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ABSTRACT

Learning 3D representations that generalize well to arbitrarily oriented inputs is
a challenge of practical importance in applications varying from computer vision
to physics and chemistry. We propose a novel multi-resolution convolutional ar-
chitecture for learning over concentric spherical feature maps, of which the single
sphere representation is a special case. Our hierarchical architecture is based on al-
ternatively learning to incorporate both intra-sphere and inter-sphere information.
We show the applicability of our method for two different types of 3D inputs, mesh
objects, which can be regularly sampled, and point clouds, which are irregularly
distributed. We also propose an efficient mapping of point clouds to concentric
spherical images using radial basis functions, thereby bridging spherical convolu-
tions on grids with general point clouds. We demonstrate the effectiveness of our
approach in achieving state-of-the-art performance on 3D classification tasks with
rotated data.

1 INTRODUCTION

While convolutional neural networks have been applied to great success to 2D images, extending the
same success to geometries in 3D has proven more challenging. A desirable property and challenge
in this setting is to learn descriptive representations that are also equivariant to any 3D rotation. Co-
hen et al. (2018) and Esteves et al. (2018) showed that the spherical domain permits learning such
rotationally equivariant representations, by defining convolutions with respect to spherical harmon-
ics. In practice, 3D convolutions are implemented via discretization of the sphere. Earlier spherical
Convolutional Neural Networks (CNNs) used spherical coordinate grids, but these discretizations
result in non-uniform samplings of the sphere, which is non-ideal. Furthermore, spherical convo-
lutions defined on these grids scale with O(N1.5) complexity (N as the number of grid points).
Subequent works, Jiang et al. (2019), Cohen et al. (2019), Defferrard et al. (2020), designed more
scalable O(N) convolutions focusing on more uniform spherical discretizations.

Existing spherical CNNs operate over a spherical image, resulting from projection of data to a
bounding sphere. We show that it is more expressive and general to instead operate over a con-
centric, multi-spherical discretization for representing 3D data. Our main innovation is introducing
a new two-phase convolutional scheme for learning over a concentric spheres representation, by al-
ternating between inter-sphere and intra-sphere convolutional blocks. We use graph convolutions to
incorporate inter-sphere information, and 1D convolutions to incorporate radial information. Similar
to Jiang et al. (2019) and Cohen et al. (2019), we focus on the icosahedral spherical discretization,
which produces a mostly regular sampling over the sphere. Our proposed architecture is hierarchi-
cal, following the recursive coarsening hierarchy of the icosahedron. Combining intra-sphere and
inter-sphere convolutions has a conceptual analogy to gradually incorporating information over vol-
umetric sectors. At the same time, the choice of convolutions allows our model to retain a high
degree of rotational equivariance.

We demonstrate the effectiveness and generality of our approach through two 3D classification ex-
periments with different types of input data: mesh objects and general point clouds. The latter poses
an additional challenge for discretization-based methods, as native point clouds are non-uniformly
distributed in 3D space.

To summarize our contributions:
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1. We propose a new multi-sphere icosahedral discretization for representation of 3D data,
and show that incorporating the radial dimension can greatly enhance representation ability
over single-sphere representations.

2. We also introduce a novel convolutional architecture for multi-sphere discretization by in-
troducing two different types of convolutions, conceptually separated as intra-sphere and
inter-sphere. Combining graph convolutions (intra-sphere) with 1D radial convolutions
(inter-sphere) leads to an expressive architecture that is also rotationally equivariant. Our
proposed convolutions are also scalable, being linear with respect to total grid size.

3. We design mappings of both 3D mesh objects and general point clouds to the proposed
representation. We achieve state-of-art performance on ModelNet40 point cloud classifica-
tion, using the proposed model and a data mapping using radial basis functions. We also
improve on existing Spherical CNN performance in SHREC17 3D mesh classification by
utilizing multi-radius information.

2 RELATED WORK

Spherical CNNs. The goal of learning rotationally invariant representations of 3D geometries has
led to several ideas for rotationally equivariant convolutions in the spherical domain. Cohen et al.
(2018) and Esteves et al. (2018) defined spherical convolutions that are rotationally equivariant to
rotations of the SO(3) group. However, these convolutions are restricted to non-uniform grid sam-
plings and scale superlinearly with respect to grid resolution. Later works have explored more
scalable convolutions on other spherical discretizations, achieving linear complexity with respect to
grid resolution.

Jiang et al. (2019) proposed using parameterized differential operators to form convolutional ker-
nels over the icosahedron, where equivariance is restricted to rotations about the z-axis. Cohen et al.
(2019) proposed gauge equivariant convolutions on manifolds, operating on feature fields corre-
sponding to underlying geometric entities. This was applied to achieve rotationally equivariant con-
volutions over the icosahedral discretization. Defferrard et al. (2020) propose a graph convolution-
based spherical CNN using spectral filters, along with a distance-weighted nearest-neighbors graph
construction scheme that allows balancing between rotational equivariance and efficiency, when
applied to different types of grids.

