
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CURIE : TOWARD RIGOROUS AND AUTOMATED
COMPUTER SCIENCE EXPERIMENTATION
WITH AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific experimentation demands rigor in reliability, methodical control, and
interpretability to yield meaningful results. Despite the growing capabilities
of large language models (LLMs) in automating different aspects of the scien-
tific process, automating rigorous experimentation remains a significant chal-
lenge. To address this gap, we propose Curie1 , an AI agent framework de-
signed to embed rigor into the experimentation process through three key compo-
nents: an intra-agent rigor module to enhance reliability, an inter-agent rigor
module to maintain methodical control, and an experiment knowledge mod-
ule to enhance interpretability. To evaluate Curie, we design a novel experi-
mental benchmark composed of 46 questions across four computer science do-
mains, derived from influential research papers, and widely adopted open-source
projects. Compared to the strongest baseline tested, we achieve a 3.4× improve-
ment in correctly answering experimental questions. Curie is open-sourced at
https://anonymous.4open.science/r/Curie-689B/.

1 INTRODUCTION

Figure 1: Curie overview.

Scientific research drives AI progress, advancing the development of the computer science discipline.
At the heart of this endeavor lies experimentation—a disciplined intellectual pursuit that transforms
human curiosity, expressed through bold hypotheses, into verifiable knowledge. Experimentation
thrives on creativity, as new ideas fuel discovery. Yet it also depends on rigor—ensuring that research
is methodologically sound and its findings are trustworthy (Armour et al., 2009; Gill & Gill, 2020).

In recent years, many works (Zhang et al., 2024b; Kramer et al., 2023; Lu et al., 2024a) leveraging
large language models (LLMs) to automate scientific research have emerged (§2.3). These solutions
typically rely on ad-hoc prompt-based methods to mimic scientific workflows, prone to hallucination.
While effective for creative tasks such as literature review and brainstorming, these approaches
remain limited in their ability to support rigorous experimentation, a largely unexplored capability.

1Name disambiguation. The name Curie was used by (Cui et al., 2025) for evaluating LLMs on scientific
reasoning. In contrast, our work focuses on scientific experimentation, a substantially different problem domain.

1

https://anonymous.4open.science/r/Curie-689B/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: Case Study. Curie can help researchers validate, expand, and critique existing research
on the benefits of repeated sampling in LLM reasoning (Brown et al., 2024). The first panel (Original
Finding) presents a result from the original paper. Curie confirms this finding through rigorous
experimentation in the second panel (Reproduce). The third panel (Extend) has Curie exploring the
impact of sampling temperature on repeated sampling. The final panel (Challenge) shows Curie
identifying a limitation in the original methodology, suggesting an avenue for future research.

More specifically, rigorous experimentation (§2.2) involves a methodical procedure that includes
formulating hypotheses, designing experiments, executing controlled trials, and analyzing results.
Achieving reliability at every step is essential to ensure that the results are accurate, reproducible, and
scientifically meaningful. Finally, all procedures and results must be documented in a well-structured
and interpretable manner, facilitating verification and collaboration across the community.

To meet these requirements, we propose Curie, an AI agent framework representing the first
step toward rigorous and automated experimentation (§3). As shown in Fig. 1, Curie takes an
experimental question and relevant context (e.g., domain-specific knowledge or starter code) as input.
The Architect Agent generates high-level experimental plans, coordinates the process, and reflects
on findings to guide subsequent steps. Working in unison, our Technician Agents focus on carefully
implementing and executing controlled experiments following these plans.

At the core of Curie, the Experimental Rigor Engine preserves agent creativity while embedding
rigor throughout the experimentation process. This is achieved via three key modules: (1) The
Intra-Agent Rigor Module safeguards reliability of individual agents with a set of extensible rigor
policies (e.g., validating that experiments align with objectives and setups are reproducible). (2) The
Inter-Agent Rigor Module maintains methodical control over agent coordination, ensuring correct task
transitions and efficient task scheduling. (3) Finally, the Experiment Knowledge Module enhances
interpretability with well-structured documentation, enabling collaboration in large-scale experiments.

Though inspired by scientific research across disciplines, Curie focuses on experimentation in
computer science that come with LLM-friendly interfaces (Anthropic, 2024; Yang et al., 2024). To
evaluate Curie, we introduce an Experimentation Benchmark comprising 46 tasks of varying
complexity across multiple computer science domains (§4). We derive these questions directly
from influential research papers and practical open-source projects. Fig. 2 shows that Curie could
reproduce, extend, and challenge existing research via rigorous experimentation. We benchmarked
Curie (§5) against state-of-the-art agents like OpenHands (Wang et al., 2024d) and Magentic-
one (Fourney et al., 2024). Curie achieves a 3.4× improvement in correctly answering experimental
questions, underscoring Curie’s ability to automate experiments rigorously.

2 BACKGROUND

2.1 SCIENCE EXPERIMENTATION

Scientific experimentation often starts with researchers posing testable hypotheses based on their past
results, domain knowledge, and intuition. This process then unfolds across three key stages: (1) Exper-
imental Design, where researchers plan the controlled experiment by identifying variables, selecting
methodologies, and outlining procedures to enhance reproducibility and validity; (2) Experiment
Execution, where researchers set up the complex experiment environments and iteratively explore vast
search spaces; and (3) Data Documentation and Analysis, where researchers systematically gather
data, apply analytical techniques, and extract insights to validate or refine their hypotheses. This

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

process is iterative, as insights gained from data analysis often lead to the refinement of hypotheses,
leading to subsequent rounds of these three steps.

2.2 RIGOR IN EXPERIMENTATION

Rigor is essential in scientific research, ensuring systematic, precise, and reliable findings (Armour
et al., 2009). If science isn’t rigorous, it’s reckless. (Hofseth, 2018). Experimental rigor is grounded
in three core principles (Gill & Gill, 2020):

Methodical Procedure: Experimentation must adhere to a principled and systematic methodology
throughout all aforementioned stages, from hypothesis formulation to data documentation. Such a
structured procedure ensures that no critical procedures are overlooked or performed incompletely,
thereby preserving the integrity of the research.

Reliability: Every stage in the experimental pipeline—such as experiment design and environment
setup—needs to be reliable and reproducible so that any final findings rest on solid ground. For
instance, it encompasses correct variable identification, controlled experimental design, and rigorous
code verification. By meticulously verifying each stage, reliability minimizes the risk of cascading
errors, thereby ensuring that the results are trustworthy.

Interpretability: All processes and outcomes need to be clearly documented in a consistent manner.
This makes it easier for researchers or agents to replicate experiments and understand results.

2.3 RELATED WORK

AI Agents for Science. Prior work leveraged AI to accelerate scientific discovery (Berens et al.,
2023; Kitano, 2021), focusing on various stages of the research lifecycle, including literature re-
views (Agarwal et al., 2024; Tyser et al., 2024), brainstorming ideas (Gu & Krenn, 2024; Bran et al.,
2024), hypothesis generation (Sourati & Evans, 2023; Zhou et al., 2024; Wang et al., 2024a; Qi et al.,
2024) and data analysis (Hong et al., 2024a; Chen et al., 2024). However, experimentation—a critical,
rigor-intensive step—remains underexplored. Existing agents for end-to-end scientific research
(Schmidgall et al., 2025; Lu et al., 2024a; Yuan et al., 2025; Ghafarollahi & Buehler, 2024) rely
on ad-hoc prompts to guide predefined workflows, from idea generation to paper writing. Their
open-sourced frameworks often require experimental code to follow constrained, framework-specific
formats, adding overhead and hindering their usability. These solutions mimic experimentation
processes using multi-agent systems but lack systematic enforcement of a methodical procedure, reli-
ability, and interpretability. Without these core principles, such agents struggle to deliver meaningful
and reproducible results, limiting their practical utility in real-world scientific research. App. D.2
discusses their relation with Curie.

AI Agent Task Benchmarks. A wide range of benchmarks have been developed to assess the
capabilities of AI agents across diverse domains. Existing benchmarks primarily focus on logical rea-
soning (Cobbe et al., 2021; Hendrycks et al., 2021a; Bang et al., 2023), problem-solving (Hendrycks
et al., 2021b; Frieder et al., 2023; Wang et al., 2024b; Sun et al., 2024a; Chevalier et al., 2024),
knowledge retrieval tasks (Sun et al., 2024b) and machine learning training (Huang et al., 2024; Zhang
et al., 2023; 2024a). These benchmarks evaluate agents on well-defined tasks that typically have
clear, deterministic solutions (see App. D.1). In contrast, our benchmark focuses on experimentation,
which requires a more rigorous and systematic approach beyond problem-solving. Experimental tasks
require iterative hypothesis refinement, complex experiment setup and execution, and robust result
interpretation. Our benchmark captures these challenges by evaluating AI systems on real-world
experiments derived from influential research papers and widely adopted open-source projects.

