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Abstract

Super-resolution (SR) techniques aim to enhance data resolution, enabling the retrieval
of finer details, and improving the overall quality and fidelity of the data representation.
There is growing interest in applying SR methods to complex spatiotemporal systems
within the Scientific Machine Learning (SciML) community, with the hope of accelerat-
ing numerical simulations and/or improving forecasts in weather, climate, and related
areas. However, the lack of standardized benchmark datasets for comparing and validat-
ing SR methods hinders progress and adoption in SciML. To address this, we introduce
SuperBench (https://github.com/erichson/SuperBench), the first benchmark dataset fea-
turing high-resolution datasets (up to 2048× 2048 dimensions), including data from fluid
flows, cosmology, and weather. Here, we focus on validating spatial SR performance from
data-centric and physics-preserved perspectives, as well as assessing robustness to data
degradation tasks. While deep learning-based SR methods (developed in the computer
vision community) excel on certain tasks, despite relatively limited prior physics information,
we identify limitations of these methods in accurately capturing intricate fine-scale features
and preserving fundamental physical properties and constraints in scientific data. These
shortcomings highlight the importance and subtlety of incorporating domain knowledge into
ML models. We anticipate that SuperBench will help to advance SR methods for science.

Keywords: super-resolution, scientific machine learning, benchmark dataset

1 Introduction

Super-resolution (SR) techniques have emerged as powerful tools for enhancing data resolution,
improving the overall quality and fidelity of data representation, and retrieving fine-scale
structures. These techniques find application in diverse fields such as image restoration and
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enhancement (Park et al., 2003; Van Ouwerkerk, 2006; Tian and Ma, 2011; Nasrollahi and
Moeslund, 2014), medical imaging (Greenspan, 2009; Isaac and Kulkarni, 2015), astronomical
imaging (Puschmann and Kneer, 2005; Li et al., 2018), remote sensing (Arefin et al., 2020),
and forensics (Satiro et al., 2015). Despite the remarkable achievements of deep learning-
based SR methods developed primarily in the computer vision community (Anwar et al.,
2020; Van Ouwerkerk, 2006), their application to scientific tasks has certain limitations. In
particular, these methods, state-of-the-art (SOTA) within machine learning (ML), often
struggle to capture intricate fine-scale features accurately and to preserve fundamental
physical properties and constraints inherent in scientific data. These shortcomings highlight
the challenge of incorporating domain knowledge into ML models. While these are well-
known anecdotal observations (that we confirm), a more basic issue is that the progress
and widespread adoption of SR methods in scientific machine learning (SciML) community
face a significant challenge: the absence of standardized benchmark datasets for comparing
and validating the performance of different SR approaches. To address this crucial gap, we
introduce SuperBench, an innovative benchmark dataset that fills the need for standardized
evaluation and comparison of SR methods within scientific domains.

Problem setup. SR is a task that involves recovering fine-scale data from corresponding
coarse-grained data. In the context of scientific SR, let us consider the example of weather
data that captures complex interactions among the atmosphere, oceans, and land surface,
illustrated in Figure 1. The coarse-grained data can be regarded as a down-sampled version
of the fine-scale data. The former coarse-scale data can be represented as low-dimensional
data x ∈ X ; while the latter fine-scale data can be seen as high-dimensional data y ∈ Y.

In practice, there are various degradation functions f that can generate the coarse-grained
data. We can model the degradation process as x = f(y) + ϵ, where f : Y → X is a
degradation function, and ϵ represents noise. The degradation function f can be non-linear,
and the noise term ϵ can have complex spatial and temporal patterns. For example, a
simple degradation function commonly used is bicubic down-sampling (Anwar et al., 2020;
Van Ouwerkerk, 2006). However, this simplistic approach does not capture the challenges of
real-world SR problems (Cai et al., 2019; Lugmayr et al., 2019), where more complex unknown
degradations are typically encountered. Thus, we also consider more realistic degradations,
such as uniform down-sampling with noise, to simulate experimental measurement setups,
as well as direct low-resolution (LR) simulations of data. These scenarios pose significant
challenges for SR techniques. SR works in the opposite direction of down-sampling, aiming
to recover a high-resolution (HR) representation (including fine-scale structures) from the
given coarse-grained data x. More concretely, the aim is to find an inverse map f−1 : X → Y
that accurately restores the fine-scale details. SR is inherently difficult due to the complex
fine-scale structures in high-dimensional data, which cannot be fully described by the limited
information available in low-dimensional data. This inverse problem often has multiple
solutions, especially when dealing with higher up-sampling factors from the low-dimensional
to high-dimensional space.

In this paper, we are concerned with establishing a high-quality benchmark dataset, SuperBench,
for spatial SR methods for scientific problems. By providing a standardized benchmark
dataset, SuperBench empowers SciML researchers to evaluate and advance SR methods
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Figure 1: High-resolution data are paramount to accurately resolving the turbulent dynamics
of Earth’s weather systems. For instance, resolving storms requires kilometer-scale resolutions,
and some crucial climate processes can require order of 1m resolutions. The snapshots on the
left show coarse-grained data that can be thought of as a down-sampled representation of
the fine-scale data on the right. Coarse-grained data not only fail to capture the small scales,
but they also do not account for the impact of these small scales on the large-scale dynamics,
nor the impact of fine (and critical) topographic features such as mountain ranges on either
scale. Currently, generating these high-resolution and accurate data demands prohibitive
computational resources (thousands of nodes on modern super-computing substrates). Based
on current computing trends, it may be several decades before numerical solvers of atmospheric
physics can simulate at a meter resolution (Schneider et al., 2017), which represents a grand
challenge to scientific computing. Using SR to resolve fine-scale structures from coarser
simulations holds an enormous promise towards fast, efficient, and accurate models for
atmospheric physics emulation.

specifically tailored for scientific tasks. We anticipate that this benchmark dataset will
significantly contribute to the advancement of SR techniques in scientific domains, fostering
the development of more effective and reliable methods for enhancing data resolution and
improving scientific insights.

