
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

QUIC: QUANTUM-INSPIRED COMPOUND ADAPTERS
FOR PARAMETER EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling full finetuning of large foundation models strains GPU memory and training
time. Parameter Efficient Fine-Tuning (PEFT) methods address this issue via
adapter modules which update only a small subset of model parameters. In this
work, we introduce Quantum-Inspired Compound Adapters (QuIC Adapters),
a PEFT approach inspired from Hamming-weight preserving quantum circuits
that can effectively finetune a model using less than 0.02% memory footprint of
the base model. QuIC adapters preserve pretrained representations by enforcing
orthogonality in weight parameters, and have native deployment mechanisms on
quantum computers. We test QuIC adapters by finetuning large language models
like LLaMA and vision transformers on language, math, reasoning and vision
benchmarks. In its first-order configuration, QuIC recovers the performance of
existing orthogonal methods, while higher-order configurations enable substantial
parameter compression (over 40× smaller than LoRA) for a modest performance
trade-off, unlocking applications in highly resource-constrained environments.
Through ablation studies, we determine that combining multiple Hamming-weight
orders with orthogonality and matrix compounding are essential for performant
finetuning. Our findings suggest that QuIC adapters offers a promising direction
for efficient finetuning of foundation models in resource-constrained environments.

1 INTRODUCTION

Pre-trained large foundation models such as BERT (Devlin et al., 2018), GPT-3 (et al., 2020), and
Vision Transformers (Dosovitskiy, 2020) have achieved state-of-the-art results on various tasks. Fine-
tuning these models on specific downstream tasks typically involves updating all model parameters
but with a lower learning rate, which becomes computationally prohibitive as model sizes continue
to grow into the billions of parameters. This challenge has spurred interest in Parameter-Efficient
Fine-Tuning (PEFT) methods (Houlsby et al., 2019), which aim to adapt large foundation models
to new tasks by updating only a small subset of parameters or introducing lightweight adaptation
modules.

One of the most prominent PEFT techniques is Low-Rank Adaptation (LoRA) (Hu et al., 2021),
which injects low-rank trainable matrices into transformer layers, significantly reducing the num-
ber of parameters that need to be updated. Other methods like Adapters (Houlsby et al., 2019),
BitFit (Ben Zaken et al., 2022), and Prompt Tuning (Lester et al., 2021) have also demonstrated
effectiveness in various settings. Recently, Orthogonal Fine-Tuning (OFT) (Qiu et al., 2023) and
its ‘Butterfly’ specification (BOFT) (Liu et al., 2023) have been proposed to mitigate catastrophic
forgetting of the pre-trained models during finetuning by applying orthogonal transformations. These
methods have shown promising results in achieving a balance between performance and parameter
efficiency.

While methods like LoRA and OFT significantly reduce parameters compared to full finetuning,
a critical need remains for even greater efficiency in resource-constrained scenarios. Deploying
personalized models on-device (e.g., smartphones or wearables), serving thousands of task-specific
adapters simultaneously, or reducing bandwidth in federated learning all impose strict memory and
storage budgets that even conventional PEFT methods can exceed (Kopiczko et al., 2024; Zhang
et al., 2023; YEH et al., 2024). This motivates the development of methods capable of extreme
compression, pushing the Pareto frontier of what is achievable with a minimal parameter budget.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

INPUTS

EMBEDDING

X

INPUTS

EMBEDDING

INPUTS

EMBEDDING

INPUTS

EMBEDDING

Figure 1: Comparison of different adapter methods. Trainable parameters for each model shown
in dark green. a) Full finetuning b) Low-rank adaptation (LoRA) c) Orthogonal finetuning (OFT) d)
Quantum-Inspired Compound adapter (QuIC adapter). For QuIC adapters, the zeroth order compound
(top left of each block) is the only trainable part. Higher order compounds are completely determined
by this base matrix.

Inspired by the potential exponential compression abilities of quantum and quantum-inspired comput-
ing, there has been a growing interest in Quantum-Inspired PEFT methods such as QuanTA (Chen
et al., 2024) and QPA (Liu et al., 2025). While QuanTA constructs adapters via contracted quantum-
inspired tensor networks, Quantum Parameter Adaptation (QPA) uses quantum circuits to generate
parameters for methods such as LoRA. These works highlight the potential for quantum machine
learning within finetuning, however both methods contain a number of bottlenecks which potentially
prohibit quantum computer integration with finetuning pipelines at larger scales.

In this work, we propose Quantum-Inspired Compound Adapters (QuIC Adapters), a novel PEFT
method inspired by Hamming-weight preserving quantum circuits (Kerenidis & Prakash, 2022;
Landman et al., 2022; Cherrat et al., 2023). With QuIC adapters, orthogonality is a native feature, and
we focus on compound orders up to a certain constant K to ensure parameter efficiency. We evaluate
our method on several datasets over a variety of domains. For language, vision, reasoning and math
problems, we use the the General Language Understanding Evaluation (GLUE) benchmark (Wang,
2018), a subset of tasks from the Visual Task Adaptation (VTAB) benchmark (Zhai et al., 2019),
the Discrete Reasoning Over the text in the Paragraph (DROP) dataset (Dua et al., 2019), and the
MATH10K (Hu et al., 2023) benchmark respectively. On the model side, we finetune the moderate
size DeBERTaV3 (He et al., 2021) for language and DINOv2-large for vision. For a larger model
and for math and reasoning tasks we focus on LLaMA-7B (Touvron et al., 2023b). Our experiments
demonstrate that QuIC adapters achieve competitive performance while dramatically reducing the
number of trainable parameters compared to existing PEFT methods like LoRA, OFT, BOFT and
QuanTA, among others.

2 BACKGROUND

Large language and vision foundation models are largely based on the transformer architecture
(Vaswani et al., 2017; Dosovitskiy, 2020; Devlin et al., 2018). In this section, we provide an overview
of the core components of adapter based finetuning. These are primarily applied to attention and
feedforward layers in a foundation model, and we give the explicit form in Appendix A. We also
introduce Hamming-weight quantum machine learning, which serves as the inspiration for our
approach.

2.1 PARAMETER-EFFICIENT FINE-TUNING METHODS

Generally speaking, PEFT methods finetune large pre-trained foundation models with layers W ∗ ∈
Rd×d by training an adapter layer, denoted ∆W . The PLM layers are then combined with the adapter
to construct the finetuned model weight matrix, Wadapt. Then, PEFT methods are generally either
additive, (Wadapt :=W ∗ +∆W) or multiplicative, (Wadapt := ∆W ×W ∗).

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is an additive adapter and has the form ∆WLoRA :=
αWupWdown with Wup ∈ Rd×r, Wdown ∈ Rr×d, and α is a scaling factor. The rank, r, of the trainable
matrices, Wup,Wdown controls the number of trainable parameters and is typically ≪ d.

On the other hand, (Butterfly) Orthogonal Fine-Tuning ((B)OFT) (Qiu et al., 2023; Liu et al.,
2023) uses multiplicative adapters. (B)OFT adapters enforce an orthogonality constraint, i.e.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(a) (b)

HW Preserving
Trainable Layer

HW-1
Loader

HW-2
Loader

HW-3
Loader

HW-3

HW-2

HW-1

(c)

Figure 2: Hamming-weight preserving quantum computation. Quantum circuits are read left to
right and each vertical line corresponds to a Reconfigurable/Fermionic Beam Splitter (RBS/FBS)
quantum gate with parameter θ. a) A unary (parallel) data loader (Landman et al., 2022) to load a
vector, x, into Hamming-weight (HW) k = 1 states. Generalizations of such loaders to higher HW
can be found (Farias et al., 2024) and discussed in the Appendix. b) A ‘pyramid’ trainable quantum
circuit layer, which is HW preserving (Landman et al., 2022). c) The generalization into HW up
to K = 3 states. The action of a HW preserving layer composed of FBS gates is represented by
a unitary, U , composed of compound matrices, {Ck := A(k)} acting on a data encoded state, |ψ⟩.
The elements of the vector representation of |ψ⟩ are ordered according to Hamming-weight, and the
compound matrices, Ck, act separately on each set of HW grouped basis states. The matrices, U ,
themselves will serve as the inspiration for our QuIC Adapters.

∆W⊤
OFT∆WOFT = 1 which ensures that the transformation preserves the spectral properties of

W ∗ and retains the pre-trained knowledge during finetuning. Different parameterizations of ∆WOFT
are possible - specifically, (Qiu et al., 2023) chooses to employ the Cayley transform (explicit equation
given in Eqn. (4) in Appendix A). In OFT, further sparsity is enforced with a ‘rank’ parameter - con-
trolling the block size across a block diagonal decomposition. Specifically, a block, i, is defined as an
orthogonal matrix of size ∆WOFT,i ∈ Rd/r×d/r. BOFT (Liu et al., 2023) extends OFT by introducing
an efficient parameterization of the orthogonal matrix as a product of m sparse orthogonal matrices
derived from ‘butterfly’ structures, ∆WBOFT :=

∏m
i=1 B̃(i), where each B̃(i) ∈ Rd×d is a butterfly

factor - a sparse orthogonal matrix, defined recursively, that efficiently captures global interactions
within the data.

Finally, quantum-inspired finetuning methods such as QuanTA (Chen et al., 2024) build adapter ma-
trices, ∆W , via a contraction of tensor networks (TNs) - connected graphs of multi-dimensional ten-
sorial objects motivated from attempts to study many body quantum systems using low-dimensional
representations. These are inspired from general quantum circuits. On the other hand, Quantum Pa-
rameter Adaptation (QPA) (Liu et al., 2025) uses Quantum Neural Networks with hardware-efficient
ansätze to predict weight parameters for LoRA adapter modules. We discuss these PEFT methods
further in Section 3.3 and Appendices A A.2.2.