3 CURIE : RIGOROUS EXPERIMENTATION

3.1 ARCHITECTURAL OVERVIEW

As shown in Fig. 3, Curie is composed of two types of LLM-based agents (an Architect Agent and
a host of Technician Agents), sandwiched between them is our main innovation, the Experimental
Rigor Engine that injects rigor throughout the experimental process.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Curie workflow with an example task in LLM reasoning. The Architect designs high-level
plans and reflects on findings. The Technician implements and executes the experiments based on
the plans. Whenever an agent completes its action (step 1⃝, 2⃝, 3⃝, 4⃝, 5⃝), the Experimental Rigor
Engine (steps A⃝⇀B⃝⇀C⃝) validates the action, determines next steps, assigns tasks and maintains
interpretable experimental progress, ensuring rigor throughout the entire process.

High-level workflow. Given an experimental question, our Architect will 1⃝ designs high-level
experimental plans (e.g., defining hypotheses, variables), completing its turn. Our Inter-Agent Rigor
Module (Inter-ARM ) will A⃝ intercept and enforce methodical procedure. Since the plan is new, it is
broken into smaller partitions for finer-grained execution. Inter-ARM applies control flow policies to
determine the next step for each partition. In this case, it decides to go through the B⃝ the Intra-Agent
Rigor Module (Intra-ARM ) validation, which enhances reliability by verifying partition integrity
(e.g., assessing relevance to the experimental question). Similarly, Inter-ARM repeats this process
based on the validation results, eventually C⃝ forwarding the partition to a Technician to 2⃝ set up
the controlled experiment. The remaining steps are omitted for brevity, but at a high level, every
agent action follows the same structured workflow: A⃝ interception by Inter-ARM, B⃝ validation by
Intra-ARM, and C⃝ forwarding to the next appropriate agent. Finally, all of the above components will
make use of our Experiment Knowledge Module for storing and tracking experimental progress,
providing interpretability. For example, the Architect stores refined experimental plans in a structured,
metadata-enriched format, making them easier to analyze, track, and validate over time.

3.2 INTRA-AGENT RIGOR MODULE - RELIABILITY

Large-scale and long-running experiments involve complex, interdependent steps where early-stage
errors can propagate and compromise final results. This is especially critical to LLM-based experi-
mentation since: (1) LLM-based agents are prone to hallucination, and (2) experimental processes are
inherently exploratory, requiring iterative refinements to hypotheses, setups, and designs in response
to new or unexpected findings. Despite this, existing works (Lu et al., 2024a; Schmidgall et al., 2025)
largely overlook the need for continuous validation throughout the experimental process. A naive
approach is to perform end-to-end validation only after an experiment concludes. However, this
lacks the ability to backtrack to intermediate stages, preventing error isolation and correction, and
forcing researchers to either discard progress or rerun the entire experiment—an inefficient and costly
approach. To address this, we introduce Intra-ARM, a validation module that verifies the assigned
tasks of our Architect and Technicians step by step, improving reliability and reproducibility to align
with the overarching experimental objectives. Inspired by process supervision (Lightman et al., 2023),
Intra-ARM utilizes modular validation, where a suite of validators continuously verifies each stage
of the experiment (Fig.3), so that errors can be proactively detected and addressed early. Moreover,
Intra-ARM’s validators are extensible, allowing new ones to be incorporated as needed. We focus on
two key validators here for brevity:

Experimental Setup Validator. This component (see App. H, Fig. 10) verifies that the experimental
setup by our technicians aligns with the plan before execution, ensuring methodological soundness and
logical consistency. Each enforced policy checks alignment within a specific part of the experiment
setup. This includes (see App. H, Fig. 11a): (1) confirming the setup aligns with the experimental plan,
including the research question and all specified variables (independent, dependent, and constant). (2)
Analyzing all procedures for correct handling of input/output arguments; and detecting placeholders,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Simplified Inter-ARM workflow with a partition state snapshot.

hardcoded values, or incomplete variables to ensure meaningful results. (3) Checking that the setup
documents all intermediate steps and results, including any identified issues for future analysis.

Execution Validator. Once the setup passes the experimental setup validator, this validator enhances
reproducibility by executing it in a controlled and clean environment to detect and resolve potential
errors, a sample of which is illustrated in App. H, Fig. 11. (1) Error-Free Execution: The setup is
executed in a clean environment, verifying that it operates without errors. Any encountered errors
are logged in detail, providing actionable feedback for debugging and iterative refinement. (2)
Reproducibility Checks: The workflow is also run multiple times to enhance consistency in outputs
and detect anomalies or hidden dependencies. Finally, the results are validated to ensure alignment
with the experimental plan and compliance with predefined quality standards.

3.3 INTER-AGENT RIGOR MODULE - METHODICAL CONTROL

Experimental processes must follow a methodical procedure (§2.2) while balancing resource con-
straints (e.g., GPU availability), and experiment priorities. Traditional agentic conversational pat-
terns (AutoGen, 2024)—such as naive LLM-based coordination, sequential, or round-robin execu-
tion—are thus ill-suited for such a workflow. To ensure task coordination and optimize resource
efficiency, Inter-ARM enables seamless collaboration between our Architect, Technicians and Intra-
ARM through three key functions presented in Fig. 4. We discuss each in turn.

Fine-grained Plan Partitioning. Inter-ARM first breaks down new complex experimental plans
generated by the Architect into smaller, independent partitions: defined as a distinct subset of
independent variable values within the plan. By creating smaller, self-contained tasks, this facilitates
modular execution and enables parallelization, making experimentation more scalable. In addition,
this enables our Architect to track intermediate progress and results, making real-time decisions as
new insights emerge (e.g., reprioritizing partitions by updating their execution priority).

Control Flow Enforcement. This component ensures that transitions between our Architect,
Technicians, and Intra-ARM follow a logical sequence aligned with the experimentation lifecycle. This
is critical to maintaining consistent, error-free progress. Without structured coordination, tasks may
be executed out of order or without necessary dependencies, leading to wasted effort and erroneous
conclusions. For instance, it prevents Technicians from directly executing experiment setups before
validation by Intra-ARM’s setup validator, to reduce the risk of erroneous data propagation. This is
done in two steps: (1) State Evaluation, which evaluates whether the current state of each partition
(within an experimental plan) has been modified by an agent, e.g., a Technician who produced
experimental results and recorded its progress via the Experiment Knowledge Module. (2) Permissible
State Transitions, which produces a set of allowed state transitions for a partition based on its current
state, e.g., newly produced experimental results for a given partition need to be validated by Intra-ARM
first. It also gathers relevant context that would be useful if the transition were to be executed. This
state transition information will be consumed by our scheduler (defined below).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Partition Scheduling. Large-scale experiments can be resource-intensive and time-consuming,
requiring careful scheduling and prioritization of tasks to improve efficiency. Our scheduler currently
utilizes three knobs for partition scheduling: (1) partition execution priorities set by our Architect, (2)
allowed partition state transitions, and (3) the availability of our agents (that may be busy handling
other partitions). Overall, this adaptive scheduling strategy enables large-scale experimentation by
improving resource efficiency while adhering to methodical experimental procedures.

3.4 EXPERIMENT KNOWLEDGE MODULE - INTERPRETABILITY

Interpretability is fundamental to experimentation—not only for scientific accountability but also for
effective experiment management. Specifically, all other components within Curie require this for
real-time visibility, enabling informed decision-making, efficient troubleshooting, and adaptability as
new insights emerge. A naive approach would be to delegate experimental knowledge management
entirely to LLM-based agents. However, LLMs alone are ill-suited for this task for two reasons: (1)
Inconsistent Reads: LLMs have inconsistent recall and are prone to forgetting (Xu et al., 2024). With-
out a structured and verifiable record of experimental progress, they may retrieve outdated, irrelevant,
or hallucinated information, leading to misinterpretations, flawed conclusions, and compounding
errors over time. (2) Inconsistent Writes: LLMs tend to hallucinate, particularly when managing
large-scale experimental data. This lack of structured control risks corrupting experimental records,
propagating inaccuracies, and ultimately compromising the integrity of the experimentation process.
Unlike databases, LLMs do not inherently track provenance (Hoque et al., 2024), making it difficult
to reconstruct how conclusions were reached. We address these two challenges in turn:

Structured Knowledge Reads. This mechanism organizes experimental progress in a structured
format. The process begins by restructuring new experimental plans that were written by our
Architect into an enriched format with critical metadata—such as setups, execution status, and results.
Subsequent modifications to any part of the plan are recorded as a time machine (see App. H, Fig. 12)
for experimental progression, maintaining a structured, DAG-like history of changes. This historical
record captures hypotheses tested, variable changes, and the reasoning behind key decisions. By
preserving this evolution, Curie can reconstruct past states, trace decision rationales, and diagnose
issues with greater precision.

Tiered Write Access. To maintain experimental integrity and minimize the risk of errors, the interface
enforces a tiered write access policy that restricts and validates updates made to the experimental
plan. This ensures that each component can only modify the portions of the plan they are responsible
for, while all changes undergo rigorous validation. For example, Technicians are permitted to
append experimental results to their assigned partitions but cannot modify unrelated sections of
the plan. Similarly, architects have broader write access, including the ability to create or remove
entire partitions, but their modifications are still constrained to specific attributes, such as updating
variable values or marking partitions for re-execution. Every write operation is validated before being
committed to the knowledge bank. This process ensures proper structuring of inputs and enforces
semantic integrity (e.g., that result file paths are valid). If errors are detected, the system returns
concise error messages, enabling agents to quickly identify and resolve issues. Through this, Curie
enhances robustness and error resistance in collaboration.