Other spherical CNNs have been designed in the context of handling arbitrary point cloud data,
which typically requires first mapping the data to a discretization. Rao et al. (2019) uses graph-
convolution inspired message passing operators for learning over the icosahedral discretization. Our
work is similar to Rao et al. (2019) and Defferrard et al. (2020)) in terms of using graph-based
spherical convolutions, but we generalize to multi-sphere convolutions. You et al. (2020) is the most
related work in terms of multi-sphere representation learning. The authors propose a spherical voxel
grid, and extending the SO3 convolutions of Cohen et al. (2018) to incorporate the radial dimension.
Our work treats spherical and radial convolutions as distinct, which results in much better results in
practice. We also use more scalable spherical convolutions defined on the uniform icosahedral grid.

Pointwise Convolution Networks. There is a significant body of work on learning point cloud
representations using pointwise convolutions, beginning with with Qi et al. (2017) which proposed
learning permutation invariant functions that directly operate on point coordinates. Only more re-
cently have such methods have been developed towards learning rotationally invariant representa-
tions. Thomas et al. (2018) and Poulenard et al. (2019) both propose pointwise convolutional filters
based on spherical harmonic functions to achieve rotational equivariance (or invariance). Distance
information is recorded through learned functions in the former, and radial sampling in the latter.
While these filters are defined with respect to all-to-all convolution between points, in practice con-
volutions are limited to k-nearest neighbors (Poulenard et al. (2019)) for scalability. Chen et al.
(2019), Sun et al. (2019), Zhang et al. (2019) all extract rotationally invariant features (i.e. low-level
geometric features such as angles and distances) from the point cloud as input to their respective
convolutional architectures. These features are hand-engineered based on carefully picking local
frames of references, or global ones in the case of Sun et al. (2019).

2



Under review as a conference paper at ICLR 2021

Figure 1: (a) shows an example point cloud (black dots) contained within a bounding sphere. (b)
shows the spherical partioning of 3D space in 2D cross section view, and zooms in on a sector
occupied by 3 data points. Vertices are white circles. Each point is bounded by a neighborhood of
6 vertices, 3 from the sphere above and 3 from below. (c),(d) Each point is mapped to scalar values
defined on the bounding vertex neighborhood using radial basis functions. Vertices affected by the
mapping are shaded gray. Dotted circles indicate vertices temporarily added in the radial dimension
to increase resolution. (e) Vertex values are concatenated into feature channels of original vertices.

Figure 2: Two subsets of vertices from two concentric spheres, connected radially. ui,1 or vi,∗ are
vertices on i-th sphere (a) Intra-sphere convolution and (b) inter-sphere convolution applied with
respect to the target vertex u2,1 (bolded). Third sphere not shown for clarity. Vertices involved in
convolution are connected by orange or green edges.

3 REPRESENTATION BY CONCENTRIC SPHERES

Existing work on spherical CNNs operate on spherical grids, where data is typically projected to and
defined on grid points. However, projecting 3D data to a single sphere may not always be sufficient
or appropriate. Simple projections may be lossy when describing highly non-convex shapes, for
instance if the shape curves in on itself. To increase capacity to distinguish different data distribu-
tions, we introduce a new discretization based on concentric spheres, which additionally discretizes
3D space in the radial dimension. The single sphere discretization is a special case in our proposed
paradigm.

Spherical Discretization. We work with an icosahedral grid discretization of the sphere. The base
icosahedron I(0) has 12 vertices, forming 20 equilateral triangle faces (each face with 3 edges).
Each vertex is incident with 5 triangles. Each face can be subdivided, with the number of vertices
scaling as |V | = 10 ∗ 4l + 2 (where l is the discretization level). See Fig. 3 for an illustration.

Radial Discretization. We construct the multi-radius spherical discretization by stacking R iden-
tical icosahedral grids. Assuming unit radius normalization, we use a uniform discretization that
results in concentric spheres scaled to radii [ 1R ,

2
R , ..., 1].

Intra-sphere Convolutions. There is a growing body of work addressing design of rotation-
equivariant filters over spherical feature maps. We focus on graph convolutional filters for intra-
sphere convolutions, as graph convolutions are scalable and lead to equivariant representations, up
to discretization effects Defferrard et al. (2020), Yang et al. (2020). This motivates our construction
of the undirected graph G(l) = (V (l), E(l)) from a level l icosahedron I(l). Vertices of the vertex
set V (l) correspond one-to-one with vertices of I(l) projected to unit sphere. E(l) is simply the set
of all (bidirectional) face edges of the icosahedron (projected to unit sphere). Vertices are all degree
6, with exception of the the initial 12 vertices of the base icosahedron I(0) that are degree 5. Since
each edge is approximately equidistant between two points of the sphere Wang & Lee (2011), G(l)