Main contributions. The key contributions of this paper are summarized as follows.
• We introduce SuperBench (https://github.com/erichson/SuperBench), a novel benchmark

dataset comprising high-quality scientific data for spatial SR methods. This dataset
includes four distinct datasets of HR simulations, with dimensions up to 2048 × 2048,
surpassing the resolution of typical scientific datasets used in SciML. SuperBench has a
total file size of 439 GB. The datasets feature challenging problems in fluid flows, cosmology,
and climate science. They are specifically chosen to push the performance limits of existing
methods and facilitate the development of innovative SR methods for scientific applications.

• We investigate a range of degradation functions tailored for scientific data. In addition to
commonly used methods like uniform and bicubic downscaling, we explore the use of LR
simulations as inputs and consider the introduction of noise to the input data. This suits
SuperBench for a thorough assessment and effective comparison of different SR methods.

• We benchmark existing SR methods on SuperBench. By employing both data and physical-
centric metrics, our analysis provides valuable insights into the performance of various
SR approaches. Notably, our findings demonstrate that purely data-driven SR methods,
even those employing advanced architectures like Transformers, struggle to preserve the
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Figure 2: A cropped example snapshot of weather data. The task is to recover the HR
representation from the corresponding LR input by a factor of ×16. All SOTA methods
reconstruct a blurred approximation that washes out important multi-scale and fine-scale
features of physical importance.

physical properties of turbulence datasets. An illustrative example of the performance
of baseline models on weather data is shown in Figure 2, which shows the limitations of
current approaches for modeling multi-scale structures.

The motivation behind creating an SR benchmark dataset for scientific problems stems from
two key factors: (i) the prohibitively high computational cost associated with executing
HR numerical simulations; and (ii) the inherent limitations of measurements in large-scale
experiments, which often have restricted resolution. It is important to note that SR applied
to scientific data differs from its application to general image data in two significant ways.
Firstly, many physical systems adhere to explicit governing laws and exhibit distinct features
at fine scales, such as multi-scale turbulence phenomena. Thus, preserving the inherent
physical properties of scientific data during the SR process becomes a crucial objective. As a
potential research direction, exploring constrained ML methods, including soft versus hard
constraints and equality versus inequality constraints, could prove fruitful here (Krishnapriyan
et al., 2021; Edwards, 2022; Négiar et al., 2022). Secondly, the evaluation metrics for SR on
scientific data may differ, as scientists are primarily concerned with pixel-wise reconstruction
accuracy and specific domain-dependent metrics. For these and other reasons, assessing the
performance of SR methods necessitates a high-quality scientific benchmark dataset.

Limitations. We limit the scope of this initial benchmark dataset to spatial SR tasks,
which still pose a range of challenges for existing SR methodology in the context of scientific
applications. However, we note that there is an increasing interest in applying SR methods
to dynamical system applications (e.g., videos or fluid flow) where the model aims to recover
temporal or both spatial and temporal information.
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2 Related Work

A wide range of methods exists for SR (Nasrollahi and Moeslund, 2014). However, it has
been well-established that deep learning offers a powerful and versatile framework for SR
solutions, as demonstrated in (Anwar et al., 2020), (Wang et al., 2020c), and the references
therein. Moreover, recent studies have shown the effectiveness of deep learning-based SR
methods specifically for fluid flows (Fukami et al., 2019; Liu et al., 2020; Erichson et al., 2020;
Bao et al., 2022; Fukami et al., 2023). In the following, we provide a brief overview of the
most notable deep learning-based SR methods that are relevant to our benchmark dataset.

Single-image SR methods. Single-image SR (SISR) focuses on tackling spatial SR.
SRCNN (Dong et al., 2015) is the first iconic work of introducing deep convolutional neural
networks (CNNs) for SISR; and it drastically improves the reconstruction performance,
compared with the traditional method based on sparse representation (Yang et al., 2010). In
addition to the interpolation-based up-sampling used in SRCNN, the strategies of deconvolu-
tion (Dong et al., 2016) and pixelshuffle (Shi et al., 2016) also attract considerable critical
attention. Furthermore, due to a proliferation of network designs, we observe increasingly
rapid advances in the field of SISR. Generally, there are six model architectures: residual
networks (Kim et al., 2016; Lim et al., 2017; Yu et al., 2018); recursive blocks (Tai et al.,
2017); dense networks (Tong et al., 2017; Zhang et al., 2018); generative adversarial networks
(GAN) (Ledig et al., 2017; Wang et al., 2018; Zhang et al., 2019; Chan et al., 2021); attention
schemes (Yang et al., 2020; Chen et al., 2021; Liang et al., 2021); and diffusion models
(Rombach et al., 2022; Saharia et al., 2022).

Constrained SR. Recently, researchers have shown great interest in SR of scientific data
(e.g., fluid flow). For example, neural networks have been introduced to reconstruct fluid flows
by learning an end-to-end mapping between LR data and HR solution field based on either
limited sensor measurements (Erichson et al., 2020) or sufficient labeled simulations (Xie
et al., 2018; Yu and Hesthaven, 2019; Fukami et al., 2019; Liu et al., 2020; Fukami et al.,
2021a,b; Vinuesa and Brunton, 2022; Fukami et al., 2023). Moreover, many scientists have
started to explore the potential of incorporating domain-specific constraints into the learning
process, due to the accessibility of physical principles. In the context of scientific tasks, the
realm of constrained SR has been investigated in two primary directions. The first direction
involves the integration of constraints into the loss function, which guides the optimization
process. In specific, the popular physics-informed neural networks (PINNs) (Raissi et al.,
2019; Karniadakis et al., 2021; Krishnapriyan et al., 2021; Edwards, 2022) are essentially
constructed in a soft-constraint strategy. Due to the simplicity of this penalty method, there
have been various downstream applications of physics-informed SR for scientific data (Wang
et al., 2020a; Subramaniam et al., 2020; Gao et al., 2021; Esmaeilzadeh et al., 2020; Ren
et al., 2023; Bode et al., 2021).