4 EXPERIMENTATION BENCHMARK

We design a novel benchmark to stress test Curie’s ability to automate experiments while en-
forcing rigor in front of real-world challenges. As shown in App. E Table 4 (with full details in
App. F), our benchmark consists of 46 tasks across 4 domains within computer science (reasoning in
App. D.3). Our tasks are derived directly from real-world influential research papers and use-cases
within popular open-source projects. We have open-sourced our benchmark alongside the agent
framework.

4.1 EXPERIMENT-CENTRIC TASK DESIGN

Instead of treating tasks as isolated problems with fixed solutions, we structure each task as a full
experimental process. This means that tasks require hypothesis formation, iterative refinement, and
rigorous validation, mirroring real-world experiment workflows rather than one-shot problem-solving.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main benchmark results in terms of four metrics introduced in §5. We aggregate and average
the success rate among all tasks within each domain. The final row presents the weighted average,
computed based on the number of tasks in each domain. The standard error of success rate across
random trials are shown in App. C.2 Table 3

Domain Curie OpenHands Microsoft Magentic-One
Des. Exe. Alig. Con. Des. Exe. Alig. Con. Des. Exe. Alig. Con.

LLM Reason. 98.3 83.3 76.7 44.9 86.7 24.6 36.7 14.2 72.0 9.3 14.0 6.7
Vector DB 97.8 71.7 77.2 25.6 85.0 48.3 52.3 11.7 85.0 6.4 63.6 0.0
Cloud Comp. 100.0 92.7 96.9 32.3 96.9 25.2 49.2 5.0 95.0 6.3 33.8 0.0
ML Training 95.2 66.7 39.3 41.7 63.1 24.3 16.7 5.7 90.0 2.9 25.7 0.0

Weighted Avg. 97.9 78.1 73.4 36.1 83.6 32.4 40.2 10.5 82.9 6.8 35.2 2.3

The process begins with distilling high-level contributions from research papers (e.g., theoretical
insights or empirical findings), or core system behaviors from open-source projects (e.g., the interplay
between configuration parameters and performance). These insights are then translated into testable
questions framed with explicit configurations, metrics, and expected outcomes. Ground truth data
is derived from published results or official benchmarks provided by open-source projects. We use
these findings to design tasks with three key components:

1. Experiment Formulation: Each task specifies the (a) Experiment Question (e.g., optimizing
performance); (b) Practical constraints (e.g., resource budgets); (c) High-level Setup Requirements -
Contextual details such as datasets, and experimental environments. This framing ensures that tasks
are open-ended, requiring iterative exploration rather than one-shot solutions.

2. Experimental Context: To ensure agents correctly interpret and execute tasks, the benchmark
provides detailed context for each question. This includes: (a) Domain Knowledge – Background
information essential for interpreting the problem. (b) Starter Code & Tools – Predefined scaffolding
to simulate real-world research workflows.

3. Ground Truth: This is defined in two key areas: (a) Experimental Design: Does the agent
correctly formulate the experiment, identifying relevant variables and methodologies? (b) Result
Analysis: Does the agent correctly interpret findings, and justify its conclusions? We outline the
expected outcomes or acceptable solution ranges.

4.2 EXPERIMENTAL COMPLEXITY

Experimental research varies in complexity across different dimensions. Our benchmark reflects this
by structuring tasks into a hierarchical framework, assessing an agent’s ability to handle increasingly
sophisticated experimentation tasks. Unlike standard benchmarks that classify tasks by a single
difficulty metric (e.g., easy, medium, hard), ours structures complexity along experiment-driven
dimensions (detailed definitions in App. A):

1). Design Complexity: The complexity of structuring an experiment (e.g., requiring hypothesis
refinement), including defining the scope of exploration, selecting key variables, and structuring
parameter spaces—ranging from discrete to continuous and from sparse to dense configurations.

2). Experiment Setup Complexity: The difficulty of initializing and configuring the experimental envi-
ronment, from simple predefined setups to intricate dependencies requiring multi-step configuration.

3). Relationship Complexity: The interactions between variables and outcomes, from simple linear
dependencies to complex non-monotonic relationships.

4). Experiment Goal Complexity: The number of competing objectives and trade-offs involved, from
single-metric optimization to multi-objective balancing under constraints.

5 EVALUATION

We evaluate Curie using our experimentation benchmark, which consists of 46 research tasks
spanning varying complexity levels across four key domains (§4). To enhance statistical robustness,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard
0

25

50

75

90

A
ve

ra
ge

sc
or

e
(%

) Curie OpenHands Magentic

Figure 5: Average scores across different complexity dimensions at varying difficulty levels. Curie
outperforms baselines consistently, with performance generally dropping as complexity increases.

each task is executed independently for five trials for each of our baselines (below) and Curie, and
we report the average performance across these trials. Apart from our main results described in §5.1,
our evaluation includes our case studies (Fig. 2 and App. B), and additional results (App. C.1).

Baselines. We compare Curie with two state-of-the-art AI agents as our baselines: Open-
Hands (Wang et al., 2024d), a top-performing coding agent, and Microsoft Magentic (Fourney
et al., 2024), a generalist multi-agent system. These baselines were selected because our benchmark
primarily focuses on coding-related tasks within computer science, where both models demonstrate
strong performance, with the expectation that Magentic, as a generalist multi-agent system, may be
able to generalize to experimental tasks too. To ensure fairness, each baseline is provided with a
detailed system prompt instructing them to act as a professional experimenter (see App. G.1). All
baselines and Curie utilize GPT-4o as the underlying LLM.

Performance Metrics. We assess performance using four key metrics, each evaluated as a binary
score per task, ensuring rigor at every stage of the experimentation process:

1. Experiment Design – Ability to design the high-level experiment plan to address the question.

2. Execution Setup – Ensuring that the generated code (experiment setup) is executable and produces
consistent results across multiple runs.

3. Implementation Alignment – Faithfulness of the experimental setup with the proposed plan.

4. Conclusion Correctness – Accuracy in reflecting the ground truth answer to the question.

Evaluator. We employ an LLM judge (Zheng et al., 2023) for straightforward verification such
as checking design, setup and conclusion, where the ground truth is known. However, we manually
assess the implementation alignment, as detecting semantic discrepancies between the intended
methodology and code is non-trivial (reasoning in App. D.5). To ensure accuracy, we also verify the
LLM judge’s assessments by cross-checking a subset of its evaluations against expert annotations,
measuring agreement rates, and refining the judge system prompt. Details of the evaluation prompts
are provided in App. G.2. This hybrid evaluation approach enables reliable and scalable assessment
of experimentation performance.

5.1 BENCHMARK PERFORMANCE

Table 1 shows aggregated success rates across all performance metrics and benchmark task domains.

Performance Breakdown By Metric. Across all four metrics, Curie consistently outperforms the
baselines, demonstrating the benefits of our Experimental Rigor Engine in improving experimentation
performance. (i) For experiment design correctness, all frameworks perform well since the current
tasks are relatively straightforward and do not require iterative refinement. However, for more
complex research tasks, Curie holds an advantage by dynamically refining hypotheses based on
intermediate observations, whereas baselines rely on static planning. Our experimental knowledge
module further enhances performance by improving recall and adaptation. (ii) For execution setup
and implementation alignment, Curie demonstrates higher reliability, as Intra-ARM proactively
validates and corrects execution steps, while Inter-ARM guarantees that we follow methodical task
transitions. This results in particularly strong execution setup performance, from 66.7% to 92.7%.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

OpenHands (with 32.4% and 40.2%), as a coding-specialized agent, outperforms Magentic in this
aspect. However, it still struggles with incomplete or erroneous setups, including getting stuck in
loops, syntax errors, logic mistakes, and unresolved dependencies—leading to execution failures
in complex environments. Magentic, in particular, performs poorly in locating the correct files in
the task starter file and handling script input/output. (iii) Finally, for conclusion correctness, its
accuracy is largely constrained by earlier errors, as conclusions rely on the correctness of experimental
results. However, Curie maintains a strong lead due to its Experiment Knowledge Module, which
systematically documents experimental results for structured data analysis. This enables Curie to
achieve a significantly higher conclusion score of 36.1%, compared to 10.5% for OpenHands and
2.3% for Magentic. While Magentic demonstrates relatively decent alignment, it struggles to translate
this into meaningful conclusions because of previous cascading errors.

