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Figure 1: High-resolution images generated by our AP-LDM using a single 3090 GPU. The
corresponding thumbnails are generated by SDXL (Podell et al., 2023) at their training resolution.

ABSTRACT

Latent diffusion models (LDMs), such as Stable Diffusion, often experience sig-
nificant structural distortions when directly generating high-resolution (HR) im-
ages that exceed their original training resolutions. A straightforward and cost-
effective solution is to adapt pre-trained LDMs for HR image generation; how-
ever, existing methods often suffer from poor image quality and long inference
time. In this paper, we propose an Attentive and Progressive LDM (AP-LDM),
a novel, training-free framework aimed at enhancing HR image quality while ac-
celerating the generation process. AP-LDM decomposes the denoising process of
LDMs into two stages: (i) attentive training-resolution denoising, and (ii) progres-
sive high-resolution denoising. The first stage generates a latent representation of
a higher-quality training-resolution image through the proposed attentive guid-
ance, which utilizes a novel parameter-free self-attention mechanism to enhance
the structural consistency. The second stage progressively performs upsampling
in pixel space, alleviating the severe artifacts caused by latent space upsampling.
Leveraging the effective initialization from the first stage enables denoising at
higher resolutions with significantly fewer steps, enhancing overall efficiency. Ex-
tensive experimental results demonstrate that AP-LDM significantly outperforms
state-of-the-art methods, delivering up to a 5× speedup in HR image generation,
thereby highlighting its substantial advantages for real-world applications.

1 INTRODUCTION

Diffusion models (DMs) have demonstrated impressive performance in visual generation tasks, par-
ticularly in text-to-image generation (Ho et al., 2020; Nichol & Dhariwal, 2021; Podell et al., 2023;
Esser et al., 2024; Mou et al., 2024; Zhang et al., 2023; Feng et al., 2023). One notable variant
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(a) SDXL (b) MultiDiffusion (c) Upsample Guidance (d) DemoFusion (e) AP-LDM (Ours)

Figure 2: Comparison of our AP-LDM with prior work in generating 2048× 2048 image. The
prompt is Neon lights illuminate the bustling cityscape at night, casting colorful reflections on the
wet streets. Zoom-in for a better view.

of DMs is the latent diffusion model (LDM), which performs diffusion modeling in latent space to
reduce training and inference costs, enabling high-resolution (HR) generation up to 1024 × 1024.
While it is possible to modify the input size for higher-resolution generation, this often results in
severe structural distortions, as illustrated in Fig. 2(a). Therefore, a recent research focus is on
adapting trained LDMs for HR image generation without the need for additional training or fine-
tuning (i.e. training-free manner), which can inherit the strong generation capacities of existing
LDMs, especially open-sourced versions like Stable Diffusion.

Existing training-free approaches for HR image generation can be roughly categorized into three
types: sliding window-based, parameter rectification-based, and progressive upsampling-based.
Sliding window-based methods first divide the HR image into several overlapping patches and use
sliding window strategies to perform denoising (Bar-Tal et al., 2023; Haji-Ali et al., 2023; Lee et al.,
2023). However, these methods could result in repeated structures and contents due to the lack of
communication between windows; see Fig. 2(b). Parameter rectification-based methods attempt to
correct models’ parameters for better structural consistency through the entropy of attention maps,
signal-to-noise ratio, and dilation rates of the convolution layers (Jin et al., 2024; Hwang et al.,
2024; He et al., 2023). Though efficient, they often lead to the degradation of texture details; see
Fig. 2(c). Unlike the two types mentioned above, progressive upscaling-based methods are to it-
eratively upsample the image resolution, which maintains better structural consistency and shows
state-of-the-art (SOTA) performance (Du et al., 2024; Lin et al., 2024). Unfortunately, these methods
require fully repeating the denoising process multiple times, leading to an unaffordable computa-
tional burden; e.g., AccDiffusion takes 26 minutes to generate a 4096 × 4096 image. In addition,
their upsampling operation in the latent space may introduce artifacts; see Fig. 2(d). To sum up,
existing methods fail to ensure the fast, high-quality HR image generation.

In this paper, we propose the attentive and progressive LDM, termed AP-LDM, a novel, training-
free framework aimed at enhancing HR image quality while speeding up the generation process.
Specifically, AP-LDM decomposes the denoising process of LDMs into two stages: (i) attentive
training-resolution (TR) denoising, and (ii) progressive HR denoising. The first stage aims to gen-
erate a latent representation of a high-quality image at the training resolution through the proposed
attentive guidance, which is implemented via a novel parameter-free self-attention mechanism to
improve structural consistency. The second stage aims to progressively upsample the resolution in
the pixel space rather than latent space, which can alleviate the severe artifacts caused by the latent
space upsampling. By leveraging the effective initialization from the first stage, AP-LDM can per-
form denoising in the second stage with significantly fewer steps, enhancing the overall efficiency
with 5× speedup. Extensive experimental results demonstrate the effectiveness and efficiency of
AP-LDM in generating HR images over the state-of-the-art baselines.

Contributions. The contributions of this work are summarized as follows. (i) We propose AP-
LDM, a novel, training-free framework aimed at enhancing the HR high-quality generation while
accelerating the generation process. (ii) We propose attentive guidance, which can utilize a novel
parameter-free self-attention to improve the structural consistency of the latent representation to-
wards high-quality images at the training resolution. (iii) We propose progressively upsampling
the resolution of latent representation in the pixel space, which can alleviate the artifacts caused
by the latent space upsampling. (iv) Extensive experimental results demonstrate that the proposed
AP-LDM significantly outperforms the SOTA models in terms of image quality and inference time,
emphasizing its great potential for real-world applications.
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2 RELATED WORK

HR image generation with super-resolution. An intuitive approach to generating HR images
is to first use a pre-trained LDM to generate TR images and then apply a super-resolution model
to perform upsampling (Wang et al., 2023; Zhang et al., 2021; Liang et al., 2021; Luo et al., 2024;
Wang & Zhang, 2024). Although one can obtain structurally consistent HR images in this way,
super-resolution models are primarily focused on enlarging the image, and shown to be unable to
produce the details that users expect in HR images (Du et al., 2024; Lin et al., 2024).

HR image generation with additional training. Existing additional training methods either
fine-tune existing LDMs with higher-resolution images (Hoogeboom et al., 2023; Zheng et al., 2024;
Guo et al., 2024) or train cascaded diffusion models to gradually synthesize higher-resolution im-
ages (Teng et al., 2023; Ho et al., 2022). Though effective, these methods require expensive training
resources that are unaffordable for regular users.

HR image generation in training-free manner. Current training-free methods can be roughly
classified into three categories: sliding window-based, parameter rectification-based, and progres-
sive upsampling-based methods. Sliding window-based methods consider spatially splitting HR
image generation (Bar-Tal et al., 2023; Haji-Ali et al., 2023; Lee et al., 2023). Specifically, they
partition an HR image into several patches with overlap, and then denoise each patch. However,
due to the lack of communication between windows, these methods result in structural disarray
and content duplication. While enlarging the overlaps of the windows mitigates this issue, it can
result in unbearable computational costs. For the parameter rectification-based methods, some re-
searchers discovered that the collapse of HR image generation is due to the mismatches between
higher resolutions and the model’s parameters (Jin et al., 2024; Hwang et al., 2024; He et al., 2023).
These methods attempt to eliminate the mismatches by rectifying the parameters such as the dilation
rates of some convolutional layers. While mitigating the structural inconsistency, they often lead
to the degradation of image details. Different from the aforementioned two types, the progressive
upsampling-based methods show SOTA performance in some recent studies (Du et al., 2024; Lin
et al., 2024). Though promising, they require fully repeating the denoising process multiple times,
which incurs unbearable computational overhead. Additionally, these methods perform upsampling
in the latent space, which may introduce artifacts.

These methods aforementioned fail to improve the quality of HR images and computational effi-
ciency at the same time. In contrast to them, AP-LDM aims to enhance both HR images quality and
the generation speed towards the real-world applications.

3 METHOD

3.1 OVERVIEW OF AP-LDM

Fig. 3 presents the overview of AP-LDM, which can adapt a pre-trained LDM to generate HR
images without further training. Formally, a pre-trained LDM utilizes a denoising U-Net model F
to iteratively denoise the latent representation of size h×w× c, which is then converted back to the
pixel space for final image generation through the decoder D of a variational autoencoder (VAE).
We note that the initial latent representation is sampled from a Gaussian distribution ϵ ∼ N (0, I),
and for the inference the encoder E of VAE is not involved.

