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Abstract

We introduce Dr. Splat, a novel approach for open-
vocabulary 3D scene understanding leveraging 3D Gaus-
sian Splatting. Unlike existing language-embedded 3DGS
methods, which rely on a rendering process, our method
directly associates language-aligned CLIP embeddings with
3D Gaussians for holistic 3D scene understanding. The
key of our method is a language feature registration tech-
nique where CLIP embeddings are assigned to the domi-
nant Gaussians intersected by each pixel-ray. Moreover,
we integrate Product Quantization (PQ) trained on gen-
eral large-scale image data to compactly represent embed-
dings without per-scene optimization. Experiments demon-
strate that our approach significantly outperforms existing
approaches in 3D perception benchmarks, such as open-
vocabulary 3D semantic segmentation, 3D object localiza-
tion, and 3D object selection tasks. For video results, please
visit : https://drsplat.github.io/

1. Introduction
Open-vocabulary 3D scene understanding represents a sig-
nificant challenge in the field of computer vision, with ap-
plications spanning autonomous navigation, robotics, and
augmented reality. This approach aims to enable the inter-
pretation and referencing of 3D spatial information through
natural language, allowing for applicability beyond a re-
stricted set of predefined categories [2, 3, 26, 27, 31, 34, 38].
Previously, open-vocabulary 3D scene understanding has
been explored using point-cloud-based methods [11, 15, 17,
25, 28, 33, 36]. Recently, the 3D Gaussian Splatting (3DGS)
[16] has introduced a continuous representation integrated
on explicit 3D Gaussians, which differs from traditional
point-cloud approaches, enabling rapid progress in practical
applications [39]. Current research has begun to explore
methods for associating language-based features with 3D
Gaussian splats to enhance scene understanding capabilities.
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Figure 1. Comparison of 2D (left) vs. our direct 3D search (right)
for open-vocabulary 3D scene understanding. The 2D approach
relies on multiview rendering, incurring high computational costs.
Our method directly links language features to 3D Gaussians, en-
abling efficient and complete spatial coverage. The table highlights
Dr. Splat ’s superior efficiency over related methods.

Several recent approaches [28, 32, 41] introduce 3D Gaus-
sian representation [16] into the open-vocabulary scene un-
derstanding. This unique representation uses 3D Gaussians
to achieve high-quality scene rendering, offering a more
structured representation that addresses some limitations
of point clouds. Building on this, these methods employ
2D vision-language models to transfer language knowledge
to 3D Gaussians “via rendered feature maps”.

Despite its promise, such rendering-based distillation
methods [28, 32] share two limitations. First, we found that
there is a discrepancy between optimized embeddings in 3D
Gaussians and 2D language-aligned embeddings. This gap
arises mainly from an intermediate rendering step that may
distort CLIP embeddings during training. Then, the reliance
on rendering impedes holistic 3D scene understanding, addi-
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tional task-processing such as 3D semantic segmentation and
3D object localization, and making full spatial coverage cal-
culations less efficient than direct 3D Gaussian methods [35]
including ours as illustrated in Fig. 1.

To address this issue, this work proposes Dr. Splat. Our
method bypasses the rendering stage, enabling direct inter-
action with 3D Gaussians for registering and referring the
well-preserved language-aligned CLIP embeddings in the 3D
space. This makes our Dr. Splat clearly distinguishable from
prior works, facilitating a seamless integration of representa-
tive embeddings from 2D vision language models into the 3D
spatial structure without compromising exhaustive rendering
process that has been exploited [14, 28, 32, 39–41]. More-
over, we propose to use a Product Quantization (PQ) feature
encoding method to represent embeddings compactly and
efficiently without any per-scene optimization. Rather than
storing full-length feature vectors or per-scene specifically
compressed embeddings [14, 28, 32, 39–41], each Gaussian
in our Dr. Splat stores an index from a pre-trained PQ, sig-
nificantly reducing memory usage up to 6.25% compression
ratio. By preserving the richness of embeddings while reduc-
ing memory usage, PQ is integral to our framework’s high
scalability and its ability to perform 3D perception tasks,
such as open-vocabulary 3D object localization, 3D object
selection, and 3D semantic segmentation. Our contributions
are summarized as follows:
• We propose Dr. Splat, direct registration and referencing

of language-aligned features in 3D Gaussians, bypassing
intermediate rendering and preserving feature accuracy.