Performance Breakdown By Domain. Across all four task domains, Curie consistently outper-
forms the baselines, demonstrating Curie’s ability to adapt to different research domains. (i) First,
for LLM reasoning tasks, Curie performed exceptionally well, achieving the highest conclusion
accuracy at 44.9%. OpenHands had its best performance in this category (14.2%), while Magentic
attained its only non-zero score of 6.7%. We attribute this to the inherent intuitiveness of conclusions
for our tasks in this domain. (ii) For Vector DB tasks, both OpenHands and Magentic achieved their
highest alignment scores—52.3% and 63.6%, respectively—likely due to the familiarity of the task.
Alignment was also easier given the availability of well-established open-source benchmarks and
shorter execution runs, which provided faster feedback. (iii) For Cloud Computing tasks, Curie
outperformed OpenHands significantly in all aspects (e.g., 6.5× the conclusion accuracy). This is
because these tasks often involve long-running experiments, which requires robust execution tracking
and dynamical experimentation workflows adjustment based on partial results. (iv) Finally, for ML
Training tasks, all agents underperformed in alignment and execution as the detailed environment
setup instructions are not provided for these tasks. Despite this, Curie can figure out the correct
setup by reflection and refinement, achieving a 7.3× higher conclusion accuracy than OpenHands.

Performance Breakdown by Complexity. Next, we analyze how each framework performs as we
increase difficulty within each complexity dimension. Fig. 5 reports the aggregated performance score,
computed as the average across all four evaluation metrics. We observe that increasing complexity
difficulties across all dimensions correlates with a decline in performance across all agents. However,
the rate of degradation varies across complexity types and agent architectures. Notably, Magentic
consistently underperforms across all complexity levels, highlighting the robustness of our complexity-
based difficulty scaling in distinguishing agent capabilities. Further, we observe a sublinear decline in
performance as task complexity increases, suggesting that our hardest tasks could be made even more
challenging. Despite this, our current results demonstrate Curie’s capabilities, supported by our
case studies. Exploring the limit of experimentation difficulty and its impact on model performance
remains an open direction for future work.

In summary, our findings underscore the importance of rigorous evaluation across experimentation
stages, shedding light on each framework’s strengths and limitations under varying conditions.

6 CONCLUSION AND FUTURE WORK

We introduced Curie, an AI agent designed to automate and enhance the rigor of scientific ex-
perimentation. Central to its design is the Experimental Rigor Engine, which enforces methodical
control, reliability, and interpretability. To assess Curie’s effectiveness, we developed a new
Experimentation Benchmark featuring real-world research challenges. Our empirical evaluation,
comparing Curie against state-of-the-art agents, demonstrated its capability to automate rigorous
experimentation.

We hope Curie inspires further advancements toward fully autonomous and rigorous experimenta-
tion in the era of AI agent-driven scientific research. Several open research challenges remain: For
instance, adapting Curie for interdisciplinary research requires accommodating domain-specific
methodologies, uncertainty control, and extended time scales, such as long-term biological stud-
ies (Hilty et al., 2021). Moreover, enabling knowledge reuse (Wang et al., 2024e) across experiments
could enhance efficiency and further accelerate discovery.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All code and data supporting our work are available through an anonymous repository at https://
anonymous.4open.science/r/Curie-689B/, and will be open-sourced upon acceptance.
Details of our benchmark are provided in App. F and §4, while details of our system architecture are
described in §3. The benchmark complexity and task selection process are described in App. A and
App. D.3, respectively. Curie’s system prompts and evaluation prompts are provided in App. G.1
and App. G.2, respectively. Various case studies for Curie are described in App. B. Finally,
additional evaluation results and analyses are provided in App. C.

8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 guidelines on LLM usage, we disclose that LLMs were used solely
for grammar and style checking during the preparation of this manuscript. No LLMs contributed to
research ideation, experimental design, analysis, or substantive writing.

10

https://anonymous.4open.science/r/Curie-689B/
https://anonymous.4open.science/r/Curie-689B/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Shubham Agarwal, Issam H Laradji, Laurent Charlin, and Christopher Pal. Litllm: A toolkit for
scientific literature review. arXiv preprint arXiv:2402.01788, 2024.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku. 2024.
https://www.anthropic.com/news/3-5-models-and-computer-use.

Marilyn Armour, Stephanie L. Rivaux, and Holly Bell. Using context to build rigor: Application to
two hermeneutic phenomenological studies. Qualitative Social Work, 8(1):101–122, Mar 2009.
ISSN 1473-3250. doi: 10.1177/1473325008100424. URL https://doi.org/10.1177/
1473325008100424.

AutoGen. Conversation patterns. 2024. https://microsoft.github.io/autogen/0.2/
docs/tutorial/conversation-patterns.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity, 2023.
URL https://arxiv.org/abs/2302.04023.

Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, and Jessica Montgomery. Ai
for science: An emerging agenda, 2023. URL https://arxiv.org/abs/2303.04217.

Andres M Bran, Zlatko Jončev, and Philippe Schwaller. Knowledge graph extraction from total
synthesis documents. In Proceedings of the 1st Workshop on Language+ Molecules (L+ M 2024),
pp. 74–84, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents
for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024.

Alexis Chevalier, Jiayi Geng, Alexander Wettig, Howard Chen, Sebastian Mizera, Toni Annala,
Max Jameson Aragon, Arturo Rodríguez Fanlo, Simon Frieder, Simon Machado, Akshara Prab-
hakar, Ellie Thieu, Jiachen T. Wang, Zirui Wang, Xindi Wu, Mengzhou Xia, Wenhan Xia, Jiatong
Yu, Jun-Jie Zhu, Zhiyong Jason Ren, Sanjeev Arora, and Danqi Chen. Language models as science
tutors, 2024. URL https://arxiv.org/abs/2402.11111.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter
Norgaard, Nayantara Mudur, Martyna Plomecka, Paul Raccuglia, Yasaman Bahri, Victor V. Albert,
Pranesh Srinivasan, Haining Pan, Philippe Faist, Brian Rohr, Ekin Dogus Cubuk, Muratahan
Aykol, Amil Merchant, Michael J. Statt, Dan Morris, Drew Purves, Elise Kleeman, Ruth Alcantara,
Matthew Abraham, Muqthar Mohammad, Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorfman,
Eun-Ah Kim, Michael P Brenner, Viren Jain, Sameera Ponda, and Subhashini Venugopalan. Curie:
Evaluating llms on multitask scientific long context understanding and reasoning, 2025. URL
https://arxiv.org/abs/2503.13517.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

11

https://www.anthropic.com/news/3-5-models-and-computer-use
https://doi.org/10.1177/1473325008100424
https://doi.org/10.1177/1473325008100424
https://microsoft.github.io/autogen/0.2/docs/tutorial/conversation-patterns
https://microsoft.github.io/autogen/0.2/docs/tutorial/conversation-patterns
https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2303.04217
https://arxiv.org/abs/2402.11111
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2503.13517


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Simon Frieder, Luca Pinchetti, , Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 27699–27744. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.
pdf.

Alireza Ghafarollahi and Markus J. Buehler. Sciagents: Automating scientific discovery through multi-
agent intelligent graph reasoning, 2024. URL https://arxiv.org/abs/2409.05556.

T. Gill and Tommy Gill. What is research rigor? lessons for a transdiscipline. Informing Science: The
International Journal of an Emerging Transdiscipline, 23:047–076, 01 2020. doi: 10.28945/4528.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul
Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim
Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs Kegl,
Haitham Bou-Ammar, and Jun Wang. Large language models orchestrating structured reasoning
achieve kaggle grandmaster level, 2024. URL https://arxiv.org/abs/2411.03562.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A. Merrill, Jeffrey
Heer, and Tim Althoff. Blade: Benchmarking language model agents for data-driven science, 2024.
URL https://arxiv.org/abs/2408.09667.

Xuemei Gu and Mario Krenn. Generation and human-expert evaluation of interesting research ideas
using knowledge graphs and large language models. arXiv preprint arXiv:2405.17044, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021a. URL https://
arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.
URL https://arxiv.org/abs/2103.03874.

Jonas Hilty, Bertrand Muller, Florent Pantin, and Sebastian Leuzinger. Plant growth: the what, the how,
and the why. New Phytologist, 232(1):25–41, 2021. doi: https://doi.org/10.1111/nph.17610. URL
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.17610.

Lorne J Hofseth. Getting rigorous with scientific rigor. Carcinogenesis, 39(1):21–25, January 2018.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=VtmBAGCN7o.

Md Naimul Hoque, Tasfia Mashiat, Bhavya Ghai, Cecilia D Shelton, Fanny Chevalier, Kari Kraus,
and Niklas Elmqvist. The hallmark effect: Supporting provenance and transparent use of large
language models in writing with interactive visualization. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pp. 1–15, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/2310.
03302.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2409.05556
https://arxiv.org/abs/2411.03562
https://arxiv.org/abs/2408.09667
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.17610
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hiroaki Kitano. Nobel turing challenge: creating the engine for scientific discovery. npj Systems
Biology and Applications, 7(1):29, Jun 2021. ISSN 2056-7189. doi: 10.1038/s41540-021-00189-3.
URL https://doi.org/10.1038/s41540-021-00189-3.

Stefan Kramer, Mattia Cerrato, Sašo Džeroski, and Ross King. Automated scientific discovery: From
equation discovery to autonomous discovery systems, 2023. URL https://arxiv.org/
abs/2305.02251.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024a.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024b. URL https://arxiv.org/
abs/2408.06292.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models, 2024. URL
https://arxiv.org/abs/2407.01725.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.
12983.