is also treated as an unweighted graph.
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While there is a rich body of work on graph convolutions and its variants, this work focuses on the
graph convolution defined in Kipf & Welling (2017). We introduce notation to define this convolu-
tion in the context of our multi-spherical discretization in more detail. Let H ∈ RR×|V |×C denote a
C channel tensor of features. Also let Z ∈ RC×F be shared parameters, where C and F are input
and output channel sizes. N(u) denote neighbors of vertex u in graphG and deg(u) denotes |N(u)|,
the degree of vertex u. We assume that self-edges are added for every vertex in N(u). Finally, we
introduce the subscript t to be the convolutional layer number, i ∈ [0, R − 1] to index the radial
dimension, and u ∈ [0, |V | − 1] to index the vertices. The layer t + 1 intra-sphere convolution
output for vertex u of sphere i is given by Eq. 1, where σ indicates a nonlinear activation function.:

H(t+1)
i,u = σ(

∑
v∈N(u)

1√
deg(u) deg(v)

H(t)
i,vZ

(t)) (1)

Inter-sphere Convolutions. We introduce radial convolutions to incorporate inter-sphere infor-
mation, implemented as 1D convolutions where the radial dimension is treated as the sequence
length. Importantly, radial convolutions are also rotationally invariant, as 1D convolution operates
over channels of the same vertex. See Fig. 2 for illustration of graph convolutions with respect to
concentric spheres representation. We introduce some additional notation to describe radial convo-
lutions. Let K be 1D convolution kernel size. We assume K is odd valued, and pad inputs in the
radial dimension such that a dimension ofR is maintained across convolutions. Let W ∈ RK×C×F
be a tensor of shared parameters, where C and F are input and output channel sizes. The layer t+1
inter-sphere convolution output for vertex u of sphere i is given by Eq. 2:

H(t+1)
i,u = σ(

bK2 c∑
k=−bK2 c

H(t)
i+k,uW(t)

k+bK2 c
) (2)

Vertex Pooling. Pooling is widely used alongside convolutional filters in CNN architectures to
learn invariance to transformations of the input. The icosahedron, due to its recursive refinement
by discretization level, defines a natural hierarchy for pooling and downsampling (see Fig. 3). We
introduce overloaded notation H(l) ∈ RR×|V (l)|×C to denote the feature tensor corresponding to
V (l), the vertex set corresponding to level l icosahedron. We define pooling as H(l−1)

i,u = f({H(l)
i,v :

v ∈ N(u)}), where N(u) is the neighborhood of vertex u ∈ V (l) and f is a permutation invariant
function (e.g. max operator). Pooling is followed by downsampling, where only vertices of the
smaller vertex set V (l−1) are retained (see Sec. A.4 for details.) Only vertices within same sphere
are involved; there is no pooling or downsampling of vertices between spheres (except right before
classification).

Concentric Spherical GNN (CSGNN) Architecture. Fig. 3 gives an example illustration of an
end-to-end architecture using both convolutions. Importantly, radial convolution blocks are intro-
duced alongside graph convolutional blocks at every level of the spherical discretization hierarchy,
to incorporate inter-sphere information gradually. From a icosahedron of level L refinement, we
construct a sequences of graphs [G(L), G(L−1), ..., G(0)]. Each G(l) carries an additional R di-
mension, corresponding to spheres at different radial levels. Each level l features two blocks of
convolutions: graph convolutions, followed by radial convolution. These correspond to intra-sphere
and inter-sphere convolutions respectively. Vertex neighborhood pooling downsamples the graph
from G(l) to G(l−1). The size of the radial dimension remains constant, until final pooling.

Complexity Analysis. In the intra-sphere convolution of Eq. 1, the neighborhood size (vertex
degree) is bounded by a constant. Dimensions of parameters and feature vectors are also bounded
by a constant. Therefore, the overall complexity of intra-sphere convolution is linear with respect to
the multi-spherical grid size, or O(R|V |), where |V | is the number of vertices in the spherical grid.
R is can be effectively kept very small relative to |V |, as we show in our experiments. Similarly,
each inter-sphere convolution (Eq. 2) with respect to a vertex is bounded a fixed kernel size for
the neighborhood. The overall complexity of inter-sphere convolution is also O(R|V |), and so both
convolutions introduced in this work are linear with respect to the multi-spherical grid size. We
further provide experimental parameter analysis in Tables 1, 2, and time analysis in Appendix A.2.
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Figure 3: Example multi-radius architecture with R = 3 concentric spheres. Graph convolu-
tions, followed by radial convolutions, are applied over a sequence of discretization levels. Pooling
coarsens the discretization to a lower level. Vertex-wise and radial-wise pooling is applied to obtain
a final representation for classifier. Icosahedron visualization from Satoh et al. (2014).