Related benchmarks. In recent years, a number of benchmarks and datasets have been
developed to facilitate the evaluation and comparison of SR methods. Among them, several
prominent benchmarks have gained wide recognition as standardized evaluation datasets
for both traditional and deep learning-based SR methods, such as Train91 (Yang et al.,
2008), Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001),
Urban100 (Huang et al., 2015), and 2K resolution high-quality DIV2K (Agustsson and
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Timofte, 2017). Moreover, the bicubic down-sampling is the most commonly employed
degradation operator to simulate the transformation from HR to LR images.

In addition, specialized benchmarks and datasets have been developed to address the distinct
challenges and specific requirements of scientific applications. For example, PDEBench (Takamoto
et al., 2022) serves as a benchmark suite for a wide range of Partial Differential Equations
(PDEs) simulation tasks. Recently, there has been an emergence of scientific datasets for
machine learning research from various domains, including environmental science (Yeh et al.,
2021), climate science (Yu et al., 2024), turbulence flows (Chung et al., 2024), and multiphase
multiphysics (Hassan et al., 2024). Furthermore, the open-source library DeepXDE (Lu et al.,
2021b) offers comprehensive scientific ML solutions, particularly focusing on PINN (Raissi
et al., 2019) and DeepONet (Lu et al., 2021a) methods.

3 Description of SuperBench

SuperBench serves as a benchmark dataset for evaluating spatial SR methods in scientific
applications. It aims to achieve two primary objectives: (1) expand the currently available
SR datasets, particularly by incorporating HR datasets with dimensions such as 2048× 2048
and beyond; and (2) enhance the diversity of data by extending the scope of SR to scientific
domains. To achieve these goals, we specifically focus on fluid flows, cosmology, and weather
data. These data exhibit multi-scale structures that present challenging problems for SR
methods. Examples are shown in Figure 3.

3.1 Datasets

Table 1 presents a brief summary of the datasets included in SuperBench. The benchmark
dataset comprises four different datasets, from three different scientific domains. Among them
are two fluid flow datasets, featuring varying Reynolds numbers (Re) to capture different
flow regimes. Additionally, SuperBench includes a cosmology dataset and a weather dataset,
ensuring a diverse range of scientific contexts for evaluating SR methods. Note that all
the experiments in SuperBench can be reproduced on an NVIDIA A100 GPU with 40GB
memory, which ensures accessibility for researchers with standard computational resources.

Figure 3: High-resolution example snapshots included in SuperBench, showing a Navier-
Stokes Kraichnan Turbulence fluid flow (left), weather data that are comprised of several
atmospheric variables (middle), and simulated cosmology hydrodynamics data (right).
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Table 1: Summary of datasets in SuperBench. “LR sim.” denotes that the LR simulation
data is included in this dataset as inputs.

Datasets Spatial resolution # samples (train/valid/test) File size

Fluid flow data (Re = 16000) 2048× 2048 1000 / 200 / 200 66GB
↪→ (w/ LR sim.) 2048× 2048 1200 / 200 / 200 80GB

Fluid flow data (Re = 32000) 2048× 2048 1000 / 200 / 200 66GB
↪→ (w/ LR sim.) 2048× 2048 1200 / 200 / 200 80GB

Cosmology data 2048× 2048 1000 / 200 / 200 44GB
↪→ (w/ LR sim.) 2048× 2048 1200 / 200 / 100 64GB

Weather data 720× 1440 1460 / 365 / 730 39GB

3.1.1 Navier-Stokes Kraichnan Turbulence (NSKT) Fluid Flows

Fluid flows are ubiquitous in diverse scientific, engineering, and technological domains,
including environmental science, material sciences, geophysics, astrophysics, and chemical
engineering; and the understanding and analysis of fluid flows have significant implications
across these disciplines. In particular, turbulence is a chaotic phenomenon that arises within
fluid flows. While the Navier-Stokes (NS) equations serve as a fundamental framework for
elucidating fluid motion, their solution becomes increasingly arduous and challenging in the
presence of turbulence. The NS equations that couple the velocity field to pressure gradients
are given by

∇ · u = 0,
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u, (1)

where u is the velocity field and p is the pressure. Moreover, ρ and ν denote the density
and the viscosity, respectively. The Kraichnan model provides a simplified approach to
studying turbulent and chaotic behavior in fluids. In this work, we consider two-dimensional
Kraichnan turbulence in a doubly periodic square domain within [0, 2π]2 (Pawar et al.,
2023). The spatial domain is discretized using 20482 degrees of freedom (DoF), and the
solution variables of NS equations are obtained from direct numerical simulation (DNS). A
second-order energy-conserving Arakawa scheme (Arakawa, 1997) is employed for computing
the nonlinear Jacobian, and a second-order finite-difference scheme is used for the Laplacian
of the vorticity.

Data. Two turbulent flow scenarios are considered with Reynolds numbers of Re = 16000
and Re = 32000. We generate three independent pairs of LR and HR simulations with
spatial grids of 5122 and 20482, respectively. LR and HR simulations in each pair start
from the same initial conditions. We choose the paired LR and HR snapshots with their
vorticity correlation no less than 0.75. The LR inputs and the HR counterparts consist of
three channels, each representing a distinct physical quantity. Specifically, these channels
denote two velocity variables in the x and y directions, as well as with the vorticity field.

In our SuperBench, we use full-field fluid simulations with dimensions of 2048× 2048. For
evaluating bicubic and uniform down-sampling degradation methods, we randomly select
1000 and 200 snapshots from the first trajectory for training and validation, respectively, and
200 snapshots from the second trajectory for testing. Additionally, we consider a practical
degradation scheme using LR simulation data as inputs. For this, we randomly sample 1200
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LR-HR pairs of snapshots from the first two trajectories for training and validation, and 200
snapshots from the third simulation for testing.

