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Abstract

We use contextualized word definitions gen-001
erated by large language model as semantic002
representations in the task of diachronic lexical003
semantic change detection (LSCD). In short,004
generated definitions are used as ‘senses’, and005
the change score of a target word is retrieved006
by comparing their distributions in two time007
periods under comparison. On the material of008
five datasets and three languages, we show that009
generated definitions are indeed specific and010
general enough to convey a signal sufficient to011
rank sets of words by the degree of their seman-012
tic change over time. Our approach is on par013
with or outperforms prior non-supervised sense-014
based LSCD methods. At the same time, it015
preserves interpretability and allows to inspect016
the reasons behind a specific shift in terms of017
discrete definitions-as-senses. This is another018
step in the direction of explainable semantic019
change modeling.020

1 Introduction and related work021

Lexical semantic change detection (LSCD) meth-022

ods up to now have mostly been based on token023

embeddings produced by large language models.024

While efficient, when measured on the existing025

benchmarks like diachronic word usage graphs026

(Schlechtweg et al., 2021), these methods are027

largely non-interpretable and produce rather ab-028

stract ‘change scores’. On the other hand, histori-029

cal linguistics usually deals with semantic change030

in terms of discrete and interpretable senses being031

lost or gained (or changing their frequency).032

Recently, a number of works were published033

which made an attempt to bridge this gap. In par-034

ticular, Tang et al. (2023) proposed a sense distri-035

bution based LSCD method. Basically, they per-036

form word sense disambiguation (WSD) on every037

occurrence of a target word in two diachronic cor-038

pora, using pre-trained sense embeddings (based on039

WordNet and BabelNet). Once all the occurrences040

are assigned a sense, the sense frequency distribu- 041

tions are compared between two time periods to 042

quantify the semantic change. This approach pre- 043

serves the possibility to interpret these shifts, e.g., 044

by analyzing which sense is ‘responsible’ for the 045

shift. 046

We argue that while such methods constitute a 047

significant advance for LSCD, they are inherently 048

limited by their reliance on a pre-defined sense 049

inventory. Even the best ontologies like BabelNet 050

can miss important senses, especially when dealing 051

with chronologically recent text data. For many 052

languages, good ontologies simply do not exist. 053

Thus, we propose to replace retrieving a fitting 054

sense for a given target word usage from an external 055

ontology by generating a dictionary-like contextu- 056

alized definition for this specific occurrence, using 057

a large language model (LLM). These definitions 058

serve as semantic representations of target word us- 059

ages in the LSCD pipeline. The usage of generated 060

definitions as semantic representations in LSCD 061

was first proposed by Giulianelli et al. (2023), but 062

they did not conduct comprehensive empirical eval- 063

uations for semantic change detection per se. In 064

this paper, we fill in this gap and actually test defini- 065

tions as representations on the existing diachronic 066

semantic change benchmarks. We show that our 067

method yields competitive results, often outper- 068

forming Tang et al. (2023), without relying on any 069

manually created lexical database, but at the same 070

time preserves interpretability via human-readable 071

definitions of senses. 072

The contributions of this paper are as follows: 073

1. Contextualized definitions generated by 074

LLMs can be used to rank words by the de- 075

gree of their diachronic semantic change, with 076

competitive performance. 077

2. Using definition embeddings with classical 078

LSCD methods (APD and PRT) gives better 079
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results than using contextualized token em-080