4 POINT CLOUD TO CONCENTRIC SPHERICAL SIGNAL

We consider the problem of mapping a point cloud P ∈ RN×3 point cloud to an initial spherical
feature map M ∈ RR×|V |×C , where C is number of input channels. While the concentric grid
representation is defined discretely at fixed positions, the space of data point locations is continuous.
We also aim to capture the distribution of points in a continuous way. To do so, we summarize the
contribution of points using the Gaussian radial basis function (RBF):

f(x) =

N∑
j=1

φ(||x− Pj ||22) (3)

N is the number of data points, and φ = exp(−γr2), parameterized by the bandwidth γ. In practice
we limit computation to a local neighborhood (instead of considering all points), and choose γ
accordingly. See Fig. 1 for visualization of the local neighborhood and mapping, and Sec. A.1 for
additional details.

One possible mapping is to compute Eq. 3 at every vertex position of the spherical discretiza-
tion, resulting in a single channel feature map. However, it is possible to obtain better resolution
in capturing distribution of surrounding points by further sub-diving the discretized space, taking
inspiration from Meng et al. (2019), along the radial dimension. Subdividing along radial dimen-
sion by a factor Ke results in a new spherical discretization with increased radial dimension of
R′ = R ∗ Ke. The RBF is evaluated at every vertex position of this new discretization, resulting
in a feature map of dimension of M′ ∈ RR′×V×1. We map back to the original discretization by
assigning Mi,u = [M′j,u : j ∈ (iKe, iKe + 1, ..., 2iKe, 2iKe + 1, ..., 3iKe − 1)], resulting in a
size [R× |V | × 2Ke] spherical feature map. In summary, multiple RBF values are assigned to each
vertex by further sub-dividing space in the radial dimension.

5 EXPERIMENTS

5.1 MODELNET40 POINT CLOUD CLASSIFICATION

We consider the ModelNet40 3D shape classification task, with 12308 shapes and 40 classes. Each
point cloud has 1024 points. For all experiments, 9840 shapes are used for training and 2468 for
testing.

Architecture and Hyperparameters
Fig. 4 shows a complete architecture overview. Point clouds are first mapped to 16 concentric
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spheres with level 4 icosahedral discretization (L = 4, R = 16), using RBF kernels with threshold
T = 0.01. 1D convolutions use a kernel size of 3. Each graph and 1D convolution is followed
by batch normalization and ReLU as nonlinear activation. Additionally, skip connections are added
between every graph convolution layer, whenever input dimension matches output. The model is
trained with Adam optimizer for 30 epochs using initial learning rate of 1e-3, along with learning
rate decay by 0.1 at 15 and 25 epochs. Batch size is 32.

Figure 4: Architecture for ModelNet40 classification. Input dimension is 16, resulting from point
cloud RBF data mapping. “Gconv” is graph convolution applied over graph connectivity of the
sphere. “Conv1d” is 1D convolution, applied over the radial dimension. L denotes discretization
level, as the representation is coarsened following each vertex pooling step. A final pooling of radial
dimension results in a 1024 dimensional vector.

Results

Method Input Params z/z z/SO3 NR/SO3 SO3/SO3
Pointwise Convolution

PointNet Qi et al. (2017) xyz 3.5M 0.875 0.229 0.081 0.849
ClusterNet Chen et al. (2019) xyz * 0.8711 0.8711 * 0.8711

RIConv Zhang et al. (2019) xyz 0.7M 0.870 0.870 0.872 0.872
SPHNet Poulenard et al. (2019) xyz 2.9M 0.865 0.856 0.854 0.870

SRINet Sun et al. (2019) xyz+ 0.9M 0.844 0.829 0.834 0.837
normal

Spherical CNN
SFCNN Rao et al. (2019) xyz 9.2M 0.888 0.831 0.350 0.874
PRIN You et al. (2020) xyz 1.7M 0.819 0.765 0.753 0.810

Ours (CSGNN) xyz 2.8M 0.884 0.874 0.833 0.884

Table 1: ModelNet40 classification results, across four train/test data orientation settings. NR de-
notes original data (no rotations), z is arbitrary rotation about z axis, and SO3 is arbitrary rotation.
For example, SO3/SO3 means training and testing with arbitrary rotations of the data. Params is
number of parameters in millions.

We present our results and compare against other related works in Table 1, in four different train/test
data orientation settings. When training with rotations, a new rotation is sampled per instance in
each epoch. Rotation is the only augmentation used in comparisons. We report accuracy as average
validation score across last 5 epochs of training, due to lack of standard validation/test split and to
account for variation.

Our method achieves state-of-the-art results in z/SO3 and SO3/SO3 settings, i.e. testing on arbitrar-
ily rotated data. For more detailed comparison, we loosely categorize compared works by method
into two categories: pointwise convolution networks and spherical CNNs. Methods in the former
category operate directly on data points in 3D space, while methods in the latter operate on a spher-
ical discretization. Our work is most closely related to methods in the spherical CNN category.

