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Abstract
We present a formal definition of a general class
of compositional functions, and show how various
existing models fit this definition. Given this gen-
eral definition, we discuss a notion of complexity
of these compositional functions, and show how
this complexity affects the expressivity and com-
positional generalization of these functions.

1 Introduction
Compositionality is often assumed to be integral to language
processing [Pagin and Westerståhl, 2010a; Pagin and West-
erståhl, 2010b]. Compositional generalization or CG is of
high interest when learning with sequences since it can enable
a (learned) model to generalize to a possibly infinite domain
of sequences while learning from a small number of exam-
ples (assuming that the ground truth function is also com-
positional). With this motivation, there has been an interest
in quantifying the CG of language models. This has led to
various benchmarks such as SCAN [Lake and Baroni, 2018],
CFQ [Keysers et al., 2019], COGS [Kim and Linzen, 2020]
and others [Andreas, 2018; Hupkes et al., 2020], although
CG can also be of interest in vision [Klinger et al., 2020].

These benchmarks often demonstrate the lack of CG in
standard off-the-shelf language models. Various novel meth-
ods have been proposed to improve the CG on these bench-
marks [Russin et al., 2019; Gordon et al., 2019; Li et al.,
2019; Liu et al., 2020; Nye et al., 2020; Liu et al., 2021] by
utilizing specialized models with compositionality promoting
inductive biases. Since the ground truth in these benchmarks
are compositional, such regularized models exhibit CG.

However, the area of CG is still missing a mathematical
definition and measure of compositionality. We provide one,
which can be used to characterize present and future models.

2 Defining Compositionality
One definition of compositionality [Pagin and Westerståhl,
2010a] is that the meaning function µ(·) of a meaningful
expression α(u1, . . . , un) is given by µ(α(u1, . . . , un)) =
rα(µ(u1), . . . , µ(un)), where α is a rule applied to the sub-
terms ui in an expression, and rα is a meaning operation
that depends on α. This definition inspired some induc-
tive biases [Liu et al., 2021]. A non-technical phrasing of
the principle of compositionality [Partee and others, 1995] is

that “the meaning of a whole is a function the meanings of
the parts, and of the way they are syntactically combined.”
This is the guiding principle of some models that are specif-
ically designed for CG [Gordon et al., 2019; Li et al., 2019;
Liu et al., 2020; Liu et al., 2021]. Among the expected prop-
erties of compositional functions are systematicity – the abil-
ity to consistently handle unknown combinations of known
parts, and productivity – the ability to handle arbitrary length
sequences. Other properties are localism, substitutivity and
over-generalization, but we will focus on systematicity and
productivity here. Note that, while compositionality is a prop-
erty of any function, systematicity or systematic generaliza-
tion is a property of a learned model that has learned from
some examples (“known parts”) and is expected to generalize
to unseen examples (“unknown combinations”). Productiv-
ity includes a basic prerequisite ability of taking sequences
of any length as input and producing predictions, which then
need to be accurate. Our goal is to ground this principle into
a mathematical form that allows us to quantify the composi-
tionality of models, and understand how this affects CG.

We define compositional functions f : X → Y with the
domain X of input sequences X = {x1, . . . , xL} with tokens
xi ∈ I (input dictionary). The range Y can be R (regression),
{0, 1} (classification), or even I (next token prediction).

Definition 1. To define f , we need the following components:
· Token encoder e : I × N → H (latent space), with ei =
e(xi, i) ∈ H encoding the ith token in X ∈ X .

· A computation DAG or cDAG D : X → D (the space of
DAGs), with D(X) defining the hierarchical processing of
a sequence X . We will describe this in further detail soon.

· Span processor g : Hk → H maps k terms in the latent
space into a new term in the latent space.

· Read-out function h : Hm → Y which maps the final set of
terms in the latent space to the output space Y .

Given the above, we define a compositional function as

f(X) = h
(
g⊗D(X)(e(x1, 1), . . . , e(xL, L))

)
, (1)

where g⊗D(X) is the recursive operation of g over D(X).

cDAG. A cDAG D(X) ≜ {N(X), E(X)} can depend on
X , and is a leveled DAG with set of nodes N(X) and edges
E(X). Each node n ∈ N(X) has a level l and index i – the
level of n is one more than the highest level of any of its k
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Figure 1: cDAG for the function f(x1, x2, x3, x4, x5) defined as
h (g (e1, e2) , g (g(e3, e4), e5)), with k = 2 span size, m = 1 sink
nodes in the cDAG, and ei = e(xi, i) ∈ H. Each node is labeled
with l:i, with l as the node level, and i the node index in level l.
The value of node 0:i is ei for each i ∈ {1, . . . , 5}, and the values
for the non-source nodes are: 1:1← g(e1, e2), 1:2← g(e3, e4),
2:1← g(g(e3, e4), e5), and 3:1← g(g(e1, e2), g(g(e3, e4), e5)).