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P Wellawatte,
Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehensive benchmark
for llm-based agents in computational biology, 2025. URL https://arxiv.org/abs/2503.
00096.

Siddharth Narayanan, James D. Braza, Ryan-Rhys Griffiths, Manu Ponnapati, Albert Bou, Jon
Laurent, Ori Kabeli, Geemi Wellawatte, Sam Cox, Samuel G. Rodriques, and Andrew D. White.
Aviary: training language agents on challenging scientific tasks, 2024. URL https://arxiv.
org/abs/2412.21154.

Biqing Qi, Kaiyan Zhang, Kai Tian, Haoxiang Li, Zhang-Ren Chen, Sihang Zeng, Ermo Hua,
Hu Jinfang, and Bowen Zhou. Large language models as biomedical hypothesis generators: A
comprehensive evaluation, 2024. URL https://arxiv.org/abs/2407.08940.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants. arXiv
preprint arXiv:2501.04227, 2025.

Jamshid Sourati and James A Evans. Accelerating science with human-aware artificial intelligence.
Nature human behaviour, 7(10):1682–1696, 2023.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and
Kai Yu. Scieval: A multi-level large language model evaluation benchmark for scientific re-
search. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):19053–19061,
Mar. 2024a. doi: 10.1609/aaai.v38i17.29872. URL https://ojs.aaai.org/index.php/
AAAI/article/view/29872.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents, 2024b. URL https://arxiv.org/abs/2304.09542.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024a. URL https://arxiv.org/abs/
2311.09835.

13

https://doi.org/10.1038/s41540-021-00189-3
https://arxiv.org/abs/2305.02251
https://arxiv.org/abs/2305.02251
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2407.01725
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2503.00096
https://arxiv.org/abs/2503.00096
https://arxiv.org/abs/2412.21154
https://arxiv.org/abs/2412.21154
https://arxiv.org/abs/2407.08940
https://ojs.aaai.org/index.php/AAAI/article/view/29872
https://ojs.aaai.org/index.php/AAAI/article/view/29872
https://arxiv.org/abs/2304.09542
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark Gerstein. Biocoder:
A benchmark for bioinformatics code generation with large language models, 2024b. URL
https://arxiv.org/abs/2308.16458.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian
Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta,
and Hao Peng. Scicode: A research coding benchmark curated by scientists, 2024. URL https:
//arxiv.org/abs/2407.13168.

Keith Tyser, Ben Segev, Gaston Longhitano, Xin-Yu Zhang, Zachary Meeks, Jason Lee, Uday
Garg, Nicholas Belsten, Avi Shporer, Madeleine Udell, Dov Te’eni, and Iddo Drori. Ai-driven
review systems: Evaluating llms in scalable and bias-aware academic reviews, 2024. URL
https://arxiv.org/abs/2408.10365.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D. Goodman.
Hypothesis search: Inductive reasoning with language models, 2024a. URL https://arxiv.
org/abs/2309.05660.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models, 2024b. URL https://arxiv.
org/abs/2307.10635.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models, 2024c. URL https://arxiv.
org/abs/2307.10635.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024d.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory, 2024e.
URL https://arxiv.org/abs/2409.07429.

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu.
Knowledge conflicts for llms: A survey. arXiv preprint arXiv:2403.08319, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Jiakang Yuan, Xiangchao Yan, Botian Shi, Tao Chen, Wanli Ouyang, Bo Zhang, Lei Bai, Yu Qiao,
and Bowen Zhou. Dolphin: Closed-loop open-ended auto-research through thinking, practice, and
feedback, 2025. URL https://arxiv.org/abs/2501.03916.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing
the power of large language models in solving machine learning tasks, 2024a. URL https:
//arxiv.org/abs/2304.14979.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt: Au-
tomatic machine learning with gpt, 2023. URL https://arxiv.org/abs/2305.02499.

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A
comprehensive survey of scientific large language models and their applications in scientific
discovery. arXiv preprint arXiv:2406.10833, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

14

https://arxiv.org/abs/2308.16458
https://arxiv.org/abs/2407.13168
https://arxiv.org/abs/2407.13168
https://arxiv.org/abs/2408.10365
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2409.07429
https://arxiv.org/abs/2501.03916
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2305.02499


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yangqiaoyu Zhou, Haokun Liu, Tejes Srivastava, Hongyuan Mei, and Chenhao Tan. Hypothe-
sis generation with large language models. In Proceedings of the 1st Workshop on NLP for
Science (NLP4Science), pp. 117–139. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.nlp4science-1.10. URL http://dx.doi.org/10.18653/v1/2024.
nlp4science-1.10.

15

http://dx.doi.org/10.18653/v1/2024.nlp4science-1.10
http://dx.doi.org/10.18653/v1/2024.nlp4science-1.10


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Descriptions of various complexity levels for experiments across multiple dimensions.

Complexity Dimension Level Description and Example

Experiment Setup
Easy Straightforward setup with minimal dependencies. Example:

Running an inference script on local hardware.
Med. Moderate setup involving multiple components. Example:

Setting up a VM cluster and distributing workloads.
Hard Complex setup requiring multiple dependencies and external

configurations. Example: Setting up a distributed system with
networking, storage, and inter-region communication.

Design
Easy Well-defined experiments with few variables, and simple pa-

rameter spaces.
Med. Requires a moderate number of multiple key variables; with a

mix of discrete and continuous parameters.
Hard Involves complex variable interactions, and densely structured

parameter spaces requiring adaptive exploration.

Experiment Goal
Easy Single metric with a clear, measurable goal and no significant

trade-offs. Example: Success rate for a configuration.
Med. Multiple objectives, with moderate trade-offs but relatively

independent goals. Example: Balancing cost and latency.
Hard Conflicting objectives with high interdependencies, requiring

sophisticated optimization and rigorous validation. Example:
Minimizing cost while ensuring latency under 100ms and
CPU utilization above 80%.

Relationship
Easy Linear relationships. Example: Performance scales linearly

with the number of CPUs.
Med. Nonlinear but monotonic relationships: e.g., sublinear, log-

arithmic. Example: Diminishing returns in performance as
more CPUs are added.

Hard Non-monotonic or stochastic dependencies. Example: Perfor-
mance fluctuates due to unpredictable network interference.

Overall
Easy If none of the below hold.
Med. At least 2 dimensions are medium, or if only 1 dimension is

hard with 1 other dimension being medium.
Hard At least 2 dimensions are hard.

A CURIE BENCHMARK COMPLEXITY EXPLANATION

We describe in detail our complexity level definitions in Table. 2.

B CASE STUDIES FOR CURIE

We provide two example case studies for LLM reasoning tasks that Curie was able to extend from
the paper The Impact of Reasoning Step Length on Large Language Models (Jin et al., 2024).

In Fig. 6a, the objective of this experiment is to examine whether different models exhibit varying
accuracy levels based on the number of reasoning steps. The experiment maintains constant vari-
ables, including the dataset (last_letters), the method (auto_cot), and the evaluation metric
(accuracy). The independent variables include the model type (gpt-4o-mini vs. gpt-4o) and
the number of reasoning steps (1, 2, 3, 4, 5, 6, 10), while the dependent variable is the model’s
accuracy. The experiment consists of a control group and experimental groups. The control group
uses gpt-4o-mini with a single reasoning step to establish a baseline accuracy. The experimental
groups involve testing gpt-4o-mini with reasoning steps ranging from 2 to 10 and gpt-4o with
reasoning steps from 1 to 10. The results will help determine whether reasoning step variations
impact accuracy differently across models.

Curie extends the original investigation by examining whether different LLMs exhibit varying
accuracy using GPT-4o and GPT-4o-mini. While the original work primarily focused on general

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Question 6: "Does the optimal number of
reasoning steps vary across different LLMs?"

(b) Question 8: "What is the relationship between the
complexity of a task (e.g., as measured by the number of
logical inferences or mathematical operations needed) and
the optimal length of the reasoning chain?"

Figure 6: Case studies on LLM reasoning tasks.

trends, Curie establishes a structured experimental framework that includes both control and
experimental groups and introduces a new focus on optimal reasoning steps. This refinement
provides a more nuanced understanding of how reasoning steps affects accuracy across different
LLM architectures.

In Fig. 6b, the objective of this experiment is to examine the relationship between task complexity
and the optimal length of reasoning chains in large language models (LLMs). The experiment
maintains constant variables, including the model (gpt-4o-mini), the method (auto_cot), and
the environment setup (OpenAI credentials and a Conda environment). The independent variable
is the number of reasoning steps, controlled through different demo files, while the dependent
variable is the model’s accuracy, as reported in the log files. The experiment consists of a control
group and experimental groups. The control group uses the gsm8k_1 demo file with a single
reasoning step to establish a baseline accuracy. The experimental groups involve testing gsm8k with
reasoning steps from gsm8k_2 and gsm8k_3, and last_letters with reasoning steps ranging
from last_letters_1 to last_letters_10. The results will help determine whether task
complexity influences the optimal number of reasoning steps required for maximizing accuracy in
LLMs.

