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Abstract

Existing automatic evaluation on text-to-image synthesis can only provide an
image-text matching score, without considering the object-level compositionality,
which results in poor correlation with human judgments. In this work, we propose
LLMScore, a new framework that offers evaluation scores with multi-granularity
compositionality. LLMScore leverages the large language models (LLMs) to
evaluate text-to-image models. Initially, it transforms the image into image-level
and object-level visual descriptions. Then an evaluation instruction is fed into
the LLMs to measure the alignment between the synthesized image and the text,
ultimately generating a score accompanied by a rationale. Our substantial analysis
reveals the highest correlation of LLMScore with human judgments on a wide
range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO,
DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall’s τ correlation
with human evaluations that is 58.8% and 31.2% higher than the commonly-used
text-image matching metrics CLIP and BLIP, respectively.

1 Introduction

In recent years, research in text-to-image synthesis has made significant progress [9, 11, 38, 43].
However, evaluation metrics have lagged behind due to challenges such as accurately capturing
composite text-image alignment (e.g. color, counting, location) [47], interpretably producing the
score, and adaptively evaluating with various objectives.

Established evaluation metrics for text-to-image synthesis like CLIPScore [17] and BLIP [24], while
widely used and highly effective [20, 36], have encountered challenges when it comes to capturing
object-level alignment between text and image [12, 26]. Figure 1 illustrates an example from the
Concept Conjunction dataset [12], given the text prompt “A red book and a yellow vase”,
the left image aligns with the text prompt, while the right image fails to generate a red book, and
the correct color for the vase, also with an extra yellow flower. Human judges can make the
correct and clear assessment (1.00 v.s. 0.45/0.55) of these two images on both overall and error
counting objectives, while the existing metrics (CLIP, NegCLIP [51], BLIP) predicts similar scores
for both images, failing to distinguish the correct image (on the left) from the wrong one (on the
right). Furthermore, these metrics provide a single, non-interpretable score, obscuring the underlying
reasoning behind the alignment of the synthesized images with the given text prompts. Additionally,
these model-based metrics are static, unable to follow varied guidelines that prioritize different
objectives of the text-to-image evaluation. For example, the evaluation can range from accessing
image-level semantics (Overall) to finer object-level details (Error Counting). These issues hinder the
existing metrics from aligning with human evaluations.
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Figure 1: The two images are generated using Stable-Diffusion-2 based on the text prompt sampled
from the Concept Conjunction dataset. Baseline section shows the scores from the existing model-
based evaluation metrics, Human section is the rating score from the human evaluation, LLMScore
section is our proposed metric. The right column also shows the rationale generated by LLMScore.

In this paper, we introduce LLMScore, a novel framework to evaluate text-image alignment in text-
to-image synthesis by unveiling the powerful reasoning abilities of large language models (LLMs).
Our inspiration stems from the human approach of measuring text-image alignment, which involves
checking the correctness of objects and attributes specified in the text prompt. With the incredible text
reasoning and generation ability of LLMs, LLMScore can imitate the human evaluation process to
access compositionality at multi-granularity and produce alignment scores with rationales, delivering
more insight into the model performance and reasons behind the scores.

To enhance the evaluation of composite text-to-image synthesis, our LLMScore elicits grounding
visio-linguistic information from vision and language models and LLMs, thereby capturing multi-
granularity compositionality in the text and image. Specifically, our approach leverages vision
and language models to transform the image into multi-granularity (image-level and object-level)
visual descriptions, which allows us to capture the compositional aspects of multiple objects in the
language format. Then we concatenate these descriptions with text prompts and feed them into large
language models (LLMs, for example, GPT-4 [32]) to reason the alignment between text prompts
and images. While existing metrics struggle to capture compositionality, our LLMScore captures the
object-level alignment between text and image, producing scores that are significantly correlated with
human evaluation, complete with reasonable rationales (Figure 1). In addition, our LLMScore can
adaptively follow various guidelines (overall or error counting) by simply customizing the evaluation
instruction for LLMs. For example, we can access the overall objective by prompting the LLMs with
the instruction “Rate the overall alignment of text prompt and image.” or validate
error counting objective with the instruction “How many compositional errors are in the
image?”. And we explicitly include guidance on error types of text-to-image models in the evaluation
instruction to keep the LLM’s decision deterministic. This flexibility empowers our framework as a
versatile tool for a wide range of text-to-image tasks and various evaluation guidelines.

We validate the effectiveness of LLMScore through extensive experiments, demonstrating its align-
ment with human judgments without any demand for additional training. Our experimental setup
contains state-of-the-art text-to-image models such as Stable Diffusion [38] and DALL·E [37],
evaluated over diverse datasets, including prompt datasets for general purpose (MSCOCO [28], Draw-
Bench [42], PaintSkills [8]) and for compositional purposes (Abstract Concept Conjunction [12],
Attribute Binding Contrast [12]). Our LLMScore achieve the highest human correlation across all
datasets. On compositional datasets, we achieve 58.8% and 31.27% higher Kendall’s τ over widely
used metrics CLIP and BLIP respectively.

To sum up, we present LLMScore, the first attempt to unveil the power of the large language models
for text-to-image evaluation, in particular, our paper makes the following contributions:

• We propose LLMScore, a new framework to evaluate the alignment between text prompts
and synthesized images in text-to-image synthesis, offering scores that accurately capture
multi-granularity compositionality (image-level and object-level).