2.2 HAMMING-WEIGHT PRESERVING QUANTUM COMPUTING

As we will discuss, the generality of QuanTA (Chen et al., 2024) tensors, and the barren plateau
features of hardware-efficient ansätze used in QPA (Liu et al., 2025) are problematic features for
quantum computer deployment. On the other hand, subspace preserving quantum machine learning
(QML) models have gained traction in the QML literature for their interpretability, analogies to
classical counterparts and favorable training properties (Cherrat et al., 2023; Fontana et al., 2023;
Monbroussou et al., 2024; Landman et al., 2022). Some HW preserving quantum models include
Vision Transformers (Cherrat et al., 2024), Convolutional (Monbroussou et al., 2025; Mathur et al.,
2025), Orthogonal (Landman et al., 2022) Neural Networks and quantum Mixture of Experts (MoE)
models (Coyle et al., 2024). They have found applications in finance (Cherrat et al., 2023; Ramos-
Calderer et al., 2021; Thakkar et al., 2024), medical imaging (Landman et al., 2022) and clinical data
analysis (Kazdaghli et al., 2023). We will use these methods to construct quantum-inspired versions,
and show their use in finetuning large foundation models. We include further technical details for
these operations in Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 QUANTUM-INSPIRED COMPOUND ADAPTERS

In this section, we introduce Compound operations, the core of QuIC adapters, which leverage
Hamming-weight preserving quantum circuits discussed in the previous section and can implement
orthogonal and compound transformations on data. Inspired by these principles, we propose to
construct quantum-inspired adapters using compound matrices up to a certain maximum Hamming-
weight K. Combining compounding with orthogonality allows us to create novel adapters which are
both expressive and parameter-efficient.

3.1 COMPOUND MATRICES

Given a ‘base’ matrix, A ∈ Rn×n, the compound matrix, Ck := A(k), of ‘order’ k ∈ [n] is defined
as the

(
n
k

)
×
(
n
k

)
dimensional matrix with entries A(k)

IJ := det(AIJ) where I and J are subsets of
rows and columns of A with size k. We use Ck as compact notation for our experiments later in the
text. The work of (Kerenidis & Prakash, 2022) demonstrated how the action of these matrices on
different Hamming-weight (different orders, k) could be efficiently performed using quantum circuits
composed of so-called fermionic beam splitter (FBS) quantum gates. We will describe the quantum
implementation in further detail later in the text.

However, we say that the Compound Adapters which serve the basis of our proposal are Quantum-
Inspired because, for a constant Hamming-weight k = O(1), the action of these layers can be
efficiently classically simulated by direct simulation of the subspaces. We will primarily deal with
small order (and combinations thereof) compound matrices in this work, though we leave the open
possibility of quantum speedups by quantum implementation of compound layers (Cherrat et al.,
2023) to future work.

3.2 QUANTUM-INSPIRED COMPOUND ADAPTERS

Given a pre-trained weight matrix W ∗ ∈ Rd×d, we aim to construct a quantum-inspired adapter
∆WQ ∈ Rd×d such that Wadapt = ∆WQW

∗. Now, the Quantum-Inspired Compound (QuIC)
Adapter ∆WQ is constructed using nested blocks, {∆W i

Q}Ni=1, each of which built via direct sum of
compound matrices up to chosen order K, {A(k)}Kk=1:

∆WQ =

N⊕
i=1

∆W i
Q, ∆W i

Q :=

[
∆W i,∗

Q 0
0 1b−dcomp

]
, ∆W i,∗

Q :=

K⊕
k=1

A
(k)
i , (1)

where dcomp :=
∑K

k=1

(
n
k

)
. Each block is square ∆W i

Q ∈ Rb×b,∀i and
⊕

denotes the direct

sum, i.e. X ⊕ Y :=

[
X 0
0 Y

]
. This decomposition, similarly to OFT, introduces a ‘block-size’

hyperparameter, b := d/N, to regulate the total number of parameters. Therefore, each block is
written explicitly as the block diagonal:

∆W i
Q := diag(A(1)

i , A
(2)
i ,1i,b−dcomp) (2)

We show some examples of possible configurations in Figure. 3. Notably, when using only the
first-order compound (C1), QuIC reduces to the OFT, demonstrating that our framework encompasses
existing methods as special cases.

Orthogonality: Compound matrices, A(k), inherit many properties from their base, A. These
include for example, invertibility, positive definiteness and, importantly for us, unitarity and or-
thogonality. By constructing adapter blocks ∆W i

Q using orthogonal compounds and padding with
identities, orthogonality is preserved and inherited by ∆WQ. We test the importance of orthogonality
as a property for our compound adapters later in section 5. This orthogonality preservation is
formalized through the following Lemma (proof given in Appendix B):
Lemma 1 (Orthogonality preservation of compound matrices). If a base matrix, A ∈ Rn×n is
orthogonal, then all compound matrices, A(k) with k ∈ [n], are orthogonal (and hence all QuIC
Adapters). Furthermore, this orthogonality is preserved during finetuning when constructed with
Hamming-weight preserving operations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

(a) (b) (c)

Figure 3: Different possible QuIC Adapter configurations. The adapter decomposition is deter-
mined by the number of blocks (b, or equivalently the ‘rank’ r := d/b), and the number of compounds
within each block. Trailing dimensions are padded with an identity matrix, and are not trainable. The
figure shows a) C1, b = 4 blocks, b) C1 ⊕ C2, b = 4 blocks and c) C1 ⊕ C2 ⊕ C3, b = 2 blocks. Note,
if the base matrix, A, is orthogonal then configuration (a) recovers OFT exactly.

Parameter Efficiency: If the PLM matrix size is fixed, the number of trainable parameters is
directly controlled by the tuple, (b,K), the number of blocks and number of compounds therein.
Choosing a larger K reduces the possible size of the base matrix which can be compounded, n.
All trainable adapter parameters are contained within this base matrix. This results in a compact
parameterization suitable for large models. However, the compounding operation builds complex
interactions between the parameters in higher orders. We show in our results that this is sufficient to
gain high quality results with minimal tuning. The number of trainable parameters and complexity
is given by the following Lemmata, which can be proved via simple parameter counting and in
Appendix B
Lemma 2 (Parameter Count of QuIC Adapters). Let the PLM matrix W ∈ Rd×d be partitioned
into N diagonal blocks, each of dimension b := d/N. For a maximum compound order K, the
total number of non-zero entries is given by Pnon-zero = N

∑K
k=1

(
n
k

)2
+
(
d−N

∑
k

(
n
k

))
where

n = max
{
m ∈ Z>0

∣∣∣∑K
k=1

(
m
k

)
≤ b
}
. Moreover, the number of trainable parameters is given by

P share
train = n2 if parameters are shared across blocks and Ptrain = Nn2 if not. If orthogonality is

enforced, we have P orth,share
train = 1

2n(n− 1), P orth
train = 1

2Nn(n− 1).
Lemma 3 (Computational Complexity of QuIC Adapters). Let a QuIC adapter ∆WQ be defined for
a layer of dimension d with N blocks, from a base matrix of size n × n and maximum compound
order K.

1. The complexity of the forward pass (applying ∆WQ) is O(d2/N).

2. The construction of ∆WQ is a one-time cost, polynomial in n for constant K. If parameters
are shared, this cost is incurred once per layer.

Necessity of Combinatorial Compression with Determinants: One might ask whether the pa-
rameter efficiency is simply the result of expanding the effect of a small matrix into a combinatorially
large space, and whether taking the determinant on minors could be replaced by another operation.
We test this hypothesis by replacing the determinant with maximum and averaging operations. For
instance, instead of constructing A(k) via A(k,comp)

IJ := det(AIJ) we test the following two element-
wise on the matrix minors, A(k,max)

IJ = max(AIJ), i.e. taking the maximum element over minors,
and A(k,avg)

IJ = avg(AIJ), i.e. averaging over them. We find both of these operations perform poorly
compared to the determinant, possibly because they do not respect orthogonality for multiplicative
adapters. The determinant operation creates complex parameter interactions that enable extreme
compression while preserving model expressiveness. We leave open the possibility that they may yet
be performant alternatives for compound versions of additive adapters (e.g. LoRA).

3.3 QUANTUM NATIVE FINETUNING

Our primary proposal in this work is quantum-inspired finetuning, however here we briefly discuss
quantum-native finetuning, where a quantum computer is actually used within the pipeline, either to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

perform faster inference, or to continue finetuning with more expressive models. We expand on this
discussion and detail relevant terminology in Appendix D. Importantly, as the maximum compound
order (K) increases, the compound circuits from which we derive inspiration become more difficult
to classically simulate, increasing the potential for a speedup (even polynomial) when implemented
quantum-natively.

As alluded to above, alternative Quantum-Inspired PEFT methods such as QuanTA (Chen et al.,
2024) do not possess this native translation ability. A main motivation of QuanTA is the natural
synergy between TNs and quantum circuits - much like our QuIC Adapters - ultimately with the
potential of performing finetuning directly on quantum computers, perhaps using the computationally
limited tensor networks for pre-training (Dborin et al., 2022; Rudolph et al., 2023). The QuanTA
tensors, however, if scaled to large bond dimensions and qubit numbers (n) require efficient (meaning
polynomial in n) unitary compilation schemes for a quantum implementation (Dborin et al., 2022;
Rudolph et al., 2023), which do not exist in general (Shende et al., 2006). Secondly, approaches
such as QPA (Liu et al., 2025) also have the potential for quantum-native fine tuning but suffers from
prohibitive measurement costs. QPA takes 2N output probabilities from trainable quantum circuits
on N qubits, and maps to M parameters (via a post-processing MLP) in a PEFT adapter (e.g. LoRA
weight matrices). As such, only N = O(log2(M)) qubits are required in the quantum circuit as
an e.g. 30 qubit system has 230 ≈ 1B possible outcomes. However, to actually implement QPA as
proposed on quantum hardware for M = 1B parameters would necessitate O(2N/ε2) ≈ 10, 000
billion measurement shots, accounting for ε = 0.01-accurate tomography. We discuss this further in
Appendix A.2.2.