beddings as in prior work. However, this ap-081

proach makes it less convenient to interpret082

and analyze semantic shifts.083

3. Using generated definitions as text strings084

(with some merging based on their form)085

yields slightly lower results in comparison,086

but allows inspecting the nature of a seman-087

tic shift: e.g., what senses appeared or dis-088

appeared, or changed their frequency signifi-089

cantly.090

All the software and models will be made avail-091

able under permissive licenses upon paper accep-092

tance.093

2 Data094

We experiment on English, Norwegian and Rus-095

sian benchmarks, since for these languages we had096

easy access to resources for fine-tuning definition097

generators. However, scaling to other languages098

is comparatively easy and requires only a small099

dataset of contextualized definitions (see §3).100

To evaluate the performance of a semantic101

change detection system, we used existing LSCD102

datasets (diachronic corpora and gold scores for103

the target words): the English part of the Se-104

mEval’20 Task 11 (Schlechtweg et al., 2020), Nor-105

DiaChange (Kutuzov et al., 2022a) for Norwegian,106

and RuShiftEval (Kutuzov and Pivovarova, 2021b)107

for Russian. NorDiaChange actually contains two108

datasets and RuShiftEval contains three datasets,109

with different time period pairs under comparison110

(for Norwegian, the sets of target words are also111

different). The Russian datasets feature the highest112

number of target words (99, as compared to 37 in113

English and Norwegian datasets).114

Note that SemEval’20 Task 1 included two sub-115

tasks: binary classification of words (changed or116

not changed) and ranking the words by the degree117

of their change. In this work, we focus only on118

the ranking task: 1) because the Russian dataset119

does not include binary labels, and 2) because even120

in the English and Norwegian datasets the binary121

labels are in many ways derivatives of the change122

scores.2123

1https://www.ims.uni-stuttgart.de/en/research/
resources/corpora/sem-eval-ulscd/

2In contrast to the English and Norwegian datasets which
contain change scores, the Russian datasets contain similarity
scores. The obtained correlations are thus negative. We flip
the sign when reporting these numbers to improve readability.

It is also important to note that the RuShiftE- 124

val dataset was used in a shared task of the same 125

name (Kutuzov and Pivovarova, 2021a). However, 126

the scores in its leaderboard or in Cassotti et al. 127

(2023) are not directly comparable to the scores 128

in this work, since in the shared task, the dataset 129

was split into the development and test parts, so 130

that the participants were able to tune their systems 131

on the development set. In this paper, we focus 132

on unsupervised approaches, aiming to avoid the 133

necessity of tuning hyperparameters and leaving 134

this for future work. 135

2.1 Preprocessing 136

We use the lemmatized versions of the SemEval- 137

2020 English corpora when reproducing Tang et al. 138

(2023)’s Lesk baseline. No preprocessing of the 139

Norwegian and Russian corpora has been done, 140

except for lower-casing when running the Lesk 141

baselines (see the details in the section 4) and tak- 142

ing lemmas of the target words into account when 143

sampling usage examples for both Lesk and defi- 144

nition generation methods. Since frequent words 145

may have more than 100 000 usages in the Norwe- 146

gian and Russian corpora, we sampled randomly 147

no more than 1000 usages for each target word 148

from every diachronic corpus. 149

This resulted in sub-corpora of total 58 000 150

usages for English, 47 000 for Norwegian-1, 151

51 000 for Norwegian-2, and 164 000, 183 000 and 152

168 000 for Russian-1, Russian-2 and Russian-3 153

correspondingly.3 154

3 Definition generation methods 155

Our general pipeline of generating definitions from 156

an LLM (‘DefGen’) is similar to Giulianelli et al. 157

(2023). The definition generation models were fine- 158

tuned on WordNet (Ishiwatari et al., 2019), Ox- 159

ford (Gadetsky et al., 2018) and CoDWoE (Mickus 160

et al., 2022) for English, CoDWoE for Russian and 161

Bokmålsordboka4 for Norwegian. All CoDWoE 162

datasets originally come from Wiktionary so it is 163

straightforward to extend this method to any major 164

language. As a prompt for the LLM, we used the 165

original example usage with the question ‘What 166

is the definition of TARGETWORD?’ (in English, 167

Norwegian or Russian) added at the end. 168

The differences in comparison to Giulianelli et al. 169

(2023) are as follows: 170

3We use only examples no longer than 350 subword tokens
in all our experiments.

4https://ordbokene.no/
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Strategy BLEU RougeL BertScore

Greedy decoding 7.384 / 6.237 / 5.113 0.223 / 0.198 / 0.130 0.860 / 0.735 / 0.700
Repetition penalty (1.2) 6.401 / 6.026 / 5.599 0.204 / 0.200 / 0.145 0.856 / 0.737 / 0.706
Multinomial sampling 6.745 / 6.037 / 4.853 0.200 / 0.198 / 0.122 0.855 / 0.736 / 0.697
Beam search (5 beams) 7.052 / 7.523 / 5.863 0.219 / 0.246 / 0.154 0.860 / 0.747 / 0.709
Diverse beam search 7.651 / 7.356 / 5.713 0.225 / 0.243 / 0.150 0.862 / 0.750 / 0.710

Table 1: Performance of English / Norwegian / Russian definition generation with different generation strategies.