• Our LLMScore produces accurate alignment scores with rationales following various evalu-
ation instructions (overall and error counting).
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Figure 2: Comparison of Text-Image Matching, Sentence Matching, and our LLM-based Instruction-
Following Matching pipeline for text-to-image synthesis evaluation. Our LLMScore automatically
provides accurate scores and reasonable rationales for text-to-image synthesis based on text prompts,
and visual descriptions following various evaluation instructions.

• We validate the LLMScore on a wide range of datasets (both general purpose and composi-
tional purpose). Our proposed LLMScore achieves the highest human correlation among
the commonly used metrics (CLIP, BLIP).

2 Background

Existing Automatic Metrics for Text-to-Image Synthesis Though Inception Score (IS) [45] and
the Frechet Inception Distance (FID) [18] are recognized metrics for image fidelity, they do not
measure how well the synthesized images align with the text prompts. Existing metrics [21, 22, 34, 44]
for measuring such alignment in text-to-image synthesis generally fall into two categories: 1) text-
image matching, and 2) sentence matching. For direct comparison between the text and image, the
metrics typically rely on the pre-trained text-image matching models, among these, CLIP-based and
BLIP-based are most common. Alternatively, the sentence-matching pipeline transforms synthesized
images into captions and then measures the sentence-level similarity with the text prompts. This
can be achieved by transforming the synthesized images v into free-form captions using the image
captioning model BLIPv2 [25]. Then we can apply reference-based image caption metrics such as
text-based CLIPScore [17] and METEOR [3] to measure the alignment.

Large Language Models as Evaluation Metrics Very recently, large language models (LLMs) [32,
33] have achieved incredible performance in evaluating natural language generation tasks [14, 29, 55].
This success stems from the LLMs’ powerful reasoning and instruction-following, enabling the
evaluation of diverse objectives simply by altering the prompt. In addition to language-only tasks,
recent studies have demonstrated the effectiveness of eliciting vision and language reasoning abilities
of LLMs by incorporating image descriptions [13, 30, 40, 49] or fusing multimodal features [31, 56].
A concurrent work TIFA [19] utilizes LLMs to generate questions for validating text-to-image
faithfulness. To our best knowledge, we are the first to introduce object-centric descriptions of images
into LLMs for evaluating the multi-granularity compositionality in text-to-image synthesis.

3 LLMScore

Our proposed LLMScore aims to evaluate the alignment between the generated image and the text
prompt while capturing multi-granularity compositionality. As depicted in Figure 3, LLMScore has
two main components: 1) LLMs As Multi-Granularity Visual Descriptor: transforming the image into
multi-granularity object-centric descriptions (Section 3.1), and 2) LLMs As Text-to-Image Evaluator:
feeding the evaluation instructions into LLMs, generating the score and rationale (Section 3.2).

3.1 LLMs As Multi-Granularity Visual Descriptor

As illustrated in Figure 3, we first decompose the image into two-level visual descriptions: image-
level global description; and region-level local descriptions. Then we employ the LLMs to fuse them
into a coherent, object-centric, multi-granularity description of the image.
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Figure 3: LLMScore pipeline for Text-to-Image evaluation. This image is generated by Stable-
Diffusion-2 using the text prompt “A red car and a white sheep.”, which is sampled from the Concept
Conjunction dataset. I1 and I2 represent two different evaluation instruction settings: 1) Overall and
2) Error Counting. Each produced LLMScore is accompanied by a rationale.

Global Image Description The global image description is composed of image-level captions
and image meta-information. Given an image, for example, in Figure 3, we first transform it into a
global description using the state-of-the-art image captioning model BLIPv2, which encapsulates the
primary context of the image in a single sentence. Then we concatenate it with the meta-information
of the image, such as the resolution (i.e. 512×512), which aids in the understanding of the location
of each object, and interaction among objects.

Local Region Descriptions Global description can only offer high-level information for the image,
detailed descriptions for each region are necessary to capture object-level local information. Here we
utilize GRiT [50] to extract regions of interest and transform them into textual descriptions of the
regions. GRiT is a model pre-trained with detection and dense caption objectives jointly on the Visual
Genome dataset, which contains local fine-grained descriptions for objects in the image. Specifically,
we format the description of each object as “[Object]:[Dense Caption]:[Bounding box]”.
As shown in Figure 3, the descriptions of all the objects are concatenated together as our local region
descriptions for each image.

Object-Centric Visual Description Though local region descriptions capture dense information
about objects in the image, they lose global context compared with global image descriptions,
which may lack accurate interpretation of spatial and interaction relationships among objects. By
incorporating both the global image description and the local region descriptions, we are able to
obtain object-centric visual descriptions that capture multi-granularity compositionality, such as the
attributes of the objects and relationships among the objects. Specifically, we feed the local and global
descriptions into LLMs (GPT-4 [32] by default) with the template “[GLOBAL DESCRIPTION] [LOCAL
DESCRIPTION] DESCRIPTION INSTRUCTION”. We fill the slot [GLOBAL DESCRIPTION] with the
global image description and the slot [LOCAL DESCRIPTION] with the local region description.
And the hand-crafted slot DESCRIPTION INSTRUCTION (“generate object-centric description” in
Figure 3) is replaced with “Based on the above information of the image, generate the object-centric
visual description regarding the numerical counting, shape, color, size, location, materials of the
object and the spatial and interaction relationships among the objects.”