parents, the index of n (at its level) is based on the sort or-
der of the sorted list of the (level, index) tuples of its parents
P (n) = {n′ ∈ N(X) : (n′ → n) ∈ E(X)}. The recursive
application of g over D(X) induces a value vn ∈ H for each
non-source node n ∈ N(X). The source nodes n ∈ N(X)
have level 0, with one for each xi ∈ X, i ∈ [L] with in-
dex i and value vn = e(xi, i) ∈ H. There are at most m
sink nodes in N(X), and at most k incoming edges at any
node. For a non-source node n at level l with index i, and
sorted k parents P (n), the value vn = g(v1, . . . , vk) ∈ H
where vj is the value of the j-th parent in P (n). Figure 1
shows the cDAG for the compositional function f(X) =
h (g (e1, e2) , g (g(e3, e4), e5)), with k = 2 span size, m = 1
sink nodes, and ei = e(xi, i) ∈ H.
Complexity of a compositional function. This depends on the
functions g, h, e as well as the cDAG D that drives the com-
putation. For a sequence X of length L, D(X) has L source
nodes, maximum in-degree of k (controls the span size for
g), m sink nodes (controls the capacity of h), maximum out-
degree of q (quantifies the locality of any node’s effect). We
also quantify the locus of influence or LoI of any source node:
Definition 2 (LoI). For any source node 0:i in D(X), let
Pi be the set of all unique paths from 0:i to any of the sink
nodes in D(X), and let Ri be the set of all unique edges in
Pi. Then we define LoI of xi as β(xi) ≜ |Ri|/|E(X)|.

Smaller the LoI of any input token xi, more local its effect,
and thus more structure that can be transferred between ex-
amples if xi is replaced with something else. Finally, we can
now define a class of compositional functions:
Definition 3. A function f : X → Y with components
g, h, e,D is (k, q,m, βL)-compositional if, for any X ∈ X ,
|X| = L, the cDAG D(X) has a maximum incoming degree,
outgoing degree and sink nodes of k, q,m respectively, and
for ∀xi ∈ X,β(xi) ≤ βL. Let F be a class of such functions.

A smaller βL signifies a function that possesses some level
of localism across all input sequences in its domain.
Expressivity of data-dependent cDAG. Some function classes
induce a data-dependent cDAG while others do not. We study
the ability of a function with a data-independent cDAG to
approximate one with a data-dependent one:
Proposition 1. Consider F as in Definition 3, sequences
X ∈ X of length L, and a data-independent cDAG D′

L(X)

(i.e. D′
L(X) = D′

L ∀X ∈ X , |X| = L). Then the difference
between f ∈ F (components h, g, and a data-dependent D)
and f ′ ∈ F (components h′, g′, D′

L), with a common token
encoder e : I → H is lower-bounded as

max
h,g,D,X

min
h′,g′,D′

L

∣∣∣h(g⊗D(X)(e(X))− h′(g′⊗D′
L(e(X))

∣∣∣ ≥ O(βL).

This results highlights the limitation of a fixed cDAG –
even if we select the best possible fixed cDAG D′

L, and cor-
responding components g′, h′ (note the minh′,g′,D′

L
), there

are still f ∈ F with components h, g,D which cannot be
approximated sufficiently well (note the maxh,g,D). Further-
more, it highlights that, as βL grows, this lower bound grows,
implying that the larger the LoI of the cDAG in F , the harder
they are to approximate with a fixed cDAG (of same LoI).
Systematic generalization. Here we explore generalization
guarantees that are of specific interest in CG – we aim to
answer the following question: “If we approximate g, h,D
with data (on known parts), how well can we handle unknown
combinations of known parts?” Assuming that the cDAG
function D and the encoder e are known, we can show that:
Proposition 2. Consider F as in Definition 3, and let f ∈
F be the ground-truth and f ′ ∈ F be the learned func-
tion. Consider X,X1, X2 ∈ I⋆, X ′ ∈ E(X), the set of
exchangeable subsequences, and X ′

1, X
′
2 ∈ I⋆ such that

W = [X1XX2] ∈ X and W ′ = [X ′
1X

′X ′
2] ∈ X are train-

ing examples of length L. Defining f(Z) = h(g⊗D(Z)(e(Z))
and f ′(Z) = h′(g′⊗D(Z)(e(Z)) for any Z ∈ X , and let

|f(W )− f ′(W )| ≤ ϵ, |f(W ′)− f ′(W ′)| ≤ ϵ,

for some small ϵ > 0 (signifying “known parts”), we can
quantify the accuracy of f ′ on a V = [X1X

′X2] (“unknown
combination of known parts”) as

|f(V )− f ′(V )| ≤ O(ϵ/(1− βL)).

This shows that our definition of the compositional func-
tions allows us to quantify the systematic generalization,
highlighting that such functions provide some level of sys-
tematicity. However, note that, even if we only need to learn
the g, h (with e,D given), our ability to systematically gener-
alize depends on the LoI of any f ∈ F .
Analysis of Existing Models. To validate the expressivity of
the proposed definitions of compositional functions and
classes, we believe it is important to position this definition
with existing sequence models. We summarize the framing
of the existing models into Definitions 1 and 3 in Table 1.

Model DD A-len βL (k, q,m)

UniRNN ✗ ✓ L−1
2L

(2, 1, 1)
BiRNN ✗ ✓ L−1

4L
(2, 2, 2)

BinTree ✗ ✓ logL
L

(2, 1, 1)
Conv+Pool † ✓ logL

L
(c1 + c2, c1,m)

FC+Att ✓ ✗ 1− K
M(K+1)

(K + 1, L, L)

Table 1: Existing models framed as Def 3: DD – data-dependent
cDAG. A-len – arbitrary length. ‘UniRNN’ – unidirectional recur-
rent comp. ‘BiRNN’ – bidirectional recurrent comp. ‘BinTree’ –
balanced binary tree comp. ‘Conv+Pool’ – convolve over c1, then
pool over c2 († Conv+Pool induces DD for max/min-pool, but not
for avg/sum-pool). ‘FC+Att’ – M levels of fully connected with
top-K attention in each.
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