Similar to our work, PRIN also explored learning a concentric spherical representation based on
extending SO3 convolutions from Cohen et al. (2018). Our method is based on separate graph and
radial convolutions, which achieves much better performance in all settings. SFCNN has similar-
ity to our work in using graph convolution-inspired message passing filters and learning over the
icosahedral discretization of the sphere. However, SFCNN is restricted to a single-sphere repre-
sentation, and also relies on a PointNet-like learned module to project points to spherical features.

1Using available numbers reported in authors’ paper, as the authors’ code was not publically available at the
time of this writing.
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While this learned projection should be able capture some degree of multi-radius information in the
point distribution, best results seem to be achieved by learning from both intra-sphere and inter-
sphere convolutions. Compared to our approach, SFCNN also has a relatively higher performance
gap between z/z and any SO3 test setting (significantly so for z/SO3 and NR/SO3), which suggests
greater difficulty achieving rotational invariance. CSGNN, similar to SFCNN and PRIN, exhibits
some drop in performance in the z/SO3 and NR/SO3 settings. This could partly be due to effects
of discretization and data mapping. However, this gap is relatively smallest in CSGNN, and there is
essentially no gap in z/z and SO3/SO3 performance.

ClusterNet, RIConv, and SRINet use hand-crafted rotationally invariant geometric features as inputs,
and so there is negligble to no performance gap in testing with or without rotations. By contrast,
our method largely learns to extract features directly from the input (outside of an initial step map-
ping points to vertices). PointNet, unlike the other baselines, was not designed to be rotationally
equivariant. This reflects in the relatively large difference in performance when comparing testing
with or without rotations. Even when training with rotations and using a learned alignment module
that attempts to learn a canonical transformation, PointNet SO3/SO3 performance is not competitive
with that of most other baselines.

5.2 SHREC17 3D SHAPES

The SCHREC17 task has 51300 3D models and 55 categories. We use the version where all models
have been randomly perturbed by rotations. Here the inputs are not point clouds, but mesh objects.
Cohen et al. (2018),Esteves et al. (2018) presented a ray-casting scheme to regularly sample in-
formation incident to outermost mesh surfaces and obtain features maps defined over the spherical
discretization. For sufficiently non-convex mesh objects, a single sphere projection may result in
information loss. For example, when a ray is incident to multiple surfaces occurring at different
radii, this information is discarded by existing methods. We propose a new data mapping that gener-
alizes single sphere representation to a concentric spherical representation, thereby preserving more
information. Fig. 8 in the appendix shows visual examples of where the proposed representation
may be helping.

Representation
In the case of single-sphere representations, a single ray is projected from a source point (vertex) on
the enclosing sphere towards the center of the object. The first hit incident with the mesh is recorded.
To extend ray-casting to multiple concentric spheres, we rescale the source point to the radii of each
respective sphere. This results in multiple co-linear source points, one per sphere. The 1st hit
incident with the mesh is recorded for each ray cast from those source points, resulting in a multi-
radius projection. While this new scheme is not sufficient to capture all incident surface information
(e.g. if there are multiple hits sandwiched between two radial levels), it provides more samples that
scales with the number of spheres. We use a uniform [ 1R ,

2
R , ..., 1] radii division assuming inputs are

normalized to unit radius. From each point of intersection with the mesh, the distance (with respect
to outermost sphere) to the point of incidence as well as sin and cos features are recorded, resulting
in 3 features per vertex. These are similar features to those collected in related work, except we do
not use the object’s convex hull information.

Method Params F1

Cohen et al. (2018) (equiangular, b = 64) 0.4M2 0.7892

Esteves et al. (2018) (equiangular, b = 64) 0.5M2 0.7942

DeepSphere Defferrard et al. (2020) (equiangular, b = 64) 0.2M2 0.7942

DeepSphere Defferrard et al. (2020) (HEALPix, Nside = 32) 0.2M2 0.8072

CSGNN (icosahedral, L = 4, R = 1) 1.3M 0.805
CSGNN (icosahedral, L = 4, R = 16) 2.9M 0.823

Table 2: SHREC17 classification performance in terms of F1 metric (micro-average). CSGNN is
our implementation. Equiangular, HEALPix, and icosahedral are different discretizations of the
sphere. CSGNN (this work) uses level 4 icosahedral discretization, R is number of concentric
spheres (specific to this work). Params is number of parameters in millions.

2Numbers as reported in Defferrard et al. (2020).
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Architecture and Hyperparameters
The architecture for SHREC17 is identical to the one used for ModelNet40 in Fig. 4, with the
exception that the input dimension is 3 (corresponding to features obtained from ray-casting). We
consider two model variations, single-sphere (R = 1) and multi-sphere (R = 16). For R = 16, we
use a 1D convolution kernel of size 3. ForR = 1, we use a 1D convolution kernel of size 1. Note this
is equivalent to applying fully connected layers; we found adding additional fully connected layers
after graph convolutions helped improve performance in the single-sphere case. Training settings
are also same as for ModelNet40, except learning rate decays at epochs 10 and 20.

Results
See Table 2 for classification results. The reported metric is F1 micro-average classification score.
Results from three other Spherical CNN works designed for general rotational equivariance are in-
cluded for reference. DeepSphere is most similiar to our work in terms of graph-based spherical
convolutions, where the authors explored design of rotationally-equivariant graph convolutional fil-
ters with respect to the type of grid and neighborhood size. This work focuses graph construction to
the icosahedral discretization, using a minimal set of roughly equidistant neighbors.

We additionally introduce inter-sphere convolutions with concentric spheres, which is largely or-
thogonal to the design of intra-sphere representation and convolutions. Single-sphere (R = 1)
CSGNN achieves competitive performance with other single-sphere baselines. However, it is diffi-
cult to draw comparative conclusions in this particular case, due to differences in feature extraction,
spherical discretization type and size, and model size. More significantly, using multiple spheres
(R = 16) outperforms single-sphere baselines, including a 2.2% relative performance improvement
over our R = 1 version. It also seems likely that the concentric spheres approach can improve other
spherical convolutional designs as well, but this is beyond the scope of this work.

5.3 MODEL ARCHITECTURE ABLATION STUDY

To study the impact of multi-radius spherical discretization, we vary the number of radial levels and
present results in Table 3. ModelNet40 is used for all ablation experiments. We use a base model
with R = 16 and L = 4, and keep the number of parameters identical across all versions of the
model. For this particular ablation, for simplicity we use a single channel, indicator feature map–a
special case of the RBF mapping where γ = 0 and F = 1. Adding radial convolutions in the case
of R = 1 is equivalent to adding additional dense layers after graph convolutions. The architecture
is the same as the one in 4, except input dimension is 1. Performance consistently improves with
higher radial dimension, peaking at R = 16 with 4.8% relative accuracy improvement over the
R = 1 version. Performance declines from R = 16 to R = 32, which suggests diminishing returns
for a fixed parameter budget.

Setting R = 1 R = 4 R = 8 R = 16 R = 32
SO3/SO3 0.839 0.857 0.869 0.879 0.872

Table 3: ModelNet40 ablation with number of radial levels (R). Number of model parameters is
fixed across all settings.

More ablation studies are presented in Table 4. We study the impact of varying the radial kernel size
KRC = [1, 3, 5]. KRC = 1 is same as learning representations independently learned at each radial
level. While this still improves over single-sphere representation, using spatial filters (KRC = [3, 5])
over the radial dimension is important for best performance. Varying the number of graph and radial
convolutional layers shows that between 1 and 2 layers per block leads to comparable performance.
Finally, we compare using only graph convolutions or only radial convolutions. Results suggest that
it is essential to combine both types of convolutions for best performance. Interestingly, restricting to
radial convolutions achieves slightly better performance than restricting to graph convolutions over
the single sphere. This provides further empirical support for the expressiveness of our proposed
representation and radial convolutions.

5.4 POINT CLOUD DATA MAPPING ABLATION STUDY

In this section we compare alternative choices of neighborhood in the mapping of points to vertices,
as well as alternative functions to the Gaussian radial basis function (RBF). The bounding vertices
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Setting SO3/SO3
Radial kernel size

KRC = 1, MGC = 1,MRC = 1 0.853
KRC = 3, MGC = 1,MRC = 1 0.880
KRC = 5, MGC = 1,MRC = 1 0.882

Graph convolution only
R = 1, MGC = 1 0.837

Setting SO3/SO3
Convolution layers

KRC = 3, MGC = 1,MRC = 1 0.880
KRC = 3, MGC = 2,MRC = 2 0.876

Radial convolution only
KRC = 3, MRC = 1 0.845

Table 4: Ablation study on ModelNet40. KRC is size of radial convolutional kernel, MGC and
MRC are number of graph and radial convolutional layers per block. R = 16 and L = 4, unless
stated otherwise.

Name Function SO3/SO3
Constant φ(r) = 1 0.879
Linear φ(r) = max(1− r

c , 0) 0.877
Inverse Quadratic φ(r; γ) = 1

1+γr2 0.882
Gaussian φ(r; γ) = exp(−γr2) 0.884

Neighborhood SO3/SO3
k-NN, k = 4 0.875
k-NN, k = 8 0.870

k-NN, k = 16 0.875
Bounding vertices 0.884

Table 5: Ablation study on mapping point clouds to concentric spherical signal with ModelNet40.
Left table compares different decay functions. Right table compares k-nearest neighbor approach
with bounding vertices approach. The former is vertex-centric, considering points are neighbors,
whereas the latter is point-centric, influencing its neighboring vertices.