3.2 LLMs As Text-to-Image Evaluator

Large language models have demonstrated strong reasoning abilities (mathematical, coding etc.) on
many complex tasks [6]. Here we employ the LLMs to measure the alignments between the generated
image and text, and utilize their reasoning ability to understand the compositional attributes of objects
and the complex interactions among multiple objects. Given the above-generated visual descriptions
(Section 3.1), the whole evaluation process contains three steps: 1) instruction-following rating, 2)
rule-enhanced rating, and 3) rationale generation.
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Figure 4: Large Language Models As Text-to-Image Evaluator. By defining evaluation instructions
for various evaluation objectives, large language models can follow the instructions to evaluate
text-image alignment based on the aforementioned visual descriptions and text prompts.

Instruction-Following Rating As shown in Figure 4, we design evaluation instructions to guide
the LLM in evaluating the image based on specific criteria, such as overall semantics, error counting,
etc. The instructions are explicit and detailed, and can include specific guidance on error types
(i.e. counting/shape/color/size) commonly seen in text-to-image models. This ensures the LLM’s
evaluation remains deterministic and is not influenced by any inherent biases in the pre-training data.
The visual descriptions and the evaluation instructions are fed into the LLM to generate a score.
For example, for Overall quality evaluation, the hand-crafted slot [EVALUATION INSTRUCTION]
(denoted as Instruction I1/I2 in Figure 4) is replaced with “Rate the overall quality of the
image in terms of matching the text prompt.” Similarly, for Error Counting evaluation,
the hand-crafted slot [EVALUATION INSTRUCTION] is replaced with “Provide the number of
compositional errors in the image compared to the text prompt.”. We define the
error type as the object-level difference. For example, the counting/shape/color/size difference in the
image and text prompt should be counted as one error. This approach can either speed up the process
of human annotators or serve as an interpretable and consistent evaluation pipeline.

Rule-Enhanced Rating While directly using LLMs to produce evaluation scores has its merits, it
presents certain challenges. One notable issue for LLM is that it can only generate discrete outputs,
making it challenging to produce decimal scores even when the text prompt explicitly specifies that.
To mitigate this issue, we can restrict the LLMs to rate over a wider range of scale (on a scale of 1-N,
where N is default set as 100) in integer and downscale to a smaller range of scale (divided by N by
default) to enforce decimal. This approach provides more flexibility to capture small discrepancies
compared to directly prompting with the decimal score.

To further enhance the consistency of LLMs’ ratings, we propose breaking down the evaluation
process into deterministic atomic tasks and employing basic heuristic rules to imitate the human eval-
uation process more accurately and consistently. In the first step, the LLMs receive the concatenated
information (text prompt, image description, and evaluation instruction) and produce predictions for
a pre-defined sequence of atomic tasks. The atomic tasks include obtaining: 1) the number of objects
specified in the text prompt (X1), 2) the number of matched objects in the image (X2), 3) the number
of specified attributes in the text prompt (Y1), and 4) the number of matched attributes in the text
prompt (Y2). The results for these atomic tasks are more deterministic compared with high-level
tasks. In the second step, we use basic heuristics rules inspired by human evaluation processes, which
reason how well the objects specified in the text prompt are presented in the image descriptions and
how correctly the attributes are depicted in the image. Thus we combine the results from atomic
tasks and derive the final evaluation score by (X2/X1)/2 + (Y 2/Y 1)/2. This is inspired by recent
work [7, 15] that separates the calculation in LLMs to achieve more reliable results. This approach
allows us to overcome the limitations of decimal value generation and consistency in LLMs. Thus we
obtain evaluation results that are more accurate, interpretable, and closer to human judgment.

Generating Rationale The score generation process involves the LLMs’ understanding of various
evaluation instructions, such as assessing the overall text-image alignment or precisely counting the
number of errors in the image. Then the LLMs apply the understanding of the evaluation instruction
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to the concatenated visual description and text prompt, generating a score that reflects the alignment
between the image and the text at multi-granularity compositionality (image-level and object-level).
Each score is accompanied by a rationale. To be specific, we add the explanation instruction prompt
for LLMs, such as “Explain the overall rating X within one paragraph.” for the overall objective
and “Explain the error counting within one paragraph” for the error counting objective. As shown in
Figure 4, our LLMScore generate reasonable rationales for both overall and error counting objectives.
The rationales for the scores further provide insights into the LLM’s decision-making process.

4 Experiments

4.1 Experiments Setup

Datasets For general purpose evaluation (GeneralBench), we sample 200 text prompts from each
dataset, including MSCOCO [27] 2014 and 2017, DrawBench [42], and PaintSkills [8]. For compo-
sitional purpose evaluation (CompBench), we sample 200 text prompts from Concept Conjunction
(CC) and Attribute Binding Contrast (ABC) datasets that are designed for evaluating compositional
text-to-image synthesis [12]. In total, we gather 1200 text prompts for human correlation experiments.

Text-to-Image Models For each sampled text prompt, we generate two images using two widely
used text-to-image models, Stable Diffusion [38] and DALL·E[37], which demonstrate extraordinary
generation quality. To be specific, we use Stable Diffusion 2.1-v from Hugging Face, and DALL·E 2
using OpenAI API in April 2023. All the images are generated at a resolution of 512×512. The total
text-image pairs prompts used in human correlation experiments are 2400.

Baseline Metrics We consider these publicly available model-based evaluation metrics, which fall
into the text-image matching pipeline (depicted in Figure 2) in evaluating text-to-image synthesis.

1. CLIP [17, 36] measures the cosine similarity of image and text prompt representations
extracted from the CLIP feature extractors. This is a widely used model-based metric to
measure the text-image alignment in text-to-image synthesis.

2. NegCLIP [51] uses a fine-tuned CLIP with improved compositionality understanding to
measure the cosine similarity of the image and the text prompt.

3. BLIP-ITC [24, 25] uses a cosine similarity function over the extracted image and text
features by BLIPv2, similarly as CLIP.

4. BLIP-ITM [24, 25] uses cross-attention to fuse multimodal features extracted by BLIPv2 to
compute fine-grained similarity.

We discuss the sentence-matching pipeline as our ablations in Section 4.3. Notice that we focus on
evaluating how well the synthesized images are aligned with the text prompts. Thus the widely used
Inception Score (IS) and the Frechet Inception Distance (FID) for evaluating image quality are not
considered in our baselines, since they do not compare the image with the text prompts.

Implementation Details We extract the global image description using the pre-trained 2.7B
BLIPv2 [24] model equipped with large language model OPT [54]. We extract local region description
using the dense caption model GRiT [50] with ViT-Base [10] pre-trained on COCO 2017. We obtain
the object-centric visual description using GPT-4 [32] as default language models to combine the
global and local information. The is by default generated by GPT-4 with The GPT-4 model is the
default descriptor to combine global and local descriptions into object-centric visual descriptions
and the default evaluator to produce the score with rationale. All experiments conducted with GPT
models are using OpenAI API from April 2023 to May 2023 with temperature 0.7 using greedy
decoding by default.

4.2 Human Ratings

For each generated text-image pair, we ask 2 human annotators to provide ratings over these synthe-
sized images in terms of Overall quality and Error Counting:
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Table 1: Composition-focused Prompt Bench. The correlation between automatic evaluation metrics
and human rankings on text-to-image synthesis. LLMScore significantly surpasses existing metrics
in terms of Kendall’s τ and Spearmanr’s ρ with p < 0.001.

Human Metric
Concept Conjunction Attribute Binding Contrast

Stable Diffusion DALLE Stable Diffusion DALLE
τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

Overall

CLIP 0.1698 0.2459 −0.0049 −0.0058 0.0186 0.0320 0.0396 0.0548
NegCLIP 0.1724 0.2504 0.0682 0.0995 0.0151 0.0211 0.1145 0.1634
BLIP-ITM 0.4058 0.5618 0.3768 0.5266 0.1799 0.2559 0.1500 0.2134
BLIP-ITC 0.2378 0.3398 0.0991 0.1413 0.1982 0.2814 0.0252 0.0344

LLMScore 0.4871 0.6956 0.5167 0.7230 0.4005 0.5480 0.3955 0.5506

Error Counting

CLIP 0.2012 0.2864 −0.0782 −0.1107 0.0061 0.0071 0.0914 0.1286
NegCLIP 0.2245 0.3240 −0.0353 −0.0502 −0.0339 −0.0418 0.0796 0.1130
BLIP-ITM 0.3341 0.4561 0.1105 0.1668 0.0696 0.0968 0.1249 0.1783
BLIP-ITC 0.2210 0.3124 −0.0755 −0.1071 0.0895 0.1315 0.0533 0.0786

LLMScore 0.3779 0.5443 0.2880 0.4428 0.1863 0.2821 0.2326 0.3351

Table 2: The correlation between automatic evaluation metrics and human rankings on text-to-image
synthesis. LLMScore significantly surpass existing metrics in terms of Kendall’s τ and Spearmanr’s
ρ with p < 0.001.

Human Metric COCO2014 COCO2017 DrawBench PaintSkills
τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

Overall

CLIP 0.1971 0.2655 0.2227 0.2771 0.1530 0.2143 0.4715 0.5869
NegCLIP 0.2164 0.2905 0.2793 0.3523 0.1463 0.1999 0.4911 0.6313
BLIP-ITM 0.3252 0.4255 0.0928 0.1155 0.1044 0.1455 0.4755 0.6214
BLIP-ITC 0.3465 0.4535 0.1703 0.2121 0.1569 0.2171 0.4743 0.5864

LLMScore 0.3629 0.4612 0.3357 0.4275 0.2230 0.3023 0.5600 0.6853

Error Counting

CLIP 0.1464 0.2142 0.1888 0.2677 0.1360 0.1910 0.3052 0.2891
NegCLIP 0.2116 0.3061 0.1795 0.2581 0.1179 0.1596 0.4563 0.4908
BLIP-ITM 0.2251 0.3289 0.1137 0.1635 0.0871 0.1189 0.4622 0.4997
BLIP-ITC 0.2636 0.3739 0.1849 0.2620 0.1506 0.2029 0.6178 0.6511

LLMScore 0.2830 0.3992 0.2038 0.3027 0.2134 0.2865 0.6437 0.7325

• Overall: a general-purpose text-to-image evaluation, which applies to most existing metrics.
Human annotators are required to rate the overall quality of the synthesized images in terms
of matching the Text Prompt.