3.1.2 Cosmology Hydrodynamics

The large-scale structure of the universe is shaped by the parameters of a given cosmological
model, as well as by initial conditions. By comparing observational maps of some traces of
matter like galaxies or the Lyman α forest (see, e.g., (LSST Science Collaboration, 2009;
Aghamousa et al., 2016)) against high-fidelity simulated model universes (see, e.g., (Lukić
et al., 2015; Maksimova et al., 2021)), we can constrain the parameters of our cosmological
model, such as the nature of dark matter and dark energy, the history of inflation, the
reionization in the early universe, or the mass of neutrino particles (Alvarez et al., 2022).
In this work, we will use simulation data from Nyx, a massively parallel multiphysics code,
developed for simulations of the Lyman α forest. The Nyx code (Almgren et al., 2013) follows
the evolution of dark matter modeled as self-gravitating Lagrangian particles, while baryons
are modeled as an ideal gas on a set of rectangular Cartesian grids. Besides solving for
gravity and the Euler equations, the code also includes the physical processes relevant for the
accurate representation of the Lyα forest: chemistry of the gas in the primordial composition
of hydrogen and helium, inverse Compton cooling off the microwave background, while keeping
track of the net loss of thermal energy resulting from atomic collisional processes (Lukić et al.,
2015). All cells are assumed to be optically thin to ionizing radiation, and radiative feedback
is accounted for via a spatially uniform, time-varying ultra-violet background radiation. The
intricate interactions among diverse physical processes in cosmology data give rise to highly
complex multi-scale features, which pose challenges for SR methods.

Data. We generate two independent pairs of LR and HR simulations with 5123 and 40963

resolution elements (Jacobus et al., 2023), respectively. LR and HR simulations in each pair
start from identical initial conditions, and the pairs differ in the random realization but
share the same physical and cosmological parameters. Both datasets comprise temperature
and baryon density variables. Note that SuperBench currently focuses on 2D SR tasks for
cosmology data since the majority of SR research in SciML has concentrated on 2D scenarios.
This is due to the reduced computational complexity and the relative ease of training for 2D
models, making them an accessible starting point for advancing SR techniques. The goal of
SuperBench is to provide a standardized platform for comparing widely used SR methods and
will serve as a foundation for extending these approaches to more computationally intensive
3D tasks.

The 2D HR slices are obtained by extracting a fixed sub-domain from the original simulations
with a spatial resolution of 2048× 2048 along the x-axis. Note that the training/validation
and testing datasets are from two independent pairs of simulations. The first dataset aims
to test the degradation methods of uniform/bicubic down-sampling. Additionally, we offer a
cosmology dataset that uses LR simulation data as inputs to evaluate spatial SR methods
in practical applications. The LR simulation is generated with a 5123 grid, and the LR
counterparts in SuperBench are selected from the corresponding LR sub-region, with a spatial
resolution of 2562. This dataset serves as a specific data degradation method in the field of
SR, which imitates real-world simulation scenarios. It is noteworthy that the temperature and
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baryon density in SuperBench are presented in the logarithmic space due to their significant
magnitudes.

3.1.3 Weather

Global weather spatiotemporal patterns exhibit highly complex interactions between several
physical processes that include turbulence, multi-scale fluid flows, radiation/heat transfer,
and multi-phase chemical and biological physics across the atmosphere, ocean, and land
surfaces. These interactions span a wide range of spatial and temporal scales that extend
over O(10) orders of magnitude. For instance, spatial scales can span from micrometers
(highly localized fluid physics) to thousands of kilometers (full planetary scales). In this work,
we consider ERA5 (Hersbach et al., 2020) (downloaded from the Copernicus Climate Change
Service (C3S) Climate Data Store), a publicly available dataset from the European Centre for
Medium-Range Weather Forecasts (ECMWF). It comprises hourly estimations of multiple
atmospheric variables and covers the region from the Earth’s surface up to an altitude of
approximately 100 km (discretized at 37 vertical levels) with a spatial resolution of 0.25◦ (25
km) (in latitude and longitude). When represented on a cartesian grid, these variables are
a 720 × 1440 pixel field at any given altitude. ERA5 encompasses a substantial temporal
scope, spanning from the year 1979 to the present day, and it is generated by assimilating
observations from diverse measurement sources with a SOTA numerical model (solver) using
a Bayesian estimation process (Kalnay, 2003). It represents an optimal reconstruction of the
observed history of the earth’s atmospheric state.

Data. We provide one dataset that is a subset of ERA5 and consists of three channels for
conducting the SR experiments: Kinetic Energy (KE) at 10m from the surface, defined as√
u2 + v2, where u and v are the wind velocity components at 10m altitude; the temperature

at 2m from surface; and total column water vapor. These three quantities represent different
and crucial prognostic variables—wind velocities are critical for wind and energy resource
planning and typically need high resolutions to forecast accurately; surface temperatures are
widely tracked during extreme events such as heat waves and for climate change signals; and
total column water vapor is diagnostic of precipitation that usually manifests small scale
features. The variables are sampled at a frequency of 24 hours (at 00:00 UTC everyday) for
7 years.

3.2 Data Preprocessing

It should be noted that the range of the scientific data provided by SuperBench is not
limited to the common interval of [0, 255], which is typically associated with image data
in computer vision. Instead, within the SuperBench dataset, we encounter a broad range
of data magnitudes, and this presents challenges when assessing baseline performance. To
overcome this challenge and ensure a fair evaluation, we standardize the input and target
data, using the mean and standard deviation specific to the dataset being evaluated. By
normalizing the data, we bring it within a consistent range, allowing for a standardized
assessment of baseline performance. Therefore, the evaluation results accurately reflect the
relative performance of the baseline methods on the normalized data, ensuring a reliable
and robust assessment. In addition, detailed information regarding the preprocessing of
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datasets and the creation of interpolation and extrapolation validation/test sets can be found
in Appendix A.