• We introduce the PQ encoding method for compact feature
representation, reducing memory usage while maintaining
essential 3D feature properties.

• We present a novel evaluation protocol to assess accuracy
of 3D localization and segmentation for 3D Gaussians,
with pseudo-labeling methods and volume-aware metrics.

2. Related Work and Motivation

Language-based 3D scene understanding. Open-set 3D
scene understanding has seen considerable advancements,
with a focus on methods that leverage language knowledge
into 3D representation such as point clouds, neural radiance
fields (NeRF) [24], and Gaussian Splatting [16] for 3D com-
prehension. Point-based methods [5, 12, 15, 23, 25, 36, 37]
in open-vocabulary settings process point cloud data trained
from language embeddings [21, 29] for open-set categories.

NeRF-based approaches [6, 17, 19, 22, 30] leverage se-
mantic embeddings from 2D foundation models, such as
CLIP [29], LSeg [21] and DINO [1] for open-vocabulary
understanding. While the rendering process enhances 2D
perception tasks, the implicit nature of NeRF constrains
the holistic understanding of 3D structures and dominantly
provides ‘rendered’ feature maps.
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Figure 2. Visualization of discrepancy in rendered 2D features
and 3D features. Color indicates a cosine similarity score between
query features from a text query and either (a) 3D features distilled
by 2D rendering [28] or (b) directly registered 3D features.

3D Gaussian Splatting (3DGS) [16] has emerged as a
promising rendering method, as well as a novel representa-
tion for open-vocabulary 3D scene understanding. Since this
research is the close related work with our work, we first
elucidate the preliminary of 3DGS, followed by focusing on
language embedded 3DGS as follows.
Preliminary of 3D Gaussian Splatting. 3DGS [16] en-
codes appearance and geometry of the target scene into the
3D Gaussian representation. Each 3D primitive represen-
tation is expressed as a 3D Gaussian distribution having
mean µ = [xµ, yµ, zµ]

⊤ for 3D position and covariance
matrix Σ3D ∈ R3×3 for 3D volume, as well as the opac-
ity value α and the color c. In particular, the covariance
matrix is decomposed into the scale matrix S ∈ R3×3 and
the rotation matrix R ∈ SO(3), Σ3D = RSS⊤R⊤. In
brief, N numbers of 3D Gaussians can be parametrized
as Θ = {θi}Ni=1 = {µi, Si, Ri, αi, ci}Ni=1. 3D Gaussians Θ
are used to render a 2D pixel color ĉ computed as:

ĉ(θ)=
∑N

i=1
Tiα̃ici, s.t. α̃i=αiexp

(
− 1

2d
⊤Σ−1

2D d
)
, (1)

Ti is a transmittance, α̃i is an effective opacity value com-
puted from the Gaussian’s opacity α, the pixel distance d ∈
R2×1 from the target pixel to the projected center location
of the Gaussian in pixel, and Σ2D is the 2D covariance ma-
trix in the image domain obtained from the splatting algo-
rithm [16, 42]. The 3D Gaussian parameters Θ of a scene
are optimized by minimizing the rendering loss between the
input image color c and the rendered color ĉ(θ) in Eq. (1) as
argminθ ∥c− ĉ(θ)∥2F .
Language embedded 3D Gaussian Splatting. The
basic idea of the language embedded Gaussian repre-
sentation [9, 14, 20, 28, 32, 39–41] is to replace the
color rendering to language embedding rendering. Lan-
guage embedded 3D Gaussians are parameterized as Φ =
{θi, f̃i}Ni=1 = {µi, Si, Ri, αi, ci, f̃i}Ni=1, where f̃i denotes
Gaussian-registered language embeddings across N num-
bers 3D Gaussians which will be discussed soon. Then,
analogous to the color rendering Eq. (1), the language em-
bedding rendering is expressed as:

f̂ =
∑N

i=1
Tiα̃if̃i, (2)
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Figure 3. Overview of Dr. Splat. (a) In the preprocessing stage, we compute optimized 3D Gaussians [16] and Product Quantization (PQ)
codebook construction. (b) During training, we extract CLIP embeddings from given images {I}, and then proceed feature registration
process (Sec. 3.1). Finally, we obtain 3D Gaussians Φours with PQ indices {j} (Sec. 3.2).