• Error Counting: Human annotators are required to provide the number of compositional
errors in the synthesized images compared to the text prompt. The error types include:
1) compositional errors: wrong attributes (color, spatial position, shape, size, material) of
the objects and wrong relationship among objects, 2) missing object errors: the objects
mentioned in the text prompt are not present in the image, and 3) over-specification errors:
the image hallucinates irrelevant objects in the image that are not specified in the text prompt.

The averaged inter-rater agreement is 0.62 under Krippendorff’s alpha agreement measure. We
provide clear guidance for human annotators, with details shown in Appendix C.

4.3 Human Correlation

In Table 1 and Table 2, we use Kendall’s tau (τ ) and Spearman’s rho (ρ) to measure the ranking
correlation to both Overall and Error Counting human rating for compositional bench and
general bench. All the model-based metric scores and human ratings are normalized to 0-1 for
comparison.

Overall Results As concluded in Table 1 & 2 and Figure 5, 1). the most popular text-image
alignment metric (CLIP) for text-to-image evaluations is less correlated with human ratings than
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(a) Averaged Kendall’s τ Ranking Correlation with Human Ratings.

(b) Averaged Spearmanr’s ρ Ranking Correlation with Human Ratings.

Figure 5: The rank correlation is aggregated across the compositional prompt dataset (Concept
Conjunction, Attribute Binding Contrast) on the left two columns (CompBench) and the general
prompt dataset (MSCOCO, DrawBench, PaintSkills) on the right two columns (GeneralBench).

expected. NegCLIP utilizes hard negatives to improve the compositionality of CLIP; 2). BLIP-based
metrics (BLIP-ITM and BLIP-ITC) surpass these CLIP-based metrics (CLIP and NegCLIP). We
suppose BLIP-based metrics benefits from the better object-level vision-language presentations
learned by grounding tasks, compared with image-level matching learned in CLIP. 3). LLMScore is
significantly better than the existing metrics with large margins.

Accurate Error Counting in the Image is Challenging As shown in Figure 5, all the metrics
achieve better correlation with Overall human ratings than Error Counting human ratings given
the fact that there are various error types and capture each of them requires more accurate composi-
tional visio-linguistic understanding and generation.

Object-centric Visual Descriptions Improve Compositional Understanding In Figure 5, we
show that our LLMScore achieves larger correlation gain over the text prompts on the compositional
bench (e.g., counting, position, size, color, relations). This further confirms our superiority in
capturing compositionality with the introduced object-centric visual descriptions.

CapCLIP CapMETEOR DescCLIP DescMETEORLLMScore
0.0

0.1

0.2

0.3

0.4

Ke
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Overall Error Counting

Figure 6: Comparison between Sentence Match-
ing (CLIP, METEOR) and Instruction-Following
Matching (LLMScore). LLMScore achieves the
best averaged Kendall’s τ correlation with human
ratings over the GeneralBench (MSCOCO, Draw-
Becnh, and PaintSkills).

Image Captions v.s. Visual Descriptions We
consider two categories of variants for LLM-
Score:

1. Text-Caption Matching: CapCLIP and Cap-
METEOR use the CLIP and METEOR to
measure the similarity between the cap-
tions (which is the global image description
in Section 3.1) of the synthesized images
and text prompts.

2. Text-Description Matching: DescCLIP and
DescMeteor, which use the CLIPScore [17]
and METEOR [3] to calculate the similar-
ity score between visual descriptions (in
Section 3.1) and text prompts.

8



Table 3: Effects of Large Language Models. LLMScore (Overall) can obtain performance gain from
GPT-4 compared with using GPT-3.5 as the evaluator. Using GPT-4 as default visual descriptors do not
improve the evaluation performance when only using image caption metrics (DescCLIP, DescMeteor).
All numbers are averaged on the GeneralBench (MSCOCO, DrawBecnh, and PaintSkills).

Human LLM DescCLIP DescMeteor LLMScore
τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

Overall GPT-3.5 0.1479 0.1956 0.0042 0.0073 0.2480 0.3285
GPT-4 0.1128 0.1485 0.0297 0.0374 0.2793 0.3649

Error Counting GPT-3.5 0.0467 0.0670 −0.0597 −0.0835 0.2205 0.3013
GPT-4 0.0149 0.0228 −0.1087 −0.1494 0.2131 0.2981

A red clock and a gold suitcase.

Overall Rationale
The image caption describes two red suitcases, a vintage clock on the wall, and a 
blue curtain in the background, but the text prompt only mentions a red clock and 
a gold suitcase. The alignment between the text prompt and image caption is 
weak.

CLIP

NegCLIP

BLIP-ITM

0.70

Overall

BLIP-ITC

Error Counting Rationale
The composition errors include incorrect suitcase colors, incorrect clock color, 
and additional elements not mentioned in the text prompt (a second suitcase and 
blue curtain).

0.33

Error Counting

0.36

0.45

0.30

0.99

Human

Baseline
LLMScore (Error Counting)        0.55

LLMScore (Overall)       0.40

This kitchen has wooden cabinets 
and silver and black appliances

Overall Rationale
The caption accurately describes the image and aligns well with the text prompt, 
offering additional details about various elements and creating a clear picture of 
the room.

CLIP

NegCLIP

BLIP-ITM

0.00

Overall

BLIP-ITC

Error Counting Rationale
There are no composition errors in the caption as it accurately describes the 
colors, materials, and spatial positions of all relevant objects within the setting, 
adhering to the text prompt's focus on wooden cabinets and black appliances.

1.00

Error Counting

0.25

0.42

0.24

0.40

Human

Baseline LLMScore (Error Counting)        0.00

LLMScore (Overall)       1.00

Figure 7: Examples showing the LLMScore captures the object-level discrepancies (TOP) and
similarities (BOTTOM) between the image and the text prompt. The two text prompts are sampled
from the Concept Conjunction dataset.

The main drawback of such a sentence-matching
pipeline is that the caption metrics favor the
coverage or similar language structure instead
of capturing compositional semantics. Figure 6 shows the average correlation (Kendall’s τ ) on the
general bench set, LLMScore significantly outperforms these two variants, indicating that, caption
metrics is not a good means to measure the alignment between image and text. Despite the advance
introduced by object-centric visual descriptions, the limitations associated with using caption metrics
to measure semantic similarity hinder the performance gain of text-description matching metrics
DescCLIP and DescMETEOR over text-caption matching metrics CapCLIP and CapMETEOR.

Differing Large Language Models In Table 3, we compare two variants of large language models:
GPT-3.5 and GPT-4. 1). For the same group (for example, GPT-4 based) visual descriptions,
LLMScore is better than DescCLIP and DescMeteor, indicating that LLMs reasoning is the key
component to capture the semantic relations in the visual descriptions. 2). We observe that GPT-4
based LLMScore (Overall) has an average better correlation than GPT-3.5, indicating the performance
benefits from the better reasoning ability in the larger-scale language model. However, GPT-4 based
LLMScore (Error Counting) is only comparable with GPT-3.5, indicating that the counting is still
un-resolved in large-scale language models.
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4.4 Multi-Granularity Rationale for Text-to-Image Evaluation

In Figure 7, we show two examples, our LLMScore not only produces human-correlated text-image
scores but also provides a rationale for each metric value. The rationale correctly explains both the
differences and similarities between the descriptions and text prompts. The model performs well in
explaining the errors counted and the overall comparisons.

5 Conclusion

In this paper, we re-examine the existing model-based text-to-image metrics and propose LLMScore to
evaluate text-to-image synthesis by unveiling the power of large language models. Our LLMScore can
capture the multi-granularity compositionality between the synthesized images and the text prompt,
producing accurate alignment scores with rationales. Our LLMScore demonstrates significantly better
correlation with human scores on several datasets, paving the way for a more adaptable text-to-image
evaluation, capable of following human instructions to evaluate the text-image alignment.

Broader Impact

The framework proposed in this paper first integrates GPT-4 for text-to-image evaluation and show-
cases how to take advantage of the existing large-scale pre-trained models (GPT-4) for measuring the
alignment between the generated images and text, we also propose a new metric, LLMScore which
provides interpretable rating and well aligns with the human scores on several datasets. This work
sheds light on the value of large language models on the evaluation of text-to-image synthesis, we
hope it can help the future text-to-image synthesis work on improving the groundedness and compo-
sitionality, either as a reward signal or evaluation metric; our preliminary work on the interpretability
of LLMScore, may have the potential to be used for explanation, controllable generation, and image
editing.

Limitations

One limitation of our work is that it relies on GPT, which is not free for the public, and may limit its
fast plug-in capability, future work may consider replacing this component with a publicly available
LLM model (e.g., LLaMA) or our in-house finetuned image captioning model. Another potential
issue for this work is, since it incorporates the exsiting large language models, it may inherit its own
biases that could propagate to the metric. The future work who considers adopting our LLMScore
metric should be cautious on the specific domains to make sure no harmful biases get propagated.
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A Background

A.1 Text-conditioned Image Synthesis

The popular large-scale image generation models such as Imagen [43], DALL-E2 [37] and Stable
Diffusion [39] demonstrate extraordinary generation quality, but a subtle difference in input prompt
could lead to a dramatic change of semantic style, thus not directly suitable for image editing
[2, 41]. Besides, the prompt-to-prompt [16] achieves image editing with cross-attention control on the
observation of interaction between the pixels to the text embedding. InstructPix2Pix [4] leverages the
complementary abilities of a pre-trained language model GPT-3 [5], and a pre-trained text-to-image
model Stable Diffusion [38] to generate large pairs of multi-modal training data and perform image
editing following human instructions. ControlNet [52] learns task-specific conditions in an end-to-end
way and achieves robust control effects. Recently, growing interests [35] in computer vision focus
on aligning text-to-image synthesis [23] or visual editing [53] by using human feedback. Typically,
a reward model is expected to evaluate images by training on task rewards using proximal policy
optimization (PPO [46]).

A.2 Image-level Evaluation Metric

CLIP-based CLIP [36] was pre-trained on large-scale image-caption pairs through contrastive
learning, making it a highly versatile tool for natural language processing and computer vision appli-
cations. CLIPScore [17] measures the cosine similarity value of image and caption representations
extracted from the CLIP feature extractors. Formally, CLIPScore = max(cos(fI(vi), fC(ci)), 0),
where fI , fC is the image and caption feature extractor. CLIPScore is a reference-free metric and
outperforms previous reference-based metrics like CIDEr [48] and SPICE [1]. Within the text-to-
image domain, previous work also relies on the same approach to measure the alignment between
the text prompt and the generated image. However, vision-and-language models exhibit deficiencies
in compositional understanding and are insensitive to word orders. In [51], they show BLIP [25]
and CLIP [36] only achieve random chance level understanding ability on attribution, relation, and
order understanding. They furthermore propose NegCLIP to improve the original CLIP model by
generating additional hard negative captions and optimizing the same contrastive objective. They
show that obtaining specific and low-cost negative examples can result in significant enhancements in
compositional tasks without losing existing ability.

BLIP-based BLIP [25] filters out noisy synthetic captions to effectively make use of the noisy web
data through bootstrapping based on a novel multimodal mixture of Encoder-Decoder. Beyond that,
BLIPv2 [24] introduces Query Transformer that bootstraps image and text representation learning and
then bootstraps large language model for image-to-text generations. BLIPv2 achieves state-of-the-art
performance on a wide range of understanding-based and generation-based vision-language tasks,
including image-text retrieval, image captioning, and visual question answering. We suppose the
grounding objective in BLIPv2’s pre-training can bootstrap its performance in evaluating text-to-
image synthesis. Specifically, we utilize BLIPv2 to compute the image-text matching score using
“ITM” head and “ITC” head. BLIP-ITC uses a simple cosine similarity function over the extracted
image and text features. In contrast, BLIP-ITM uses cross-attention to fuse multimodal features to
capture fine-grained similarity.

A.3 Evaluation Datasets

The MSCOCO [27] has been widely used for object segmentation, although there is a dearth of varied
prompts, indicating a lack of diversity. Winoground [47] is designed for evaluating the ability of
vision and language models to conduct visio-linguistic compositional reasoning. For a pair of two
distinct images, their captions are composed of identical sets of words, but in a different order. Many
state-of-the-art vision and language models only achieve random chance performance, making it a
good testbed for evaluation. DrawBench [42] tackles prompt diversity issues by collecting challenging
descriptions for image generation. There are a set of 11 prompt categories that test various capabilities
of models, including the ability to accurately depict colors, numbers of objects, spatial relations, and
text, as well as more complex prompts such as long textual descriptions, rare words, and misspelled
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prompts. In [8], they evaluate the visual reasoning of text-to-image models and propose PaintSkills,
a diagnostic dataset and evaluation toolkit designed to measure object recognition, counting, and
spatial understanding. Recent studies in compositional text-to-image synthesis[12] collect Concept
Conjunction prompt dataset which focuses on two objects with different colors in the text prompt,
and Attribute Binding prompt dataset that is sampled from COCO captions.

B More Results

In Table B, we show the full table that includes variants of our LLMScore (CapCLIP, CapMETEOR,
DescCLIP, DescMETEOR) on General Bench.

Table 4: The correlation between automatic evaluation metrics and human rankings on text-to-image
synthesis. Our devised metrics LLMScore significantly surpass existing metrics in terms of Kendall’s
τ and Spearmanr’s ρ with p < 0.001.

Human Metric COCO2014 COCO2017 DrawBench PaintSkills
τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

Overall

CLIP 0.1971 0.2655 0.2227 0.2771 0.1530 0.2143 0.4715 0.5869
NegCLIP 0.2164 0.2905 0.2793 0.3523 0.1463 0.1999 0.4911 0.6313
BLIP-ITM 0.3252 0.4255 0.0928 0.1155 0.1044 0.1455 0.4755 0.6214
BLIP-ITC 0.3465 0.4535 0.1703 0.2121 0.1569 0.2171 0.4743 0.5864
CapCLIP 0.0263 0.0335 -0.0274 -0.0315 0.0056 0.0072 0.3035 0.3751
CapMETEOR 0.0710 0.0960 0.0512 0.0650 0.0951 0.1312 0.2315 0.3056

DescCLIP 0.1377 0.1799 0.1130 0.1424 0.1136 0.1557 0.3825 0.4917
DescMETEOR 0.1175 0.1549 0.0567 0.0702 0.0028 0.0048 0.0678 0.0827

LLMScore 0.3629 0.4612 0.3357 0.4275 0.2230 0.3023 0.5600 0.6853

Error Counting

CLIP 0.1464 0.2142 0.1888 0.2677 0.1360 0.1910 0.3052 0.2891
NegCLIP 0.2116 0.3061 0.1795 0.2581 0.1179 0.1596 0.4563 0.4908
BLIP-ITM 0.2251 0.3289 0.1137 0.1635 0.0871 0.1189 0.4622 0.4997
BLIP-ITC 0.2636 0.3739 0.1849 0.2620 0.1506 0.2029 0.6178 0.6511

CapCLIP 0.0266 0.0362 -0.0068 -0.0085 0.0544 0.0704 0.4963 0.5332
CapMETEOR 0.0822 0.1197 0.0004 0.0013 0.0173 0.0192 0.3274 0.3636

DescCLIP 0.1433 0.2145 0.0338 0.0477 -0.0039 -0.0022 0.2978 0.3289
DescMETEOR 0.1398 0.2010 -0.0829 -0.1198 -0.1348 -0.1791 0.0881 0.0924

LLMScore 0.2792 0.4006 0.2138 0.3125 0.2125 0.2839 0.6444 0.7066

C Human Annotation

For each image-text pair, we ask 2 annotators to rate the overall and error counting. We will show the
details of annotation interface in Section C.1.

C.1 Human Ratings Interface

In Figure 8, we show the interface for human ratings over the image quality from two objectives,
overall and error counting. Human annotators are required to rate the overall quality of the image on
a scale of 1-10 and count the errors in the image on a scale of 0-9.
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Figure 8: Amazon Mechanical Turk Platform. Questions Layout for Human Raters for Overall and
Compositional ratings of the generated image given the text prompt.
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D Visual Descriptions

Our approach involves utilizing both global and local descriptions of an image. Initially, a general
caption is generated for the image. Then, a dense caption model is employed to describe the objects in
detail. This technique enables the extraction of both the overall context of the image and the specific
attributes of individual objects, thereby providing a comprehensive description of the image.

Figure 9: Comparison between, detector, dense caption, and segmentation results over the synthesized
image. Alternatively, an object segmentation model can be applied to identify the objects in the image
more accurately.
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E Example of GPT Text-to-Image Evaluation.

Stage Example
Prompt a light brown bathroom with a white sink and mirror.

Description This image showcases a clean and modern bathroom with a white theme. The
main focus is the white sink, which is placed on a wooden bathroom counter.
The counter is brown and extends across the entire width of the image, covering
the lower part of the white wall behind it. Above the sink, there is a large mirror
on the wall that reflects the shower curtain as well as a silver light fixture with
two light bulbs, which are switched on and provide ample light to the room. The
silver faucet complements the white sink and is slightly towards the left side
of the sink. A white soap dish is positioned on the right side of the counter,
next to an additional sink. A silver handle can be seen on a drawer beneath the
counter, near the sink. On the left side of the picture, a brown wooden door
can be partially seen, while on the right side, a small part of a white toilet is
visible. The overall setup of the bathroom, with its white walls, bright lights, and
well-arranged counter, gives off a spacious and organized vibe.

Rating Overall Semantics: 0.8/1.0
Rationale The alignment between the image caption and the text prompt is mostly good.

The generated image caption describes a white sink, wooden counter, mirror, and
other elements like a soap dish, faucet, and lights that complement the room.
This is not far from the text prompt of a light brown bathroom with a white sink
and mirror.

Rating Error Counting: 1 (number of errors)
Rationale The composition error mainly lies in the description of the color of the bathroom.

The text prompt mentions a light brown bathroom, but the image caption empha-
sizes a white theme, with only the wooden counter and door being brown.

Table 5: Examples of GPT Text-to-Image Evaluation: the prompt is used for image generation, while
the description is generated by GPT-4

Figure 10: Left: Synthesized by Stable-diffusion-2
with text prompt "A light brown bathroom with
a white sink and mirror" sampled from Attribute
Binding Contrast dataset. Right: Synthesized by
Stable-diffusion-2 with text prompt "A brown bird
and a pink sheep." sampled from COCO.

We showcase examples for text-to-image eval-
uation in Table 5 and Table 6 on synthesized im-
ages in Figure 10. The Prompt section illustrates
the initial input provided to the text-to-image
model, which in this instance is a short descrip-
tion of a bathroom. The subsequent Description
section is the multi-granularity object-centric
description for the image. Here, the model de-
scribes a light-filled, modern bathroom with vari-
ous elements like a white sink, mirror, soap dish,
and a wooden counter. Then there are two rating
settings, the first is Overall (Overall Semantics),
and the second is Error Counting. Both settings
evaluate the text-to-image synthesis with a score
and a rationale. Here, a score of 0.8 out of 1.0
reflects a high level of correspondence between
the synthesized image and the prompt, despite a
few discrepancies. And 1 represents there are only one errors found in the synthesized image compare
to the prompt.
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Stage Example
Prompt a brown bird and a pink sheep.

Description In this vivid image, there are two unique pink animals standing on a large patch
of green grass that covers the entire ground. On the left side, there is a pink
sheep with a blue tag attached to its ear. The sheep has distinct blue ears and a
prominent head, showcasing a contrast in colors against its pink body. It also
has two sturdy black legs standing firmly on the grass. On the right side of the
image, there is a pink pig with black eyes. The pig’s eyes are embedded on a pink
and white stuffed animal-like face, giving it a cute and charming look. The pink
sheep and the pig are casting shadows towards the bottom of the image, blending
with the green grass beneath. Overall, the colorful and playful scene provides a
fantastical and captivating atmosphere, with the pink sheep and pink pig standing
as the central focus.

Rating Overall Semantics: 0.8/1.0
Rationale There is a clear focus on the pink sheep in the image caption, but the prompt’s

mention of a brown bird is entirely missing. The overall composition is good and
somewhat aligned, but it could be better.

Rating Error Counting: 4 (number of errors)
Rationale The composition error comes from the missing brown bird (4 errors). The color,

size, and material of the pink sheep, as well as the relationship between the two
animals are well-described, making this error count relatively low.

Table 6: Examples of GPT Text-to-Image Evaluation: the prompt is used for image generation, while
the description is generated by GPT-4
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