4 Evaluation Metrics

In our study, we evaluate a range of SOTA SR methods (see below) to establish a solid
baseline for the presented problems. To assess the performance of these methods, we employ
three distinct types of metrics: pixel-level difference metrics; human-level perception metrics;
and domain-motivated error metrics. The detailed metric guide is provided in Table 2.

The pixel-level difference metrics enable us to evaluate quantitatively the SR algorithms by
measuring the disparities between the HR ground truth and the generated super-resolved
images. These metrics, such as mean squared error (MSE) and peak signal-to-noise ratio
(PSNR), provide objective assessments of the fidelity and accuracy of the reconstructed
details. By leveraging these metrics, we gain valuable insights into the overall reconstruction
quality of the SR methods. The human-level perception metrics permit us to go beyond
solely relying on pixel-level metrics that may not capture the perceptual quality of the
super-resolved images, as human perception often differs from pixel-wise differences. In
particular, by considering human perception, we can evaluate the SR methods based on their
ability to produce visually pleasing results that align with human expectations. Finally, we
recognize the importance of domain-specific evaluations in scientific applications. Hence,
we use domain-motivated error metrics that are tailored to the specific requirements and
constraints of the scientific domains under consideration. Incorporating such domain-specific
metrics allows us to assess the suitability and effectiveness of SR methods for scientific
research purposes.

While our evaluation framework includes standardized metrics that provide a holistic un-
derstanding of SR method performance for scientific applications, clearly researchers may
have unique research questions and requirements that call for the use of custom metrics.
To facilitate such scenarios, our SuperBench framework offers a user-friendly interface for
defining and incorporating custom evaluation metrics. This flexibility empowers researchers
to tailor the evaluation process to their specific needs and explore novel metrics that address
the nuances of their research questions.

Pixel-level difference. To assess the pixel-level differences between the predicted HR
data ŷ and the ground truth data y, we employ two key metrics: the relative Frobenius norm
error (RFNE) and the PSNR. These metrics are defined as

RFNE(y, ŷ) =
∥y − ŷ∥F

∥y∥F
, and PSNR(y, ŷ) = 10 · log10

max(y)2

MSE(y, ŷ)
, (2)

where ∥ · ∥F denotes the Frobenius norm, MSE(·) is the mean-squared error, and max(·)
denotes the maximum value. By quantifying the differences between the predicted and
ground truth data, these metrics enable a comprehensive assessment of the pixel-level fidelity
achieved by the SR algorithms. They provide valuable information for evaluating the accuracy
and effectiveness of SR methods, and they are relevant for applications that demand high
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Table 2: Summary of metric guide in SuperBench

Datasets Pixel-level difference Human-level perception Domain-motivated error metrics

Fluid Flow data MAE, MSE, RFNE, IN, PSNR SSIM Continuity, Energy spectrum
Cosmology data MAE, MSE, RFNE, IN, PSNR SSIM -
Weather data MAE, MSE, RFNE, IN, PSNR SSIM ACC

precision in pixel-wise reconstruction. In addition, we also consider the infinity norm (IN) as
a metric to assess extreme statistical properties.

Human-level perception. The impact of minor perturbations and content shifts on
the signal y can lead to substantial degradation in both RFNE and PSNR, even when the
underlying content or patterns remain unchanged (Agustsson and Timofte, 2017). Hence,
there is a growing interest in evaluating SR algorithms in a structural manner that aligns with
human perception. To this end, the structural similarity index measure (SSIM) (Wang et al.,
2004, 2020c) can be used as a metric for evaluating SR algorithms. SSIM is a perception-based
metric that focuses on image and graphical applications. In contrast to metrics like RFNE
and PSNR, which primarily measure the pixel-wise discrepancies between the super-resolved
data and their ground truth counterparts, SSIM takes into account the structural information
and relationships within the images. By considering the structural characteristics of the
data, SSIM provides a more nuanced evaluation of the SR algorithms, capturing perceptual
similarities that go beyond pixel-level differences.

Domain-motivated error metrics. Within our SuperBench framework, we provide
researchers with the flexibility to incorporate domain-motivated error metrics. This is
particularly valuable in scientific domains where prior knowledge is available. These metrics
allow for a more comprehensive evaluation of SR methods by considering domain-specific
constraints and requirements. In scientific domains such as fluid dynamics, where the
preservation of continuity and conservation laws is crucial, it becomes essential to assess the
SR algorithms from such a physical perspective (Wang et al., 2020b; Esmaeilzadeh et al.,
2020). Researchers can incorporate evaluation metrics that focus on physical aspects and
examine the reconstructed variables to ensure they adhere to these fundamental principles.
In this paper, we introduce a physics error metric to measure the preservation of continuity
property in fluid flow datasets (Wang et al., 2020b), and we also visualize the energy spectrum
for comparative analysis. Similarly, in climate science, the evaluation metrics often involve
multi-scale analysis due to the presence of multi-scale phenomena that are ubiquitous in
this field. Researchers may employ metrics such as the Anomaly Correlation Coefficient
(ACC) (Rasp et al., 2020) to evaluate the performance of SR methods. These metrics enable
the assessment of how well the SR algorithms capture and represent the complex, multi-scale
features present in climate data.
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Table 3: Overview of our assessment on baseline models for each dataset (✓✓: Excellent, ✓:
Good, ❍: Acceptable, ✗: Suboptimal, ✗✗: Bad).