where f̂ denotes a rendered language embedding. Likewise,
the Gaussian-registered language embeddings {f̃} are op-
timized by minimizing the rendering loss between the 2D
language embedding f extracted from an input image and a
rendered language embedding map f̂ as argmin{f̃} ∥f− f̂∥2F
at each corresponding pixel. This can be regarded as dis-
tilling vision language models into Gaussian-registered lan-
guage embedding f̃ through volume rendering Eq. (2). The
Gaussian-registered language embeddings are separately
trained after pre-training and fixing the pre-trained 3DGS Θ
for a scene. The language embeddings to be distilled are typ-
ically obtained from CLIP [29]. Since storing 32-bit 512-D
CLIP features f in every 3D Gaussians is memory-expensive,
one can use a compressed feature per scene depending on
the needs [14, 32, 39–41].

Motivation. Such language-embedded radiance fields pro-
vide useful representation and language interfaces for many
practical and crucial applications. While most of existing
works focus on the training efficiency, the complexity in
inference time has barely been discussed. Considering a sce-
nario to text-query a 3D location of the language-embedded
Gaussians, i.e., 3D localization, the aforementioned methods
first require rendering a 2D language embedding map at each
specific camera pose. We cannot directly retrieve over the
distributed embeddings {f̃i} in 3D Gaussians, because the
embeddings do not carry language information directly, but
their weighted summed (rendered) features f̂ do. This issue
becomes even severer with compressed features as in [28]:
their decompression decoders are not designed for and in-
compatible with directly applying to the distributed com-
pressed language embeddings in each 3D Gaussian, yielding
degenerated CLIP decoding (refer to Fig. 2).

This introduces multiple challenges and hassles. First, it
is challenging to find the best or proper camera rendering
views that contain the object to find. One may attempt
to pre-compute the minimal number of cameras and their
camera poses that cover all the 3D Gaussians in a scene with

proper resolutions, similarly by point-based approach [11].
However, this is a well-known set covering problem [7] with
constraints which is known to be an NP-hard problem.

Second, even with pre-computed rendered views, the re-
trieval complexity over the rendered images remains substan-
tial [8]. Suppose a scene consisting of one million Gaussians,
but just a single rendered language embedding map in pixel
domain already has nearly a million pixels; thus, we need
a dedicated system to efficiently retrieve over all the views.
Third, since the retrieval is conducted in the 2D space, to
find a 3D location, we need a separate mechanism to lift
the localization to the 3D space, i.e., increasing the sys-
tem complexity. In addition, 32-bit floating 512-Dimension
CLIP features for millions of Gaussian are memory intensive,
which is often not manageable. To reduce this burden, the
existing methods [35] apply compressions with per-scene
optimized codebooks, which hinders extension or general-
ization to other scenes.

To overcome these, we propose a training-free algorithm
for the direct allocation of language embeddings to 3D Gaus-
sians, allowing efficient computation and interaction within
the 3D space. As a concurrent work, OpenGaussian [35]
tackles a similar challenge with our work, but still requires
per-scene codebook construction Fig. 1.

3. Dr. Splat
This section provides details of our method. We first explain
how we directly register CLIP embeddings into Gaussian-
registered language embeddings, Sec. 3.1. Then, we in-
troduce Product Quantization (PQ) into our framework
to efficiently store Gaussian-registered language embed-
dings, Sec. 3.2. Lastly, we describe the inference stage
for text query-based 3D Gaussian localization, Sec. 3.3.