1. As the base model, we used mT0 (Muennighoff171

et al., 2023), which is essentially a multilin-172

gual version of Flan-T5, the model used by173

(Giulianelli et al., 2023). The fine-tuned mod-174

els are extensively described and evaluated in175

another work currently under review, but we176

provide important details in Appendix A.177

2. We additionally conducted a series of exper-178

iments with different generation strategies.179

Giulianelli et al. (2023) used only basic greedy180

decoding, while we experimented with alter-181

native strategies such as multinomial sam-182

pling, beam search, and diverse beam search183

(Vijayakumar et al., 2018).184

Note that these experiments do not deal with185

LSCD – they only evaluate the capability of the186

models to generate definitions similar to the gold187

ones. The results of our experiments for English,188

Russian and Norwegian, evaluated with BLEU,189

RougeL and BertScore, are shown in Table 1. We190

used the default implementations of these metrics191

from the Evaluate library5 with the only change192

of using whitespace tokenizer in RougeL for all193

languages (instead of the default one aimed at En-194

glish). For English and Russian, we evaluated on195

the CoDWoE trial sets (about 200 instances each);196

for Norwegian, we used our own test set of about197

7000 instances.6198

The performance scores are consistent across all199

three languages: the default mode of greedy decod-200

ing turned to be a hard-to-beat baseline. However,201

using beam search with 5 beams (or its diverse ver-202

sion with diversity penalty of 0.5) does outperform203

greedy decoding according to all three metrics.204

In the experiments below, we use definitions gen-205

erated with all three approaches: greedy decoding,206

beam search and diverse beam search, to explore to207

5https://huggingface.co/docs/evaluate/
6Generating definitions with our models for 1000 example

usages takes about 2 minutes on an NVIDIA A100 GPU.

what extent the definition generation performance 208

translates to LSCD performance. 209

4 Semantic change detection with 210

generated definitions 211

4.1 Baselines 212

Table 2 shows the results from previous studies that 213

we use as our baselines, as well as the best results 214

of our definition-based systems. 215

The scores of XLM-R token embeddings with 216

APD, PRT or APD/PRT (AM) aggregation methods 217

are taken from Giulianelli et al. (2022). Although 218

this approach is not interpretable, it yields state-of- 219

the-art scores for unsupervised LSCD. 220

As an interpretable baseline, Tang et al. (2023) 221

used the Lesk WSD algorithm (Lesk, 1986) with 222

WordNet definitions (this method is called ‘NLTK’ 223

in the Table 1 of their paper). Their result for En- 224

glish, as well as our extensions to Norwegian and 225

Russian, are shown in the lower part of Table 2. 226

We were able to reproduce their Lesk results with 227

only small fluctuations7. Since no open WordNet- 228

like databases exist for Norwegian or Russian8, 229

we used the aforementioned Bokmålsordboka and 230

CoDWoE/Wiktionary as sources of Norwegian and 231

Russian sense definitions. 232

We also experimented with adding part-of- 233

speech information to the Lesk algorithm (that is, 234

restricting Lesk WSD search to only the synsets cor- 235

responding to the desired part-of-speech of the tar- 236

get word). The English SemEval’20 dataset explic- 237

itly specifies parts-of-speech for the target words, 238

while the Norwegian and Russian datasets contain 239

7Probably due to the fact that we used top 1 sense in all our
experiments, while Tang et al. (2023) experimented with top
k highest ranked senses on a held-out set and found k = 2 to
perform best. However, we focus on unsupervised approaches
to the task and leave hyperparameter tuning on development
sets for future work.

8The Open Multilingual WordNet allows searching for
words in other languages than English, but the synset defini-
tions remain in English.

3

https://huggingface.co/docs/evaluate/


Method English Norwegian-1 Norwegian-2 Russian-1 Russian-2 Russian-3

Non-interpretable methods:

XLM-R token embeddings 0.514♢ 0.394♢ 0.387♢ 0.376♢ 0.480♢ 0.457♢

Definition embeddings (ours) 0.637 0.496 0.565 0.488 0.462 0.504
(See Table 3 for details)

Interpretable methods:

Lesk without PoS 0.423♣ 0.178 0.500
0.294 0.279 0.286

Lesk with PoS 0.587 0.150 0.474

ARES sense embeddings 0.529♣ — — — — —
LMMS sense embeddings 0.589♣ — — — — —

Definitions as senses (ours) 0.605 0.362 0.260 0.391 0.431 0.491
(See Table 4 for details)

Table 2: Summary of our results and baselines (Spearman’s ρ for graded LSCD). Figures marked with ♢ are taken
from Giulianelli et al. (2022); AM (arithmetic mean of APD and PRT) is called APD-PRT in their paper. Figures
marked with ♣ are taken from Tang et al. (2023); Lesk is called NLTK in their paper. Numbers without a symbol
are our own results.