Aspect Interp. SRCNN Sub-pixel CNN SRGAN EDSR WDSR FNO SwinIR

Fluid flow ✗✗ ✗ ❍ ✗ ✓ ✓ ❍ ✓✓

Cosmo. ✗✗ ✗ ❍ ❍ ❍ ❍ ❍ ✓

Weather ✗✗ ✗ ❍ ❍ ❍ ❍ ❍ ✓

Upsampling (×8) ✗✗ ✗ ❍ ❍ ✓ ❍ ❍ ✓✓

Upsampling (×16) ✗✗ ✗✗ ❍ ❍ ❍ ❍ ❍ ❍

LR Sim. ✗✗ ✗ ❍ ❍ ❍ ❍ ❍ ❍

Physics Preservation ✗ ✗✗ ❍ ✗✗ ❍ ✗ ✗✗ ✓

5 Experiments and Analysis

This section presents our experimental setup and performance analysis of baseline models using
the SuperBench datasets. The aim of SuperBench is to provide more challenging and realistic
SR settings, considering the remarkable progress achieved in SISR research (Moser et al.,
2023). To accomplish this goal, we incorporate various data degradation schemes within the
SuperBench framework. These schemes simulate realistic degradation scenarios encountered
in scientific applications. Specifically, we consider the following baseline models: Bicubic
interpolation; SRCNN (Dong et al., 2015); Sub-pixel CNN (Shi et al., 2016); SRGAN (Ledig
et al., 2017); EDSR (Lim et al., 2017); WDSR (Yu et al., 2018); Fourier Neural Operator
(FNO) (Li et al., 2021); and SwinIR (Liang et al., 2021). See Appendix B and C for detailed
information regarding the baseline models and the corresponding training protocol. An
overview of baseline performance on different aspects is provided in Table 3.

5.1 Evaluation Setup

In SuperBench, we define three distinct data degradation scenarios for spatial SR tasks, each
designed to model a specific scientific situation: (i) The general computer vision scenario,
which involves bicubic down-sampling. This scenario serves as a standard degradation method
for SR evaluation in various image processing applications. (ii) The uniform down-sampling
scenario, which considers noise in addition to down-sampling, mimicking the experimental
measurement process in scientific domains. This scenario aims to replicate the challenges
of accurately reconstructing data from low-fidelity measurements obtained by experimental
sensors. (iii) The direct use of LR simulation data as inputs, which is specific to scientific
modeling. This scenario explores the performance of SR algorithms when provided with LR
data generated through simulation processes.

Up-sampling factors. For scenarios (i) and (ii), SuperBench offers two tracks of up-
sampling factors: ×8 and ×16. These factors determine the levels of up-sampling required
to recover the HR details from the degraded LR inputs. We consider a scaling factor of ×16,
motivated by the growing interest in significant up-sampling factors for scientific SR (Gao
et al., 2021). For scenario (iii), we specifically test the ×8 up-sampling on the fluid and
cosmology datasets using LR simulation data with a spatial resolution of 256× 256 as inputs.
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a. b.

c. d.

Figure 4: The results of RFNE versus model parameters on four datasets considering scenario
(i) with up-sampling factors ×8 and ×16.

The HR counterparts in this scenario have an exceptionally high resolution of 2048× 2048,
representing the challenges associated with SR tasks in the cosmology domain.

Data noise. Recognizing the presence of noise in scientific problems, we provide the
option to evaluate the performance of the SuperBench dataset under noisy LR scenarios,
specifically in scenario (ii). This feature aligns with the scientific requirement for accurate data
reconstruction from low-fidelity measurements obtained by experimental sensors, ensuring a
faithful representation of the underlying physical phenomena. The noise level in the dataset
is defined by the channel-wise standard deviation of the specific dataset. Additionally, users
have the flexibility to define custom noise ratios of interest. In our SuperBench experiments,
we test cases with noise levels set at 5% and 10% to assess the robustness and performance
of SR methods under different noise conditions.
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b.

c. d.

a.

Figure 5: Comparative results of different degradation methods. (a) exhibits the RFNE
results from scenarios (i) and (ii) using the SwinIR model, with up-sampling factors ×8.
(b-d) show the results of scenario (iii) with LR simulation data as inputs.

5.2 Results

General performance. Figure 4 presents the performance of baseline models on four
datasets considering degradation scenario (i) with up-sampling factors ×8 and ×16. Overall,
the baseline SR methods achieve good pixel-level accuracy for super-resolving fluid flow
datasets, but they fail to perform well on both cosmology and weather data. This discrepancy
arises from more complex multi-scale structures and variations inherent in cosmology and
weather data. As shown in Figure 4(c), the cosmology data is the most challenging by
measuring the RFNE values among all datasets. SwinIR exhibits performance comparable
to residual networks (EDSR and WDSR) on two NSKT datasets, while achieving SOTA
results on cosmology and weather data. This superior performance can be attributed to
its specialized network design, which effectively captures multi-scale features (Liang et al.,
2021). Additionally, we observe that SRCNN and SRGAN demonstrate limited robustness
across different scientific datasets.
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a. b.

c. d.

Figure 6: A summary of the evaluations of physical properties and multi-scale features. (a)
and (c) show the results of testing physics loss and energy spectrum on the fluid dataset,
respectively. SwinIR (Phy) denotes the physics-constrained SwinIR model with continuity
loss. (b) and (d) present the results of multi-scale features on the weather dataset, including
SSIM and ACC metrics.

Up-sampling factors. Figure 4(a-d) illustrates significant RFNE discrepancies between
the two up-sampling factors (×8 and ×16) across four datasets. Notably, the ×16 track
is substantially more challenging, compared to the ×8 track. To establish a meaningful
benchmark, we propose to use ×16 for fluid flow datasets and ×8 for cosmology and weather
data. Additionally, we consider ×16 up-sampling for cosmology and weather data as an
extreme SR validation.