3.1. Feature registration process
Our goal is to reconstruct a language embedded 3D space
represented by 3D Gaussians Φ, which we can directly inter-
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Figure 4. Feature registration process in Dr. Splat. (a) We first map per-pixel CLIP embeddings {fmap} to Gaussians. Here, we only map
dominant k Gaussians along pixel ray r, named Top-k Gaussians. (b) After collecting embeddings, we compute aggregated features (Eq. (6)).
(c) Finally, we re-use PQ to obtain the PQ indices j of aggregated features and update Gaussian parameters Φours.

act in 3D space without feature rendering Eq. (2). For that,
following LangSplat [28], we begin by extracting per-pixel
CLIP embedding maps Fmap ∈ RD×H×W from training im-
ages of the target scenes, where D is the dimension of CLIP
embeddings, H and W are the height and width of the train-
ing images. Given training images, we extracts a dictionary
of binary masks and language embeddings extracted from
the images as: Fmap = {Mj : fmap

j | j = 1, ...,M}, where
Mj ∈ RH×W is a binary mask extracted using SAM [18]
and fmap

j ∈ RD is a corresponding CLIP embedding from
a cropped image with Mj . Each mask Mj belongs to an
image, and the masks are not overlapped to each other. With
this dictionary, a CLIP embedding map Fmap(I, r) at a pixel
r in a training image I is computed as:

Fmap(I, r) =
∑M

j=1
Mj(I, r) · fmap

j , (3)

where Mj(I, r) ∈ {0, 1} indicates whether the mask Mj

contains the pixel r in the image I. Using Fmap, we recon-
struct language embedded 3D Gaussians via a novel feature
registration process as visualized in Fig. 3.

During the feature registration process, our algorithm
iterates through training images of the scene. Using projec-
tion relation, we link 3D Gaussians Φ to CLIP embeddings.
Each Gaussian can link to multiple CLIP embeddings de-
rived from different images. Then we aggregate collected
embeddings to a single embedding to be assigned to each
Gaussian. To ensure a consistent aggregation of the embed-
dings from multi-view images, we first compute a weight
wi(I, r) representing the contribution of θi to construct each
pixel r in a training image I. The weights are computed with
the volume rendering equation Eq. (1) as:

wi(I, r) = Ti(I, r) · α̃i(I, r), (4)

where Ti(I, r) and α̃i(I, r) are the transmittance and the
effective opacity value of θi for a pixel r in an image I,

stated in Eq. (1). With the per-pixel weights, we calculate
wij representing a weight between each Gaussian θi and
corresponding language embedding maps fmap

j , which is for
aggregating CLIP embeddings from Fmap and register the
embedding to each Gaussian. The weights are computed as:

wij =
∑

I∈I

∑
r∈I

Mj(I, r) · wi(I, r), (5)

where I is the set of the training images. In this iterative
process, we aggregate weights only for Top-k Gaussians
with the highest weights wi(I, r), along the ray of each pixel
ray r (see Fig. 4). After aggregation, we prune the Gaussians
which are not assigned any weight, i.e.,

∑M
j=1 wij = 0. This

summation aggregates weights between Gaussians and the
CLIP embeddings by linking per-pixel weights wi(I, r) of
each Gaussian to its corresponding CLIP embeddings. With
the obtained weights, we register an aggregated feature ḟi to
each Gaussian with weighted-averaging as:

ḟi = fi/||fi||2, where fi =
∑M

j=1

wij∑M
k=1 wik

fmap
j . (6)

This process enables 3D-aware feature registration to be
consistent across various viewpoints, by aggregating fea-
tures in the original high-dimensional feature space. The
proposed process can be interpreted as an inverse volume ren-
dering without gradient-based optimization, which enables
our method to be faster than the prior methods requiring per-
scene gradient-based optimization [25, 28, 32] for feature
registration in 3D space.

3.2. Product-Quantized CLIP embeddings
Memory efficiency is a challenge in 3D scene represen-
tations, especially when associating Gaussians with high-
dimensional feature vectors. LangSplat [28] addresses this
by introducing an encoder-decoder network, while LeGaus-
sian [32] and OpenGaussian [35] utilize codebook construc-
tion. However, these approaches introduce additional per-



Methods mIoU mAcc @ 0.25
waldo kitchen ramen figurines teatime Mean waldo kitchen ramen figurines teatime Mean

LangSplat-m [28] 8.29 6.11 8.33 16.58 9.83 13.64 14.08 8.93 27.12 15.94
OpenGaussian [35] 34.60 23.87 59.33 54.44 43.06 50.00 35.21 80.36 72.88 59.61

Ours (Top-10) 37.05 24.33 54.42 57.35 43.29 63.64 35.21 80.36 77.97 64.30
Ours (Top-20) 38.33 24.58 53.94 56.19 43.26 63.64 35.21 82.14 76.27 64.32
Ours (Top-40) 39.07 24.70 53.36 57.20 43.58 63.64 35.21 80.36 76.27 63.87

Table 1. 3D object selection results on the LeRF-OVS dataset [17]. To measure 3D object selection performance, we calculate 2D
segmentation accuracy on rendering of selected 3D Gaussians. Note that our model does not require per-scene optimization, demonstrating
its robustness across diverse scenes. Bold and Underline stand for first and second best performance.
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Figure 5. Qualitative results of the object selection on the LeRF-OVS dataset [17]. We visualize rendering of selected 3D Gaussians
for LangSplat [28], OpenGaussian [35], and ours. For LangSplat, activations are often distributed randomly, fail to localize the target.
OpenGaussian often struggles to distinguish closely situated objects. In contrast, our model shows activations precisely limited to the queried
object regions, effectively localizing only the relevant areas.

scene computational costs for scene-specific parameter tun-
ing of neural networks or codebooks (see Fig. 1). In contrast,
we propose to use Product Quantization (PQ) on a large-scale
image dataset, eliminating per-scene training.

Product Quantization. PQ [13] is a widely used technique
for efficient embedding compression, particularly valuable
in large-scale applications. The PQ process begins by di-
viding the original D-dimensional feature vector v into L
sub-vectors: v = [v1,v2, . . . ,vL]. Each sub-vector vi

is then independently quantized to a predefined number
of centroids sij in a predefined codebook Si for that sub-
vector. These centroids are learned via clustering, creating
a codebook for each subspace. Once the centroids are es-
tablished, each sub-vector is replaced by the index of the
nearest centroid in its respective codebook. The centroid
indices ji = [ji1, ji2, . . . , jiL] are optimized by minimizing
argmink∥vi − sik∥ to quantize a given vector vi where jik
is an 8-bit unsigned integer.

Then, we can measure the distance between the query and
data by adding distances between coarse centroids. Once the

distances between centroids are computed as a lookup table,
the computation shifts to simple indexing, which reduces
the search complexity from O(D) to O(1) for a D dimen-
sion sample. This approach notably reduces computational
complexity, making it suitable for large-scale search.

In our setup for language-based 3D scene understanding,
we build PQ centroids based on CLIP embeddings using a
large-scale image dataset, the LVIS dataset [10], that con-
tains over 1.2M instances covering various long-tail classes
and ground truth segmentation. We extract instance patches
from images and collect patch-wise CLIP embeddings. Af-
ter we build this CLIP embedding database, we proceed
with the construction of the centroid codebook for our PQ.
Once PQ is trained, any query embedding can be approx-
imated by assigning the closest centroid for each subvec-
tor. This is a one-time procedure; once we determine the
codebook, we can use it for any scene generally. In our
setup, each embedding is represented as a sequence of cen-
troid indices rather than a high-dimensional vector. Accord-
ingly, our language embedded Gaussians are parametrized
as Φours = {ϕours

i }Ni=1 = {θi, ji}Ni=1. where the aggregated



3D 19 classes
mIoU IoU > 0.15 IoU > 0.3 IoU > 0.45

LangSplat-m [28] 8.0 17.1 7.8 2.9
LEGaussians-m [32] 9.5 19.1 8.9 7.3
OpenGaussian [35] 25.2 59.5 38.0 18.3
Ours (Top-20) 25.0 60.7 40.3 20.0
Ours (Top-40) 25.4 60.7 40.3 25.6

(a) 3D object localization task.