approach (detailed in Sec. A.1) is point-centered, in that each data point influences its immediate
surrounding vertices. These vertices form two triangles which “bound” the point in vertices in space
(see Fig. 1) corresonding to a neighborhood of 6 vertices. An alternative is to define vertex-centered
neighborhood consisting of the k-nearest points to each vertex. We use the Gaussian RBF to map the
contribution of each point based on its distance to the vertex. The Gaussian parameter γ is chosen
such that the contribution of points up to a maximum distance of 2

R decay to a small threshold value
(T = 0.01 in this case). Results from Table 5 show the bounding vertices approach outperforming
the vertex-centered k-NN approach. One possible reason is the difficulty in controlling for scale,
especially when combined with a fixed-parameter decay function, as vertices closer to the center are
more densely situated in space compared to vertices further from the center.

We also compare four different decay functions applied to bounding vertices neighborhood. The
constant function is trivial in that it is independent to distance, and essentially serves as an indicator.
The linear function decays to zero with distance, but is non-smooth. c is a specified parameter for
a distance cutoff. Inverse quadratic and Gaussian are two smoothly decaying functions commonly
used as radial basis functions. The latter two perform slightly better than the constant and linear
functions, suggesting some advantage to using RBFs to summarize neighborhood contributions.

6 DISCUSSION AND CONCLUSIONS

In this work we proposed a new multi-sphere convolutional architecture, CSGNN, for learning ro-
tationally invariant representations of 3D data. We introduced distinct intra-sphere and inter-sphere
convolutions, which can be combined to learn more expressive representations compared to being re-
stricted to single-sphere representation. Our use of graph and 1D convolutions preserves rotational
equivariance, while achieving linear scalability with respect to size of discretization. We achieve
state-of-the-art performance in ModelNet classification for testing on arbitrary rotations among both
spherical CNN and pointwise convolutional models. We also show that our approach generalizes
to classification of 3D mesh objects by improving on single-sphere representation and performance
for the SHREC17 task. One avenue of future work is to explore more descriptive mappings of
point cloud data to the discretization. A learned assignment may better learn vertex features for de-
scribing nearby points. There is also room to explore other kinds of convolutions for incorporating
inter-sphere information, as well as other radial division schemes. Finally, existing implementa-
tions in this work can be more efficient implementations based on using regular properties of the
icosahedral grid, as opposed to using a general graph construction.
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A APPENDIX

A.1 POINT CLOUD TO SPHERICAL SIGNAL

Instead of computing the summation in Eq. 3 with respect to all points, for each data point we update
the features of vertices in a local neighborhood. The radial basis function φ decays exponentially,
and so points beyond a local neighborhood have little influence (depending on choice of bandwidth
γ). Restricting to a constant size local neighborhood improves computation from O(NV ) to O(N).

To define the local neighborhood of data point p in this work: any given point p is contained within
two bounding “triangles” of the discretization (ignoring boundary conditions and degenerate cases).
These correspond to the vertices S(i) = {u(i), v(i), w(i)} and S(i+1) = {u(i+1), v(i+1), w(i+1)},
where i indexes radial level. However, using a single γ value for the RBF results in scaling incon-
sistency: distances between vertices progressively shrink moving to inner spheres. Based on the
assumption that RBF values should be invariant to scale, a different γ and corresponding RBF is
defined with respect to radial level. To define γi, we use the maximum pairwise distance d(i)max be-
tween vertices in {S(i), S(i+1)}. Specifically, we set γi = − log T

d
(i)
max

2 , where T is a lower bound target

RBF value. For example, T = 1 would correspond to γi = 0, or a RBF value of 1 at any distance.
T ∈ (0, 1] is a tuning parameter that enables toggling the overall sensitivity of the RBF to distances.
Based on the approximation that d(i)max is similar for any data point, d(i)max is precomputed once.

A.2 MODELNET40 TIME ANALYSIS

Baseline CSGNN PointNet RIConv SPHNet SRINet SFCNN PRIN
Training (hrs) 5.1 3.3 1.9 2.4 4.1 4.8 6.1
Inference (s) 0.16 0.016 0.062 0.099 0.097 0.069 0.004

Table 6: Time comparisons of baselines for ModelNet40 dataset. Total training times are reported
in hours. Inference time, in seconds, is for batch size of 32. CSGNN is our model.

We compare total training time and batch inference time of baselines from Sec. 5.1, for all instances
where code was available. Results are reported in Table 6. All baselines were run on the NVIDIA
Tesla P100 GPU. Total training time includes data loading and transformation time. Inference time
is based on batch size of 32, and computed from averaging 32 different batches. The inference times
reported do not include data loading or transformation time.

A.3 CHOICE OF CENTER

Center Centroid Component 1 Component 2 Component 3
SO3/SO3 0.884 0.878 0.873 0.866

Table 7: Comparison of different choices of center. Centroid is the positional average of the point
cloud. Components refer to the right singular vectors from singular value decomposition of the point
cloud, decreasing order of singular value. The components serve as alternative centers. Performance
is accuracy from training and testing with rotations.

A choice of center is needed to represent the 3D data using concentric spheres, and also is necessary
to define rotations of the data. The ModelNet40 dataset from Qi et al. (2017) centers the data based
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([GC32 +BN +ReLU ]L4 × 2) + [RC32 +BN +ReLU ]L4 + [RC64 +BN +ReLU ]L4

+MaxPool

+ ([GC64 +BN +ReLU ]L3 × 2) + [RC64 +BN +ReLU ]L3 + [RC128 +BN +ReLU ]L3

+MaxPool

+ ([GC128 +BN +ReLU ]L2 × 2) + [RC128 +BN +ReLU ]L2 + [RC256 +BN +ReLU ]L2

+MaxPool

+ [GC256 +BN +ReLU ]L1 + [RC512 +BN +ReLU ]L1 +MaxPool

+ [GC512 +BN +ReLU ]L0 +GPvertices + [RC1024 +BN +ReLU ]L0 +GPradial

+ FC40 + Softmax

Figure 5: Architecture used for Sec. 5.1 and 5.2 experiments. Layers proceed from left to right.
GC and RC indicate graph and radial convolution layers, subscripted by output channel dimension.
BN is Batch Normalization, FC is fully connected layer. GP indicates global pooling with max
operation. Subscript “L” indicates icosahedron level, corresponding to discretization level of the
sphere.

Figure 6: A vertex (red) and its neighbors (yellow/orange) are shown in local patch of the icosa-
hedral spherical discretization. These are the basic units for intra-sphere convolution and pooling.
Downsampling results in a coarser grid and vertex set, where a new neighborhood is defined (orange
vertices)

.

on the centroid of a point cloud, while the SHREC17 dataset uses the centroid of mesh shapes. Our
experiments in Sec. 5.1 and 5.2 follow this convention. In this section we also consider other choices
of center besides centroid, and show that our representation is relatively robust to other centers of
rotation, in application to the ModelNet40 dataset. We apply singular value decomposition to an
input point cloud to obtain 3 principal component vectors. These 3 dimensional vectors each serve
as a new reference point by which the point cloud is re-centered. Results from Table 7 show that
centroid-based center produces performs best with our model. Performance of principal component-
based center declines according to singular value. A possible reason for worse performance in the
non-centroid center examples is that for the same number of points, a relatively smaller fraction of
the concentric spherical discretizaton is utilized (following re-centering), effectively lowering the
resolution of the input represenation. Overall the results suggest that CSGNN can be effective even
when using non-centroid centers of representation and data rotation.

A.4 ARCHITECTURE DETAILS

Fig. 6 provides visualization of the vertex pooling and downsampling operations. Fig. 5 provides
more detail to the base architecture used in our experiments. Radial convolutions are implemented
using 1D convolution layers with a kernel size of 3 in the ModelNet40 experiment, and either 1 or 3
in the SHREC17 experiment. Radial convolutions are followed by max pooling and downsampling
to a lower level of spherical discretization, reducing the number of vertices. We also add residual
connections between every graph convolution layer, whenever the number of input channels matches
output channels.

A.5 VISUALIZING CONCENTRIC SPHERICAL FEATURES

To better understand the impact of the multi-sphere aspect of the concentric spherical representation,
we visualize the learned features from 3 different point cloud examples in Fig. 7. We use the 1st
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Figure 7: Visualization of point clouds from ModelNet40 and learned features. Example instances
from left to right, shown in 3 different orientations: airplane, sofa, and toilet. In the table of spherical
visualizations, each sphere corresponds to a single feature channel. Rows correspond to radial level
(16 total), with bottom rows corresponding to outer spheres. Columns correspond to discretization
level of the sphere, from level 4 to 3 to 2 (left to right). Colors are interpolated between blue and
red, corresponding to low or high normalized feature values.
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(a) Remote (b) Watercraft

(c) Cabinet (d) Table

(e) Lamp (f) Tower

(g) Dish washer (h) File cabinet

Figure 8: SHREC17 mis-predicted class pairs from single-sphere model where the multi-sphere
(R = 16) model showed biggest relative improvement. Each image is a representative sample from
the class. Note that watercraft, table, and tower all have more non-convex features that distinguish
them from their mis-predicted counterparts. The concentric spherical model seems to better capture
these differences.

feature channel in each visualization instance, and the features are obtained after radial convolution
layers but before pooling and downsampling. The results visually demonstrate that different radial
spheres within the same representation are capturing different features. At the same time, there is
also a high degree of continuity between consecutive spheres in most cases, suggesting that there is
information sharing between spheres resulting from radial convolutions.

A.6 SHREC17 VISUALIZATION

See Fig. 8 for SHREC17 visualization.
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