In contrast, for QuIC Adapters, we have a native classical-quantum translation, using similar concepts
from recent proposals for Quantum Orthogonal Neural Networks (Landman et al., 2022). This
translation arises because one only needs to train the parameters of the Hamming-weight preserving
RBS/FBS gates rather than the parameters in their matrix representation. As such, the trained
operation is always “compiled”, and ready for quantum deployment. Direct readout of the final states
is proportional to the maximum HW which is chosen, however alternative readout schemes can be
designed for these circuits which retain much more efficiency (Cherrat et al., 2023), but yet retain
novel features from the quantum implementation.

Table 1: Results on the GLUE development set, finetuning the pre-trained DeBERTaV3-base model.
Params denotes the number of trainable parameters. Our method is evaluated with the best
configuration, C′ = C1 ⊕ C2, where orthogonality is enforced (γ = 0), parameter sharing across
blocks is disabled (β = 0), and the number of blocks is set to b = 3. Memory denotes the memory
required to store trained weights. Pareto = (Accuracy - 44.01) / log10(params in K), where 44.01% is
the DeBERTa-V3-base zero-shot mean. Frontier indicates methods on the Pareto-optimal curve.

Method # Params SST-2 CoLA RTE MRPC STS-B All Memory Pareto Frontier
(MB) (↑)

Full Finetuning 184M 95.63 69.19 83.75 89.46 91.60 85.93 702.0 7.96 ×
LoRAr=8 (Hu et al., 2021) 1.33M 94.95 69.82 85.20 89.95 91.60 86.30 5.3 13.54 ×
OFTb=16 (Qiu et al., 2023) 0.79M 96.33 73.91 87.36 92.16 91.91 88.33 3.0 15.29 ×
BOFTm=2

b=8 (Liu et al., 2023) 0.75M 96.44 72.95 88.81 92.40 91.92 88.50 2.9 15.47 ✓
DoRA (Liu et al., 2024) 0.55M 94.98 64.90 79.15 89.72 91.28 84.00 2.0 14.59 ×
AdaLoRA (Zhang et al., 2023) 0.32M 95.80 70.04 87.36 90.44 91.63 87.05 1.3 17.18 ✓
BitFit (Ben Zaken et al., 2022) 0.1M 94.84 66.96 78.70 87.75 91.35 83.92 0.4 19.95 ×
QuanTA16−16−4−4 (Chen et al., 2024) 0.093M 95.30 67.75 84.48 89.22 91.01 85.55 0.4 21.10 ×
LoKr (YEH et al., 2024) 0.073M 95.07 69.46 85.20 89.71 90.76 86.04 0.3 22.56 ✓

QuICC1⊕C2
0.03M 94.83 68.04 84.03 89.95 91.04 85.57 0.12 28.14 ✓

4 EXPERIMENTAL SETUP

4.1 MODEL AND DATA

We evaluate the effectiveness of our QuIC Adapters by finetuning multiple moderate sized and large
foundation models on a comprehensive selection of datasets over several areas. In particular, our
experiments span four distinct domains, natural language understanding, computer vision, discrete
reasoning and math. For language understanding, we use the GLUE benchmark (Wang, 2018). For
the computer vision application, we incorporate the Visual Task Adaptation Benchmark (VTAB).
For math problems, we use the MATH10K (Hu et al., 2023) and for reasoning, we use the Discrete

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Reasoning Over the text in the Paragraph (DROP) dataset (Dua et al., 2019), which is an English
reading comprehension benchmark requiring both natural language understanding and discrete
reasoning operations.

We utilize the pre-trained DeBERTaV3-base model (He et al., 2021) as the backbone for our natural
language experiments. For vision tasks, we employ the pre-trained DINOv2-large model (Oquab
et al., 2023) as our backbone. Finally, for a larger scale model, we finetune LLaMA 7B (Touvron
et al., 2023a) on math and discrete reasoning tasks.

10
1

10
0

Memory Usage (MB)

84

85

86

87

88

89

O
ve

ra
ll

P
er

fo
rm

an
ce

 (%
)

LoRA

OFT

BOFT

DoRA

AdaLoRA

BitFit

QuanTA

LoKr

QuIC

Efficiency-Performance Trade-off

QuIC
Pareto Frontier
Other Methods

(a) Pareto frontier analysis showing aggregate
GLUE accuracy versus log of trainable parame-
ters. QuIC achieves optimal trade-off alongside
BOFT, AdaLoRA, and LoKr.

0 10 20 30

LoRA
DoRA

OFT
BOFT

AdaLoRA
BitFit

QuanTA
LoKr

QuIC

Pareto Score

(b) Pareto score for each PEFT model, averaged
over GLUE. QuIC achieves the highest efficiency.

Figure 4: Performance analysis of QuIC and baseline PEFT methods on GLUE benchmark

4.2 ADAPTER CONFIGURATIONS

We uniquely characterize a QuIC Adapter configuration by a tuple (C′, O, b, γ, β) given a maximum
possible compound order (Hamming-weight), K. C′ is the collection of Compounds used to construct
the direct sum, e.g. C′ = C1 (including only the base matrix) or C′ = C1⊕C2⊕C3 (including compound
matrices up to order 3. O ∈ {comp,max,avg} is the operation used to construct combinatorial
operations. The final parameters b, γ, β determine the block size, whether orthogonality is used and
whether parameter sharing across blocks is applied, respectively.

5 RESULTS AND ANALYSIS

Our experiments demonstrate the effectiveness of QuIC adapters in achieving significant parameter
efficiency while maintaining competitive performance across various GLUE benchmark tasks. In this
section, we present an analysis of the trade-offs between parameter count and model accuracy, the
combined impact of orthogonality and component-wise performance differences.

QuIC Adapters for Language We begin by finetuning on the GLUE (Wang, 2018) language
benchmark with the state of the art PEFT methods in Table 1. GLUE encompasses a variety of
natural language understanding tasks such as CoLA for grammatical acceptability (Warstadt, 2019),
SST-2 for sentiment analysis (Socher et al., 2013), MRPC (Dolan & Brockett, 2005) and RTE (Dagan
et al., 2006) for textual entailment, and STS-B (Cer et al., 2017) for semantic similarity. We use
the best QuIC configuration found, which is (C1 ⊕ C2,comp, b = 3, γ = 0, β = 0), in other words -
enforcing orthogonality without block-share over b = 3 blocks.

It can be seen from the Table (also seen with other datasets below) that QuIC Adapters do not
generally outperform other methods in terms of raw accuracy or score. However, they are clearly
far more performant relative to available parameter counts, and memory required to store weights.
To formalize this, we use the Pareto score - defined as (Accuracy - baseline) / log10(params in K),
which measures the efficiency-accuracy trade-off. From the Table and Figure 4a, QuIC Adapters
achieve a state-of-the-art Pareto score of 28.14, placing them on the Pareto frontier alongside BOFT,
AdaLoRA, and LoKr.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Results on a subset of the VTAB1k benchmark, finetun-
ing the pre-trained DINOv2-large model. # Params denotes the
number of trainable parameters. For the QuIC Adapter, we use
the configuration, (C1 ⊕ C2, b = 3, γ = 0, β = 0).

Method # Params (M) CIFAR100 Pets SVHN Resisc45 DMLab Avg Pareto (↑)
Full Finetuning 304.4 67.6 93.7 92.8 90.9 58.1 80.62 0.26
LoRAr=4 1.77 77.2 94.8 94.7 91.4 58.1 83.24 47.01
OFTb=16 2.10 77.7 94.7 92.9 91.5 60.5 83.46 39.74
BOFTm=2,b=8 1.99 78.1 95.0 93.0 91.6 61.4 83.82 42.11

QuICC1⊕C2
0.13 87.5 94.04 89.98 88.79 54.74 82.61 635.46

QuIC Adapters for Vision
Next, for the computer vi-
sion application, we incorpo-
rate the Visual Task Adapta-
tion Benchmark (VTAB), select-
ing datasets across natural im-
ages, specialized remote sens-
ing imagery, and structured
3D environments. Specifically,
CIFAR-100 (Krizhevsky, 2009),
Pets (Parkhi et al., 2012), and nat-
ural images, focusing on general object classification, fine-grained pet breed identification, and digit
recognition from real-world street numbers, respectively. For a specialized dataset, RESISC45 (Cheng
et al., 2017) contains remote sensing imagery - evaluating models on aerial scene classification. Fi-
nally, DMLab (Beattie et al., 2016) is an example of a structured dataset, derived from 3D navigation
and interactive environments, testing visual reasoning through agent-based observations.

Table 3: Results on (a) a math benchmark (MATH10K) and (b) a discrete reasoning task (DROP),
finetuning LLaMA 7B. We use the configuration (C1 ⊕ C2, b = 4, γ = 0, β = 0) for all cases.

(a)

Method # Params AQUA GSM8K MAWPS SVAMP Avg Pareto (↑)
Full FT 7B 19.3 65.2 92.0 80.7 64.3 0.009
LoRAr=32 58.1M 17.5 65.7 91.2 80.8 65.6 1.12
QuanTA16-16-4-4 13.3M 16.7 67.0 94.3 80.3 64.5 4.85

QuICC1⊕C2
0.5M 24.8 45.9 69.3 69.9 52.1 104.2

(b)

Method # Params DROP Pareto (↑)
Full FT 7B 59.4 0.008
LoRAr=32 17.5M 54.0 3.08
QuanTA16-16-4-4 13.3M 59.5 4.47

QuICC1⊕C2
0.5M 52.6 105.2

We also reduce the number of examples in each dataset to create VTAB1k (Zhai et al., 2019) where
1000 random labeled datapoints are used for training and validation, but the final accuracies we show
are computed on the entire original VTAB test dataset. We use the same QuIC configuration as with
GLUE. Here, we observe QuIC Adapters achieve superior Pareto scores, demonstrating excellent
efficiency-accuracy trade-offs in vision tasks. Interestingly, in contrast with the other datasets across
vision and NLP we test, CIFRAR100 stands out as having significantly increased accuracy relative to
other methods, on the order of 10%.