19 classes 15 classes 10 classes
mIoU mAcc. mIoU mAcc. mIoU mAcc.

LangSplat-m [28] 2.0 9.2 4.9 14.6 8.0 23.9
LEGaussians-m [32] 1.6 7.9 4.6 16.1 7.7 24.9
OpenGaussian [35] 30.1 46.5 38.1 56.8 49.7 71.4
Ours (Top-20) 28.0 44.6 38.2 60.4 47.2 68.9
Ours (Top-40) 29.6 47.7 38.2 60.4 50.2 73.5

(b) Open-vocabulary 3D semantic segmentation task.

Table 2. Quantitative comparison in the ScanNet dataset [4]. Left: Localization prediction is defined as 3D regions with a text similarity
score above threshold. Right: We assign segmentation labels by finding max activations among all classes. Note that Bold and Underline
stand for first and second best performance, respectively.

Ground truth w/o bottom 30% 
significant score

w/o top 30% 
significant score

Figure 6. Limitations of point-based IoU measurement. This figure
shows the effect of removing the top and bottom 30% of Gaussians
according to the proposed significant score, implying that volume
differences significantly impact 3D accuracy. The results highlight
the need for the proposed IoU metric for 3D Gaussians.

feature ḟi are converted as a quantized feature f̄i by the cor-
responding PQ index ji.

3.3. Text-query based 3D localization
After training 3D Gaussians Φours with our feature regis-
tration process and PQ, we describe the details of an in-
ference mode that facilitates direct interaction with 3DGS
upon receiving input queries, such as text. This is related to
similarity score computation between a query and sources,
i.e. Gaussian embeddings. Given a text, we first extract a
query feature q using CLIP text encoder [29]. We recon-
struct the quantized features {f̄i}Ni=1 from the stored PQ
indices {ji}Ni=1. Then, we compute a cosine similarity score
between the query feature q and all quantized features.

Despite its simplicity, solely relying on the cosine similar-
ity may result in diminished discriminability across certain
similarity scores.

To address this limitation, we incorporate a re-ranking
process based on relative activation with respect to the
canonical feature. For this process, we adopt the rele-

vancy scoring method proposed in LeRF [17], which en-
ables more precise similarity analysis for a query. Specif-
ically, each rendered language embedding, fmap and a text
query feature q, yield a relevance score determined by,
mini

exp(fmap·q)
exp(fmap·q)+exp(fmap·f canon, i)

, where (·) is an element-wise
dot product operator and f canon,i indicates CLIP embeddings
of a designated canonical term selected from a set of “object,”
“things,” “stuff,” and “texture”. Then, we sample 3D Gaus-
sians based on the relevance score for downstream tasks.

4. Experiments

Dataset. We use two datasets to evaluate the 3D scene
understanding performance. For the 3D object selection
task (Sec. 4.1), we use the LERF [17] dataset annotated by
LangSplat [28], which consists of several multi-view im-
ages of 3D scenes containing long-tail objects and includes
ground truth 2D ground truth annotations for texture queries.
For 3D object localization Sec. 4.2 and 3D semantic seg-
mentation Sec. 4.3 task, we employ the ScanNet [4] dataset.
ScanNet is a large-scale benchmark that provides data on
indoor scenes, including calibrated RGBD images and 3D
point clouds with ground-truth semantic labels. We ran-
domly select eight scenes from ScanNet for the experiments.