nouns only. The two variants of Lesk yield identi-240

cal results on the Russian datasets since the target241

words are not PoS-ambiguous. For English and242

Norwegian-2, Lesk even outperforms the XLM-R243

token embeddings and comes close to our approach244

based on definition embeddings.245

However, Tang et al. (2023)’s main results are246

based on ARES and LMMS sense embeddings.247

Unfortunately, these embeddings are not publicly248

available anymore due to link rot, and thus we can249

only quote the performance scores from Tang et al.250

(2023). The LMMS download link9 leads to a251

private file storage, and the ARES embeddings are252

also not available anymore at the provided URL.253

We contacted the authors but got no answer by the254

time of writing.255

4.2 Using definition embeddings256

Generated definitions can be easily vectorized by257

using any sentence embedding model. We em-258

bedded the generated definitions for every target259

word usage with DistilRoBERTa10. After that, it be-260

comes possible to use the standard LSCD methods261

like PRT (prototype embeddings), APD (average262

pairwise distance), and their arithmetic mean (AM)263

(Kutuzov et al., 2022b). The only difference to the264

standard setup is that instead of token embeddings,265

we feed contextualized definition embeddings into266

the algorithm.267

9https://github.com/danlou/LMMS
10https://huggingface.co/sentence-transformers/

all-distilroberta-v1

The intuition here is that by measuring the aver- 268

age or pairwise distances between definitions of 269

one and the same target word in two historical 270

corpora, one can quantify the degree of seman- 271

tic change for this word between two time peri- 272

ods. As can be seen in in Table 3, this is indeed 273

the case. Our definition embeddings outperform 274

the contextualized XLM-R token embeddings from 275

Giulianelli et al. (2022) on five of the six evaluated 276

datasets. 277

Note in this context that using token embeddings 278

from a masked LM requires the knowledge of the 279

exact position of the target token in the input sen- 280

tence (with additional issues in case of the target 281

word being split into multiple sub-words). In our 282

approach, adding the ‘What is the definition of X?’ 283

prompt to the input sentence is completely decou- 284

pled from the location of X within the sentence. 285

The decoding strategy does not seem to make 286

a significant difference in terms of LSCD perfor- 287

mance. Greedy decoding is a reasonable default 288

choice despite its slightly lower scores in Table 1. 289

On English, the APD method on definition 290

embeddings also outperforms the best sense- 291

embedding-based approaches from Tang et al. 292

(2023) by a large margin (see Table 2). Note, how- 293

ever, that using definition embeddings in this case 294

still yields a non-interpretable result: we do not 295

know what exact senses are responsible for a high 296

degree of semantic change. For this reason, we 297

propose to use the generated definitions directly in 298

the next section. 299
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English Norwegian-1 Norwegian-2

APD PRT AM APD PRT AM APD PRT AM

Token emb. 0.514 0.320 0.457 0.389 0.378 0.394 0.387 0.270 0.325
Greedy (ours) 0.633 0.331 0.580 0.416 0.368 0.496 0.565 0.413 0.558
Beam (ours) 0.637 0.355 0.601 0.317 0.411 0.434 0.478 0.452 0.479
Diverse (ours) 0.613 0.359 0.591 0.335 0.364 0.444 0.508 0.470 0.523

Russian-1 Russian-2 Russian-3

APD PRT AM APD PRT AM APD PRT AM

Token emb. 0.372 0.294 0.376 0.480 0.313 0.374 0.457 0.313 0.384
Greedy (ours) 0.464 0.406 0.488 0.453 0.430 0.462 0.489 0.504 0.494
Beam (ours) 0.381 0.387 0.401 0.400 0.451 0.411 0.386 0.439 0.413
Diverse (ours) 0.396 0.457 0.433 0.405 0.449 0.417 0.414 0.476 0.436

Table 3: LSCD performance (Spearman’s ρ) with definition embeddings obtained with different decoding strategies
(greedy decoding, beam search and diverse beam search). For comparison, Token emb. presents the results by
Giulianelli et al. (2022) with contextualized XLM-R token embeddings. AM is the arithmetic mean of APD and
PRT.