Curie extends the scope by analyzing how task complexity relates to the optimal length of reasoning
chains. This study differentiates between problem types (e.g., logical inference and mathematical
operations) and systematically evaluates the effect of reasoning step count within different datasets
(gsm8k and last_letters). By introducing controlled experimental conditions, Curie enables
a more detailed exploration of how task complexity interacts with reasoning steps to optimize model
performance.

C EXTENDED EVALUATION

C.1 FINE-GRAINED PERFORMANCE BREAKDOWN BY INDIVIDUAL METRICS

We detail fine-grained breakdowns for each of our performance metrics mentioned in §5. Here
we observe the general trend that increasing complexity across all dimensions causes reductions in
average metric scores, as shown in Fig. 7, Fig. 8 and Fig. 9, respectively. In particular, we observe
that conclusion scores are most heavily affected as complexity increases across dimensions, reaching
0% on many occasions for Magentic in particular. For design complexity on the other hand, we
observe that we’re able to maintain a relatively high average score across all baselines and Curie,
but this tapers down as the difficulty increases across dimensions.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard
0

25

50

75

100

A
ve

ra
ge

sc
or

e
(%

) Curie OpenHands Magentic

Figure 7: Average alignment scores across different complexity dimensions at varying difficulty
levels for Curie, OpenHands, and Magentic. Curie outperforms the others consistently, with
performance generally dropping as complexity increases.

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard
0

25

50

75

100

A
ve

ra
ge

sc
or

e
(%

) Curie OpenHands Magentic

Figure 8: Average conclusion scores across different complexity dimensions at varying difficulty
levels for Curie, OpenHands, and Magentic. Curie outperforms the others consistently, with
performance generally dropping as complexity increases.

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard
0

25

50

75

100

A
ve

ra
ge

sc
or

e
(%

) Curie OpenHands Magentic

Figure 9: Average design scores across different complexity dimensions at varying difficulty levels for
Curie, OpenHands, and Magentic. Curie outperforms the others consistently, with performance
generally dropping as complexity increases.

Table 3: Standard error across random trials in terms of four metrics introduced in §5.

Domain Curie OpenHands Microsoft Magentic-One
Des. Exe. Alig. Con. Des. Exe. Alig. Con. Des. Exe. Alig. Con.

LLM Reason. 6.3 9.8 8.6 8.6 12.5 6.7 7.5 5.0 8.2 4.2 5.1 6.1
Vector DB 2.2 7.3 6.8 8.2 7.8 8.5 9.0 5.7 7.8 3.5 8.5 0.0
Cloud Comp. 0.0 4.5 2.9 13.0 2.9 4.8 8.9 4.7 3.1 5.9 14.7 0.0
ML Training 4.4 8.9 14.6 16.2 10.9 11.4 7.5 3.4 6.7 2.6 8.5 0.0

Weighted Avg. 97.9 78.1 73.4 36.1 83.6 32.4 40.2 10.5 82.9 6.8 35.2 2.3

C.2 STANDARD ERROR ACROSS RANDOM TRIALS

To demonstrate the statistical significance of the results presented in Table 1, we present the standard
error of the results across random trials. We evaluated Curie and our 2 baselines across 46 tasks
with 5 independent trials each, yielding a total of 230 data points per framework. The number of
trials conducted is consistent with related benchmarks; for instance, MLAgentBench ran 8 trials per
task, while ScienceAgentBench ran 3 trials per task. Here, we compute standard errors of the mean
pass rate across tasks, treating each task’s average score over its 5 trials as one data point.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D DISCUSSION

D.1 RELATED BENCHMARKS

Our benchmark is necessary as there is currently no benchmark that captures the true nature of
experimentation as practiced in real-world scientific settings. This gap exists because experimental
tasks go beyond analyzing static datasets or single-step solutions—they require thoughtful design
evaluation, complex setup procedures, and iterative reasoning and empirical testing to arrive at
valid conclusions. Prior scientific benchmarks differ from ours: for instance, SciBench (Wang
et al., 2024c) emphasizes scientific reasoning, such as mathematical problem-solving, which is
categorically different from experimental inquiry. SciCode (Tian et al., 2024) targets domain-specific
code generation for simple functions. BLADE (Gu et al., 2024) performs statistical analysis on
fixed datasets or environments. In contrast, our benchmark includes tasks that require models to
autonomously curate data. BixBench (Mitchener et al., 2025), a contemporaneous bioinformatics
benchmark, explores open-ended tasks lacking clear optimization metrics, and we look forward
to integrating it into our framework. Existing ML training benchmarks such as those mentioned
in Agent K (Grosnit et al., 2024) typically provide preconfigured environments, skipping essential
but potentially complex experiment setup procedures (e.g., installation of packages, dependency
management) that must be completed first. In contrast, our benchmark mirror realistic experimentation
scenarios, where researchers are required to build and configure their experimental environments
from scratch.

D.2 RELATED AGENTS

Our view is that the existing iteration of Deep Research (DR) is complementary to Curie, and most
ideally suited for the hypothesis-generation phase prior to experimentation. According to its official
description, DR is designed to “find, analyze, and synthesize hundreds of online sources”, optimized
for “web browsing and data analysis”, and leverages “browser and Python tool use” to “expedite
complex, time-intensive web research”. As an example, our cloud computing experiments would
benefit from using DR to efficiently gather detailed information from the web about specific machine
configurations and associated costs, followed by Curie for the subsequent experimentation phase,
which involves building, configuring, and interacting directly with remote cloud machines. We also
envision Curie to be used as an experiment module within AI Scientist (Lu et al., 2024b), as it’s
current experimentation module is composed of simple LLM prompts. Also, Aviary (Narayanan
et al., 2024) serves primarily as a gymnasium focused on providing abstractions and interfaces (e.g.,
building scenario-specific environments) for scientific agent development through learning. We can
leverage Aviary’s learning capabilities within specialized tasks and then apply Curie to enforce
rigor.

Our baseline agents are representative for our domains. OpenHands is one of the strongest coding
agents available, that has seen integration with various scientific and ML benchmarks, including
BioCoder (Tang et al., 2024b), DiscoveryBench (Majumder et al., 2024), and ML-Bench (Tang et al.,
2024a). Moreover, we include a strong generalist multi-agent system (Magentic-One) by Microsoft,
which has seen strong performance on e.g., GAIA (Mialon et al., 2023). Finally, we ensure fairness
in all comparisons by standardizing the evaluation setup: all agents are tested on the same tasks under
identical conditions, and use the same underlying model configuration.

D.3 BENCHMARK TASK SELECTION

Our benchmark comprises 46 scientific tasks selected to reflect the diversity and complexity of
real-world experimentation. These include experiments directly extracted from research papers,
capturing well-defined hypotheses, configurations, and evaluation criteria. We also include ML
training tasks adapted from benchmarks such as MLAgentBench, which cover canonical problems
like image classification, sentiment analysis, and Kaggle competitions. To reflect modern scientific
workflows, we incorporate cloud computing tasks that require remote environment setup and in-
teraction with external systems—scenarios commonly encountered in real experiments but rarely
addressed in existing benchmarks. Additionally, we include vector indexing tasks (e.g., Faiss-based)
that require agents to navigate trade-offs between recall, memory usage, and latency, analogous to
real-world scientific challenges like tuning experimental conditions to balance yield, purity, and time.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Experimentation benchmark overview. (E for Easy, M for Medium, H for Hard)

Domain Complexity Description SourcesE. M. H.

LLM Reasoning 4 5 7 Investigates strategies for scaling test-
time computation in LLMs.

Research papers:
(Brown et al., 2024),
(Jin et al., 2024).

Vector Indexing 6 6 3 Examines efficient vector indexing meth-
ods, analyzing its trade-offs.

Open-source reposito-
ries: Faiss (Douze et al.,
2024)

Cloud Computing 2 4 2 Optimize various cloud setups. Cloud providers: AWS
ML Training 3 3 1 Optimize ML training pipelines. Benchmark: (Huang

et al., 2024), (Hong
et al., 2024b)

Collectively, these tasks were chosen to evaluate an agent’s ability to handle both conceptual rigor
and operational complexity in automated experimentation.

D.4 ABLATION STUDY

Performing ablation study by masking away Curie components is challenging in practice. To start
with, the Rigor Engine is integral to Curie ’s functionality, making isolated ablations challenging
without fundamentally disrupting the experimentation process. Our logging analysis reveals that
even at the initial step—formulating the experiment design plan—the Intra-Agent Rigor Module
is critical, requiring multiple refinements to ensure a structured plan with essential elements like
constant, dependent, and independent variables. Without this module, the design lacks the necessary
format and rigor, rendering subsequent steps—like execution and analysis—unfeasible or misaligned.

In regards to our inter-agent rigor module and experiment knowledge module, they are necessary
and fundamental components of rigor, as they are meant to guarantee methodical control and
interpretability; in other words, it is not about the magnitude of their contribution to accuracy, but
their ability to provide guarantees that matters. For instance, our knowledge module provides, among
other things, a "time machine" view into the experiment—allowing users to trace exactly what
occurred, when it happened, and how each fine-grained decision was made. This is crucial not only
for interpretability but also for validating and reproducing experimental outcomes. Our inter-agent
module, among other things, ensures that decisions are not made in isolation, e.g., each agent decision
must be checked by an Intra-Agent rigor policy before proceeding, reducing the risk of spurious
outcomes and enforcing a higher standard of internal consistency across the experimental pipeline.