Competing methods. The only method available for a fair
comparison with our method is the concurrent work, Open-
Gaussian [35]. To study the various aspects of our method,
we introduce baseline methods modified from rasterization-
based ones [28, 32], for direct 3D referring operation, de-
noted as LangSplat-m and LEGaussians-m. As discussed
in Sec. 2, without modification, global search over a whole
scene is quite demanding. To ensure fair evaluation, we use
the same initial 3D Gaussians being trained only using RGB
inputs for all comparing methods, and freeze the Gaussians
during the language feature allocation process. Also, the
per-pixel CLIP [29] embedding maps are unified for SAM-
based [18] methods [28, 35] including ours. We follow the
hyperparameter settings favorable to each respective paper.
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Figure 7. Qualitative results of 3D object localization. We visualize 3D localization activations (yellow) for “chair” and “desk” in the
ScanNet dataset, comparing our method with others. It turns out that LangSplat-m and LEGaussians-m fail to localize objects accurately,
while OpenGaussian struggles with object correspondence. Our model delivers precise and consistent localization across diverse queries.

Input scene OpenGaussian Dr. Splat (ours) Ground truth

Figure 8. Visualization of open-vocabulary 3D semantic segmentation on the ScanNet dataset [4]. We visualize 3D Gaussian splat-based
semantic segmentation using language features allocation of OpenGaussian [35] and Dr. Splat (ours) model on the same RGB-pretrained
3DGS. Note that, not specifically designed for segmentation, it achieves high performance as a result of language-based Gaussian updates.

4.1. 3D object selection

Settings. We first extract text features from an open-
vocabulary text query using the CLIP model. Next, we
compare text features to the 3D features embedded in each
Gaussian using cosine similarity. By thresholding the simi-
larity, we identify the 3D Gaussians that are relevant to the
given text query. The selected 3D points are subsequently
rendered into multi-view images using the 3DGS rasteriza-
tion pipeline.

Results. We compare our model quantitatively with 3DGS-
based language-embedded models as shown in Table 1. The
results demonstrate that our method performs better object
selection in most scenes, showing an improvement of over
0.5 in mIoU and more than 4.5 in mAcc compared to coun-
terpart models. Notably, the rasterization-based method,
LangSplat-m, often underperforms in most scenes.

Qualitative results are shown in Fig. 5. For LangSplat-m,
the activations often shows random 3D Gaussians or fail
to localize entirely (e.g., see “coffee mug”), highlighting
the limitations of rasterization-based methods and their un-
suitability for 3D understanding, aligning the observation
from Fig. 2. OpenGaussian frequently exhibits false acti-
vations with incorrect text-object pairs (e.g., “apple” and

“tea in a glass”) and struggles to distinguish between nearby
objects (e.g., “waldo,” “rubik’s cube”). This artifacts can
be attributed to use of spatial clustering and limited encoder
capacity.

In contrast, our model leverages general image features
thanks to the general PQ, maintaining feature distinctiveness
regardless of scene complexity. Our feature registration con-
siders the 3D geometry of the 3D Gaussians, which results
in superior performance in 3D scene understanding tasks.

4.2. 3D object localization
Settings. Similar to the 3D object selection task, we calcu-
late the cosine similarity between text query and 3D features
embedded in each Gaussian. By thresholding the similar-
ity, we identify the 3D Gaussians relevant to the given text
query. To measure volume-aware localization evaluation,
we propose a protocol to measure the IoU of 3D Gaussians
that expands the traditional metric of point cloud-based ap-
proaches by incorporating volumetric information of 3D
Gaussians.
Novel evaluation protocol for 3D localization in 3DGS.
Unlike conventional evaluation protocol for the 3D localiza-
tion task in point clouds, it is tricky to evaluate 3D localiza-
tion performance in 3D Gaussians [16]. This is primarily



due to the un-deterministic structure of Gaussian distribution.
To address this issue, we compute 3DGS pseudo-labels for
evaluating the 3DGS localization in a volume-aware way.
The details can be found in the supplementary material.