QuIC Adapters for Math Next, we test the ability of QuIC Adapters to scale to larger models.
To do so, we finetune LLaMA-2 7B (Touvron et al., 2023a), a 7 billion parameter model released
by Meta AI. We use a subset of the MATH10K dataset which is a multi-task arithmetic reasoning
corpus introduced by Hu et al. (Hu et al., 2023), and use four of its established math word-problem
benchmarks: Grade School Math 8K (GSM8K), Simple Variations on Arithmetic Math word Problems
(SVAMP), MAth Word ProblemS (MAWPS), and Algebra Question Answering with Rationales
(AQuA).

QuIC Adapters for Reasoning Finally, we test QuIC Adapters on a discrete reasoning task, using
LlaMA-7B and finetuning it over the Discrete Reasoning Over the text in the Paragraph (DROP)
dataset (Dua et al., 2019). It is a benchmark designed to evaluate language models’ advanced
reasoning capabilities through complex question answering tasks. It encompasses over 9500 intricate
challenges that demand numerical manipulations, multi-step reasoning, and the interpretation of
text-based data.

6 ABLATION STUDIES ON GLUE

Increasing parameters: From Table 4 we can see two features of our adapters. First, the hyper
compression offered by the combinatorial compounding operation, does not allow a large flexibility
in changing the number of trainable parameters. Once a non-trivial compound matrix has been added
to the adapter (i.e. of greater order than compound 1), the parameter count reduces dramatically.
To address this, we can increase the parameter count monotonically by multiplying several QuIC
Adapters. This is a general concept applicable to both additive or multiplicative adapters. For example,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

in Table 5 we demonstrate that using 4 multplicative adapters can improve the performance across all
GLUE datasets, still without dramatically increasing the parameter count.

Table 4: Summary of configurations with their respective parameter counts and accuracies on the STS-
B dataset with the best configurations in bold. If the base matrix is A then A(k) =: Ck. Increasing
maximum compound order, K, necessitates a reduction in trainable parameters.

Configuration Base matrix Params Accuracy (%) Configuration Base matrix Params Accuracy (%)

C1 ≡ OFT A ∈ R256×256 1,770,241 91.68 C1 ⊕ C2 A ∈ R22×22 33,217 88.85
C2 A ∈ R23×23 38,401 40.57 C1 ⊕ C3 A ∈ R12×12 16,321 88.53
C3 A ∈ R12×12 16,321 42.20 C2 ⊕ C3 A ∈ R11×11 13,057 40.60

C1 ⊕ C2 ⊕ C3 A ∈ R11×11 13,057 88.48

The second observation from Table 4 is the first part of our ablation study. It is clear from these
results that the inclusion of the first order compound - the base matrix, A =: C1, is crucial to the
success of QuIC Adapters. We hypothesize this is due to the difficulty of gradient flow through the
determinant operation to the parameters in A, when A itself is not included.

Table 5: Increasing parameter count in QuIC
Adapters. Trainable parameter count can be natu-
rally increased by multiplying successive adapters,
leading to performance boosts. Here we compare
a single adapter, ∆WQ versus four,

∏4
ℓ=1(∆W

ℓ
Q).

Method # Params CoLA RTE MRPC STS-B
Full Finetuning 184M 69.19 83.75 89.46 91.60
LoRAr=8 1.33M 69.82 85.20 89.95 91.60
OFTb=16 0.79M 73.91 87.36 92.16 91.91
BOFTm=2,b=8 0.75M 72.95 88.81 92.40 91.92

QuICC1⊕C2
0.03M 64.57 81.22 87.99 90.16

QuIC4×(C1⊕C2) 0.14M 65.83 80.50 86.27 91.44

Impact of orthogonality: The second abla-
tion study we conduct is the impact of orthog-
onality on the QuIC Adapters (detailed results
in Appendix D.4.2). Like the inclusion of C1,
we also find including orthogonality is critical
for QuIC Adapters. Focusing on STS-B, we
find that adapter configurations with orthogo-
nality can achieve a score of 68.70 when aver-
aged over the configurations in Table 4, while
non-orthogonal configurations achieve only an
average of 27.32. The possible reason for this
is the preservation of orthogonality by determi-
nants, which is reinforced when we replace the
determinant computation on minors with other
combinatorial operations, such as max and avg
(we conduct this ablation study in Appendix D.4.3). Even poorly performing compound configura-
tions, such as those without C1, see a significant performance boost when orthogonality is enforced.
Finally, we note we show only the impact of orthogonality for multiplicative adapters. One could
also consider QuIC Adapters in an additive form (similar to LoRA), which we leave to future work.

7 CONCLUSION

This work presents a novel proposal for parameter-efficient finetuning, leveraging quantum-inspired
principles to construct efficient adapters with minimal additional parameters. Our results indicate that
compound operation based adapters can serve as a promising alternative to existing PEFT methods
(encompassing them in some cases), achieving substantial parameter reduction while maintaining
strong performance across a range of language and vision tasks.

Our experiments reveal that against other quantum inspired peft techniques, QuIC adapters offer
competitive performance while having a much better performance over parameter count budget.
Furthermore, QuIC’s natural translation ability on quantum hardware sets it apart from its counterparts
and underscores its potential for broader applications in the future.

Future work will explore extending these ideas to more complex architectures, further optimizing
adapter design, and investigating potential quantum adapter implementations. By bridging quantum-
inspired techniques with deep learning, we hope to advance the field of efficient finetuning and enable
scalable adaptation of large foundation models in practical settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. The key hyperparameters, training
settings, and evaluation protocols are reported in the Appendix (Section E). All datasets used are
standard public benchmarks referenced appropriately in the main text and appendix. Finally, the full
source code and instructions to reproduce our experiments are available in our anonymized repository:
https://anonymous.4open.science/r/quic-adapters-D41E/README.md.

REFERENCES

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL
https://aclanthology.org/2022.acl-short.1/.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Steven Bethard,
Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens
(eds.), Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001/.

Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen M Dugan, Di Luo, and Marin Soljacic.
QuanTA: Efficient high-rank fine-tuning of LLMs with quantum-informed tensor adaptation. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=EfpZNpkrm2.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017. doi: 10.1109/JPROC.
2017.2675998.

El Amine Cherrat, Snehal Raj, Iordanis Kerenidis, Abhishek Shekhar, Ben Wood, Jon Dee, Shouvanik
Chakrabarti, Richard Chen, Dylan Herman, Shaohan Hu, Pierre Minssen, Ruslan Shaydulin,
Yue Sun, Romina Yalovetzky, and Marco Pistoia. Quantum Deep Hedging. Quantum, 7:1191,
November 2023. ISSN 2521-327X. doi: 10.22331/q-2023-11-29-1191. URL https://doi.
org/10.22331/q-2023-11-29-1191.

El Amine Cherrat, Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, and
Yun Yvonna Li. Quantum vision transformers. Quantum, 8(arXiv: 2209.08167):1265, 2024.

Brian Coyle, El Amine Cherrat, Nishant Jain, Natansh Mathur, Snehal Raj, Skander Kazdaghli,
and Iordanis Kerenidis. Training-efficient density quantum machine learning. arXiv preprint
arXiv:2405.20237, 2024.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc (eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Clas-
sification, and Recognising Textual Entailment, pp. 177–190, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-33428-6.

James Dborin, Fergus Barratt, Vinul Wimalaweera, Lewis Wright, and Andrew G Green. Matrix
product state pre-training for quantum machine learning. Quantum Sci. Technol., 7(3):035014,
May 2022. ISSN 2058-9565. doi: 10.1088/2058-9565/ac7073. URL https://dx.doi.org/
10.1088/2058-9565/ac7073. Publisher: IOP Publishing.

10

https://anonymous.4open.science/r/quic-adapters-D41E/README.md
https://aclanthology.org/2022.acl-short.1/
https://aclanthology.org/S17-2001/
https://openreview.net/forum?id=EfpZNpkrm2
https://doi.org/10.22331/q-2023-11-29-1191
https://doi.org/10.22331/q-2023-11-29-1191
https://dx.doi.org/10.1088/2058-9565/ac7073
https://dx.doi.org/10.1088/2058-9565/ac7073

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002/.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2368–2378, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https:
//aclanthology.org/N19-1246/.

Brown et al. Language models are few-shot learners. Advances in Neural Information Process-
ing Systems, 33:1877–1901, 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Renato Farias, Thiago O Maciel, Giancarlo Camilo, Ruge Lin, Sergi Ramos-Calderer, and Leandro
Aolita. Quantum encoder for fixed hamming-weight subspaces. arXiv preprint arXiv:2405.20408,
2024.

Enrico Fontana, Dylan Herman, Shouvanik Chakrabarti, Niraj Kumar, Romina Yalovetzky, Jamie
Heredge, Shree Hari Sureshbabu, and Marco Pistoia. The adjoint is all you need: Characterizing
barren plateaus in quantum ans\” atze. arXiv preprint arXiv:2309.07902, 2023.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Sonika Johri, Shantanu Debnath, Abhinav Mocherla, et al. Nearest centroid classification on a trapped
ion quantum computer. npj Quantum Information, 7:122, 2021. doi: 10.1038/s41534-021-00456-5.

Skander Kazdaghli, Iordanis Kerenidis, Jens Kieckbusch, and Philip Teare. Improved clinical
data imputation via classical and quantum determinantal point processes, December 2023. URL
http://arxiv.org/abs/2303.17893. arXiv:2303.17893 [quant-ph].

Iordanis Kerenidis and Anupam Prakash. Quantum machine learning with subspace states. arXiv
preprint arXiv:2202.00054, 2022.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

11

https://aclanthology.org/I05-5002/
https://aclanthology.org/N19-1246/
https://aclanthology.org/N19-1246/
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2303.17893
https://openreview.net/forum?id=NjNfLdxr3A

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jonas Landman, Natansh Mathur, Yun Yvonna Li, Martin Strahm, Skander Kazdaghli, Anupam
Prakash, and Iordanis Kerenidis. Quantum Methods for Neural Networks and Application to
Medical Image Classification. Quantum, 6:881, December 2022. ISSN 2521-327X. doi: 10.22331/
q-2022-12-22-881. URL https://doi.org/10.22331/q-2022-12-22-881.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Chen-Yu Liu, Chao-Han Huck Yang, Hsi-Sheng Goan, and Min-Hsiu Hsieh. A Quantum Circuit-
Based Compression Perspective for Parameter-Efficient Learning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=bB0OKNpznp.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: weight-decomposed low-rank adaptation. In Proceedings
of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning
towards minimum hyperspherical energy. Advances in neural information processing systems, 31,
2018.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
factorization. arXiv preprint arXiv:2311.06243, 2023.

Natansh Mathur, Brian Coyle, Nishant Jain, Snehal Raj, Akshat Tandon, Jasper Simon Krauser, and
Rainer Stoessel. Bayesian Quantum Orthogonal Neural Networks for Anomaly Detection, April
2025. URL http://arxiv.org/abs/2504.18103. arXiv:2504.18103 [quant-ph].

Léo Monbroussou, Eliott Z. Mamon, Jonas Landman, Alex B. Grilo, Romain Kukla, and El-
ham Kashefi. Trainability and Expressivity of Hamming-Weight Preserving Quantum Circuits
for Machine Learning, September 2024. URL http://arxiv.org/abs/2309.15547.
arXiv:2309.15547 [quant-ph].

Léo Monbroussou, Jonas Landman, Letao Wang, Alex B Grilo, and Elham Kashefi. Subspace
preserving quantum convolutional neural network architectures. Quantum Sci. Technol., 10
(2):025050, March 2025. ISSN 2058-9565. doi: 10.1088/2058-9565/adbf43. URL https:
//dx.doi.org/10.1088/2058-9565/adbf43. Publisher: IOP Publishing.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing Neural Net-
works, December 2015. URL http://arxiv.org/abs/1509.06569. arXiv:1509.06569
[cs].

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In 2012
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3498–3505. IEEE,
2012. doi: 10.1109/CVPR.2012.6248092.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

Sergi Ramos-Calderer, Adrián Pérez-Salinas, Diego Garcı́a-Martı́n, Carlos Bravo-Prieto, Jorge
Cortada, Jordi Planagumà, and José I. Latorre. Quantum unary approach to option pricing.
Phys. Rev. A, 103:032414, Mar 2021. doi: 10.1103/PhysRevA.103.032414. URL https:
//link.aps.org/doi/10.1103/PhysRevA.103.032414.

Manuel S. Rudolph, Jacob Miller, Danial Motlagh, Jing Chen, Atithi Acharya, and Alejandro
Perdomo-Ortiz. Synergistic pretraining of parametrized quantum circuits via tensor networks. Nat
Commun, 14(1):8367, December 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-43908-6. URL
https://www.nature.com/articles/s41467-023-43908-6. Publisher: Nature
Publishing Group.

12

https://doi.org/10.22331/q-2022-12-22-881
https://openreview.net/forum?id=bB0OKNpznp
https://openreview.net/forum?id=bB0OKNpznp
http://arxiv.org/abs/2504.18103
http://arxiv.org/abs/2309.15547
https://dx.doi.org/10.1088/2058-9565/adbf43
https://dx.doi.org/10.1088/2058-9565/adbf43
http://arxiv.org/abs/1509.06569
https://link.aps.org/doi/10.1103/PhysRevA.103.032414
https://link.aps.org/doi/10.1103/PhysRevA.103.032414
https://www.nature.com/articles/s41467-023-43908-6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

V.V. Shende, S.S. Bullock, and I.L. Markov. Synthesis of quantum-logic circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010, June 2006. ISSN
1937-4151. doi: 10.1109/TCAD.2005.855930. URL https://ieeexplore.ieee.org/
document/1629135.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.),
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://aclanthology.org/D13-1170/.

Edwin Stoudenmire and David J Schwab. Supervised Learning with Tensor Networks.
In Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://papers.nips.cc/paper_files/paper/2016/hash/
5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html.

Sohum Thakkar, Skander Kazdaghli, Natansh Mathur, Iordanis Kerenidis, André J. Ferreira–Martins,
and Samurai Brito. Improved financial forecasting via quantum machine learning. Quantum
Mach. Intell., 6(1):27, May 2024. ISSN 2524-4914. doi: 10.1007/s42484-024-00157-0. URL
https://doi.org/10.1007/s42484-024-00157-0.

Andrei Tomut, Saeed S. Jahromi, Abhijoy Sarkar, Uygar Kurt, Sukhbinder Singh, Faysal Ishtiaq,
Cesar Muñoz, Prabdeep Singh Bajaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David
Montero, Pablo Martin-Ramiro, Muhammad Ibrahim, Oussama Tahiri Alaoui, John Malcolm,
Samuel Mugel, and Roman Orus. CompactifAI: Extreme Compression of Large Language Models
using Quantum-Inspired Tensor Networks, May 2024. URL http://arxiv.org/abs/2401.
14109. arXiv:2401.14109 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
July 2023b. URL http://arxiv.org/abs/2307.09288. arXiv:2307.09288 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

A Warstadt. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471, 2019.

SHIH-YING YEH, Yu-Guan Hsieh, Zhidong Gao, Bernard B W Yang, Giyeong Oh, and Yanmin
Gong. Navigating text-to-image customization: From lyCORIS fine-tuning to model evaluation.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=wfzXa8e783.

13

https://ieeexplore.ieee.org/document/1629135
https://ieeexplore.ieee.org/document/1629135
https://aclanthology.org/D13-1170/
https://papers.nips.cc/paper_files/paper/2016/hash/5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html
https://doi.org/10.1007/s42484-024-00157-0
http://arxiv.org/abs/2401.14109
http://arxiv.org/abs/2401.14109
http://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=wfzXa8e783
https://openreview.net/forum?id=wfzXa8e783

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=lq62uWRJjiY.

A EXTENDED BACKGROUND

In this section we provide more verbosity on the background and alternative finetuning methods
discussed in the main text.

A.1 TRANSFORMER ARCHITECTURE

The transformer architecture has become the foundation for many large language and vision foun-
dation models due to its ability to capture long-range dependencies and its scalability. It consists
of stacked encoder and decoder layers, each containing multi-head self-attention and feed-forward
network layers. These components are interconnected by residual connections and layer normaliza-
tion. PEFT methods typically focus on modifying the self-attention and feed-forward network (FFN)
layers to introduce trainable parameters efficiently. We describe these layers briefly as follows:

Multi-Head Self-Attention Layer: For an input sequence X ∈ Rn×d, where n, d are the se-
quence length and hidden dimension respectively, the self-attention mechanism computes as follows:
Attn(Q,K, V) = softmax (QK⊤/

√
d)V , where the query, key and value matrices, Q = XWQ,

K = XWK , and V = XWV are linear projections of the input X using learnable weight matrices
WQ,WK ,WV ∈ Rd×d respectively.

Feed-Forward Network (FFN) Layer: A typical FFN layer involves two trainable weight matrices,
W1 ∈ Rd×dF , W2 ∈ RdF×d, and is defined as FFN(X) = σ(XW1 + b1)W2 + b2, where dF is
the dimension of the feed-forward layer and σ is a non-linear function which we assume to be
σ(·) := ReLU(·).

A.2 ORTHOGONAL FINETUNING (OFT)

Orthogonal Finetuning (OFT) (Qiu et al., 2023) is an alternative approach to parameter-efficient
finetuning which enforces an orthogonality constraint on the adapter. The authors justify orthogonality
as a useful feature in helping preserve the hyperspherical energy i.e. the angular feature difference
between neurons (Liu et al., 2018) which in turn helps preserve original knowledge of the model.
Unlike methods such as LoRA that inject low-rank updates in an additive manner, OFT and its
variants introduce multiplicative adapters. In this case, the updated weight matrix is expressed as:

WOFT = ∆WOFTW
∗, (3)

Again, OFT assumes W ∗ ∈ Rd×d is a square pre-trained weight matrix and ∆WOFT ∈ Rd×d is
the orthogonal adapter, where we have ∆W⊤

OFT∆WOFT = 1. The orthogonality of ∆WOFT ensures
that the transformation preserves the spectral properties of W ∗, retaining the pre-trained knowledge
during finetuning. Different parameterizations of ∆WOFT are possible - specifically, (Qiu et al., 2023)
chooses to employ the Cayley transform. Given a parameterized matrix, P ∈ Rd×d, the OFT adapter
with the Cayley transform is defined as:

∆WC
OFT := (1d +Q)(1d −Q)−1, Q :=

1

2
(P − PT) (4)

The Cayley transform is efficient and ensures that ∆WOFT ∈ SO(d), the special orthogonal group of
dimension d. To further improve parameter efficiency, OFT introduces a block-diagonal structure to

14

https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

∆WOFT. The orthogonal matrix is partitioned into r smaller orthogonal blocks, each parameterized
with (4):

∆WBD,r
OFT :=


∆WC

OFT,1 0 · · · 0

0 ∆WC
OFT,2 · · · 0

...
...

. . .
...

0 0 · · · ∆WC
OFT,r

 (5)

where each ∆WOFT,i ∈ Rd/r×d/r and Qi ∈ Rd/r×d/r. When r = 1, the block-diagonal matrix
reduces to the original full orthogonal matrix, ∆WBD,1

OFT = ∆WOFT. For the remainder of the text, we
implicitly assume this block-diagonal structure in OFT and drop the superscripts when clear from
context. Using this block-diagonal structure, the total number of parameters is reduced to O(d2/r),
which can be compressed further to O(d2/r2) via parameter sharing across blocks.