D.5 MANUAL EFFORTS

We manually assess the implementation alignment, as detecting semantic discrepancies between the
intended methodology and code is non-trivial. We’ve noticed that the LLM judge can fail when the
task requires a complex setup, or domain-specific understanding. As an example, the LLM judge
may fail, for instance, in understanding that correctly implementing one of our cloud questions
involves many intricate steps including instantiating a machine using specific AWS CLI commands,
provisioning a unique key pair using openssl before attaching it, deploying traffic simulators on top
of the machine, etc.

E BENCHMARK COMPOSITION.

The composition of our benchmark is provided in Table. 4.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F BENCHMARK DETAILS.

Domain Question Complexity
Design Relat. Goal Setup Overall

LLM Reasoning

How does the number of generated samples per question impact the
overall success?

Easy Easy Easy Easy Easy

What is the mathematical relationship between the number of generated
samples per question and the overall success rate? For instance, does the
rate of success scale linearly, quadratically, or follow another pattern as
the number of generated samples increases?

Easy Medium Easy Easy Easy

Considering that a larger, more capable model (e.g., gpt-4o) costs signif-
icantly more per query compared to a smaller model (e.g., gpt-4o-mini),
would it be feasible to use the smaller model, sample more responses,
and achieve comparable rate of success while being more cost-effective?

Medium Medium Medium Easy Medium

To achieve 80% success rate for gsm8k task, what is the most cost-
effective configuration? Specifically, which model (gpt-4o-mini or gpt-
4o) should be used, and how many samples per question should be
generated to minimize cost? You will need to test at least 4 samples
sizes, and make sure to test each of the chosen samples sizes on both
gpt-4o-mini and gpt-4o.

Hard Medium Hard Hard Hard

How does varying the sampling temperature affect the diversity and
quality of responses when using a fixed number of samples?

Hard Hard Hard Medium Hard

One approach to scaling language model inference is to repeatedly sam-
ple candidate solutions from the model and aggregate them using major-
ity voting. How does the number of samples impact the overall accuracy
on the GSM8K task?

Medium Hard Easy Medium Medium

How effective is paper’s methodology to scale test-time compute, as
repeated sampling in LLMs often leads to duplicate answers?

Medium Medium Easy Medium Medium

Will increasing the number of reasoning steps in a Chain of Thought
(CoT) prompt improve LLM accuracy up to a saturation point?

Hard Hard Medium Medium Hard

Does the optimal number of reasoning steps for multi-step reasoning
tasks vary based on the problem type (e.g., mathematical and logic
problems)?

Medium Medium Hard Hard Hard

Can the accuracy impact of different prompting methods like Zero-
shot and Auto-CoT be systematically improved by varying the number
of reasoning steps without adding new content in a tightly controlled
experiment setting, by using methods such as adding sentences that
restate the question to increase steps?

Easy Medium Easy Easy Easy

How does the impact of an incorrect step on overall LLM performance
vary across different task types, such as process-oriented tasks versus
symbolic reasoning or logic tasks?

Hard Medium Hard Medium Hard

What is the optimal number of reasoning steps for different types of
tasks to maximize accuracy while minimizing computational cost?

Medium Medium Easy Medium Medium

Does the optimal number of reasoning steps vary across different LLMs
[GPT-4o, GPT_4o-mini], and if so, what is the nature of that relation-
ship?

Hard Medium Easy Medium Medium

How do different methods of expanding reasoning steps (e.g., repeating
the question, self-verification, making equations) affect the model’s
accuracy, and are some expansion strategies more effective than others?

Hard Medium Easy Hard Hard

What is the relationship between the complexity of a task (e.g., as mea-
sured by the number of logical inferences or mathematical operations
needed) and the optimal length of the reasoning chain?

Easy Medium Easy Easy Easy

How does the position of an incorrect step within the reasoning chain
affect the overall outcome? Is an early error more detrimental than a
later one?

Hard Medium Medium Hard Hard

Considering that larger models generally perform better, would it be
more cost-effective to use a smaller model with longer reasoning chains
or a larger model with fewer steps for a given level of accuracy?

Hard Medium Medium Hard Hard

Vector Indexing

What is the relationship between query latency for the SIFT1M dataset
and efSearch values with the HNSW index? Use a fixed value of k=10,
M=32, efConstruction=40.

Easy Easy Easy Easy Easy

What is the effect of varying M (number of neighbors per node) on the
memory usage, recall, and query latency for the SIFT1M dataset with
the HNSW index? Use varying M values of 16, 24, 32. Use fixed values
of k=10, efConstruction=40.

Easy Medium Medium Easy Medium

What is the optimal combination of M and efSearch to minimize memory
usage while maintaining a recall of at least 90%? Use k=10, efConstruc-
tion=40, and use varying M values of 16, 24, 32. efSearch is not a
parameter that you need to touch.

Easy Easy Medium Easy Easy

What is the effect of parallelism (via omp_set_num_threads. You need
to modify bench_hnsw.py to accept and use this parameter properly) on
recall and latency for the SIFT1M dataset with a fixed efSearch=100,
k=10, M=32, efConstruction=40

Easy Easy Easy Medium Easy

What is the highest recall that can be achieved on the SIFT1M dataset
with an HNSW index while keeping query latency under 5ms? Report
the optimal configuration. Use a fixed k value of 10, use varying M
values of 16, 24, 32, use varying efConstruction values of 40, 50, 60. In
total, there should be 9 combinations to test.

Hard Easy Medium Easy Medium

What is the relationship between dataset size and index-building time for
different FAISS index types (e.g., IVF, HNSW)? For hnsw, the default
settings are a fixed k value of 10, M value of 32, and efConstruction value
of 40. For ivf, use faiss/benchs/bench_ivf_fastscan.py. hnsw should be
the control group, and ivf the experimental group.

Easy Medium Easy Easy Easy

Which of these 2 index types, hnsw and ivf, requires the least amount
of memory to run and can reach a recall rate of at least 96%, using their
default settings? For hnsw, use faiss/benchs/bench_hnsw.py, where the
default settings are a fixed k value of 10, M value of 32, and efConstruc-
tion value of 40. For ivf, use faiss/benchs/bench_ivf_fastscan.py. hnsw
should be the control group, and ivf the experimental group.

Easy Easy Medium Medium Medium

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Domain Question Complexity
Design Relat. Goal Setup Overall

Vector Indexing

What are the recall-latency trade-offs for an IVF index as
the number of probes (nprobe) increases? For ivf, use
faiss/benchs/bench_ivf_fastscan.py. You need to modify it to accept
and use this parameter properly, make minimal edits.

Easy Easy Easy Medium Easy

Determine which parameters of the HNSW index is the most sensitive pa-
rameters to its recall, memory and latency on sift1M dataset. Specifically,
analyze the effects of efConstruction, efSearch, and M on performance
metrics, and assess the relative sensitivity of each parameter.

Hard Medium Medium Easy Medium

For different constructed SyntheticDataset, how does d, nt, nb, nq affects
the index performance (recall, memory and latency) for PQ?

Hard Hard Hard Easy Hard

How does the synthetic data characteristics (data size, mean, variance)
affect the index HNSW performance in terms of recall?

Hard Medium Easy Medium Medium

What is the relationship or trend in the HNSW parameters (M, efCon-
struction, efSearch) required to achieve at least 90% recall as we increase
dataset dimensions (d), size (nb), or query count (nq) in Synthetic-
Datasets?

Hard Hard Hard Easy Hard

How can you configure HNSW optimally to meet varying query require-
ments with strict latency constraints (specifically, test this for 5ms, 1ms,
0.1ms, and 0.05ms) while maintaining a recall of 0.95?

Hard Medium Hard Medium Hard

I am trying to add new vectors to an existing IVFPQ index without
rebuilding it. How does the incremental addition of vectors affect query
performance in terms of recall, latency, and memory usage?

Easy Medium Medium Medium Medium

How does running HNSW on the SIFT1M dataset five times impact
recall and latency, and what is the resulting error range?

Easy Easy Medium Easy Easy

Cloud Computing

What is the best AWS EC2 instance type within the c5 family (instances
listed below) for running an e-commerce web application serving 500
concurrent requests to its add_to_cart function? Do not terminate until
you identify the best instance type concretely.

Easy Medium Easy Medium Medium

What is the best AWS EC2 instance type within the c5 family (instances
listed below) for running an e-commerce web application serving 500
concurrent requests to its add_to_cart function, aiming to minimise
cost while maintaining a 99th percentile latency below 150ms? Do not
terminate until you identify the best instance type concretely.

Easy Easy Medium Hard Medium

What is the best AWS EC2 instance type within the c5 family (instances
listed below) for running an e-commerce web application serving 500
concurrent requests to its add_to_cart function, aiming to minimise
cost while maintaining a 99th percentile latency below 150ms? Do not
terminate until you identify the best instance type concretely.