Degradation analysis. We showcase the model performance on different degradation
schemes in Figure 5. By using SwinIR tested on the ×8 track as an illustrative case, we
present the baseline performance across various degradation scenarios in Figure 5(a). It is
clear that scenario (ii), which considers both uniform down-sampling and noise, poses greater
challenges, compared to scenario (i) of bicubic down-sampling. The level of difficulty in SR
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progressively intensifies with increasing noise. Moreover, Figure 5(b-d) present the baseline
performance on fluid and cosmology datasets considering scenario (iii), which directly uses
LR simulation data as inputs. The LR simulation data lack the presence of fine-scale features
and high-frequency information due to numerical errors, which poses a challenge for SR. All
baseline models show inferior performance compared with those from scenarios (i) and (ii).
Note that the FNO model demonstrates unstable performance when using LR simulation data
as inputs. While it achieves excellent results on cosmology data, its performance on NSKT
datasets is unsatisfactory. This instability is attributed to the selection of Fourier modes
in FNO, making it struggle to capture high-frequency information effectively. Scenarios (ii)
and (iii) are specifically designed to emulate the experimental and simulation conditions,
respectively. Despite the inherent difficulties, it is crucial to explore novel SR methods to
advance their applicability to real-world scenarios.

Physics preservation. We evaluate the baseline performance of the physics error and
energy spectrum on fluid flow data. A metric that measures the continuity property in fluid
flows is considered, as shown in Figure 6(a). SwinIR performs the best among all baseline
models on physics errors, corresponding to the results from pixel-level accuracy. We observe
that SRGAN exhibits higher physics errors during evaluation. This is probably due to the
inherent randomness of generative models, which can introduce non-physical high-frequency
artifacts. Similar findings regarding relatively large physics errors in generative models have
been noted in a recent study (Shu et al., 2023). Additionally, achieving satisfactory pixel-level
accuracy does not ensure the preservation of underlying physical properties. The physics loss
of several deep learning-based models, such as FNO and WDSR (×16), is worse than that of
the standard Bicubic interpolation, although they achieve better RFNE accuracies. Therefore,
although previous SR methods have demonstrated notable achievements in terms of pixel-
level difference and human-level perception, there is a need for scientific SR methods that
respect the underlying physical laws of problems of interest. This is particularly important
in light of recent results highlighting methodological challenges in delivering on the promise
of SciML (Krishnapriyan et al., 2021; Edwards, 2022; Krishnapriyan et al., 2022).

We implement a physics-constrained SwinIR model with a physics regularizer of the continuity
loss. The corresponding weighting coefficient λp is set as 0.001. We show a comparative study
of the physics-constrained SwinIR model and other representative baseline models in terms
of the energy spectrum. Figure 6(c) demonstrates a better alignment of physics-constrained
SwinIR with the ground truth compared with that of the SwinIR model, which outperforms
the rest of the baseline models. It validates the effectiveness of incorporating physics loss
into deep learning models with a better alignment with the ground truth.

Multi-scale details. Comparative snapshots of baseline models against the ground truth
HR weather data are depicted in Figure 2. The zoomed-in figures demonstrate the limitation
of the current SR methods for recovering fine-scale details. In addition, we present the SSIM
results for the weather data in Figure 6(b), where the SwinIR holds the best performance
(0.90) for the ×8 track in scenario (i). Moreover, Figure 6(d) shows the ACC performance of
baseline models along the time, where SwinIR performs the best. However, there remains
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ample space for improvement in learning multi-scale features, indicating potential avenues
for further advancements in SR algorithms.

6 Conclusion

In this paper, we introduce SuperBench, a new large-scale and high-quality scientific dataset
for SR. We analyze the baseline performance on the SuperBench dataset and identify the
challenges posed by large magnification factors and the preservation of physical properties in
the SR process. Moreover, different data degradation scenarios have been investigated to
measure the robustness of the baseline models. The SuperBench dataset and our analysis
pave the way for future research at the intersection of computer vision and SciML. We
anticipate that our work will inspire new methodologies (e.g., constrained ML) to tackle the
unique requirement of SR in scientific applications.

SuperBench provides a flexible framework and provides the option to be extended to include
scientific data from other domains (e.g., solid mechanics). This expansion can help to facilitate
the assessment of SR algorithms in diverse scientific contexts and foster the development
of tailored solutions. In addition, SuperBench can be extended from spatial SR tasks to
temporal and spatiotemporal SR tasks, and additional data degradation methods can be
considered to further emulate the real-world challenges. Lastly, we plan to incorporate HR
3D datasets, such as JHTDB (Li et al., 2008) and BLASTNet (Chung et al., 2024), into
SuperBench since real-world scientific applications often handle 3D data. Meanwhile, we will
adapt the baseline models to be compatible with 3D SR tasks.

Moreover, it is important to discuss potential negative uses and pitfalls. For example, SR
methods could introduce artifacts or inaccuracies that may mislead scientific conclusions if
used without sufficient validation. This is particularly important in some critical scientific
and engineering domains, such as aerospace, earthquake, and weather modeling, where
erroneous results could have significant real-world consequences. To ensure responsible use of
the benchmark, we emphasize the importance of rigorous testing and validation to mitigate
these risks before deploying any models in real-world applications. We also acknowledge the
potential for misuse if models trained on our datasets are applied without considering their
limitations or if results are interpreted without the appropriate domain expertise.

Acknowledgments and Disclosure of Funding

We would like to sincerely acknowledge the constructive discussion with Dr. Dmitriy Morozov.
This work was supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing
(SciDAC) program, under Contract Number DE-AC02-05CH11231, and the National Energy
Research Scientific Computing Center (NERSC), operated under Contract No.DE-AC02-
05CH11231 at Lawrence Berkeley National Laboratory.

17



Ren, Erichson, Guo, Subramanian, San, Lukić, Mahoney

References

A. Aghamousa et al. The DESI Experiment Part I: Science,Targeting, and Survey Design.
10 2016.

E. Agustsson and R. Timofte. NTIRE 2017 Challenge on Single Image Super-Resolution:
Dataset and Study. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1122–
1131. IEEE Computer Society, 2017. doi: 10.1109/CVPRW.2017.150. URL https:
//doi.org/10.1109/CVPRW.2017.150.

A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel. Nyx: A Massively
Parallel AMR Code for Computational Cosmology. The Astrophysical Journal, 765:39,
Mar. 2013. doi: 10.1088/0004-637X/765/1/39.