4.3 Merging definitions together300

The definitions generated by a DefGen system can301

be used directly for LSCD. In this case, each unique302

definition is considered a separate word sense, and303

the sense distributions of the two time periods can304

be compared in the same way as in Tang et al.305

(2023). This approach is straightforward and al-306

ready results in competitive performance (see the307

“No merging” section in Table 411).308

However, it obviously suffers from too granu-309

lar senses. As an example, for almost 1000 oc-310

currences of the word ‘plane’ in the SemEval’20311

English dataset, more than 200 unique definitions312

were generated, most only with one occurrence.313

This list includes definitions obviously belonging314

to one and the same sense: for example, ‘An air-315

craft, especially one designed for military use’ and316

‘An aircraft, especially a military aircraft’. This317

leads to noise and – even worse – to reduced in-318

terpretability. It is easy to observe that definitions319

belonging to the same sense are often similar in320

their surface form. Thus, in this subsection, we321

describe our experiments with merging similar def-322

initions together.323

Any decision about what word usages belong to324

one sense is inherently arbitrary (Kilgarriff, 1997).325

The same applies to definitions: in order to de-326

cide whether two definitions represent one and the327

11Table 4 reports results after using two different distance
metrics: cosine and Jensen-Shannon divergence (JSD). JSD is
superior in most cases, but not always.

same sense, one has to find a way to quantify their 328

similarity. In order to preserve interpretability, we 329

decided to use surface string similarity metrics (as 330

opposed to, e.g., cosine similarity between defini- 331

tion embeddings). 332

We remind again that the top part of Table 4 333

shows the performance scores on our datasets with 334

no merging involved: every unique definition is 335

considered to be a separate sense on its own and we 336

simply compare the distribution of these ‘senses’ 337

across two time periods. In addition to that, we 338

introduce two merging strategies which we dub 339

‘minimalist’ and ‘full-fledged’ merging. The intu- 340

ition behind them is that one replaces some of the 341

generated definitions for a target word with another 342

similar definition generated for the same target 343

word, thus reducing the total number of unique def- 344

initions per word and making it closer to a realistic 345

number of senses. 346

First, we filter out punctuation marks from all 347

definitions. Second, every time period (out of two) 348

is processed separately12 in the following way. For 349

every target word, we sort the generated definitions 350

by their frequency and loop over them, starting 351

from the top (most frequent) ones, representing the 352

12We also tried joint processing of both time periods to
make the resulting definitions-as-senses more comparable.
However, it consistently resulted in worse performance: the
most probable reason being that it makes the sense distribu-
tions too close to each other, eliminating meaningful differ-
ences. It also can bias the predictions if one time period is
represented by a larger corpus than another.
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English Norwegian-1 Norwegian-2 Russian-1 Russian-2 Russian-3

Cosine JS Cosine JS Cosine JS Cosine JS Cosine JS Cosine JS

No merging:
Greedy 0.461 0.405 0.303 0.332 0.211 0.232 0.299 0.390 0.337 0.427 0.383 0.469
Beam 0.457 0.476 0.268 0.238 0.216 0.201 0.304 0.368 0.297 0.403 0.317 0.417
Diverse 0.449 0.382 0.241 0.280 0.069 0.164 0.301 0.345 0.310 0.389 0.348 0.421

Minimalist merging:
Greedy 0.564 0.605 0.251 0.280 0.192 0.197 0.271 0.391 0.233 0.431 0.325 0.491
Beam 0.510 0.463 0.297 0.240 0.112 0.189 0.298 0.366 0.252 0.383 0.301 0.409
Diverse 0.478 0.430 0.325 0.296 0.162 0.215 0.265 0.354 0.268 0.406 0.287 0.443

Full-fledged merging:
Greedy 0.439 0.409 0.261 0.362 0.193 0.260 0.286 0.391 0.250 0.416 0.360 0.476
Beam 0.492 0.489 0.265 0.215 0.186 0.226 0.304 0.360 0.250 0.347 0.327 0.420
Diverse 0.312 0.375 0.209 0.315 0.202 0.221 0.236 0.301 0.217 0.379 0.262 0.411

Threshold 50 10 10 10 10 10

Table 4: LSCD performance (Spearman’s ρ) with generated definitions and different generation and merging
strategies. Results are reported with two distance metrics: cosine similarity and Jensen-Shannon divergence.
Threshold refers to the Levenshtein edit distance threshold used for merging definitions.

dominant senses of the word. For every step in353

this loop (let’s designate it as ‘hub definition’), we354

loop again over the remaining definitions, calculat-355

ing the edit distance13 between them and the hub356

definition. If the edit distance is lower than the pre-357

defined threshold, the current definition is replaced358

with the hub definition (we assume they belong to359

one sense). With the ‘minimal strategy’, only the360

first (most frequent) definition can be the hub (and361

have other definitions replaced by it), the loop is362

stopped after it is compared to all other definitions.363

With the ‘full-fledged’ strategy, the loop contin-364

ues, and other (less frequent) definitions also get a365

chance to become hubs, if they were not subsumed366

by another definition before. The ‘full-fledged’367

strategy naturally results in even stronger reduc-368

tion on the number of unique senses (see Figure 1).369

The datasets with replaced definitions are used for370

LSCD in the usual way.371

The value of the edit distance threshold is a hy-372

perparameter. In theory, one can tune it on a desig-373

nated development set, but in this study, we tried374

to avoid the supervised setup. Thus, after studying375

the data, we only tested two intuitively sensible376

threshold values of 10 and 50. It turned out that the377

value of 10 is optimal for Norwegian and Russian,378

while the value of 50 (more merging) is optimal379

13We use Levenshtein distance (Levenshtein, 1966); other
edit distance formulations are possible. In addition, only
definitions containing 4 words and more could serve as hubs,
to prevent merging together very short definitions with low
edit distances.

Figure 1: Average number of senses per 100 usages
before and after merging, calculated across all datasets
for each language.

for English (changes in the number of senses after 380

merging are more obvious for English on Figure 1 381

exactly because of the more aggressive Levenshtein 382

threshold). 383

As shown in Table 4, merging definitions indeed 384

improves the performance in the LSCD ranking 385

task for three languages and five benchmarking 386

datasets, in comparison to no merging at all. It 387

still does not reach the level of APD on definition 388

embeddings (Table 3), but outperforms the best 389

sense embedding approach from Tang et al. (2023). 390

For two Russian datasets out of three, our merged 391

definitions-as-senses outperform previous best un- 392

supervised results (Giulianelli et al., 2022). 393

Curiously, only for Norwegian the best perfor- 394
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mance is achieved using the full-fledged merging395

strategy (and is still comparatively low); for En-396

glish and Russian, the minimalist strategy (only397

merging with the dominant sense) gives the best398

scores. Thus, merging should be done cautiously:399

merging too much can degrade the performance.400

Another interesting finding is that greedy decoding401

again turned out to be the best generation strat-402

egy for LSCD. We hypothesize that using beam403

search often results in too diverse a set of defi-404

nitions, which prevents efficient comparisons be-405

tween their diachronic distributions.406

Overall, using surface forms of generated defini-407

tions directly is outperformed by using vectorized408

definitions and APD or PRT methods for seman-409

tic change detection (see 4.2), which is consistent410

with findings in Giulianelli et al. (2023). They411

found that cosine similarity between vectorized412

definitions better approximates human similarity413

judgments than surface form similarity metrics like414

edit distance or BLEU. However, using definitions415

in their textual form has a clear advantage of being416

interpretable. In the next section, we illustrate how417

semantic change can be explained and analyzed by418

comparing the generated (and merged) definitions.419

5 Qualitative analysis420

When predicting semantic change on the basis of421

the distribution of senses (or definitions-as-senses),422

it becomes possible to analyze and interpret this423

change, by simply looking at the distribution of424

entries (senses) which contribute most to the differ-425

ence.426

Let’s consider the top performing set of English427

definitions (generated with greedy decoding and428

merged in the minimalist approach with the edit429

distance threshold of 50). For the word ‘ball’ in the430

SemEval’20 time periods, the JSD metric yields431

a high change score of 0.83. After looking at the432

list of top frequent definitions-as-senses for this433

word, it becomes clear that its dominant sense has434

changed: while in time period 1 (19th century),435

more than 82% of all usage examples were given436

the definition ‘A spherical object especially one437

that is round in shape’ with ‘A party’ being the438

next most frequent sense, in time period 2 (20th439

century), 80% of ‘ball’ usages were defined as440

‘The object hit in a game’, with similar definitions441

following this one in the top-frequent list. This is a442

clear evidence of the ‘dancing party’ sense for the443

word ‘ball’ becoming obsolete in the 20th century,444

with the sports-related sense taking the dominant 445

position. 446

For the noun ‘attack’, the system predicts a 447

medium change degree of 0.34. Again, it is straight- 448

forward to find the reasons. While in both periods 449

the dominant sense is the same (‘An instance of mil- 450

itary action against an enemy’), in the time period 451

2 its ratio drops down from 87% to 80%, and we 452

observe the appearance of a new rare but not unique 453

sense of ‘An instance of sudden violent activity of a 454

bodily organ or system especially the heart’. This 455

is a linguistically plausible explanation of a seman- 456

tic shift, much more useful to a lexicographer than 457

a raw change score. See Appendix B for more 458

examples in English, Norwegian and Russian. 459

6 Conclusion 460

In this paper, we showed how contextualized 461

dictionary-like definitions generated by a fine- 462

tuned large language model can be used for the 463

practical downstream task of semantic change de- 464

tection (in particular, ranking words by the degree 465

of their diachronic semantic change). 466

Following Giulianelli et al. (2023), we treat gen- 467

erated definitions as semantic representations of 468

the target words. These definitions (and their fre- 469

quency distributions) can be used ‘as is’, using 470

Tang et al. (2023)’s method, or after embedding 471

them in a dense vector space using any available 472

sentence embedding model. The second method 473

yields results which are empirically better (con- 474

sidering existing benchmarks for three different 475

languages), but the first method makes it much eas- 476

ier to interpret and explain semantic change, since 477

it operates directly on generated definitions in their 478

textual forms. 479

We consider this study a small step towards more 480

explainable semantic change modeling, which 481

can be closer to linguistically plausible discrete 482

‘senses’, while still retaining empirical perfor- 483

mance. In the future, we plan to explore to what 484

extent it is possible to improve our results by tun- 485

ing hyperparameters on development sets (where 486

available). Another direction for future research is 487

using more advanced string distance metrics like 488

weighted Levenshtein distance, Longest Common 489

Subsequence Ratio, or Word Mover’s Distance 490

(Kusner et al., 2015), in the hope that it will allow 491

to handle more nuanced similarities and dissimilar- 492

ities between generated definitions. 493
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Ethical impact494

For fine-tuning our definition generators, we used495

only open and publicly available datasets, mostly496

dictionaries. However, some of them (especially497

Wiktionary) are crowd-sourced, and thus can (and498

do) contain inappropriate phrases. In addition, the499

foundational mT0 language model on which we500

base our pipeline, was trained among other data501

on web-crawled texts, also far from being clean.502

Thus, generated definitions are not guaranteed to503

be free from swearing, discriminative passages and504

other inappropriate content.505

Limitations506

This work is limited to only three languages (En-507

glish, Norwegian and Russian), while the standard508

SemEval’20 ‘LSCD suite’ contains four languages509

(English, German, Latin, Swedish). Also, we did510

not experiment with hyperparameter tuning or dif-511

ferent ways of training definition generators. It512

should also be noted that Spearman rank correla-513

tion can be non-accurate for samples the size of514

LSCD benchmarks: we use it to preserve compati-515

bility and comparability with prior work.516

Finally, we have not yet empirically evaluated517

how useful in practice the definition-based expla-518

nations of semantic change will be for historical519

linguists and lexicographers (although what we see520

after manual inspection of the system predictions521

is promising).522
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Period 1 (1810-1860) Period 2 (1960-2010)

circle
JS=0.07

To move in a circular course (99%) To move in a circular course (98%)

To move in a circular course. (1%) To move in a circular course. (<1%)

To move around something especially so as
to make it appear to move around (<1%)

risk
JS=0.44

The probability of a negative outcome to a
decision or event (59%)

The probability of a negative outcome to a
decision or event (63%)

The probability of a negative outcome to a
decision or event the chance of a negative
outcome to a decision or event (8%)

The probability of a negative outcome to a
decision or event the chance of a negative
outcome to a decision or event (3%)

A venture undertaken without regard to pos-
sible loss or injury especially if significant
(3%)

A venture undertaken without regard to pos-
sible loss or injury especially if significant
(3%)

ball
JS=0.83

A spherical object especially one that is
round in shape (82%)

The object hit in a game (80%)

A party (6%) The object used in various sports especially
in soccer tennis basketball etc (<1%)

A wedding (<1%) The object used in various sports especially
in soccer basketball and other games which
is thrown or kicked (<1%)

Table 5: The three most frequent definitions per period for three English words: circle (low predicted change
rate), risk (medium predicted change rate), and ball (high predicted change rate). Parentheses indicate the relative
frequency of each definition among all samples of the period.
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Period 1 (1980-1990) Period 2 (2012-2019)

oppvarming
‘heating,
warm-up’
JS=0.19

det å varme opp ‘the action of heating’
(98%)

det å varme opp ‘the action of heat-
ing’(91%)

i regnskap ‘in accounting’ (<1%) det å varme opp jordoverflaten ‘the action
of warming the Earth surface’ (1%)

i statistikk ‘in statistics’ (<1%) i fotball ‘in football’ (<1%)

bank
‘bank’
JS=0.64

institusjon som tar imot innskudd av penger
og gir lån (13%)

institusjon som tar imot innskudd av penger
og gir lån (14%)

‘institution that accepts money deposits and gives loans’

institusjon som tar imot innskudd og utfører
pengetransaksjonstjenester (6%)

institusjon som tar imot innskudd og utfører
pengetransaksjonstjenester (6%)

‘institution that accepts deposits and provides financial transaction services’

institusjon som tar imot innskudd av
penger og driver pengetransaksjonsvirk-
somhet (5%)

institusjon som tar imot innskudd av
penger og driver pengetransaksjonsvirk-
somhet (4%)

‘institution that accepts deposits of money and conducts financial transaction business’

kode ‘code’
JS=0.81

i i sammensetninger ‘i in compounds’ (4%) i i bestemt form ‘i in the definite form’ (4%)

i i bestemt form ‘i in the definite form’ (3%) mønster oppskrift på hvordan noe skal
lykkes ‘pattern, recipe for how something
succeeds‘ (1%)

i statistikk ‘in statistics’ (3%) i overført betydning mønster mønster-
gyldighet ‘in a figurative sense pattern, pat-
tern validity’ (1%)

Table 6: The three most frequent definitions per period for three words of the Norwegian-2 dataset: oppvarming (low
predicted change rate), bank (medium predicted change rate), and kode (high predicted change rate). Parentheses
indicate the relative frequency of each definition among all samples of the period.
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Period 1 (before 1917) Period 2 (after 1991)

цензура
‘censor-
ship’
JS=0.09

система государственного надзоря за
печатью и средствами массовой инфор-
мации (99%)

система государственного надзоря за
печатью и средствами массовой инфор-
мации (99%)

system of state control over printing and mass media

истор. государственный орган, осу-
ществляющий цензуру historically, a
state body conducting censorship (<1%)

государственная система государствен-
ного надзоря за печатью и средствами
массовой информации a state system of
controlling printing and mass media (<1%)

контроль, надзор за печатью и сред-
ствами массовой информации control
and monitoring of printing and mass media
(<1%)

сокр. от цензурная служба, государ-
ственная организация, осуществляю-
щая цензуру abbrev. censoring body, state
organ conducting censorship (<1%)

огонь
‘fire’
JS=0.66

источник огня, источник света source
of fire or light (7%)

действие по значению глагола стрелять
nominal form of the verb ‘to fire’ (3%)

источник света, источник тепла, дыма
и т.п. source of light, warmth, smoke etc
(2%)

источник света, источник освещения
source of light, of illumination (2.5%)

перен. страсть, пыл metaphoric. passion
or rage (2%)

воен. стрельба из огнестрельного ору-
жия metaphoric. gunfire (1%)

линейка
‘line,
ruler’
JS=0.80

измерительный инструмент в виде пря-
мой пластинки с нанесёнными на неё
делениями для измерения длины и рас-
стояния a measuring tool looking like a
straight plane with marks to measure length
and distance (2.6%)

перен. совокупность однородных пред-
метов, изделий, продуктов и т. п.
metaphoric. a batch of similar items, goods,
products (3.5%)

устар. длинные узкие сани archaic. long
narrow sledges (1%)

измерительный инструмент в виде пря-
мой пластинки с нанесёнными на неё
делениями для определения длины ли-
нии a measuring tool looking like a straight
plane with marks to measure the length of a
line (1.4%)

измерительный инструмент в виде пря-
мой линии с нанесёнными на неё де-
лениями a measuring tool looking like a
straight plane with marks (1%)

измерительный инструмент в виде пря-
мой пластинки с нанесёнными на неё
делениями для измерения длины и
ширины a measuring tool looking like a
straight plane with marks to measure length
and width (1%)

Table 7: The three most frequent definitions per period for three words from the Russian-1 dataset: ‘цензура’
(low predicted change rate), ‘огонь’ (medium predicted change rate), and ‘линейка’ (high predicted change rate).
Parentheses indicate the relative frequency of each definition among all samples of the period.
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