Easy Medium Medium Medium Medium

What is the best AWS EC2 instance type within the c5 and t3 families
(instances listed below) for running an e-commerce web application
serving 500 concurrent requests to its add_to_cart function, aiming to
minimise cost while maintaining a 99th percentile latency below 150ms?
Do not terminate until you identify the best instance type concretely.

Medium Easy Medium Medium Medium

How does CPU efficiency scale differ with these different AWS EC2
instance types, i.e., t3.medium vs. c5.large, under a fixed compute-bound
workload? Do not terminate until you obtain a experimentally backed
reasonable conclusion.

Easy Easy Easy Easy Easy

How does CPU efficiency differ with these different AWS EC2 instance
types, i.e., t3.medium, c5.large, r5.large, m6i.large, t3a.large, under a
fixed compute-bound workload? Rank the instances. Do not terminate
until you produce a experimentally backed and reasonable conclusion.

Medium Hard Medium Hard Hard

What specific factors contribute to the performance difference, un-
der a fixed compute-bound workload (using sysbench’s -cpu-max-
prime=80000 test), between AWS EC2 instance types t3a.large and
m5.large, which share the same number of vCPUs and memory (i.e.,
2 vCPU and 8GB RAM)? There is a known performance difference,
with m5.large performing better on this workload. To rigorously answer
whether newer CPU architecture is the primary determinant, you must
conduct experiments across these 3 instance types that have the same
vCPUs and memory but are from different instance families with varying
CPU architectures: i.e., t3a.large, m5.large and m6a.large. Do not ter-
minate until you produce an experimentally backed and well-validated
conclusion.

Easy Hard Hard Hard Hard

How does CPU efficiency scale differ with these different AWS EC2
instance types, i.e., t3.medium vs t3.large vs. c5.large vs c5.xlarge, under
a mixed workload?

Easy Easy Easy Medium Easy

ML Training

Predict house prices based on features like location, size, and amenities.
The goal is to minimize prediction error and ensure generalization to
unseen data.

Easy Easy Easy Easy Easy

Classify IMDB movie reviews as positive or negative based on textual
content. The objective is to develop a model that accurately captures
sentiment.

Easy Easy Easy Easy Easy

Analyze user feedback to determine sentiment or categorize responses.
The goal is to automate classification for better insights and decision-
making.

Medium Easy Easy Medium Medium

Predict passenger survival or group assignments based on demographics
and onboard conditions. The objective is to build a model that effectively
classifies outcomes from structured data.

Medium Easy Easy Medium Medium

Forecast disease progression using patient time-series data. The goal is
to enable early diagnosis and effective monitoring.

Medium Easy Easy Medium Medium

Vectorization is a task measuring the improvement in processing speed
for vectorized computations in image data. The goal of this task is to
improve the execution speed of the given script ‘env/train.py‘. Make
sure to include the execution speed for each configuration tested.

Easy Easy Easy Hard Easy

BabyLM is a language modeling task evaluating models on perplexity
for child-directed text data. BabyLM evaluates small-scale language
models on low-resource NLP tasks. The goal is to improve the model
performance on the babyLM Benchmark.

Hard Easy Easy Hard Hard

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL SETUP DETAILS

G.1 EXPERIMENTER SYSTEM PROMPT TEMPLATE

[System prompt]
You are an experimenter tasked with solving problems by designing,
conducting, and analyzing rigorous, reproducible experiments based
on the scientific method. Your goal is to actively construct the
conditions necessary to perform experiments, generate results, and
derive conclusions. You need to complete the entire experiment on
your own, do not expect human user input from me.

Key Guidelines:

1. Follow the Scientific Method:
- Formulate Hypotheses: Identify a clear, testable hypothesis

for each problem or question. Refine hypotheses as needed
based on results.

- Define Experimental Variables: Distinguish between independent,
dependent, and control variables. Design experiments with
control and experimental groups to ensure proper comparison.

- Make sure your experiments are valid and grounded in real,
accurate facts.

2. Design and Execute Experiments:
- Setup Experiments: Develop a detailed and interpretable

workflow for conducting the experiment. Ensure reproducibility
and scientific rigor in the setup.

- Conduct Experiments: Actively perform the experiments using a
cohesive program that is callable to produce the required
results, given independent variables.

- Use Smaller Programs if Needed: The workflow can be composed
of smaller, modular programs, but the entire workflow must be
callable as a single cohesive program to produce results.

3. Analyze and Interpret Results:
- Collect and analyze data systematically.
- Ensure the results are accurate, cover the necessary search

space, and support your hypothesis or lead to refining it.
- Draw clear and justified conclusions based on the observed

results.

4. Avoid Simulated Results:
- Do not simulate or guess results. Every result must be

generated from a conducted experiment.

You will be judged based on:

1. Hypothesis Formation:
- Did you identify a clear, correct hypothesis?
- How many turns or iterations were required to arrive at a

correct hypothesis?

2. Experimental Setup:
- Is the experimental setup reproducible, usable, and

interpretable?
- Does it meet the rigor required by the scientific method?

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

3. Results Generation:
- Are the results actually produced through experimentation?
- Are the results accurate and sufficient to justify your

conclusions?

4. Conclusion Derivation:
- Are the conclusions correct and logically derived from the

results?
- Do the conclusions appropriately cover the search space of

the problem?

5. Workflow Design:
- Is the experimental workflow cohesive and callable as a

single program?
- Is it modular and well-organized, allowing smaller programs

to contribute to the overall workflow as necessary?

Expectations for Your Behavior:
- Think like a scientist. Approach each problem systematically,

with a focus on rigor, accuracy, and interpretability.
- Produce experiments and results that can be scrutinized,

reproduced, and used by others.
- Justify your steps and decisions clearly, and ensure your

results align with the problem’s requirements.
- Your success depends on delivering usable, rigorous, and

interpretable experimental workflows that solve the given
questions effectively.

- Make sure you provide a reproducible experimental workflow
(i.e., verify that it is runnable multiple times to produce
acceptable results) that can be callable through a single
program; name it experimental_workflow.sh

Reminder: Your role is to conduct actual experiments and generate
real results, no simulations, placeholders, or unverified assumptions
are allowed.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.2 LLM JUDGE SYSTEM PROMPT

[System Prompt]
You are a strict Experimentation Agent Verifier, responsible for
evaluating whether an experimentation agent correctly conducted an
experiment based on the experimentation question.
You are provided with an experiment log chunk, the original
experimentation question, and the ground truth (only contains the
conclusion).

Your assessment should focus on:
1. Experiment Design - Did the agent structure the correct high-level

plan to address the experimentation question? It does not need to
write implementation code or execute the plan.

2. Execution Setup - Is the generated code runnable, correctly
handling inputs, processing data, and producing real outputs? Is
the whole experimental workflow generated for reproducibility?

3. Implementation Alignment - Is the code properly aligned with the
experimentation design and accurately implementing the intended
methodology? Ensure: Legitimate handling of inputs and outputs. No
hardcoded or mock data.

4. Conclusion Correctness - Is the conclusion acceptable by the ground
truth?

Analyze the provided chunked Log File, and provide a structured
evaluation based on the criteria below:

Response Format
* Overall Verdict: Correct / Incorrect
* Detailed Assessment:

* Experiment Design: [Pass/Fail]
* Execution Setup: [Pass/Fail]
* Implementation Alignment: [Pass/Fail]
* Conclusion Correctness: [Pass/Fail]

* Explanation: [Concise explanation about the failure reasons, no
reason needed if the step is missing]

"""

user_prompt = f"""
> Original Experimentation Question:
{question}

> Ground Truth:
{ground_truth}

> Log Chunk:
{log_chunk}

Analyze this log chunk and provide your evaluation in the
specified JSON format.

"""

H SYSTEM DETAILS VISUALIZATION

This section provides detailed visualizations of key components in our system architecture.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 10: Intra-ARM setup validation high-level workflow.

(a) Example errors that can be captured by the setup
validator.

(b) Example errors that can be captured by the exe-
cution validator.

Figure 11: Errors detected by two of Intra-ARM’s many validators.

Figure 12: Simplified partial snapshot of an example Time Machine.

26


	Introduction
	Background
	Science Experimentation
	Rigor in Experimentation
	Related Work

	Curie: Rigorous Experimentation
	Architectural Overview
	Intra-Agent Rigor Module - Reliability
	Inter-Agent Rigor Module - Methodical Control
	Experiment Knowledge Module - Interpretability

	Experimentation Benchmark
	Experiment-Centric Task Design
	Experimental Complexity

	Evaluation
	Benchmark Performance

	Conclusion and Future Work
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	Curie Benchmark Complexity Explanation
	Case Studies for Curie
	Extended Evaluation
	Fine-grained Performance Breakdown by Individual Metrics
	Standard Error across Random Trials

	Discussion
	Related benchmarks
	Related agents
	Benchmark task selection
	Ablation study
	Manual efforts

	Benchmark Composition.
	Benchmark Details.
	Experimental Setup Details
	Experimenter System Prompt Template
	LLM Judge System Prompt

	System Details Visualization