M. A. Alvarez, A. Banerjee, S. Birrer, S. Habib, K. Heitmann, Z. Lukić, J. B. Muñoz, Y. Omori,
H. Park, A. H. G. Peter, J. Sexton, and Y.-M. Zhong. Snowmass2021 Computational
Frontier White Paper: Cosmological Simulations and Modeling. arXiv e-prints, art.
arXiv:2203.07347, Mar. 2022. doi: 10.48550/arXiv.2203.07347.

S. Anwar, S. Khan, and N. Barnes. A Deep Journey into Super-Resolution: A Survey. ACM
Computing Surveys (CSUR), 53(3):1–34, 2020.

A. Arakawa. Computational Design for Long-term Numerical Integration of the Equations
of Fluid Motion: Two-dimensional Incompressible Flow. Part I. Journal of Computational
Physics, 135(2):103–114, 1997.

M. R. Arefin, V. Michalski, P.-L. St-Charles, A. Kalaitzis, S. Kim, S. E. Kahou, and Y. Bengio.
Multi-image Super-resolution for Remote Sensing Using Deep Recurrent Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 206–207, 2020.

T. Bao, S. Chen, T. T. Johnson, P. Givi, S. Sammak, and X. Jia. Physics Guided Neural
Networks for Spatio-temporal Super-resolution of Turbulent Flows. In Uncertainty in
Artificial Intelligence, pages 118–128. PMLR, 2022.

M. Bevilacqua, A. Roumy, C. Guillemot, and M. Alberi-Morel. Low-Complexity Single-
Image Super-Resolution based on Nonnegative Neighbor Embedding. In R. Bowden, J. P.
Collomosse, and K. Mikolajczyk, editors, British Machine Vision Conference, BMVC 2012,
Surrey, UK, September 3-7, 2012, pages 1–10. BMVA Press, 2012. doi: 10.5244/C.26.135.
URL https://doi.org/10.5244/C.26.135.

M. Bode, M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz, J. Jitsev, and
H. Pitsch. Using Physics-informed Enhanced Super-resolution Generative Adversarial
Networks for Subfilter Modeling in Turbulent Reactive Flows. Proceedings of the Combustion
Institute, 38(2):2617–2625, 2021.

J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang. Toward Real-world Single Image Super-
resolution: A New Benchmark and A New Model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3086–3095, 2019.

18

https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.5244/C.26.135


SuperBench

K. C. Chan, X. Wang, X. Xu, J. Gu, and C. C. Loy. GLEAN: Generative Latent Bank for
Large-factor Image Super-resolution. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14245–14254, 2021.

H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao.
Pre-trained Image Processing Transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12299–12310, 2021.

W. T. Chung, B. Akoush, P. Sharma, A. Tamkin, K. S. Jung, J. Chen, J. Guo, D. Brouzet,
M. Talei, B. Savard, et al. Turbulence in focus: Benchmarking scaling behavior of 3d
volumetric super-resolution with blastnet 2.0 data. Advances in Neural Information
Processing Systems, 36, 2024.

C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-resolution Using Deep Convolutional
Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):295–307,
2015.

C. Dong, C. C. Loy, and X. Tang. Accelerating the Super-Resolution Convolutional Neural
Network. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part II, volume 9906 of Lecture Notes in Computer Science, pages
391–407. Springer, 2016. doi: 10.1007/978-3-319-46475-6\_25. URL https://doi.org/
10.1007/978-3-319-46475-6_25.

C. Edwards. Neural Networks Learn to Speed Up Simulations. Communications of the ACM,
65(5):27–29, 2022.

N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, and J. N. Kutz. Shallow
Neural Networks for Fluid Flow Reconstruction with Limited Sensors. Proceedings of the
Royal Society A, 476(2238):20200097, 2020.

S. Esmaeilzadeh, K. Azizzadenesheli, K. Kashinath, M. Mustafa, H. A. Tchelepi, P. Marcus,
M. Prabhat, A. Anandkumar, et al. Meshfreeflownet: A Physics-constrained Deep Contin-
uous Space-time Super-resolution Framework. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE, 2020.

M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An Overview of the HDF5
Technology Suite and its Applications. In Proceedings of the EDBT/ICDT 2011 Workshop
on Array Databases, pages 36–47, 2011.

K. Fukami, K. Fukagata, and K. Taira. Super-resolution Reconstruction of Turbulent Flows
with Machine Learning. Journal of Fluid Mechanics, 870:106–120, 2019.

K. Fukami, K. Fukagata, and K. Taira. Machine-learning-based Spatio-temporal Super
Resolution Reconstruction of Turbulent Flows. Journal of Fluid Mechanics, 909, 2021a.

K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira. Global Field Recon-
struction from Sparse Sensors with Voronoi Tessellation-assisted Deep Learning. Nature
Machine Intelligence, 3(11):945–951, 2021b.

19

https://doi.org/10.1007/978-3-319-46475-6_25
https://doi.org/10.1007/978-3-319-46475-6_25


Ren, Erichson, Guo, Subramanian, San, Lukić, Mahoney

K. Fukami, K. Fukagata, and K. Taira. Super-Resolution Analysis via Machine Learning: A
Survey for Fluid Flows. arXiv preprint arXiv:2301.10937, 2023.

H. Gao, L. Sun, and J.-X. Wang. Super-resolution and Denoising of Fluid Flow Using
Physics-informed Convolutional Neural Networks without High-resolution Labels. Physics
of Fluids, 33(7):073603, 2021.

H. Greenspan. Super-resolution in Medical Imaging. The Computer Journal, 52(1):43–63,
2009.

S. M. S. Hassan, A. Feeney, A. Dhruv, J. Kim, Y. Suh, J. Ryu, Y. Won, and A. Chan-
dramowlishwaran. Bubbleml: A multiphase multiphysics dataset and benchmarks for
machine learning. Advances in Neural Information Processing Systems, 36, 2024.

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas,
C. Peubey, R. