroski, and Ross King. Automated scientific discovery: From
equation discovery to autonomous discovery systems, 2023. URL https://arxiv.org/
abs/2305.02251.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024a.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024b. URL https://arxiv.org/
abs/2408.06292,

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models, 2024. URL
https://arxiv.org/abs/2407.01725.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.
12983

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P Wellawatte,
Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehensive benchmark
for llm-based agents in computational biology, 2025. URL https://arxiv.org/abs/2503|
00096.

Siddharth Narayanan, James D. Braza, Ryan-Rhys Griffiths, Manu Ponnapati, Albert Bou, Jon
Laurent, Ori Kabeli, Geemi Wellawatte, Sam Cox, Samuel G. Rodriques, and Andrew D. White.
Aviary: training language agents on challenging scientific tasks, 2024. URL https://arxiv.
org/abs/2412.21154.

Biqing Qi, Kaiyan Zhang, Kai Tian, Haoxiang Li, Zhang-Ren Chen, Sihang Zeng, Ermo Hua,
Hu Jinfang, and Bowen Zhou. Large language models as biomedical hypothesis generators: A
comprehensive evaluation, 2024. URL https://arxiv.org/abs/2407.08940.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants. arXiv
preprint arXiv:2501.04227, 2025.

Jamshid Sourati and James A Evans. Accelerating science with human-aware artificial intelligence.
Nature human behaviour, 7(10):1682—-1696, 2023.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and
Kai Yu. Scieval: A multi-level large language model evaluation benchmark for scientific re-
search. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):19053-19061,
Mar. 2024a. doi: 10.1609/aaai.v38i17.29872. URL https://ojs.aaai.org/index.php/
AAAT/article/view/29872l

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents, 2024b. URL https://arxiv.org/abs/2304.09542.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024a. URL https://arxiv.org/abs/
2311.09835.

13

https://doi.org/10.1038/s41540-021-00189-3
https://arxiv.org/abs/2305.02251
https://arxiv.org/abs/2305.02251
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2407.01725
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2503.00096
https://arxiv.org/abs/2503.00096
https://arxiv.org/abs/2412.21154
https://arxiv.org/abs/2412.21154
https://arxiv.org/abs/2407.08940
https://ojs.aaai.org/index.php/AAAI/article/view/29872
https://ojs.aaai.org/index.php/AAAI/article/view/29872
https://arxiv.org/abs/2304.09542
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835

Under review as a conference paper at ICLR 2026

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark Gerstein. Biocoder:
A benchmark for bioinformatics code generation with large language models, 2024b. URL
https://arxiv.org/abs/2308.16458.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian
Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta,
and Hao Peng. Scicode: A research coding benchmark curated by scientists, 2024. URL https:
//arxiv.org/abs/2407.13168.

Keith Tyser, Ben Segev, Gaston Longhitano, Xin-Yu Zhang, Zachary Meeks, Jason Lee, Uday
Garg, Nicholas Belsten, Avi Shporer, Madeleine Udell, Dov Te’eni, and Iddo Drori. Ai-driven
review systems: Evaluating llms in scalable and bias-aware academic reviews, 2024. URL
https://arxiv.org/abs/2408.10365.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D. Goodman.
Hypothesis search: Inductive reasoning with language models, 2024a. URL https://arxiv,
org/abs/2309.05660.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models, 2024b. URL https://arxivl
org/abs/2307.10635.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yangiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models, 2024c. URL https://arxiv.
org/abs/2307.10635.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024d.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory, 2024e.
URLhttps://arxiv.org/abs/2409.074209.

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu.
Knowledge conflicts for llms: A survey. arXiv preprint arXiv:2403.08319, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Jiakang Yuan, Xiangchao Yan, Botian Shi, Tao Chen, Wanli Ouyang, Bo Zhang, Lei Bai, Yu Qiao,
and Bowen Zhou. Dolphin: Closed-loop open-ended auto-research through thinking, practice, and
feedback, 2025. URL https://arxiv.org/abs/2501.03916.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing
the power of large language models in solving machine learning tasks, 2024a. URL https:
//arxiv.org/abs/2304.14979.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt: Au-
tomatic machine learning with gpt, 2023. URL https://arxiv.org/abs/2305.02499,

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A
comprehensive survey of scientific large language models and their applications in scientific
discovery. arXiv preprint arXiv:2406.10833, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,

Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

14

https://arxiv.org/abs/2308.16458
https://arxiv.org/abs/2407.13168
https://arxiv.org/abs/2407.13168
https://arxiv.org/abs/2408.10365
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2409.07429
https://arxiv.org/abs/2501.03916
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2305.02499

Under review as a conference paper at ICLR 2026

Yanggiaoyu Zhou, Haokun Liu, Tejes Srivastava, Hongyuan Mei, and Chenhao Tan. Hypothe-
sis generation with large language models. In Proceedings of the 1st Workshop on NLP for
Science (NLP4Science), pp. 117-139. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.nlp4science-1.10. URL http://dx.doi.org/10.18653/v1/2024|
nlp4dscience—-1.10l

15

http://dx.doi.org/10.18653/v1/2024.nlp4science-1.10
http://dx.doi.org/10.18653/v1/2024.nlp4science-1.10

Under review as a conference paper at ICLR 2026

Table 2: Descriptions of various complexity levels for experiments across multiple dimensions.

Complexity Dimension Level Description and Example
Easy Straightforward setup with minimal dependencies. Example:
Experiment Setup Running an inference script on local hardware.

Med. Moderate setup involving multiple components. Example:
Setting up a VM cluster and distributing workloads.

Hard Complex setup requiring multiple dependencies and external
configurations. Example: Setting up a distributed system with
networking, storage, and inter-region communication.

Easy Well-defined experiments with few variables, and simple pa-

Design rameter spaces.

Med. Requires a moderate number of multiple key variables; with a
mix of discrete and continuous parameters.

Hard Involves complex variable interactions, and densely structured
parameter spaces requiring adaptive exploration.

Easy Single metric with a clear, measurable goal and no significant

Experiment Goal trade-offs. Example: Success rate for a configuration.

Med. Multiple objectives, with moderate trade-offs but relatively
independent goals. Example: Balancing cost and latency.

Hard Conflicting objectives with high interdependencies, requiring
sophisticated optimization and rigorous validation. Example:
Minimizing cost while ensuring latency under 100ms and
CPU utilization above 80%.

Easy Linear relationships. Example: Performance scales linearly

Relationship with the number of CPUs.

Med. Nonlinear but monotonic relationships: e.g., sublinear, log-
arithmic. Example: Diminishing returns in performance as
more CPUs are added.

Hard Non-monotonic or stochastic dependencies. Example: Perfor-
mance fluctuates due to unpredictable network interference.

Easy If none of the below hold.

Overall Med. At least 2 dimensions are medium, or if only 1 dimension is
hard with 1 other dimension being medium.

Hard At least 2 dimensions are hard.

A CURIE BENCHMARK COMPLEXITY EXPLANATION

We describe in detail our complexity level definitions in Table.

B CASE STUDIES FOR CURIE

We provide two example case studies for LLM reasoning tasks that Curie was able to extend from
the paper The Impact of Reasoning Step Length on Large Language Models (Jin et al.,[2024)).

In Fig.[6a] the objective of this experiment is to examine whether different models exhibit varying
accuracy levels based on the number of reasoning steps. The experiment maintains constant vari-
ables, including the dataset (Last_letters), the method (auto_cot), and the evaluation metric
(accuracy). The independent variables include the model type (gpt-4o-mini vs. gpt-40) and
the number of reasoning steps (1, 2, 3, 4, 5, 6, 10), while the dependent variable is the model’s
accuracy. The experiment consists of a control group and experimental groups. The control group
uses gpt-4o-mini with a single reasoning step to establish a baseline accuracy. The experimental
groups involve testing gpt —4o-mini with reasoning steps ranging from 2 to 10 and gpt -4 o with
reasoning steps from 1 to 10. The results will help determine whether reasoning step variations
impact accuracy differently across models.

Curie extends the original investigation by examining whether different LLMs exhibit varying
accuracy using GPT-40 and GPT-40-mini. While the original work primarily focused on general

16

Under review as a conference paper at ICLR 2026

GPT-40 GPT-40-MINI LAST_LETTERS GSM8K

100 100

accuracy (%)
o
o

0 T T T T T T T 04 T T T T T T
1 2 3 4 5 6 10 1 2 3 4 5 6 10
Added Steps Added Steps
(a) Question 6: "Does the optimal number of (b) Question 8: "What is the relationship between the
reasoning steps vary across different LLMs?" complexity of a task (e.g., as measured by the number of

logical inferences or mathematical operations needed) and
the optimal length of the reasoning chain?"

Figure 6: Case studies on LLM reasoning tasks.

trends, Curie establishes a structured experimental framework that includes both control and
experimental groups and introduces a new focus on optimal reasoning steps. This refinement
provides a more nuanced understanding of how reasoning steps affects accuracy across different
LLM architectures.

In Fig. [6b] the objective of this experiment is to examine the relationship between task complexity
and the optimal length of reasoning chains in large language models (LLMs). The experiment
maintains constant variables, including the model (gpt-4o0-mini), the method (auto_cot), and
the environment setup (OpenAl credentials and a Conda environment). The independent variable
is the number of reasoning steps, controlled through different demo files, while the dependent
variable is the model’s accuracy, as reported in the log files. The experiment consists of a control
group and experimental groups. The control group uses the gsm8k_1 demo file with a single
reasoning step to establish a baseline accuracy. The experimental groups involve testing gsm8k with
reasoning steps from gsm8k_2 and gsm8k_3, and last_letters with reasoning steps ranging
from last_letters_1to last_letters_10. The results will help determine whether task
complexity influences the optimal number of reasoning steps required for maximizing accuracy in
LLMs.

Curie extends the scope by analyzing how task complexity relates to the optimal length of reasoning
chains. This study differentiates between problem types (e.g., logical inference and mathematical
operations) and systematically evaluates the effect of reasoning step count within different datasets
(gsm8k and last_letters). By introducing controlled experimental conditions, Curie enables
a more detailed exploration of how task complexity interacts with reasoning steps to optimize model
performance.

C EXTENDED EVALUATION

C.1 FINE-GRAINED PERFORMANCE BREAKDOWN BY INDIVIDUAL METRICS

We detail fine-grained breakdowns for each of our performance metrics mentioned in §5| Here
we observe the general trend that increasing complexity across all dimensions causes reductions in
average metric scores, as shown in Fig. [7] Fig.[8]and Fig.[0] respectively. In particular, we observe
that conclusion scores are most heavily affected as complexity increases across dimensions, reaching
0% on many occasions for Magentic in particular. For design complexity on the other hand, we
observe that we’re able to maintain a relatively high average score across all baselines and Curie,
but this tapers down as the difficulty increases across dimensions.

17

Under review as a conference paper at ICLR 2026

100

= 7 7 ¢/ 2 Curig X OpeNHANDS MAGENTIC

751 /) . | 7 v

e P17 72 7 v 2 v v v v

s B T b R KL T Oy b e U

5 251 % % %’\ 7 / g 2(éy é& % % éé /A< §)< ////\

-\ % XK 4 e X Ty X 7 R X
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Overall Complexity Design Complexity Setup Complexity Relationship Complexity Goal Complexity

Figure 7: Average alignment scores across different complexity dimensions at varying difficulty
levels for Curie, OpenHands, and Magentic. Curie outperforms the others consistently, with
performance generally dropping as complexity increases.

< /7 CURIE X OPENHANDS MAGENTIC

< 159

I

5049

o M7 7 5

- 2 % 7 // 7 - /

s 2] | | z . 7 |] 7 ‘

AL 7 DD, G Ml Oy DN Do .. B D
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard
Overall Complexity Design Complexity Setup Complexity Relationship Complexity Goal Complexity

Figure 8: Average conclusion scores across different complexity dimensions at varying difficulty
levels for Curie, OpenHands, and Magentic. Curie outperforms the others consistently, with
performance generally dropping as complexity increases.

100

< 7 B / 772 CURIE ,X (5P;NHAVDS KI-\(‘F\ITI(‘/ / B z
%h? A7 7 KL o o . o R s DX PO G
ElitTlil11
5 7 / o
Falx 2 X 7 é 2z 7 ,
FAAARAAAAARARRAA G
Easy Medium Hard Easy Medium Hard Easy Medium Hnd Els\ Modunn Hard Easy Medium Hard
Overall Complexity Design Complexity Setup Complexity Relationship Complexity Goal Complexity

Figure 9: Average design scores across different complexity dimensions at varying difficulty levels for
Curie, OpenHands, and Magentic. Curie outperforms the others consistently, with performance
generally dropping as complexity increases.

Table 3: Standard error across random trials in terms of four metrics introduced in

Curie OpenHands Microsoft Magentic-One
Des. Exe. Alig. Con. | Des. Exe. Alig. Con. | Des. Exe. Alig. Con.

LLM Reason. 6.3 9.8 8.6 86 | 125 6.7 1.5 5.0 82 42 5.1 6.1
Vector DB 22 13 6.8 8.2 7.8 8.5 9.0 5.7 7.8 3.5 8.5 0.0
Cloud Comp. 0.0 45 2.9 13.0 | 29 48 8.9 4.7 3.1 59 147 00
ML Training 44 89 146 162 | 109 114 75 34 6.7 26 8.5 0.0

Weighted Avg. | 97.9 78.1 734 36.1 | 83.6 324 402 105|829 68 352 23

Domain

C.2 STANDARD ERROR ACROSS RANDOM TRIALS

To demonstrate the statistical significance of the results presented in Table[I] we present the standard
error of the results across random trials. We evaluated Curie and our 2 baselines across 46 tasks
with 5 independent trials each, yielding a total of 230 data points per framework. The number of
trials conducted is consistent with related benchmarks; for instance, MLLAgentBench ran 8 trials per
task, while ScienceAgentBench ran 3 trials per task. Here, we compute standard errors of the mean
pass rate across tasks, treating each task’s average score over its 5 trials as one data point.

18

Under review as a conference paper at ICLR 2026

D DISCUSSION

D.1 RELATED BENCHMARKS

Our benchmark is necessary as there is currently no benchmark that captures the true nature of
experimentation as practiced in real-world scientific settings. This gap exists because experimental
tasks go beyond analyzing static datasets or single-step solutions—they require thoughtful design
evaluation, complex setup procedures, and iterative reasoning and empirical testing to arrive at
valid conclusions. Prior scientific benchmarks differ from ours: for instance, SciBench (Wang
et al., [2024c) emphasizes scientific reasoning, such as mathematical problem-solving, which is
categorically different from experimental inquiry. SciCode (Tian et al.,|2024)) targets domain-specific
code generation for simple functions. BLADE (Gu et al., 2024) performs statistical analysis on
fixed datasets or environments. In contrast, our benchmark includes tasks that require models to
autonomously curate data. BixBench (Mitchener et al.,[2025), a contemporaneous bioinformatics
benchmark, explores open-ended tasks lacking clear optimization metrics, and we look forward
to integrating it into our framework. Existing ML training benchmarks such as those mentioned
in Agent K (Grosnit et al.| 2024) typically provide preconfigured environments, skipping essential
but potentially complex experiment setup procedures (e.g., installation of packages, dependency
management) that must be completed first. In contrast, our benchmark mirror realistic experimentation
scenarios, where researchers are required to build and configure their experimental environments
from scratch.

D.2 RELATED AGENTS

Our view is that the existing iteration of Deep Research (DR) is complementary to Curie, and most
ideally suited for the hypothesis-generation phase prior to experimentation. According to its official
description, DR is designed to “find, analyze, and synthesize hundreds of online sources”, optimized
for “web browsing and data analysis”, and leverages “browser and Python tool use” to “expedite
complex, time-intensive web research”. As an example, our cloud computing experiments would
benefit from using DR to efficiently gather detailed information from the web about specific machine
configurations and associated costs, followed by Curie for the subsequent experimentation phase,
which involves building, configuring, and interacting directly with remote cloud machines. We also
envision Curie to be used as an experiment module within AI Scientist (Lu et al.,[2024b), as it’s
current experimentation module is composed of simple LLM prompts. Also, Aviary (Narayanan
et al.,|2024) serves primarily as a gymnasium focused on providing abstractions and interfaces (e.g.,
building scenario-specific environments) for scientific agent development through learning. We can
leverage Aviary’s learning capabilities within specialized tasks and then apply Curie to enforce
rigor.

Our baseline agents are representative for our domains. OpenHands is one of the strongest coding
agents available, that has seen integration with various scientific and ML benchmarks, including
BioCoder (Tang et al.l2024b), DiscoveryBench (Majumder et al., 2024), and ML-Bench (Tang et al.,
2024a)). Moreover, we include a strong generalist multi-agent system (Magentic-One) by Microsoft,
which has seen strong performance on e.g., GAIA (Mialon et al.,[2023). Finally, we ensure fairness
in all comparisons by standardizing the evaluation setup: all agents are tested on the same tasks under
identical conditions, and use the same underlying model configuration.

D.3 BENCHMARK TASK SELECTION

Our benchmark comprises 46 scientific tasks selected to reflect the diversity and complexity of
real-world experimentation. These include experiments directly extracted from research papers,
capturing well-defined hypotheses, configurations, and evaluation criteria. We also include ML
training tasks adapted from benchmarks such as MLAgentBench, which cover canonical problems
like image classification, sentiment analysis, and Kaggle competitions. To reflect modern scientific
workflows, we incorporate cloud computing tasks that require remote environment setup and in-
teraction with external systems—scenarios commonly encountered in real experiments but rarely
addressed in existing benchmarks. Additionally, we include vector indexing tasks (e.g., Faiss-based)
that require agents to navigate trade-offs between recall, memory usage, and latency, analogous to
real-world scientific challenges like tuning experimental conditions to balance yield, purity, and time.

19

Under review as a conference paper at ICLR 2026

Table 4: Experimentation benchmark overview. (E for Easy, M for Medium, H for Hard)

Domain Complexity s
E M H Description Sources
LLM Reasoning 4 5 7 | Investigates strategies for scaling test- | Research papers:
time computation in LLMs. (Brown et al.l [2024),

(Jin et al.| [2024).
Vector Indexing 6 6 3 | Examines efficient vector indexing meth- | Open-source reposito-

ods, analyzing its trade-offs. ries: Faiss (Douze et al.|
2024)
Cloud Computing | 2 4 2 | Optimize various cloud setups. Cloud providers: AWS
ML Training 3 3 1 | Optimize ML training pipelines. Benchmark: (Huang

et all [2024), (Hong
et al., 2024b)

Collectively, these tasks were chosen to evaluate an agent’s ability to handle both conceptual rigor
and operational complexity in automated experimentation.

D.4 ABLATION STUDY

Performing ablation study by masking away Curie components is challenging in practice. To start
with, the Rigor Engine is integral to Curie ’s functionality, making isolated ablations challenging
without fundamentally disrupting the experimentation process. Our logging analysis reveals that
even at the initial step—formulating the experiment design plan—the Intra-Agent Rigor Module
is critical, requiring multiple refinements to ensure a structured plan with essential elements like
constant, dependent, and independent variables. Without this module, the design lacks the necessary
format and rigor, rendering subsequent steps—like execution and analysis—unfeasible or misaligned.

In regards to our inter-agent rigor module and experiment knowledge module, they are necessary
and fundamental components of rigor, as they are meant to guarantee methodical control and
interpretability; in other words, it is not about the magnitude of their contribution to accuracy, but
their ability to provide guarantees that matters. For instance, our knowledge module provides, among
other things, a "time machine" view into the experiment—allowing users to trace exactly what
occurred, when it happened, and how each fine-grained decision was made. This is crucial not only
for interpretability but also for validating and reproducing experimental outcomes. Our inter-agent
module, among other things, ensures that decisions are not made in isolation, e.g., each agent decision
must be checked by an Intra-Agent rigor policy before proceeding, reducing the risk of spurious
outcomes and enforcing a higher standard of internal consistency across the experimental pipeline.

D.5 MANUAL EFFORTS

We manually assess the implementation alignment, as detecting semantic discrepancies between the
intended methodology and code is non-trivial. We’ve noticed that the LLM judge can fail when the
task requires a complex setup, or domain-specific understanding. As an example, the LLM judge
may fail, for instance, in understanding that correctly implementing one of our cloud questions
involves many intricate steps including instantiating a machine using specific AWS CLI commands,
provisioning a unique key pair using openssl before attaching it, deploying traffic simulators on top
of the machine, etc.

E BENCHMARK COMPOSITION.

The composition of our benchmark is provided in Table. 4]

20

Under review as a conference paper at ICLR 2026

F BENCHMARK DETAILS.

Domain

Question

C 7

ity

Design

Relat.

Goal

Setup

Overall

LLM Reasoning

How does the number of generated samples per question impact the
overall success?

Easy

Easy

Easy

Easy

Easy

‘What is the mathematical relationship between the number of generated
samples per question and the overall success rate? For instance, does the
rate of success scale linearly, quadratically, or follow another pattern as
the number of generated samples increases?

Easy

Medium

Easy

Easy

Easy

Considering that a larger, more capable model (e.g., gpt-40) costs signif-
icantly more per query compared to a smaller model (e.g., gpt-4o-mini),
would it be feasible to use the smaller model, sample more responses,
and achieve comparable rate of success while being more cost-effective?

Medium

Medium

Medium

Easy

Medium

To achieve 80% success rate for gsm8k task, what is the most cost-
effective configuration? Specifically, which model (gpt-40-mini or gpt-
40) should be used, and how many samples per question should be
generated to minimize cost? You will need to test at least 4 samples
sizes, and make sure to test each of the chosen samples sizes on both
gpt-4o-mini and gpt-4o.

Hard

Medium

Hard

Hard

Hard

How does varying the sampling temperature affect the diversity and
quality of responses when using a fixed number of samples?

Hard

Hard

Hard

Medium

Hard

One approach to scaling language model inference is to repeatedly sam-
ple candidate solutions from the model and aggregate them using major-
ity voting. How does the number of samples impact the overall accuracy
on the GSMSK task?

Medium

Hard

Easy

Medium

Medium

How effective is paper’s methodology to scale test-time compute, as
repeated sampling in LLMs often leads to duplicate answers?

Medium

Medium

Easy

Medium

Medium

Will increasing the number of reasoning steps in a Chain of Thought
(CoT) prompt improve LLM accuracy up to a saturation point?

Hard

Hard

Medium

Medium

Hard

Does the optimal number of reasoning steps for multi-step reasoning
tasks vary based on the problem type (e.g., mathematical and logic
problems)?

Medium

Medium

Hard

Hard

Hard

Can the accuracy impact of different prompting methods like Zero-
shot and Auto-CoT be systematically improved by varying the number
of reasoning steps without adding new content in a tightly controlled
experiment setting, by using methods such as adding sentences that
restate the question to increase steps?

Easy

Medium

Easy

Easy

Easy

How does the impact of an incorrect step on overall LLM performance
vary across different task types, such as process-oriented tasks versus
symbolic reasoning or logic tasks?

Hard

Medium

Hard

Medium

Hard

What is the optimal number of reasoning steps for different types of
tasks to maximize accuracy while minimizing computational cost?

Medium

Medium

Easy

Medium

Medium

Does the optimal number of reasoning steps vary across different LLMs
[GPT-40, GPT_40-mini], and if so, what is the nature of that relation-
ship?

Hard

Medium

Easy

Medium

Medium

How do different methods of expanding reasoning steps (e.g., repeating
the question, self-verification, making equations) affect the model’s
accuracy, and are some expansion strategies more effective than others?

Hard

Medium

Easy

Hard

Hard

‘What is the relationship between the complexity of a task (e.g., as mea-
sured by the number of logical inferences or mathematical operations
needed) and the optimal length of the reasoning chain?

Easy

Medium

Easy

Easy

Easy

How does the position of an incorrect step within the reasoning chain
affect the overall outcome? Is an early error more detrimental than a
later one?

Hard

Medium

Medium

Hard

Hard

Considering that larger models generally perform better, would it be
more cost-effective to use a smaller model with longer reasoning chains
or a larger model with fewer steps for a given level of accuracy?

Hard

Medium

Medium

Hard

Hard

Vector Indexing

‘What is the relationship between query latency for the SIFT1M dataset
and efSearch values with the HNSW index? Use a fixed value of k=10,
M=32, efConstruction=40.

Easy

Easy

Easy

Easy

Easy

‘What is the effect of varying M (number of neighbors per node) on the
memory usage, recall, and query latency for the SIFT1M dataset with
the HNSW index? Use varying M values of 16, 24, 32. Use fixed values
of k=10, efConstruction=40.

Easy

Medium

Medium

Easy

Medium

‘What is the optimal combination of M and efSearch to minimize memory
usage while maintaining a recall of at least 90%? Use k=10, efConstruc-
tion=40, and use varying M values of 16, 24, 32. efSearch is not a
parameter that you need to touch.

Easy

Easy

Medium

Easy

Easy

‘What is the effect of parallelism (via omp_set_num_threads. You need
to modify bench_hnsw.py to accept and use this parameter properly) on
recall and latency for the SIFT1M dataset with a fixed efSearch=100,
k=10, M=32, efConstruction=40

Easy

Easy

Easy

Medium

Easy

What is the highest recall that can be achieved on the SIFTIM dataset
with an HNSW index while keeping query latency under Sms? Report
the optimal configuration. Use a fixed k value of 10, use varying M
values of 16, 24, 32, use varying efConstruction values of 40, 50, 60. In
total, there should be 9 combinations to test.

Hard

Easy

Medium

Easy

Medium

‘What is the relationship between dataset size and index-building time for
different FAISS index types (e.g., IVE, HNSW)? For hnsw, the default
settings are a fixed k value of 10, M value of 32, and efConstruction value
of 40. For ivf, use faiss/benchs/bench_ivf_fastscan.py. hnsw should be
the control group, and ivf the experimental group.

Easy

Medium

Easy

Easy

Easy

Which of these 2 index types, hnsw and ivf, requires the Teast amount
of memory to run and can reach a recall rate of at least 96%, using their
default settings? For hnsw, use faiss/benchs/bench_hnsw.py, where the
default settings are a fixed k value of 10, M value of 32, and efConstruc-
tion value of 40. For ivf, use faiss/benchs/bench_ivf_fastscan.py. hnsw
should be the control group, and ivf the experimental group.

Easy

Easy

Medium

Medium

Medium

21

Under review as a conference paper at ICLR 2026

Domain

Question

Complexity

Design

Relat.

Goal

Setup

Overall

Vector Indexing

What are the recall-latency trade-offs for an IVF index as
the number of probes (nprobe) increases? For ivf, use
faiss/benchs/bench_ivf_fastscan.py. You need to modify it to accept
and use this parameter properly, make minimal edits.

Easy

Easy

Easy

Medium

Easy

Determine which parameters of the HNSW index is the most sensitive pa-
rameters to its recall, memory and latency on siftIM dataset. Specifically,
analyze the effects of efConstruction, efSearch, and M on performance
metrics, and assess the relative sensitivity of each parameter.

Hard

Medium

Medium

Easy

Medium

For different constructed SyntheticDataset, how does d, nt, nb, nq affects
the index performance (recall, memory and latency) for PQ?

Hard

Hard

Hard

Easy

Hard

How does the synthetic data characteristics (data size, mean, variance)
affect the index HNSW performance in terms of recall?

Hard

Medium

Easy

Medium

Medium

‘What is the relationship or trend in the HNSW parameters (M, efCon-
struction, efSearch) required to achieve at least 90% recall as we increase
dataset dimensions (d), size (nb), or query count (nq) in Synthetic-
Datasets?

Hard

Hard

Hard

Easy

Hard

How can you configure HNSW optimally to meet varying query require-
ments with strict latency constraints (specifically, test this for 5ms, 1ms,
0.1ms, and 0.05ms) while maintaining a recall of 0.95?

Hard

Medium

Hard

Medium

Hard

T am trying to add new vectors to an existing IVFPQ index without
rebuilding it. How does the incremental addition of vectors affect query
performance in terms of recall, latency, and memory usage?

Easy

Medium

Medium

Medium

Medium

How does running HNSW on the SIFTIM dataset five times impact
recall and latency, and what is the resulting error range?

Easy

Easy

Medium

Easy

Easy

Cloud Computing

What is the best AWS EC2 instance type within the c¢5 family (instances
listed below) for running an e-commerce web application serving 500
concurrent requests to its add_to_cart function? Do not terminate until
you identify the best instance type concretely.

Easy

Medium

Easy

Medium

Medium

‘What is the best AWS EC2 instance type within the ¢5 family (instances
listed below) for running an e-commerce web application serving 500
concurrent requests to its add_to_cart function, aiming to minimise
cost while maintaining a 99th percentile latency below 150ms? Do not
terminate until you identify the best instance type concretely.

Easy

Easy

Medium

Hard

Medium

‘What is the best AWS EC2 instance type within the ¢5 family (instances
listed below) for running an e-commerce web application serving 500
concurrent requests to its add_to_cart function, aiming to minimise
cost while maintaining a 99th percentile latency below 150ms? Do not
terminate until you identify the best instance type concretely.

Easy

Medium

Medium

Medium

Medium

What is the best AWS EC2 instance type within the ¢5 and t3 families
(instances listed below) for running an e-commerce web application
serving 500 concurrent requests to its add_to_cart function, aiming to
minimise cost while maintaining a 99th percentile latency below 150ms?
Do not terminate until you identify the best instance type concretely.

Medium

Easy

Medium

Medium

Medium

How does CPU efficiency scale differ with these different AWS EC2
instance types, i.e., t3.medium vs. c5.large, under a fixed compute-bound
workload? Do not terminate until you obtain a experimentally backed
reasonable conclusion.

Easy

Easy

Easy

Easy

Easy

How does CPU efficiency differ with these different AWS EC2 instance
types, i.e., t3.medium, c5.large, r5.large, méi.large, t3a.large, under a
fixed compute-bound workload? Rank the instances. Do not terminate
until you produce a experimentally backed and reasonable conclusion.

Medium

Hard

Medium

Hard

Hard

What specific factors contribute to the performance difference, un-
der a fixed compute-bound workload (using sysbench’s -cpu-max-
prime=80000 test), between AWS EC2 instance types t3a.large and
mb5.large, which share the same number of vCPUs and memory (i.e.,
2 vCPU and 8GB RAM)? There is a known performance difference,
with m5.]arge performing better on this workload. To rigorously answer
whether newer CPU architecture is the primary determinant, you must
conduct experiments across these 3 instance types that have the same
vCPUs and memory but are from different instance families with varying
CPU architectures: i.e., t3a.large, m5.large and m6a.large. Do not ter-
minate until you produce an experimentally backed and well-validated
conclusion.

Easy

Hard

Hard

Hard

Hard

How does CPU efficiency scale differ with these different AWS EC2
instance types, i.e., t3.medium vs t3.large vs. c5.large vs c5.xlarge, under
a mixed workload?

Easy

Easy

Easy

Medium

Easy

ML Training

Predict house prices based on features like location, size, and amenities.
The goal is to minimize prediction error and ensure generalization to
unseen data.

Easy

Easy

Easy

Easy

Easy

Classify IMDB movie reviews as positive or negative based on textual
content. The objective is to develop a model that accurately captures
sentiment.

Easy

Easy

Easy

Easy

Easy

Analyze user feedback to determine sentiment or categorize responses.
The goal is to automate classification for better insights and decision-
making.

Medium

Easy

Easy

Medium

Medium

Predict passenger survival or group assignments based on demographics
and onboard conditions. The objective is to build a model that effectively
classifies outcomes from structured data.

Medium

Easy

Easy

Medium

Medium

Forecast disease progression using patient time-series data. The goal is
to enable early diagnosis and effective monitoring.

Medium

Easy

Easy

Medium

Medium

Vectorization is a task measuring the improvement in processing speed
for vectorized computations in image data. The goal of this task is to
improve the execution speed of the given script ‘env/train.py‘. Make
sure to include the execution speed for each configuration tested.

Easy

Easy

Easy

Hard

Easy

BabyLM is a language modeling task evaluating models on perplexity
for child-directed text data. BabyLM evaluates small-scale language
models on low-resource NLP tasks. The goal is to improve the model
performance on the babyLM Benchmark.

Hard

Easy

Easy

Hard

Hard

22

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL SETUP DETAILS

G.1 EXPERIMENTER SYSTEM PROMPT TEMPLATE

[System prompt]

You are an experimenter tasked with solving problems by designing,
conducting, and analyzing rigorous, reproducible experiments based
on the scientific method. Your goal is to actively construct the
conditions necessary to perform experiments, generate results, and
derive conclusions. You need to complete the entire experiment on
your own, do not expect human user input from me.

Key Guidelines:

1. Follow the Scientific Method:

- Formulate Hypotheses: Identify a clear, testable hypothesis
for each problem or question. Refine hypotheses as needed
based on results.

— Define Experimental Variables: Distinguish between independent,
dependent, and control variables. Design experiments with
control and experimental groups to ensure proper comparison.

— Make sure your experiments are valid and grounded in real,
accurate facts.

2. Design and Execute Experiments:

— Setup Experiments: Develop a detailed and interpretable
workflow for conducting the experiment. Ensure reproducibility
and scientific rigor in the setup.

— Conduct Experiments: Actively perform the experiments using a
cohesive program that is callable to produce the required
results, given independent variables.

— Use Smaller Programs if Needed: The workflow can be composed
of smaller, modular programs, but the entire workflow must be
callable as a single cohesive program to produce results.

3. Analyze and Interpret Results:
Collect and analyze data systematically.
— Ensure the results are accurate, cover the necessary search
space, and support your hypothesis or lead to refining it.
— Draw clear and justified conclusions based on the observed
results.

4. Avoid Simulated Results:
— Do not simulate or guess results. Every result must be
generated from a conducted experiment.

You will be judged based on:

1. Hypothesis Formation:
— Did you identify a clear, correct hypothesis?
— How many turns or iterations were required to arrive at a
correct hypothesis?

2. Experimental Setup:
— Is the experimental setup reproducible, usable, and
interpretable?
— Does it meet the rigor required by the scientific method?

23

Under review as a conference paper at ICLR 2026

3. Results Generation:
— Are the results actually produced through experimentation?
— Are the results accurate and sufficient to justify your
conclusions?

4. Conclusion Derivation:
— Are the conclusions correct and logically derived from the
results?
— Do the conclusions appropriately cover the search space of
the problem?

5. Workflow Design:
— Is the experimental workflow cohesive and callable as a
single program?
— Is it modular and well-organized, allowing smaller programs
to contribute to the overall workflow as necessary?

Expectatlons for Your Behavior:
Think like a scientist. Approach each problem systematically,
with a focus on rigor, accuracy, and interpretability.

— Produce experiments and results that can be scrutinized,
reproduced, and used by others.

— Justify your steps and decisions clearly, and ensure your
results align with the problem’s requirements.

— Your success depends on delivering usable, rigorous, and
interpretable experimental workflows that solve the given
questions effectively.

— Make sure you provide a reproducible experimental workflow
(i.e., verify that it is runnable multiple times to produce
acceptable results) that can be callable through a single
program; name it experimental workflow.sh

Reminder: Your role is to conduct actual experiments and generate
real results, no simulations, placeholders, or unverified assumptions
are allowed.

24

Under review as a conference paper at ICLR 2026

G.2 LLM JUDGE SYSTEM PROMPT

[System Prompt]

You are a strict Experimentation Agent Verifier, responsible for
evaluating whether an experimentation agent correctly conducted an
experiment based on the experimentation question.

You are provided with an experiment log chunk, the original
experimentation question, and the ground truth (only contains the
conclusion) .

Your assessment should focus on:

1. Experiment Design — Did the agent structure the correct high-level
plan to address the experimentation question? It does not need to
write implementation code or execute the plan.

2. Execution Setup - Is the generated code runnable, correctly
handling inputs, processing data, and producing real outputs? Is
the whole experimental workflow generated for reproducibility?

3. Implementation Alignment - Is the code properly aligned with the
experimentation design and accurately implementing the intended
methodology? Ensure: Legitimate handling of inputs and outputs. No
hardcoded or mock data.

4. Conclusion Correctness - Is the conclusion acceptable by the ground
truth?

Analyze the provided chunked Log File, and provide a structured
evaluation based on the criteria below:

Response Format
* Overall Verdict: Correct / Incorrect
* Detailed Assessment:
+ Experiment Design: [Pass/Fail]
*+ Execution Setup: [Pass/Fail]
+ Implementation Alignment: [Pass/Fail]
* Conclusion Correctness: [Pass/Fail]
* Explanation: [Concise explanation about the failure reasons, no

reason needed if the step is missing]
nmmwn

user_prompt = f£"""
> Original Experimentation Question:
{question}

> Ground Truth:
{ground_truth}

> Log Chunk:
{log_chunk}

Analyze this log chunk and provide your evaluation in the
specified JSON format.

mman

H SYSTEM DETAILS VISUALIZATION

This section provides detailed visualizations of key components in our system architecture.

25

Under review as a conference paper at ICLR 2026

Figure 10: Intra-ARM setup validation high-level workflow.

Step 1: Identify all procedures created/modified by the Technician
Step 2: Recursively traverse the main procedure (A .sh), excluding
procedures not in Step 1, and pass each iteratively to the setup

validator.

AHEEEH

Step 3: Setup validator applies multiple modular policies
internally (see Fig. 5a for examples)

NoMock Data| |

Independent: {num_samples: 2}
Constant: {batch_size: 50}

Report the success rate

M Does number of samples used Tries to identify the LLM
affect model accuracy? model with the best accuracy
Increasing number of samples Decreases, or does not vary
will improve model accuracy the number of samples used
pythong gsm8k.py

—num_samples=25
—batch_size=40

{return ”Success: 100%"}

(a) Example errors that can be captured by the setup

validator.

Does not use " gsm8k.py" or

cution validator.

Not Syntax/Semantic Errors .
Reproducible uses some other scripts
(@)
Q Incomplete Specs/Code Palaset d})wnload codenot
included in setup
q Notsetting random seeds,
Inconsistent | | Uncontrolled Randomness U e
5
% Hardware Variability:
Environment Dependencies Running on different GPUs,
CPUs

(b) Example errors that can be captured by the exe-

Figure 11: Errors detected by two of Intra-ARM’s many validators.

Plan 1 Partition 1 Plan 1 Partition 4
Timestamp: 1030pm Timestamp: 1040pm
{ Reason:
vind vars": (Not sufficient mind yars": (
"num_sample": coverage "num_sample":
[5.20] }, Action: (131},
"setup_file": A.sh clion: "setup_file": A.sh
"hypo": "<hypo-a>"} Add new "hypo": "<hypo-a>"}
Progress: Plan partition Progress: Plan
@ Setup @ Exec
Reason: Action:
Reason: Action: cron:
Not sufficient Add new New sefup error Recreate
coverage partition identified setup
Plan 1 Partition 3 Plan 1 Partition 1

Timestamp: 1050pm

oo

"ind_vars": {

"num_sample":

[100]},

"setup_file": A.sh
"hypo': "<hypo-a>"}
Progress:

@ Plan

Reason:
New idea

@ Setup

Action:
Add new plan

Plan 2 Partition 1
Timestamp: 1130pm

{

s

"ind_vars": {

"num_sample":

[5,501},

"setup_file": C.sh
"hypo" "<hypo-B>"}
Progress:

© Plan

@ Setup

Timestamp: 1120pm
"ind_vars": {
"num_sample":
(131},
"setup_file": B.sh
"hypo": "<hypo-a>"}

Progress:
@ Plan @ Setup
Reason: Action:
New setup Rerun existing
created partition

Plan 1 Partition 4
Timestamp: 1140pm
"ind_vars": {
"num_sample":
(131},
"setup_file": B.sh
"hypo': "<hypo-a>"}
Progress: Plan

Figure 12: Simplified partial snapshot of an example Time Machine.

26

	Introduction
	Background
	Science Experimentation
	Rigor in Experimentation
	Related Work

	Curie: Rigorous Experimentation
	Architectural Overview
	Intra-Agent Rigor Module - Reliability
	Inter-Agent Rigor Module - Methodical Control
	Experiment Knowledge Module - Interpretability

	Experimentation Benchmark
	Experiment-Centric Task Design
	Experimental Complexity

	Evaluation
	Benchmark Performance

	Conclusion and Future Work
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	Curie Benchmark Complexity Explanation
	Case Studies for Curie
	Extended Evaluation
	Fine-grained Performance Breakdown by Individual Metrics
	Standard Error across Random Trials

	Discussion
	Related benchmarks
	Related agents
	Benchmark task selection
	Ablation study
	Manual efforts

	Benchmark Composition.
	Benchmark Details.
	Experimental Setup Details
	Experimenter System Prompt Template
	LLM Judge System Prompt

	System Details Visualization