Given the ground truth, we measure IoU considering
the spatial significance of each Gaussian and define a sig-
nificant score di for each Gaussian θi with its scale si =
[six, siy, siy] and opacity αi as di = sixsiysizαi, where
sixsiysiz denotes a relative ellipsoid volume of a Gaussian
θi. With the obtained significant scores d = [d1, d2, ..., dN ],
we compute weighted IoU of 3D Gaussians to approximate
volumes. The proposed metric is designed to assign a larger
weight to the Gaussians with higher significant scores, when
measuring IoU. Figure 6 shows that the impact of each Gaus-
sian on the scene extremely varies depending on their sig-
nificant scores, which demonstrates the necessity of the pro-
posed IoU metric on 3D Gaussians that regards unequal
contributions of each Gaussian.
Results. We report the 3D localization performance on the
Scannet dataset in Table 2a. The 2D rasterization-based
methods [28, 32] struggle to achieve precise activations for
3D localization. They inherently face challenges when ap-
plying for 3D tasks because they need to render 2D images
for the scene interaction. Even with the 3D space search
method, OpenGaussian [35], our model consistently demon-
strates superior performance and achieves higher accuracy
in localization. Figure 7 also shows that LangSplat-m and
LEGaussians-m fail to properly localize the objects, and
OpenGaussian misses queried objects in the scene.

4.3. 3D semantic segmentation
Settings. For a given set of open-vocabulary text labels, we
perform segmentation by assigning each Gaussian a label
having the highest activation among the known label set.
Results. The numerical comparison is presented in Ta-
ble 2b. Although not explicitly designed for semantic seg-
mentation, our model achieves notable performance in this
task as a result of accurately updating each Gaussian with
language features. Consistent with previous observations,
rasterization-based 3DGS models exhibit lower segmenta-
tion performance. While OpenGaussian performs position-
based clustering, our model demonstrates comparable perfor-
mance, surpassing the baseline as the Top-k value increases.
Our model also achieves better segmentation results, with a
visual comparison of the segmented scene shown in Fig. 8.

4.4. Ablation study
We conduct an ablation study using the ScanNet dataset
on different hyper-parameters of Dr. Splat to measure the
contribution of each component.
Product Quantization. PQ introduces a trade-off between
memory usage, computational efficiency, and accuracy. To
better understand the balance between computational cost
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Figure 9. Ablation study on (a) PQ and (b) Top-k Gaussians.

and localization quality, we conduct an ablation study by
varying the number of sub-vectors. We evaluate performance
at sub-vector sizes of 64, 128, and 256. Notably, these set-
tings correspond to bit-size reductions of 1/32, 1/16, and 1/8
of the original CLIP feature, respectively. We measure the
query distance computation time for one million data points,
averaging results over 100 iterations for efficiency measure.
Our findings reveal a favorable trade-off between quantiza-
tion performance and accuracy (see Fig. 9-(b)) in the Pareto
front with our PQ configurations. This achieves a balance
that maximizes memory and computational efficiency while
minimizing any loss in accuracy.

Top-k Gaussians. We examine the influence of the number
of Gaussians assigned per ray. This parameter affects both
memory requirements and computation, serving as a critical
factor in overall performance. The ratio of pruned Gaus-
sians and the mIoU results from different k are presented
in Fig. 9a. We observe that increasing the aggregating num-
ber of Gaussians per ray improves localization performance;
however, it results in higher memory consumption and the
number of occupied Gaussians, indicating a clear trade-off.

5. Discussion and Conclusion

We present Dr. Splat, which is a novel approach for open-
vocabulary 3D scene understanding by directly registering
language embeddings to 3D Gaussians, eliminating the need
for an intermediate rendering process. Compared to the
previous 2D rendering-based methods [28, 32], which have
limited search domain and capacity, our method directly
searches 3D space while preserving the fidelity of language
embeddings. This operation is further accelerated by the
integration of Product Quantization (PQ)

Experimental results validate Dr. Splat ’s superior perfor-
mance across various 3D scene understanding tasks, includ-
ing open-vocabulary 3D object selection, 3D object localiza-
tion, and 3D semantic segmentation. These findings high-
light Dr. Splat’s ability to transform 3D scene understanding
by achieving a balance between highly representative qual-
ity and computational efficiency. This breakthrough paves
the way for advanced applications in robotics, autonomous
navigation, and augmented reality.
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