A.2.1 BUTTERFLY ORTHOGONAL FINE-TUNING (BOFT)

As discussed briefly in the main text, Butterfly Orthogonal Fine-Tuning (BOFT) (Liu et al., 2023)
extends OFT by introducing an efficient parameterization of the orthogonal matrix using butterfly
structures. In BOFT, the orthogonal matrix ∆WBOFT ∈ Rd×d is constructed as a product of m sparse
orthogonal matrices derived from ‘butterfly’ structures:

∆WBOFT =

m∏
i=1

B̃(i), (6)

where each B̃(i) ∈ Rd×d is a butterfly factor - a sparse orthogonal matrix that efficiently cap-
tures global interactions within the data. These butterfly factors are recursively defined and
constructed to ensure orthogonality. The butterfly structure originates from the Cooley-Tukey
algorithm for the Fast Fourier Transform, known for its efficient information exchange prop-
erties. In BOFT, the butterfly factors are built using small orthogonal blocks that are com-
bined to form larger orthogonal matrices. Specifically, each butterfly factor B̃(i) is defined as,

B̃(i) = Permute
(
diag

(
∆W

(i)
BF,1,∆W

(i)
BF,2, . . . ,∆W

(i)
BF,k

))
, where ∆W

(i)
BF,j ∈ Rb×b are small or-

thogonal matrices parameterized via the Cayley transform (4), k := d/b are the number of blocks at
level i and Permute(·) rearranges the blocks to create the butterfly pattern. They typically take the
number of butterfly factors to be m = logb d where b is the block size, and b ≥ 2. The number of
parameters required is NBOFT

P = 1
2md(b− 1) = 1

2 (b− 1)d logb d (Liu et al., 2023). When b = 2, the
parameter count becomes NBOFT

P = O(d log d), compared to the NOFT
P = O(d2) parameters required

for a full orthogonal matrix in OFT.

A.2.2 QUANTA

Here, we give some extended background on Quantum-informed Tensor Adaptation (QuanTA) (Chen
et al., 2024), an alternative Quantum-Inspired Adapter recently proposed.

Given the pre-trained matrix, W ∈ Rd×d, QuanTA constructs an adapter, ∆WQuanTA as an additive
adapterWadapt =W +∆WQuanTA

1. The adapter, ∆WQuanTA is constructed via contraction of multiple
smaller tensors, first by factoring the original dimension input and output axes, d, d, into multiple
(again smaller) tensorial axes d→ {d1, d2, . . . , dN}. Therefore, axis indexed by n can be thought
of as representing a dn-dimensional quantum state (i.e. a qudnit). Most commonly, dn = 2,∀n, in
which case the tensor adapter can be thought of as an operation on N qubits.

Tensor networks are decompositions of tensors, i.e. the above QuanTA adapter, ∆WQuanTA ∈
Rd1,d2,...,dN ,d1,d2,...,dN as a product of smaller tensors usually operating over fewer axes, e.g. three
dimensional tensors, T ∈ Rdr,ds,dt . The connected graph of M of such tensors is called a tensor
network. Tensor networks themselves have found use in machine learning applications for many years,
with promising properties for developing and compressing machine learning models (Stoudenmire &
Schwab, 2016; Novikov et al., 2015; Tomut et al., 2024).

1QuanTA also proposes an initialization strategy involving another contracted tensor network initialized to
the same values as the adapter, but which remains frozen during training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

The full adapter is then constructed by contracting the network over all “virtual” or bond dimensions,
and reshaping the “physical” dimensions (i.e. {di}Ni=1, {dj}Nj=1) back to d × d for no-overhead
inference. As given in (Chen et al., 2024), an M = 3 tensor example is:

∆WQuanTA := T , Ti;j = Ti1,i2,i3;j1,j2,j3 =
∑
k1,k2

T 1
i1,i2;k1,k2

∑
k3

T 2
k1,i3;j1,k3

T 3
k2,k3;j2,j3 (7)

In the above Eq. (7), each of T 1, T 2, T 3 are 4 index tensors. Here, T 1/T 2 carries two/one physical
input dimensions, (i1, i2)/i3 respectively while T 2 and T 3 carry one/two physical output dimensions,
j1/(j2, j3) respectively. All other dimensions (k1, k2, k3) are virtual/bond dimensions. Assuming
the physical dimensions are fixed, the complexity of dealing with a tensor network contraction
(multiplying over bond dimensions) is determined by the dimensions of the bond indices. This also
directly regulates the number of trainable parameters within the model/adapter.

Quantum circuit implementation: Finally, if one wished to translate QuanTA tensors for further
quantum-native finetuning (as we discuss in Appendix D) the means of doing so in general is still an
open research question. Specifically, quantum computers require unitary operations, and at no stage
in training will the tensors in QuanTA have unitarity enforced. Therefore, each of T 1, T 2, T 3 will
need to be canonicalised. The canonicalisation procedure makes each tensor an isometry via singular
value decomposition through the network. The canonicalisation procedure also enables truncation of
the network by clipping singular values. However if the resulting tensors are not square, they will
need to be suitably constructed into a full unitary by some method.

Finally, assuming the tensors are not simply two-axes operators (two input and two output qubits),
the resulting unitaries need to be compiled to the available gatesets of the quantum computer.
One of the most efficient general purpose exact compilation schemes is via the Quantum Shannon
Decomposition (QSD) which recursively compiles unitaries into smaller and smaller sub-blocks via
de-multiplexing (Shende et al., 2006). The QSD requires 23/48× 4n − 3/2× 2n + 4/3 CNOT gates to
compile a general 2n × 2n unitary over n qubits, which is exponential in n.

B TECHNICAL PROOFS

Here, we give the proofs of the Lemmata from the main text.
Lemma (Orthogonality preservation of compound matrices (Lemma 1 repeated)). If a base matrix,
A ∈ Rn×n is orthogonal, then all compound matrices, A(k) with k ∈ [n], for are orthogonal.
Furthermore, this orthogonality is preserved during finetuning if we maintain the orthogonality of the
base matrix.

Proof. Let A ∈ Rn×n be an orthogonal matrix, i.e., A⊤A = AA⊤ = 1n. For any k ∈ [n], the k-th
compound matrix A(k) has entries A(k)

IJ := det(AIJ) where I and J are k-element subsets of [n].
Now, to show that A(k) is orthogonal, we need to prove (A(k))TA(k) = I(nk)

.

Consider the (I, J)-entry of (A(k))TA(k):

(A
(k)
IJ)

⊤A
(k)
IJ =

∑
K

A
(k)
KI ·A

(k)
KJ =

∑
K

det(AKI) · det(AKJ) (8)

By the Cauchy-Binet formula, Eq. 8 equals det
(
(A⊤A)IJ

)
. Since A is orthogonal, we have A⊤A =

1n, so:

det
(
(A⊤A)IJ

)
= det((In)IJ) =

{
1 if I = J

0 if I ̸= J
(9)

Therefore, (A(k))⊤A(k) = 1(nk)
, proving that A(k) is orthogonal.

To maintain orthogonality during finetuning, we employ the Cayley parameterization as follows.
We parameterize the base matrix A using the Cayley transform: A = (I + Q)(I − Q)−1 where
Q is a skew-symmetric matrix (Q = −Q⊤). During finetuning, we update only the entries of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Q (maintaining its skew-symmetry), which automatically ensures that A remains orthogonal with
determinant 1 (i.e., A ∈ SO(n)). The compound matrices A(k) are then computed directly from this
orthogonal base matrix.

Alternatively, to preserve orthogonality during training, one could employ the quantum strategy
of (Landman et al., 2022) described in Appendix D where the orthogonal/compound matrix is trained
using its parameterization with Reconfigurable or Fermionic Beam Splitter RBS/FBS quantum gates.

Here we provide a concrete example of how the dimensions of the QuIC adapter components are
chosen to match the dimensionality of a pre-trained model’s weight matrix. The primary constraint is
that the sum of the dimensions of the compound matrices, dcomp =

∑K
k=1

(
n
k

)
, must be less than or

equal to the block size, b. The base matrix dimension, n, is typically chosen to maximize this sum
without exceeding b.

For example, consider a pre-trained weight matrix of size d = 1024, which we will adapt with a
single block (N = 1, so b = 1024). If we choose a maximum Hamming-weight of K = 2, we
need to find an integer n such that

(
n
1

)
+
(
n
2

)
≤ 1024. To maximize parameterization, we want the

largest such n. The expression is n + n(n−1)
2 ≤ 1024. A suitable choice is n = 44, which gives

dcomp = 44 +
(
44
2

)
= 44 + 946 = 990.

The identity matrix 1b−dcomp is then added to pad the remaining 1024−990 = 34 dimensions. With this
example, the matrices in the block defined in Eq. 2 have the following dimensions: A(1) ∈ R44×44,
A(2) ∈ R946×946, and the padding identity is 134 ∈ R34×34.

Alternatively, if we wished to maximize the number of compound orders for the same block size (b =
1024), we could choose n = 11 and K = 5. This would yield compound matrices A(1) ∈ R11×11,
A(2) ∈ R55×55, A(3) ∈ R165×165, A(4) ∈ R330×330, and A(5) ∈ R462×462. The total dimension
would be dcomp = 1023, requiring only a single padding dimension (11 = 1).
Lemma (Computational Complexity of QuIC Adapters (Lemma 3 repeated)). Let a QuIC adapter
∆WQ be defined for a layer of dimension d with N blocks, derived from a base matrix of size n× n
and max compound order K.

1. The complexity of the forward pass (applying ∆WQ) is O(d2/N).

2. The construction of ∆WQ is a one-time cost, polynomial in n for constant K. If parameters
are shared, this cost is incurred once per layer.

Proof. 1. Forward Pass Complexity: The QuIC adapter ∆WQ has a block-diagonal structure
with N blocks, each of size b × b where b = d/N . Applying this adapter to a vector involves N
independent multiplications with these smaller blocks. The cost for one block is O(b2). The total
cost is therefore:

N ×O(b2) = N ×O
((

d

N

)2
)

= N ×O
(
d2

N2

)
= O

(
d2

N

)
.

2. Construction Complexity: The construction of ∆WQ from the base matrix A ∈ Rn×n is
dominated by generating the compound matrices {A(k)}Kk=1. To construct the k-th compound matrix,
A(k), we compute the determinant of all

(
n
k

)
×
(
n
k

)
minors of size k × k. The cost of a single k × k

determinant is O(k3). Thus, the total cost to construct A(k) is O(
(
n
k

)2 · k3).
The total construction cost sums over all compound orders up to K:

Cost =
K∑

k=1

O
((

n

k

)2

· k3
)
.

For a small, constant maximum order K, the complexity is dominated by the largest binomial coeffi-
cient term, where

(
n
K

)
= O(nK). The total complexity is therefore O(n2K), which is polynomial in

the base matrix size n. This construction cost is incurred only once per layer if parameters are shared
across blocks, as the resulting matrices can be cached.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C ADAPTER CONFIGURATIONS (EXTENDED)

Here we elaborate on the different possible configurations of a QuIC Adapter. Our experimentation
focused on different combinations of compound matrices based on Hamming-weights, the types
of operations applied to these compounds, the enforcement of orthogonality, and the strategy for
parameter sharing across adapter blocks.

Building upon this, we define compound matrices based on the Hamming-weight k up to a maximum
K = 3, constructed with (I, J)-minors such that |I| = |J | = k. We uniquely characterize an
experiment by a tuple (C′, O, b, γ, β). C′ is a subset of all compound configurations (power set)
constructed via direct sum, C′ ⊆ P(C)⊕3.

C := {C1, C2, C3},P(C)⊕3 := {C1, C2, C3, C1 ⊕ C2, C2 ⊕ C3, C2 ⊕ C3, C1 ⊕ C2 ⊕ C3} (10)

Note that this notation is slightly obfuscating. Given a fixed pre-trained matrix and block size, d, b, and
two different configurations both containing the base matrix, e.g. C1 and C1⊕C2⊕C3. The base matrix
compounded to construct the former configuration will be larger (and hence have more trainable
parameters) than the one used to create the latter, in other words dim(A)C1

> dim(A)C1⊕C2⊕C3

due to the dimension matching requirements. Therefore as the number of terms in the direct sum
decreases along with the compound order, the number of trainable parameters is assumed to increase.
One could of course restrict the definition P(C)⊕ with a fixed base matrix size for all elements, and
hence fixed number of parameters, but this may provide a bias in a different direction. As such, we
keep the definition flexible and the implication of dimensions will be clear from context through the
text.

Next, we have O ∈ {comp,max,avg}, defined as one of the dimensionality-expanding operations
on minors from above, or ‘compounding’ - comp - which refers to the usual determinant operation
on minors. Orthogonality in the adapter matrices is regulated by the binary configuration parameter
γ ∈ {0, 1}, with γ = 0 if orthogonality is enforced and γ = 1 otherwise. γ = 0 ensures the
transformation preserves the norm and angles of the input feature vectors within the model.

Finally, β ∈ {0, 1} is a block-share parameter - if β = 1, parameters are shared across adapter blocks
and are distinct otherwise. A model with β = 1 will have fewer overall parameters than β = 0.

D QUANTUM IMPLEMENTATION

Our adapters, can be implemented efficiently on quantum hardware using fixed Hamming-weight
encoders and Hamming-weight preserving circuits. Foremost among these are Hamming-weight
(HW) preserving operations, which use quantum gates called Reconfigurable Beam Splitter (RBS)
or their generalization into Fermionic Beam Splitter (FBS) gates. Circuits composed of these gates
can be used on data encoded in states with a fixed (or multiple) Hamming-weight(s). As a specific
example, take a vector x ∈ R(

n
2). This vector can be amplitude encoded into the amplitudes of

the state, restricted to those with Hamming-weight (k = 2). Specifically, we have |ψ(x)⟩ :=
1

||x||
∑

ek∈HWn
2
xek |ek⟩ where ek is a bitstring over n (qu)bits with exactly 2 ones (and n− 2 zeros,

e.g. 0101, 1010, 1001, 0011, 1100, 0110 for n = 4). It turns out, that when circuits of FBS gates
act on such states, their effective action on the vector is exactly that of the compound matrix of
second-order, C2 = A(2) (Kerenidis & Prakash, 2022). In this section, we detail their implementation
on quantum hardware.

D.1 RECONFIGURABLE BEAM SPLITTER GATES

A Reconfigurable Beam Splitter RBS gate is a two qubit gate parameterized with one angle θ ∈
[0, 2π]. RBS(θ)ij acting on the i-th and j-th qubits implements a Givens rotation:

RBSij(θ) =

1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1


18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 6: A fixed Hamming-weight encoder. Figure shows loading Hamming-weight-2 subspace
(k = 2) in 6 qubits. Blue and green denote input and output respectively, violet denotes controlled
operation. Figure from (Farias et al., 2024).

This is a Hamming-weight-preserving gate which is easy to implement on many quantum devices
with compilations needing upto 2 CNOT gates with a pauli basis native gate set. Another Hamming-
weight-preserving gate known as Fermionic Beam Splitter (FBS) gate which is a generalisation of
RBS gate could also be used to implement Hamming-weight-preserving circuits. The application of
a FBS between the qubits i and j , FBSij(θ) , acts as RBSij(θ) if the parity of the qubits between
i and j is even, and is the conjugate gate RBSi,j(−θ) otherwise. Therefore, in the case of unary
inputs or nearest neighbour connectivity, FBS and RBS gates behave identically. The FBSij is
a non local gate that can be implemented using an RBS gate together with O(|i − j|) additional
two qubit parity gates with a circuit of depth O(log(|i− j|)). We leave the discussion of quantum
adapters using other Hamming-weight-preserving modalities like Linear Optics circuits for future
work.

D.2 LOADERS

We shall use amplitude encoding to load classical data into the amplitudes of a quantum state. This
involves mapping a data vector x to a quantum state where the amplitudes of the basis states are
proportional to the elements of x.

Figure 5: A Unary loader. Vertical lines denote
parameterized RBS gates. Figure from (Cherrat
et al., 2023). The input is |0⟩⊗n and the output is
the loaded state in unary, |x⟩ = 1

||x||
∑

i xi |ei⟩,
when read from left to right.

Unary encoding (Johri et al., 2021; Landman
et al., 2022) is an amplitude encoding scheme
that loads data into the amplitudes of computa-
tional basis states where each basis state has a
Hamming-weight of 1. It uses d qubits to en-
code a d-dimensional vector. Efficient quantum
data encoders using O(d) two-qubit gates and
O(log d) depth are known in the unary basis as
shown in Fig 5.

Fixed Hamming-weight (Hamming-weight-k)
(Farias et al., 2024) encoding is an amplitude
encoding scheme that loads a data vector into a
subspace of fixed Hamming-weight k. It uses n
qubits to encode a data vector of size d =

(
n
k

)
,

with n ∈ O(kd1/k). The circuit is constructed
using a sequence of controlled (RBS) gates. The
total CNOT-gate count for Hamming-weight-k
encoding is O(kd). This type of encoding is an
intermediate regime between unary and binary
encodings.

For our work, we require a quantum circuits capable of loading data vectors into subspaces of varying
Hamming-weights, specifically from Hamming-weight 1 up to a maximum Hamming-weight k.
This can be achieved by utilizing a series of fixed Hamming-weight (Hamming-weight-k) encoders,
each dedicated to loading data into a subspace of a specific Hamming-weight. To load data up to

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Hamming-weight k, we can sequentially stack the Hamming-weight-k encoders for each weight from
1 to k. The total number of qubits required is still n, but the total number of basis states becomes∑K

k=1

(
n
k

)
. This technique is distinct from a full binary encoder that includes all Hamming-weights

from 0 to n. The overall CNOT gate count for such a construction can be expressed as the sum of
CNOT gates for individual Hamming-weight-k encoders, where k varies from 1 to K, i.e.,

Total CNOT count =
K∑

k=1

O
(
k

(
n

k

))
≤ O(d log d), where d =

(
n

K

)
(11)

D.3 LAYERS

Let G(i, j, θ) denote the Givens rotation applied to the i-th and j-th unary basis vector, i.e. ei and ej ,
θ a vector of angles, and T is a list of triplets (i, j,m). The Hamming-weight-preserving layer is
defined by:

U(θ) =
∏

(i,j,m)∈T

RBSij(θm).

It acts as U(θ) |x⟩ =W |x⟩ where W =
∏

(i,j,m)∈T G(i, j, θm).

(a) Pyramid Layer (b) Butterfly Layer

Figure 7: Hamming-weight preserving layers. Dots and dashes denote parameterised RBS gates.
Figure from (Cherrat et al., 2023).

There are different circuits for U(θ), highlighted in Figure 7. The Pyramid architecture, as described
in (Landman et al., 2022), consists of n(n− 1)/2 RBS gates arranged in a pyramid-like structure
and has a linear depth. This architecture allows for the representation of all possible orthogonal
matrices of size n× n. The Butterfly architecture, which was proposed in (Cherrat et al., 2024), in
uses logarithmic depth circuits with a linear number of gates to implement a quantum orthogonal
layer. This architecture, classical Cooley–Tukey algorithm used for Fast Fourier Transform, requires
all-to-all connectivity in the hardware layout.

D.3.1 QUANTUM IMPLEMENTATION

We can use these tools to construct quantum native implementation of our adapters as shown in
figure 8. The block diagonal structure of our adapters imply that the adapters can be implemented via
separate quantum circuits. For example in figure 8a, a 4 block C1 adapter can be implemented via 4
quantum circuits, each with Hamming-weight-1 loaders, a Hamming-weight-preserving layer and
suitable measurements. Enforcing block share in this setting would imply the circuit layers sharing
the same parameter values, however, the loaders still ought to be different. Similarly in figure 8b, we
use 2 quantum circuits each with Hamming-weight-1, Hamming-weight-2 and Hamming-weight-3
loaders stacked one after another. Note that as specified in the binary encoders of (Farias et al., 2024),
we would need parameterised RY gates between each loader to enable sequential stacking.

D.4 ABLATION STUDIES ON STS-B DATASET

To further understand the impact of different configuration setups, we run ablation studies on a dataset
from the GLUE benchmark, specifically STS-B.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

HW-1
Loader

HW-1
Loader

HW-1
Loader

HW
Preserving
Trainable
Layer

HW
Preserving
Trainable
Layer

HW
Preserving
Trainable
Layer

HW-1
Loader

HW
Preserving
Trainable
Layer

(a)

HW Preserving
Trainable Layer

HW-1
Loader

HW-2
Loader

HW-3
Loader

HW Preserving
Trainable Layer

HW-1
Loader

HW-2
Loader

HW-3
Loader

(b)

Figure 8: Quantum Implementation of Adapters. Each QuIC Adapter has an efficient quantum
implementation using fixed Hamming-weight encoders and Hamming-weight preserving layers.
Trailing dimensions are padded with an identity matrix. The figure shows quantum circuits for a) C1,
b = 4 blocks, which uses only Hamming-weight 1 loaders and b) C1 ⊕ C2 ⊕ C3, b = 2 blocks which
uses upto Hamming-weight 3 loaders.

C1 C2 C3 C1 ⊕ C2 C1 ⊕ C3 C2 ⊕ C3 C1 ⊕ C2 ⊕ C3

104

105

106

N
um

b
er

of
P

ar
am

et
er

s

1.8M 38K 16K 33K 16K 13K 13K
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

91.68

40.57 42.20

88.85 88.53

40.60

88.48

Individual/Poor Performing Good Performing Combinations Accuracy

Figure 9: Visualization of performance versus parameter count for different adapter combinations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

D.4.1 COMPOUND CONFIGURATIONS

As illustrated in Figure 9, we explore how different configurations of QuIC Adapters perform on the
STS-B dataset - an illustration of Table 4 in the main text. We note that the presence of C1 adapter
with higher orders show the best performance while giving significant parameter reductions compared
to only having higher order adapters (C2 or C3).

D.4.2 ORTHOGONALITY

C1 C2 C3 C1 ⊕ C2 C1 ⊕ C3 C2 ⊕ C3 C1 ⊕ C2 ⊕ C3

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

91.68

40.57 42.20

88.85 88.53

40.60

88.48
85.62

15.82 13.99

33.29

14.53 13.99 13.99

Orthogonal Non-Orthogonal

Figure 10: Impact of enforcing orthogonality in adapters, for different compound configurations
using STS-B.

To better understand the impact of keeping the adapter parameters orthogonal, we reran the experi-
ments on STS-B but without cayley parameterization. The results are compared with their orthogonal
counterpart in Figure 10.

Table 6: STS-B performance comparison for orthogonal vs non-orthogonal implementations, for
different compound configurations. The best performing option is in bold.

Configuration Orthogonal Non-Orthogonal
C1 91.68 85.62
C2 40.57 15.82
C3 42.20 13.99
C1 ⊕ C2 88.85 33.29
C1 ⊕ C3 88.53 14.53
C1 ⊕ C2 ⊕ C3 88.48 13.99

D.4.3 CONSTRUCTING ADAPTERS FROM ALTERNATE OPERATIONS ON MINORS

We also reran the experiments on STS-B with different operations on the minors as referred to in the
main text. The results are compiled in Figure 11.

D.4.4 RANK AND MULTI-ADAPTER ANALYSIS

We delve into the impact of varying rank options and the number of adapters on the performance
of different compound patterns on the STS-B dataset. For each pattern, we evaluate the average
accuracy achieved with different rank options (4, 8, 16) and varying numbers of adapters (1 and 4).
Additionally, we consider the number of parameters associated with each configuration to assess
parameter efficiency alongside performance. We find that in terms of absolute performance, C1 ⊕ C2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

comp max avg

C1

C2

C3

C1 ⊕ C2

C1 ⊕ C3

C2 ⊕ C3

C1 ⊕ C2 ⊕ C3

C
om

p
ou

nd
P

at
te

rn

91.42 91.53 91.55

38.81 2.39 2.26

37.48 4.47 6.12

87.87 8.19 29.69

86.33 4.59 16.46

39.82 9.96 5.86

86.65 -3.09 6.41
0

20

40

60

80

100

Figure 11: STS-B performance comparison across different operations and compound combinations.
max and avg denotes taking the element wise maximum and average of the minors respectively
compared to taking the determinant (comp)

with 4 adapters with rank r = 4 is the best adapter, however - an optimal tradeoff between high
accuracy and low parameter count is achieved with C1 ⊕ C2 with only 1 adapter with rank r = 4. For
this reason, we use the configuration C1 ⊕ C2 for the majority of the experiments in the main text.

Table 7: Impact of Rank r = d/b and number of adapters. The best performing configuration in
absolute performance is in bold. The results are also visualized in Figure 12.

Compound Pattern # Adapters Rank, r = d/b Avg Accuracy (%) Parameters (K)

C1 ⊕ C2
1

4 90.22 35.4
8 89.38 33.2

16 89.25 31.9

4
4 91.39 139.4
8 90.60 130.6

16 90.23 125.2

C1 ⊕ C3
1

4 88.51 12.4
8 89.39 16.3

16 89.01 19.6

4
4 89.61 47.2
8 90.19 62.98

16 89.11 76.03

C1 ⊕ C2 ⊕ C3
1

4 88.25 10.4
8 89.13 13.1

16 88.96 14.6

4
4 89.89 39.2
8 89.02 49.9

16 89.15 56.1

4 8 16
Rank

88.0

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

A
cc

ur
ac

y
(%

) 35.4K

33.2K
31.9K

139.4K

130.6K

125.2K

C1 ⊕ C2

4 8 16
Rank

12.4K

16.3K

19.6K47.2K

63.0K

76.0K

C1 ⊕ C3

4 8 16
Rank

10.4K

13.1K
14.6K

39.2K

49.9K
56.1K

C1 ⊕ C2 ⊕ C3

1 Adapter

4 Adapters

Figure 12: Relationship between rank, r := d/b, number of adapters, and accuracy across compound
configurations

Figure 12 complements the Table 7 by visually illustrating the trends in accuracy relative to rank
and the number of adapters for each compound pattern. The plot highlights the positive correlation

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

between rank and accuracy, as well as the benefits of employing multiple adapters in enhancing
model performance.

E HYPERPARAMETERS AND EXPERIMENTAL DETAILS

We report the key hyperparameters and experimental settings used across all benchmarks.All experi-
ments were conducted on a single NVIDIA A80 GPU. Full code available in our anonymised reposi-
tory: https://anonymous.4open.science/r/quic-adapters-D41E/README.md.

E.1 GLUE BENCHMARK

We evaluate on a subset of GLUE tasks: SST-2, CoLA, MRPC, and STS-B. Table 8 details the main
hyperparameters for DeBERTaV3-base. All models are finetuned with AdamW optimizer and linear
learning rate decay.

Table 8: Hyperparameters for GLUE (DeBERTaV3-base)

SST-2 CoLA MRPC STS-B
Batch Size 32 32 32 32
Epochs 2 5 14 11
Learning Rate 2e-4 4e-4 9e-4 7e-4
Dropout 0.1 0.05 0.1 0.1
Max Sequence Length 128 64 320 128

E.2 VTAB-1K

We report results on five representative VTAB-1K tasks: CIFAR100, Pets, SVHN, Resisc45, and
DMLab. All experiments use Adam optimizer and cosine learning rate schedule. The primary
hyperparameter is the initial learning rate, set per task as in Table 9.

Table 9: Learning Rates for VTAB-1K Tasks

Dataset Learning Rate
CIFAR100 8e-4
Pets 3e-4
SVHN 3e-3
Resisc45 5e-4
DMLab 2e-3

E.3 MATH10K

For MATH10K experiments, we use a batch size of 4, AdamW optimizer, and a linear learning rate
scheduler with an initial rate of 3e-4.

E.4 DROP

On DROP, we set batch size to 4, use AdamW optimizer, linear scheduler, and a learning rate of 1e-4.

E.5 CODE AND REPRODUCIBILITY

All code to reproduce QuIC adapters is available at: https://anonymous.4open.science/
r/quic-adapters-D41E/README.md.

24

https://anonymous.4open.science/r/quic-adapters-D41E/README.md
https://anonymous.4open.science/r/quic-adapters-D41E/README.md
https://anonymous.4open.science/r/quic-adapters-D41E/README.md

	Introduction
	Background
	Parameter-Efficient Fine-Tuning Methods
	Hamming-weight Preserving Quantum Computing

	Quantum-Inspired Compound Adapters
	Compound matrices
	Quantum-Inspired Compound Adapters
	Quantum native finetuning

	Experimental Setup
	Model and Data
	Adapter Configurations

	Results and Analysis
	Ablation Studies on GLUE
	Conclusion
	Reproducibility Statement
	Extended Background
	Transformer Architecture
	Orthogonal Finetuning (OFT)
	Butterfly Orthogonal Fine-Tuning (BOFT)
	QuanTA

	Technical Proofs
	Adapter Configurations (Extended)
	Quantum Implementation
	Reconfigurable Beam Splitter gates
	Loaders
	Layers
	Quantum Implementation

	Ablation studies on STS-B dataset
	Compound Configurations
	Orthogonality
	Constructing adapters from alternate operations on minors
	Rank and Multi-adapter Analysis

	Hyperparameters and Experimental Details
	GLUE Benchmark
	VTAB-1K
	MATH10K
	DROP
	Code and Reproducibility