Our AP-LDM extends the pre-trained LDMs for higher-resolution image generation in a training-
free manner; i.e., E , D and F are fixed. AP-LDM achieves this by decomposing the standard denois-
ing process in the latent space into two stages: (i) attentive training-resolution (TR) denoising, and
(ii) progressive high-resolution (HR) denoising. In the first stage, AP-LDM aims to generate a latent
representation of a higher-quality TR image through the proposed attentive guidance. The atten-
tive guidance is implemented as linearly combining the novel parameter-free self-attention (PFSA)
and the original latent representation to improve the structural consistency. In the second stage,
AP-LDM uses the latent representation provided by the first stage as a better initialization, and it-
eratively obtains higher-resolution images via the pixel space upsampling and diffusion-denoising
refinement.

We detail the attentive TR denoising in §3.2, followed by the progressive HR denoising in §3.3.
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Stage 2: Progressive High-Resolution DenoisingStage 1: Attentive Training-Resolution Denoising 

Diffuse𝒰

𝒟

𝒟 ℰ

𝒛0
(𝑖−1)

𝒛𝑇𝑖
(𝑖)

𝒙(𝑛)

Matrix Multiplication× + Element-wise Addition 𝒰 Pixel Space Upsampling

1 − 𝛾𝑡

𝛾𝑡Softmax

𝒛𝑡
(𝟎)

𝑄

𝐾

𝑉

PFSA

× × +

Attentive 

Guidance

𝑇0

𝝐 𝓕 𝒛0
(𝟎)

Attentive Guidance

Upsample 

& Diffuse

𝓕

𝑇𝑛

Upsample 

& Diffuse

𝓕

𝑇2

Upsample 

& Diffuse

𝓕

𝑇1

Upsample & Diffuse

Denoising 

Iteration

Upsample 

Iteration 𝑛

ℱ Denoising U-Net 𝒟 VAE Decoderℰ VAE Encoder

𝑛

Figure 3: Overview of AP-LDM. AP-LDM divides the denoising process of a pre-trained LDM
into two stages. The first stage leverages the introduced attentive guidance to enhance the structural
consistency by utilizing a novel parameter-free self-attention mechanism (PFSA). The second stage
iteratively upsamples the latent representation in pixel space to eliminate artifacts.

3.2 ATTENTIVE TRAINING-RESOLUTION DENOISING

Motivation. Enhancing the structural consistency helps improve image quality (Si et al., 2024).
However, it is challenging to do this in a training-free manner. We observe that the self-attention
mechanism presents powerful global spatial modeling capability (Vaswani et al., 2017; Han et al.,
2021; Dosovitskiy et al., 2020; Liu et al., 2021), and this capability is parameter-agnostic. It is
determined by the paradigm of global similarity calculation inherent to the self-attention mecha-
nism (Vaswani et al., 2017; Zhou et al., 2024). These insights motivate us to consider designing a
novel parameter-free self-attention mechanism to elegantly enhance the global structural consistency
of the latent representation.

Denoising with attentive guidance. To improve the structural consistency of the latent repre-
sentation at the training resolution z ∈ Rh×w×c, we propose a simple yet effective parameter-free
self-attention mechanism for attentive guidance, termed PFSA, formulated as:

PFSA(z) = Flatten−1

(
Softmax

(
Flatten(z) · Flatten(z)T

λ

)
· Flatten(z)

)
, (1)

where the operation Flatten reshapes the latent representation into shape (hw) × c and Flatten−1

reshapes it back; λ is the scaling factor, with a default value of λ =
√
c.

However, we empirically observe that directly using the PFSA in Eq. (1) to improve the structural
consistency of the latent representation could lead to unstable denoising. Therefore, we propose
linearly combining the outputs of PFSA and the original latent representation as attentive guidance,
which is formulated as:

z̃ = γPFSA (z) + (1− γ) z, (2)
where z̃ is the structurally enhanced latent representation and γ is the guidance scale.

As shown in Fig. 3, we append the attentive guidance in Eq. (2) to denoising U-net model F and
repeat the denoising process for a total of T0 times for the first stage. We note that the denoising
process starts from step T0 to 0, and the final output of the first stage is denoted as z(0)

0 .

Adaptive guidance scale. Considering that the latent representation is mostly non-semantic noise
in the first few steps of denoising, we delay k steps in introducing attentive guidance. Moreover,
during the denoising process, the image structure is generated first, followed by local details (Yu
et al., 2023; Teng et al., 2023). Therefore, we primarily employ attentive guidance in the early to
mid-steps of denoising to focus on enhancing the structural consistency of the latent representation.
Specifically, we introduce the adaptive guidance scale γt by applying a decay to a given guidance
scale γ, formulated as:

γt =

γ

[
cos

(
T0−k−t
T0−k π

)
+1

2

]β
if t ≤ T0 − k,

0 otherwise,
(3)
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(e) upsampling in latent space(d) upsampling in pixel space(c) Processed only by VAE(b) PSNR and SSIM(a)

Figure 4: (a) AP-LDM generation with latent space upsampling leads to severe artifacts. (b) Quan-
titative analysis of PSNR and SSIM. (c) to (e): Qualitative comparisons of VAE-only process and
upsampling in different spaces.

where β is the decay factor. In practice, considering that k depends on T0 for different resolutions,
we use a delay rate η1 = k

T0
to control the number of steps for delaying attentive guidance.

3.3 PROGRESSIVE HIGH-RESOLUTION DENOISING

Motivation. Fig. 2(a) shows that pre-trained LDMs still retain some ability to generate high-
frequency information when directly used to synthesize HR images, although they exhibit structural
disarray. Therefore, intuitively, we can utilize the latent representation produced by the first stage
as a structural initialization, and generate the HR images through the “upsample-diffuse-denoise”
iteration in the latent space. However, this pipeline leads to severe artifacts, as shown in Fig. 4(a).
We speculate that this is due to the upsampling of latent representations in the latent space.

Pilot study. To examine this hypothesis, we conduct the following experiments. Specifically, we
randomly select 10k images from ImageNet (Deng et al., 2009) to create an image set P . For each
image x ∈ P , we perform the following operations to obtain three additional image sets: (i) x̂ = D◦
E(x), which use VAE to obtain the reconstructed image set Pref; (ii) x̂ = up ◦D◦E◦down(x), which
performs upsampling in pixel space to obtain the image set Ppix; and (iii) x̂ = D◦up ◦E ◦down(x),
which performs upsampling in latent space to obtain the image set Plat. Both upsampling up and
downsampling down are performed using bicubic interpolation. Fig. 4(b) reports the quantitative
results, where r represents the upsampling or downsampling rate. We calculate the PSNR and
SSIM for pixel space upsampling set Ppix and latent space upsampling set Plat with respective to the
reference set Pref. It can be clearly observed that the latent space upsampling leads to a significant
performance decline compared to pixel space upsampling. Fig. 4(c) to (e) shows upsampling in the
pixel space produces images close to the reference while upsampling in latent space leads to severe
artifacts and detail loss.

Progressive HR denoising with pixel space upsampling. Based on the above conclusion, we
propose performing upsampling in the pixel space rather than latent space and utilize diffusion and
denoising to refine the upsampled higher-resolution image. Specifically, the second stage consists
of n sub-stages to progressively upsample the training-resolution to target resolution, each corre-
sponding to one upsampling operation. For i-th sub-stage, i = 1, . . . , n, we prepend an upsample
and diffuse operation before the denoising process, which can be defined as:

z
(i)
Ti

=
√

ᾱTi
ẑ
(i−1)
0 +

√
1− ᾱTi

ϵ, where ẑ
(i−1)
0 = E(U(D(z

(i−1)
0 )), (4)

where ᾱTi
is the noise schedule hyper-parameter of the Ti-th diffusion time step, z(i−1)

0 is the output
of the (i− 1)-th sub-stage; we use z

(0)
0 to denote the output from the first stage. Then, F is used to

iteratively denoise z
(i)
Ti

from time step Ti to obtain z
(i)
0 . After completing all sub-stages, we obtain

z
(n)
0 , which is then decoded to produce the final output x(n) = D(z

(n)
0 ).

We empirically found that generating higher-resolution images requires more sub-stages. Addition-
ally, when refining images using diffusion and denoising, higher resolutions demand larger time
steps (Teng et al., 2023). In practice, for flexibility, AP-LDM allows users to customize the number
of sub-stages n, and the diffusion time steps Ti for each sub-stage by a pre-specified variable-length
progressive scheduler η2 =

[
T1

T0
, T2

T0
, . . . , Tn

T0

]
, whose length is n. The elements of η2 represent the

denoising steps of each sub-stage, normalized by T0.
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Experimental settings. We use SDXL (Podell et al., 2023) as the pre-trained LDM and conduct
inference using two NVIDIA 4090 GPUs. To ensure consistency when testing inference speed, we
use a single NVIDIA 3090 GPU, aligning with other methods. We randomly sample 33k images
from the SAM (Kirillov et al., 2023) dataset as the benchmark. Following the released code from
DemoFusion (Du et al., 2024), we use the EulerDiscreteScheduler (Karras et al., 2022) setting T0 =
50 and the classifier-free guidance (Ho & Salimans, 2022) scale to 7.5. Pixel space upsampling is
performed using bicubic interpolation, and the decay factor β is fixed at 3.

Evaluation metrics. The widely recognized metrics FID (Heusel et al., 2017), IS (Salimans et al.,
2016), and CLIP Score (Radford et al., 2021) are used to evaluate model performance. Additionally,
since calculating FID and IS requires resizing images to 299 × 299, which may not be suitable
for evaluating HR images, we are inspired by (Du et al., 2024; Lin et al., 2024) to perform ten
1024× 1024 window crops on each image to calculate FIDc and ISc.

4.2 QUANTITATIVE RESULTS

We compare AP-LDM with the following models: (1) SDXL (Podell et al., 2023); (2) MultiDif-
fusion (Bar-Tal et al., 2023); (3) ScaleCrafter (He et al., 2023); (4) DemoFusion (Du et al., 2024);
(5) Upsample Guidance (UG) (Hwang et al., 2024); (6) AccDiffusion (Lin et al., 2024). For fair
comparisons, we disabled the FreeU trick (Si et al., 2024) in all experiments.

Table 1: Quantitative comparison results. The best results are marked in bold, and the second
best results are marked by underline.

Method 2048× 2048 2048× 4096 4096× 2048 4096× 4096
FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

SDXL 99.9 14.2 80.0 16.9 25.0 149.9 9.5 106.3 12.0 24.4 173.1 9.1 108.5 11.5 23.9 191.4 8.3 114.1 12.4 22.9
MultiDiff. 98.8 14.5 67.9 17.1 24.6 125.8 9.6 71.9 15.7 24.6 149.0 9.0 70.5 14.4 24.4 168.4 6.5 76.6 14.4 23.1

ScaleCrafter 98.2 14.2 89.7 13.3 25.4 161.9 10.0 154.3 7.5 23.3 175.1 9.7 167.3 8.0 21.6 164.5 9.4 170.1 7.3 22.3
UG 82.2 17.6 65.8 14.6 25.5 155.7 8.2 165.0 6.6 21.7 185.3 6.8 175.7 6.2 20.5 187.3 7.0 197.6 6.3 21.8

DemoFusion 72.3 21.6 53.5 19.1 25.2 96.3 17.7 62.3 15.0 25.0 99.6 16.4 61.9 14.7 24.4 101.4 20.7 63.5 13.5 24.7
AccDiff. 71.6 21.0 52.7 17.0 25.1 95.5 16.4 62.9 11.1 24.5 102.2 15.2 65.4 11.5 24.2 103.2 20.1 65.9 13.3 24.6
AP-LDM 66.0 21.0 47.4 17.5 25.1 89.0 20.3 56.0 19.0 25.0 93.2 19.5 56.9 16.5 24.9 90.6 21.1 59.0 14.8 24.6

We report the performance of all methods on four different resolutions (Height × Width): 4096 ×
4096, 4096 × 2048, 2048 × 4096, and 2048 × 2048. Considering that the generation time for
HR images far exceeds that for low-resolution images, we used 2k prompts at the resolution of
2048 × 2048, and 1k prompts for resolutions greater 2048 × 2048. For all resolutions, we set
γ = 0.004 and η1 = 0.06 for AP-LDM. Given that the 4096×4096 resolution is significantly larger
than other resolutions, we set η2 = [0.1, 0.2] (i.e., T0 = 50, T1 = 5, T2 = 10) for 4096 × 4096,
and η2 = [0.2] (i.e., T0 = 50 and T1 = 10) for other resolutions. When generating images with
an aspect ratio of r′, we reshape the initially sampled Gaussian noise ϵ in the first stage to match
r′. This process keeps the number of tokens in ϵ unchanged, preventing drastic fluctuations in the
entropy of the attention maps in the transformer (Jin et al., 2024) leading to higher-quality images.

Table 1 manifests that AP-LDM significantly outperforms previous SOTA models, AccDiffusion
and DemoFusion. This indicates that AP-LDM generates images with higher quality. Notably,
Table 2 indicates that AP-LDM demonstrates remarkable advantage in inference speed compared to
the SOTA models. On a consumer-grade 3090 GPU, AP-LDM requires only about one-fifth of the
inference time needed by SOTA models such as DemoFusion and AccDiffusion.

Table 2: Model inference time. The best results are marked in bold. Unit of Time: minute.
Resolutions SDXL MultiDiff. ScaleCrafter UG DemoFusion AccDiff. AP-LDM

2048× 2048 1.0 3.0 1.0 1.8 3.0 3.0 0.6
2048× 4096 3.0 6.0 6.0 4.0 11.0 12.7 2.0
4096× 4096 8.0 15.0 19.0 11.1 25.0 26.0 5.7
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4.3 QUALITATIVE RESULTS

In Fig. 5, AP-LDM is qualitatively compared with AccDiffusion, DemoFusion, and MultiDiffusion.
MultiDiffusion fails to maintain global semantic consistency. As indicated by the red boxes, Demo-
Fusion and AccDiffusion tend to result in chaotic content repetition and severe artifacts, which we
speculate are caused by upsampling in the latent space (as analyzed in §3.3). In contrast, AP-LDM
not only preserves excellent global structural consistency but also synthesizes images with more
details. More qualitative comparison results can be found in Appendix A.3.

4.4 USER STUDY

Table 3: Results of the user study.
Method Structural Consistency Color Abundance Detail Richness

score ↑ score* ↑ score ↑ score* ↑ score ↑ score* ↑
AccDiffusion 6.28 0.88 6.78 0.60 6.18 0.53
DemoFusion 5.99 0.59 6.69 0.51 6.18 0.53

AP-LDM 7.42 2.02 7.64 1.45 7.41 1.76

We invite 16 volunteers to partici-
pate in a double-blind experiment to
further evaluate the performance of
the models. Each volunteer is re-
quired to answer 35 questions. In
each question, three images gener-
ated by AccDiffusion, DemoFusion, and AP-LDM are presented. The volunteer needs to rate each
image from 1 to 10 in terms of structural consistency, color abundance, and detail richness. We
calculate the average of their scores. Moreover, to eliminate bias in each volunteer’s ratings for
each metric in each question, we subtract the minimum value among the three scores given by each
volunteer for each metric in each question. The rectified score is denoted as score*. Table 3 shows
that AP-LDM surpasses previous SOTA models across all metrics.

5 ABLATION STUDY

5.1 ATTENTIVE GUIDANCE

In this section, we first conduct ablation experiments on attentive guidance, followed by ablation
experiments on the hyper-parameters of attentive guidance.

Ablation on attentive guidance. We keep η2 unchanged and analyze the effect of attentive
guidance through qualitative and quantitative experiments. Table. 4 shows that attentive guidance
leads to improvements across various metrics, indicating that using attentive guidance to enhance
the consistency of latent encoding results in higher-quality images. The qualitative experiments in
Fig. 6 demonstrate that using attentive guidance eliminates image blurriness and enriches the image
details. Please refer to Appendix A.2.1 for additional qualitative ablation results.

Table 4: Ablation on attentive guidance (AG). The best results are marked in bold.
Method 2048× 2048 2048× 4096 4096× 2048 4096× 4096

FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

w/o AG 66.8 21.6 47.5 17.4 25.3 91.6 20.3 58.0 14.5 25.0 95.3 19.9 58.4 14.5 24.9 92.0 21.6 59.8 13.6 24.5
w/ AG 66.0 21.0 47.4 17.5 25.1 89.0 20.3 56.0 19.0 25.0 93.2 19.5 56.9 16.5 24.9 90.6 21.1 59.0 14.8 24.6

Ablation on guidance scale γ. We fix η1 = 0.06, η2 = [0.2] and then explore the effect of
the guidance scale γ through both quantitative and qualitative experiments. For the quantitative
experiments, we find that γ = 0.004 performs better. Interestingly, when a larger guidance scale is
used, the visual quality of the images can be further enhanced. As shown in Fig. 7, using a larger
guidance scale results in richer image details. This allows users to generate images according to
their preferences for detail richness and color contrast by adjusting the guidance scale. The setup
and results of the quantitative experiments are detailed in Appendix A.2.1.

Ablation on delay rate η1. We fix γ = 0.004, η2 = [0.2] and then investigate the impact of the
delay rate η1 through both quantitative and qualitative experiments. The quantitative analysis results
indicate that better generation results can be achieved when η1 = 0.06, indicating that appropriately
delaying the effect of attentive guidance contributes to further improving the quality of the images.
We conjecture that this is because, at the very beginning of the denoising process, the structural
information in the latent encoding has not yet emerged, and thus attentive guidance cannot effec-
tively enhance structural consistency. As shown in Fig. 8, delaying the effect of attentive guidance
eliminates some generation errors, further improving image quality. The setup and results of the
quantitative experiments are detailed in Appendix A.2.1.
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MultiDiffusion DemoFusion AccDiffusion AP-LDM (Ours)
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8

A beautiful 
swan 
gliding on a 
pond.

A sports 
car 
speeding 
down an 
empty 
highway.

A medieval 
knight in 
armor.

A historic 
castle on a 
hill.

2
0
4
8
×
4
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6

Warm light 
spills from 
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windows of 
the 
cottage.4
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8
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6

A peaceful 
Zen garden.

A dog 
running 
through a 
field of 
wildflowers.

Figure 5: Qualitative comparison with other baselines. The prompts used to generate the images
are presented on the right. MultiDiffusion fails to maintain global semantic consistency. DemoFu-
sion and AccDiffusion exhibit severe artifacts and content repetition. The red boxes indicate some
synthesis errors.
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(a) w/ Attentive Guidance (b) w/o Attentive Guidance (c) w/ Attentive Guidance (d) w/o Attentive Guidance

Figure 6: Generating with and without attentive guidance. Resolution: 2048 × 2048. Zoom-in
for a better view.

(b) γ=0.008 (c) γ=0.006 (d) γ=0.004 (e) γ=0.000(a) γ=0.009

Figure 7: Generating images using different guidance scale. Resolution: 2048× 2048.

(a) 𝜂1 = 0.00 (b) 𝜂1 = 0.06 (c) 𝜂1 = 0.00 (d) 𝜂1 = 0.06

Figure 8: Ablation on delay rate. Errors indicated by red boxes can be eliminated by delaying
attentive guidance. Resolution: 2048× 2048.

Ablation on the time steps of attentive guidance. To explain why attentive guidance needs to be
applied during the early to middle steps of denoising, we apply attentive guidance during different
denoising steps of the first stage: (a) 47 to 33, (b) 32 to 17, and (c) 16 to 1. Fig. 9 shows that when
attentive guidance is applied during the early to middle steps of denoising, the image becomes clearer
and more detailed; however, when attentive guidance is applied during the later steps of denoising,
it has negligible effect on the generated image. We speculate that this is because diffusion models
tend to synthesize structural information first (Teng et al., 2023), and once the structural information
is generated, attentive guidance may have a limited impact on structural consistency.

(a) Steps: 47~33 (Best quality) (b) Steps: 32~17 (c) Steps: 16~1 (d) w/o Attentive Guidance

Figure 9: Applying attentive guidance at different denoising steps. Resolution: 2048× 2048.

5.2 PROGRESSIVE HIGH-RESOLUTION DENOISING

In this section, we conduct ablation experiments on the progressive scheduler η2 in the second stage
of AP-LDM. Specifically, we fixed γ = 0, η1 = 0 and then explore the effect of the progressive
scheduler η2 through both quantitative and qualitative experiments. Quantitative experimental re-
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sults indicate that an excessively large progressive scheduler value may result in a decline in image
quality. This can also be observed in Fig. 10. It is evident that a too large progressive scheduler value
may lead to structural misalignment and repetition issues observed in pre-trained SDXL. When the
progressive scheduler value is sufficiently small, changing it yields similar visual effects. Therefore,
we can choose a smaller progressive scheduler value (e.g., 0.2) to accelerate inference. The setup
and quantitative results are detailed in Appendix A.2.2.

(a) 𝜂2 = [0.9] (b) 𝜂2 = [0.7] (c) 𝜂2 = [0.5] (d) 𝜂2 = [0.3] (e) 𝜂2 = [0.1]

Figure 10: Generated 2048× 2048 images using different η2. (a): When the value of progressive
scheduler is too large, the structural repetition issue may reappear. (b) to (e): The visual effects are
similar. Therefore, we can use a smaller progressive scheduler value to accelerate inference.

6 LIMITATIONS AND FUTURE WORK

AP-LDM exhibits limitations in the following aspects: (i) Effectively controlling text in images is
challenging, as demonstrated by examples in Fig. 11. This may be due to the inherent limitations of
SDXL in generating textual symbols. Text, due to its more regular structure compared to other image
content, is difficult to restore by directly enhancing the structural consistency of the latent represen-
tation. We speculate that the most reliable approach would be to fine-tune the model specifically on
images containing text. (ii) When generating ultra-high resolution images, such as 12800× 12800,
the second stage of AP-LDM inevitably needs to be decomposed into more sub-stages, which in-
creases the model’s inference time.

Developing a low-cost and effective fine-tuning method to correct text generation errors may be a
promising direction. Moreover, adapting attentive guidance to other tasks, such as video generation
can be an interesting issue.

(b) AP-LDM (d) AP-LDM(c) SDXL(a) SDXL

[1024×1024] [2048×2048] [1024×1024] [2048×2048]

Figure 11: Limitations of AP-LDM. The generation results of SDXL at its training resolution and
those of AP-LDM at higher resolutions are provided.

7 CONCLUSION

In this paper, we propose an effective, efficient, and training-free pipeline named AP-LDM, capable
of generating HR images with higher quality while accelerating the generation process. AP-LDM
divides the denoising process of an LDM into two stages: (i) attentive training-resolution denoising,
and (ii) progressive high-resolution denoising. The first stage aims to generate a latent representation
through the proposed attentive guidance, which enhances the structural consistency by leveraging a
novel parameter-free self-attention mechanism. The second stage iteratively performs upsampling
in the pixel stage, thus eliminating the artifacts caused by latent space upsampling. Extensive exper-
iments show that our proposed AP-LDM significantly outperforms SOTA models while achieving
5× speedup in HR image generation.
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8 REPRODUCIBILITY STATEMENT

We make the following efforts to ensure the reproducibility of AP-LDM: (i) Our code will be made
publicly available. (ii) We provide implementation details in §3 and Appendix 1.
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Algorithm 1 AP-LDM Inference Pipeline
Require: The number of inference time steps of the first stage T0; progressive scheduler η2; attentive guidance

scale γ; attentive guidance delay rate η1; the decay factor β; target image size tuple (H ′,W ′); the denoising
model F ; denoising model’s training resolution tuple (H,W ); VAE encoder E; VAE decoder D; noise
scheduler’s hyper-parameter list ᾱ1:T0 .

1: Initialization:
2: z

(0)
T0

= ϵ ∼ N (0, I) ▷ Sampling from Standard Gaussian Distribution
3: nstages = length(η2) + 1 ▷ Get the total number of denoising stages
4: r′ = H′

W ′ ▷ Keep the aspect ratio and number of pixels unchanged
5: H(0) = ceil(

√
H ×W × r′)

6: W (0) = ceil(
√

H×W
r′ )

7: H(n) = H ′

8: W (n) = W ′

9: arealist = linspace(H(0) ×W (0), H(n) ×W (n), nstages) ▷ Upsampling according to the number of pixels
10: Hlist = [ceil(

√
i× r′) for i in arealist] ▷ Get the height and width of each stage

11: Wlist = [ceil(
√

i/r′) for i in arealist]
12: kdenoising = [T0] ▷ Get the number of denoising steps for each stage
13: kdenoising.extend([i× T0 for i in η2])
14: k = T0 × η1 ▷ Obtain the number of delay steps

15: γlist = [γ(
cos(T−k−i

T−k
π)+1

2
)β for i = 1, ..., T − k] ▷ Obtain the guidance scale for each step

16: Denoising:
17: for s = 0, . . . , nstages − 1 do:
18: nsteps ← kdenoising[s]
19: if s ≥ 1 then:
20: x(s) ← upsample(x(s−1), Hlist[s],Wlist[s]) ▷ Upsampling in pixel space
21: z

(s)
0 ← E(x(s))

22: z
(s)
nsteps ∼ N (

√
ᾱ[nsteps]z

(s)
0 , (1− ᾱ[nsteps])I)

23: end if
24: for t = nsteps − 1, . . . , 0 do:
25: z

(s)
t ← F(z

(s)
t+1, t+ 1) ▷ Denoising

26: if s == 0 and t ≤ T − 1− k then:
27: z

(s)
t ← γlist[t]PFSA(z

(s)
t ) + (1− γlist[t])z

(s)
t ▷ Attentive Guidance

28: end if
29: end for
30: x(s) ← D(z

(s)
0 ) ▷ Obtain the pixel space image

31: end for

A APPENDIX

A.1 AP-LDM ALGORITHM

The implementation details of AP-LDM can be found in Algorithm 1, and further information is
available in our code repository.

A.2 FURTHER RESULTS OF ABLATION STUDIES

A.2.1 ATTENTIVE GUIDANCE

Quantitative analysis of guidance scale. We sampled 1k prompts, fixed η1 = 0.06, η2 = [0.2]
and performed ablation studies for guidance scale γ. The quantitative results are shown in Table 5.
Considering all metrics, we find that γ = 0.004 achieved better quantitative results.

Quantitative analysis of delay rate. We sampled 1k prompts, fixed γ = 0.004, η2 = [0.2] and
performed ablation studies for delay rate η1. Table 6 presents the experimental results, indicating
that better results can be achieved when η1 = 0.06. This means that appropriately delaying the
effect of attentive guidance can further enhance the quality of the generated images.

Further qualitative analysis of attentive guidance. Fig. 12 provides additional qualitative ab-
lation results on attentive guidance. Individual preferences for contrast, color vividness, and detail
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Method
1024 × 1024 1600 × 1600 2048 × 2048

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

γ = 0.000 90.85 58.18 21.21 17.69 25.09 90.91 54.74 21.45 15.41 24.93 91.78 59.08 21.57 17.36 24.86
γ = 0.001 90.50 58.04 21.34 16.76 25.08 91.17 54.31 21.19 15.47 24.93 91.40 58.75 21.87 15.85 24.86
γ = 0.002 89.82 57.54 21.28 17.04 25.08 90.39 53.71 21.26 15.00 24.97 90.81 58.34 21.45 17.16 24.90
γ = 0.003 90.10 57.08 20.80 16.61 25.08 90.56 53.95 21.35 15.46 24.98 90.87 58.40 21.47 17.60 24.92
γ = 0.004 89.40 56.64 20.96 16.63 25.09 89.91 54.23 20.91 15.54 25.01 90.11 58.11 21.18 16.78 24.94s
γ = 0.005 90.17 57.50 20.89 16.34 25.12 90.24 55.19 20.67 15.21 25.02 90.46 58.91 20.79 16.87 24.97
γ = 0.006 89.79 58.18 20.33 15.93 25.16 90.36 56.71 20.33 14.59 25.06 90.32 59.86 20.37 16.12 25.00
γ = 0.007 90.42 60.29 20.07 16.20 25.21 90.91 59.35 20.36 14.16 25.12 90.86 61.81 20.14 15.70 25.06
γ = 0.008 91.64 63.63 19.66 14.25 25.25 91.98 63.93 19.13 13.71 25.13 92.16 64.82 19.59 14.24 25.08
γ = 0.009 94.29 67.87 19.15 13.00 25.25 94.38 70.21 19.45 12.12 25.16 94.39 68.84 19.22 13.63 25.12

Table 5: Quantitative ablation experiments on the guidance scale γ. The best results are marked
in bold, and the second best results are marked by underline.

Method
1024 × 1024 1600 × 1600 2048 × 2048

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

η1 = 0.00 89.98 58.29 20.74 16.48 25.06 90.89 55.54 21.00 14.42 24.98 90.75 59.41 20.54 16.99 24.91
η1 = 0.02 89.96 57.67 20.99 16.87 25.05 90.76 54.77 21.08 15.35 24.95 91.78 59.08 21.57 18.16 24.86
η1 = 0.04 89.47 57.28 20.98 16.63 25.07 90.22 54.14 20.86 15.43 24.98 90.52 58.47 20.76 17.02 24.91
η1 = 0.06 89.44 56.64 20.92 16.58 25.11 89.91 54.23 20.91 15.54 25.01 90.11 58.11 21.18 16.78 24.94
η1 = 0.08 89.95 56.97 21.05 16.76 25.09 89.87 54.10 21.22 15.65 24.98 90.74 58.45 20.99 17.06 24.92
η1 = 0.10 89.29 56.88 21.11 16.84 25.09 89.97 53.99 21.04 15.37 24.99 90.41 58.45 20.99 17.12 24.92
η1 = 0.12 89.84 57.32 21.05 16.58 25.08 90.00 53.85 21.24 15.81 24.93 90.24 58.45 21.24 17.36 24.90
η1 = 0.14 89.85 57.12 20.91 16.40 25.09 90.06 53.83 21.33 15.62 24.99 90.69 58.25 21.17 16.74 24.91
η1 = 0.16 90.06 57.28 21.10 16.53 25.09 90.91 54.74 21.45 15.41 24.93 90.76 58.37 20.97 16.87 24.91
η1 = 0.18 90.16 57.29 20.88 15.10 25.08 90.26 53.79 21.06 15.07 24.97 90.78 58.33 21.05 17.21 24.90

Table 6: Quantitative ablation experiments on the delay rate η1. The best results are marked in
bold, and the second best results are marked by underline.

richness may vary. attentive guidance allows users to adjust parameters such as the guidance scale
to synthesize images according to their preferences.

A.2.2 PROGRESSIVE HIGH-RESOLUTION DENOISING

This section presents the results of quantitative ablation analysis on the progressive scheduler η2
in the second stage of AP-LDM. We fixed γ = 0, η1 = 0, sampled 500 prompts, and generated 1k
images to investigate the optimal value of the progressive scheduler. Table 7 presents the quantitative
results, indicating that using an excessively large progressive scheduler may lead to a decline in
image quality.

Method
1600 × 1600 2048 × 2048

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

SDXL 101.56 25.78 73.67 21.23 26.87 112.64 18.44 79.03 20.61 26.55
η2 = [0.9] 94.59 27.04 67.60 23.01 26.97 97.14 24.48 64.34 22.14 26.59
η2 = [0.8] 93.13 28.80 65.67 24.83 26.99 93.93 26.75 60.84 23.27 26.77
η2 = [0.7] 92.05 29.44 65.35 24.97 27.07 92.50 28.17 57.34 24.05 26.93
η2 = [0.6] 92.94 30.79 64.57 24.29 27.11 91.86 30.45 55.38 24.96 26.98
η2 = [0.5] 92.73 30.65 63.43 24.26 27.13 91.80 31.18 54.32 24.48 27.02
η2 = [0.4] 93.04 30.96 63.33 24.77 27.14 91.71 32.47 53.72 25.16 27.03
η2 = [0.3] 92.93 30.91 63.09 24.84 27.15 92.39 30.72 53.32 26.63 27.07
η2 = [0.2] 93.09 31.17 63.23 25.71 27.17 92.71 30.45 53.19 26.19 27.12
η2 = [0.1] 93.44 30.69 63.75 25.18 27.22 92.94 30.69 53.77 24.71 27.18

Table 7: Quantitative ablation study of the progressive scheduler. The best results are marked in
bold, and the second best results are marked by underline.

A.3 SUPPLEMENTARY QUALITATIVE ANALYSIS

Fig. 13 presents additional qualitative comparison results. MultiDiffusion continues to struggle with
maintaining global consistency; as indicated by the red boxes, DemoFusion tends to produce repet-
itive content, a problem somewhat alleviated in AccDiffusion but not fully resolved. As highlighted
by the black boxes, another issue with AccDiffusion is the presence of noticeable streak artifacts in
the images.
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w/ AG w/o AG w/ AG w/o AG

Figure 12: Further qualitative analysis of attentive guidance (AG). Using attentive guidance
significantly enhances image quality. The details were enriched, for example: the clouds in the sky,
ripples on the water, reflections on the lake, and even the expressions in a person’s eyes. Best viewed
ZOOMED-IN.
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MultiDiffusion DemoFusion AccDiffusion AP-LDM (Ours)

2
0
4
8
×
2
0
4
8

A historic ship 
sailing on the 
open sea.

A dragonfly 
hovers above 
the pond's 
surface.

A rabbit 
nibbles on 
clover in a 
meadow.

The sun sets 
behind the hills, 
casting a warm, 
golden light 
over the 
landscape.

2
0
4
8
×
4
0
9
6

A serene 
autumn forest.

4
0
9
6
×
2
0
4
8

4
0
9
6
×
4
0
9
6

A calm meadow 
with grazing 
deer.

A fisherman 
casts his line 
into the calm 
lake, waiting 
patiently.

Figure 13: Qualitative comparison with other baselines.
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A.4 ANALYSIS OF THE PROGRESSIVE UPSAMPLING GENERATION PROCESS IN AP-LDM

To clearly illustrate the progressive upsampling process of AP-LDM, we set η2 = [0.2, 0.2, 0.2] to
generate 4096× 4096 images. As shown in Fig. 14, the images generated at different sub-stages of
AP-LDM exhibit a high degree of consistency, with only minor differences in details. Since our task
focuses on generating HR images rather than traditional image super-resolution, these differences in
details are reasonable.

Prompt: A futuristic samurai 
standing on the edge of a neon-
lit rooftop, katana glowing with 
blue energy, wearing a sleek, 
high-tech armor suit with 
glowing circuitry, overlooking a 
sprawling cyberpunk cityscape 
with flying cars, dramatic rain 
and lightning, ultra-realistic, 
cinematic lighting, inspired by 
Akira and Blade Runner, 8k 
resolution.

Prompt: A colossal dragon 
perched on a jagged mountain 
peak, scales glimmering in 
shades of emerald and gold, 
fiery eyes staring at the 
horizon, a storm raging in the 
background with lightning 
illuminating its massive wings, 
ultra-detailed textures, epic 
composition, inspired by high-
fantasy art, 8k resolution.

Attentive Guided Stage

1024 × 1024
50 steps ~0.23 min

Progressive Upsampling Sub-stage 1
2504 × 2504

10 steps ~3.32 min

Progressive Upsampling Sub-stage 2
3392 × 3392

10 steps ~2.59 min

Progressive Upsampling Sub-stage 3
4096 × 4096

10 steps ~3.90 min

Figure 14: Illustration of the progressive upsampling generation process. The inference speed
is evaluated on a single NVIDIA 3090 GPU.

Another noteworthy observation is that even though the progressive upsampling generation sub-
stages involve only a small number of denoising steps (e.g., 10 steps), the majority of the generation
time is still consumed in these sub-stages. This is because the time required for denoising mod-
els to perform inference increases dramatically with the image size. For each denoising step, the
time required for HR images is several times that for low-resolution images. Consequently, repeat-
ing a full denoising process at high resolution is extremely time-consuming (Du et al., 2024; Lin
et al., 2024). Considering that HR and low-resolution images should share the same low-frequency
structure, and that DMs naturally generate low-frequency structures first during denoising (Yu et al.,
2023; Teng et al., 2023), AP-LDM effectively leverages the prior knowledge of low-frequency struc-
tures in low-resolution images. This significantly reduces the number of denoising steps needed at
high resolution, thereby substantially accelerating the image generation process.

A.5 HOW DOES PFSA WORK?

In this section, we further elaborate on the working mechanism of PFSA. Specifically, the func-
tionality of PFSA can be described in two aspects: (i) clustering the related tokens in the latent
representations; (ii) adjusting the amplitude of the high-frequency and low-frequency components
in the latent representations.

A.5.1 PFSA CLUSTERS TOKENS OF LATENT REPRESENTATIONS

PFSA reorganizes tokens based on their similarities. Intuitively, this enables PFSA to perform to-
ken clustering, which enhances the structural consistency of latent representations. To demonstrate
the clustering effect of PFSA, we calculated the deviation of the tokens’ mean (DTM) of the la-
tent representations z̃t and zt. Concretely, assuming zt ∈ Rh×w×c, and Zt = Flatten(zt) =
[yt1, . . . ,ytN ] ∈ RN×c, where N = h× w, we calculate DTM as:
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DTM = [mean(yti)−mean(Zt) for i = 1, . . . , N ] (5)

To provide an intuitive illustration of the clustering effect of PFSA, we visualize the DTM based
on token indices (i.e., i = 1, . . . , N ) when t is relatively large. As shown in columns (A) and (B)
of Fig. 15, compared to the DTM of zt (blue points), the DTM of z̃t (red points) becomes more
dispersed and exhibits distinct stripe patterns, indicating that PFSA indeed clusters the tokens of the
latent representations. This clustering effect can be more directly demonstrated when t is smaller.
As shown in the heatmaps in columns (C) and (D) of Fig. 15, it is evident that PFSA clusters
semantically related tokens.

(A) (C) (D) (E)(B)

(a)

(c)

(b)

Figure 15: The clustering effect of PFSA. Columns (A), (B), (C), and (D) show the DTM of latent
representations, while column (E) presents the corresponding generated RGB images.

A.5.2 PFSA ADJUSTS THE AMPLITUDE OF HIGH- AND LOW-FREQUENCY COMPONENTS IN
LATENT REPRESENTATIONS

The aim of this section is to explain: (i) why appropriately delaying attentive guidance can resolve
structural deformation issues (as shown in Fig. 8), (ii) why attentive guidance enhances the details
and colors of the image (as shown in Fig. 6, 7, and 12), and (iii) why applying attentive guidance in
the later stages of denoising does not enhance the image details and colors (as shown in Fig. 9).

To explain the aforementioned three points, as shown in Fig. 16, we calculate the Fourier transforms
of zt (blue solid line) and z̃t (red solid line), along with the mean of the standard deviations for all
their channels (dashed line). It can be observed that PFSA significantly alters the relative amplitudes
of the high- and low-frequency components in the latent representations during the initial denoising
steps (from t = 49 to t = 47), particularly affecting the low-frequency components, which results
in structural deformation. During the early and middle stages of denoising (from t = 44 to t = 29),
PFSA increases the amplitudes of high-frequency components in the latent representations, which
explains why attentive guidance leads to richer details and colors. In the later stages of denoising
(from t = 28 to t = 0), PFSA slightly suppresses the high-frequency components of the latent
representations while almost leaving the low-frequency components unchanged. This explains why
applying attentive guidance in the later stages of denoising cannot enrich details and colors of the
generated images.

Additionally, Fig. 16 shows that PFSA increases the standard deviation of z̃t during the early and
middle stages of denoising, while decreasing it in the later stages. The trend of the standard deviation
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Figure 16: The Fourier transform of the latent representation and the mean of the standard
deviations across all channels. zt is represented in blue, while z̃t is represented in red; the Fourier
transforms are shown as solid lines, and the standard deviations are shown as dashed lines. The
results are based on the generation process of 5k images.

changes is closely consistent with the variation in the amplitude of the high-frequency components.
We conjecture that this is because the amount of information in the latent representations is positively
correlated with the standard deviation, where a larger standard deviation corresponds to more image
details and larger high-frequency components.

A.6 COMPARISON WITH ADDITIONAL BASELINE MODELS

In this section, we compare AP-LDM with additional baseline models. Specifically, we include
recently proposed HiDiffusion (Zhang et al., 2025) and a super-resolution model (SDXL+BSRGAN,
i.e., the outputs of SDXL are upsampled using BSRGAN (Zhang et al., 2021)). Since HiDiffusion
experiments are conducted using professional-grade V100 GPUs without optimization for ultra-
high-resolution images, it is not feasible to generate images with resolutions above 2048× 4096 on
consumer-grade GPUs such as the 3090. Due to device limits, we compare its performance only at
the resolution of 2048× 2048. The experimental setup remains the same as described in §4.

A.6.1 QUANTITATIVE COMPARISON

Comparison of generated image quality. Table 8 presents the extended quantitative compari-
son results of generated image quality, which further demonstrate our effectiveness on HR image
generation. We observe that models employing progressive upsampling generation (e.g., AP-LDM,
DemoFusion, and AccDiffusion) achieved relatively better results, showing the robustness of the
progressive upsampling generation paradigm.

Table 8: Quantitative comparison results. The best results are marked in bold, and the second
best results are marked by underline.

Method 2048× 2048 2048× 4096 4096× 2048 4096× 4096
FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

SDXL 99.9 14.2 80.0 16.9 25.0 149.9 9.5 106.3 12.0 24.4 173.1 9.1 108.5 11.5 23.9 191.4 8.3 114.1 12.4 22.9
MultiDiff. 98.8 14.5 67.9 17.1 24.6 125.8 9.6 71.9 15.7 24.6 149.0 9.0 70.5 14.4 24.4 168.4 6.5 76.6 14.4 23.1

ScaleCrafter 98.2 14.2 89.7 13.3 25.4 161.9 10.0 154.3 7.5 23.3 175.1 9.7 167.3 8.0 21.6 164.5 9.4 170.1 7.3 22.3
UG 82.2 17.6 65.8 14.6 25.5 155.7 8.2 165.0 6.6 21.7 185.3 6.8 175.7 6.2 20.5 187.3 7.0 197.6 6.3 21.8

DemoFusion 72.3 21.6 53.5 19.1 25.2 96.3 17.7 62.3 15.0 25.0 99.6 16.4 61.9 14.7 24.4 101.4 20.7 63.5 13.5 24.7
AccDiff. 71.6 21.0 52.7 17.0 25.1 95.5 16.4 62.9 11.1 24.5 102.2 15.2 65.4 11.5 24.2 103.2 20.1 65.9 13.3 24.6

SDXL+BSR. 66.2 21.1 47.5 16.6 25.7 80.7 19.8 50.2 12.3 25.1 92.7 17.6 57.9 12.1 24.9 90.0 20.9 56.0 13.8 25.2
HiDiff. 81.0 16.8 64.1 14.2 24.9 - - - - - - - - - - - - - - -

AP-LDM 66.0 21.0 47.4 17.5 25.1 89.0 20.3 56.0 19.0 25.0 93.2 19.5 56.9 16.5 24.9 90.6 21.1 59.0 14.8 24.6

In contrast, HiDiffusion fell short compared to methods using progressive upsampling. We speculate
that its suboptimal performance is due to two factors: (i) the forced resizing of deep feature maps
during the generation process, which causes significant distribution shifts; and (ii) the use of MSW-
MSA (a sparse attention mechanism similar to SwinTransformer (Liu et al., 2021)), which forcibly
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alters the attention’s receptive field and sequence length, leading to severe shifts in the entropy of
attention weights (Jin et al., 2024). The aforementioned two issues prevent HiDiffusion from fully
addressing the problem of repeated object structures and result in severe artifacts and deformations
in the generated images (as shown in Fig. 17).

The super-resolution model (SDXL + BSRGAN) demonstrated strong performance in quantitative
experiments, a phenomenon also observed in the DemoFusion’s experiments. This is because super-
resolution models can at least preserve the low-frequency structures of images without significant
errors. However, as discussed in DemoFusion (Du et al., 2024) and AccDiffusion (Lin et al., 2024),
super-resolution models fail to add finer details to high-resolution images (as shown in Fig. 18).

Comparison of resource consumption. We also compare the inference time and GPU memory
usage required by the models. Specifically, we test the minimum GPU memory requirements during
model inference based on the model’s open-source code. Table 9 shows the resource consumption
of different models when generating images at various resolutions. SDXL+BSRGAN, unlike DMs,
does not require iterative inference, allowing it to achieve the fastest generation speed. However,
the super-resolution model fails to generate the level of detail expected in high-resolution images,
which has limited its widespread adoption.

Table 9: Model resource consumption. The best results are marked in bold, and the second best
results are marked by underline. Time unit: minute. Storage unit: GB.

Method 2048× 2048 2048× 4096 4096× 4096
time cost storage cost time cost storage cost time cost storage cost

SDXL 1.0 15.9 3.0 16.1 8.0 16.6
MultiDiff. 3.0 22.0 6.0 16.8 15.0 16.8

ScaleCrafter 1.0 17.4 6.0 17.6 19.0 19.1
UG 1.8 23.9 4.0 16.5 11.1 18.0

DemoFusion 3.0 15.2 11.0 18.4 25.0 16.8
AccDiff. 3.0 22.1 12.7 23.0 26.0 22.1

SDXL+BSR. 1.0 14.6 1.0 11.1 1.0 21.1
HiDiff. 0.8 23.9 - - - -

AP-LDM 0.6 16.0 2.0 21.1 5.7 23.8

It is worth noting that for high-resolution image generation tasks, the memory bottleneck lies in the
encoding and decoding of the VAE rather than interpolating the image in pixel space. To address the
challenges of encoding and decoding high-resolution images, researchers typically employ tiled en-
coders and tiled decoders. In this work, we also utilize a tiled-encoder and decoder when generating
ultra-high-resolution images, allowing us to generate images with resolutions up to 4096× 7280 or
higher on a 24GB VRAM NVIDIA 3090 GPU (as shown in Fig. 1).

A.6.2 QUALITATIVE COMPARISON

Qualitative Comparison with HiDiffusion. We conduct extensive qualitative comparison exper-
iments between AP-LDM and HiDiffusion, with the results shown in Fig. 17. From the figure, it can
be observed that AP-LDM consistently generates high-quality, high-resolution images. Although
capable of generating some good results, HiDiffusion suffers from significant distribution shifts in
the UNet features due to forced feature scaling and the use of window attention, which alters the se-
quence length during attention computation. This often causes the generated images to collapse, as
illustrated in Fig. 17 (a)–(e). Even when HiDiffusion avoids image collapse, it frequently produces
noticeable artifacts and distortions, as shown in Fig. 17 (f)–(h). In Fig. 17 (i) and (j), HiDiffusion
still exhibits severe structural repetition in the generated outputs, indicating that merely resizing the
deep features of the UNet is insufficient to completely eliminate low-frequency structural errors.

Qualitative Comparison with SDXL+BSRGAN. We conducted extensive qualitative compar-
isons between AP-LDM and SDXL+BSRGAN. Specifically, we compared their performance at
resolutions of 2048 × 2048 (Fig. 18 (a)-(d)) and 4096 × 4096 (Fig. 18 (e)-(h)). As we can see,
compared to AP-LDM, SDXL+BSRGAN, while maintaining decent image structure, fails to gen-
erate the level of detail expected from HR images. The absence of these details sometimes leads
to the model’s inability to simulate realistic scenes. For example, in Fig. 18 (c), SDXL+BSRGAN
fails to generate realistic shadows. At higher resolutions (e.g., 4096×4096), SDXL+BSRGAN may
introduce artifacts, as shown in Fig. 18 (e) and (g).
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HiDiffusion

AP-LDM

A farmer's field ready 
for harvest.

Flowers bloom in vibrant 
colors in the garden.

Birds chirp in the 
morning light.

A gentle breeze 
rustles the leaves.

Raindrops create 
ripples in the pond.

(a) (b) (c) (d) (e)

A sports car speeding 
down an empty highway.

HiDiffusion

AP-LDM

A vibrant underwater 
scene.

Cherry blossoms fall 
gently from the trees.

A rabbit nibbles on 
clover in a meadow.

A squirrel scampers up a 
tree.

(f) (g) (h) (i) (j)

Figure 17: Quantitative comparison with HiDiffusion, where all images have a resolution of
2048× 2048. The prompts for the generated images are provided above the figures.

A.7 ATTENTIVE GUIDANCE ALSO WORKS IN OTHER GENERATION FRAMEWORKS

In this section, we apply attentive guidance to other generative frameworks to demonstrate its gen-
eralization capability. Specifically, we apply attentive guidance to the generative frameworks of
HiDiffusion and DemoFusion, and conduct both quantitative and qualitative ablation studies.

A.7.1 QUANTITATIVE ABLATION IN OTHER GENERATIVE FRAMEWORKS

In this section, considering the long inference time of DemoFusion, we perform quantitative ablation
studies on attentive guidance using the HiDiffusion generation frameworks at a resolution of 2048×
2048. All experimental settings are consistent with those in §4.

Table 10: Quantitative ablation of attentive guidance using HiDiffusion frameworks. The best
results are marked in bold. AG: attentive guidance.

Method FID IS FIDc ISc CLIP

HiDiffusion 81.0 16.8 64.1 14.2 24.9
HiDiff.+AG 79.4 17.0 62.4 14.6 24.9
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A sports car speeding down 
an empty highway.

A beautiful swan gliding on 
a pond.

A serene desert landscape 
with sand dunes.

A fierce lion roaring in the 
savannah.

(a) (d)(c)(b)

A calm lake surrounded by 
autumn trees.

A peaceful Zen garden. A beautiful butterfly on a 
flower.

A gentle breeze rustles the 
leaves.

(e) (h)(g)(f)

AP-LDM

SDXL+BSR.

AP-LDM

SDXL+BSR.

2048 × 2048

4096 × 4096

Figure 18: Qualitative comparison with SDXL+BSRGAN. Figures (a)-(d) have a resolution of
2048×2048, while Figures (e)-(h) have a resolution of 4096×4096. The prompts for the generated
images are provided above the figures.

Table 10 presents the quantitative ablation results using the HiDiffusion framework. It is evident that
incorporating attentive guidance improves HiDiffusion across all metrics. This is further corrobo-
rated by the qualitative analysis in Fig. 19, which demonstrates that attentive guidance alleviates
some of the structural collapses observed in HiDiffusion.

A.7.2 QUALITATIVE ABLATION STUDIES IN OTHER GENERATIVE FRAMEWORKS

HiDiffusion+attentive guidance. HiDiffusion enforces scaling of the UNet feature maps during
image generation, which often leads to structural collapse and deformations in the generated images
(as shown in Fig. 17). Fig. 19 (a)-(f) demonstrate that using attentive guidance effectively mitigates
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HiDiffusion

HiDiffusion 

+ Attentive 

Guidamce

HiDiffusion

HiDiffusion 

+ Attentive 

Guidamce

Trains arrive and depart in 
a constant flurry of activity.

Flowers bloom in vibrant 
colors in the garden.

The sun rises over the 
mountains.

Birds chirp in the morning 
light.

The river flows gently.The wind rustles through 
the trees.

A vibrant underwater scene. Golden fields of wheat sway 
gently in the breeze.

The river flows smoothly 
through the valley.

A bird flies across the clear 
sky.

The wind blows gently 
through the trees.

A peaceful village by the 
sea.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 19: Qualitative ablation of attentive guidance in the HiDiffusion Framework. All images
have a resolution of 2048×2048. Figures (a)-(f) demonstrate that attentive guidance can mitigate the
issue of structural collapse in generated images, while Figures (g)-(l) show that attentive guidance
resolves structural deformation issues and enhances image details.

the issue of structural collapse in synthesized images. Fig. 19 (g)-(l) further show that attentive
guidance can also address the structural deformation inherent to HiDiffusion, enhance image details,
and improve overall image quality.

DemoFusion+attentive guidance. In the analysis presented in §4.3 and §A.3, we observed that
DemoFusion tends to produce repetitive structures (as shown in Fig. 5 and 13), a phenomenon also
noted in other studies (Lin et al., 2024). We incorporate attentive guidance into the generative
framework of DemoFusion. As shown in Fig. 20 (a)-(e), attentive guidance effectively mitigates
the issue of repetitive structures in DemoFusion. Fig. 20 (f)-(j) further illustrate role of attentive
guidance in enriching image details and enhancing overall image quality.

A.8 COMPARATIVE AND ABLATION ANALYSIS BASED ON STABLEDIFFUSION 2.1

To validate the generalization capability of AP-LDM, we conducted extensive quantitative and qual-
itative analyses using StableDiffusion 2.1 (SD2.1) as the pretrained base model.

A.8.1 COMPARISON EXPERIMENTS

Quantitative comparison. Since the code for using SD2.1 as the pretrained model in AccDif-
fusion and DemoFusion is not publicly available, we compare AP-LDM with ScaleCrafter in this
section. We compared the model performance at four resolutions: 1536 × 1536, 1024 × 2048,
2048 × 1024, and 2048 × 2048. Considering that SD2.1’s generation capabilities are weaker than
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A rowboat gently rocks 
on the lake.

A dragonfly skims over 
the water's surface.

A rabbit hops through 
the field.

A shepherd leads his 
flock across the meadow.

The moon casts a silver 
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the leaves.
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Figure 20: Qualitative ablation of attentive guidance in the DemoFusion Framework. All im-
ages have a resolution of 2048×2048. Figures (a)-(e) demonstrate that attentive guidance effectively
mitigates the issue of repetitive structures in images, while Figures (f)-(j) showcase attentive guid-
ance’s ability to enrich image details.

SDXL, we set η2 = [0.2, 0.2, 0.3] for the experiments in this section, while keeping other settings
consistent with §4.

Table 11: Quantitative comparison results based on SD2.1. The best results are marked in bold.
Method 1536× 1536 1024× 2048 2048× 1024 2048× 2048

FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

SD2.1 95.4 17.8 83.4 15.8 25.0 85.8 15.9 76.1 16.3 25.2 101.8 15.8 79.8 16.8 24.6 121.7 14.4 92.7 14.4 24.5
ScaleCrafter 140.4 10.6 136.4 9.7 21.9 150.0 10.1 139.3 10.1 21.7 149.8 10.4 135.6 11.5 21.8 144.2 10.4 135.2 10.3 23.4

AP-LDM 60.3 21.0 50.6 18.3 25.4 61.1 19.9 54.1 18.4 25.0 63.7 19.2 50.4 18.2 24.7 60.5 21.5 48.8 17.2 25.3

Table 11 presents the results of the quantitative comparison, demonstrating that AP-LDM maintains
strong performance when using SD2.1 as the pre-trained model. ScaleCrafter, on the other hand,
performs suboptimally due to its tendency to produce structural collapse in generated images, a
phenomenon more evident in the qualitative analysis.

Qualitative comparison. Fig. 21 presents the results of the qualitative comparison. It can be
observed that when generating high-resolution images, SD2.1 also encounters issues with repetitive
object structures. ScaleCrafter frequently exhibits structural collapse in generated images during
denoising with SD2.1, leading to its suboptimal performance. In contrast, AP-LDM consistently
produces high-quality results across all resolutions, demonstrating the generalizability of the AP-
LDM generation framework.
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Figure 21: Qualitative comparison using SD2.1 as the pretrained model.

A.8.2 ABLATION STUDY ON ATTENTIVE GUIDANCE

Quantitative ablation. Table 12 shows the results of the quantitative ablation on attentive guid-
ance using SD2.1 as the pretrained model. It can be observed that attentive guidance leads to im-
provements in metrics. These improvements are more evident in the qualitative ablation analysis.

Table 12: Quantitative ablation results based on SD2.1. The best results are marked in bold.
Method 1536× 1536 1024× 2048 2048× 1024 2048× 2048

FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

w/o AG 61.2 20.9 50.2 18.9 25.2 61.5 19.6 54.0 19.5 24.9 64.6 19.6 49.2 17.0 24.6 61.1 21.2 46.5 18.2 25.2
w/ AG 60.3 21.0 50.6 18.3 25.4 61.1 19.9 54.1 18.4 25.0 63.7 19.2 50.4 18.2 24.7 60.5 21.5 48.8 17.2 25.3
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Figure 22: Ablation study of attentive guidance using SD2.1 as the pre-trained model. Resolu-
tion: 2048× 2048.

Qualitative ablation. Fig. 22 presents the ablation analysis of attentive guidance based on SD2.1.
From the figure, it can be observed that attentive guidance also enhances detail richness and color
vibrancy when using SD2.1, further demonstrating its generalization capability.
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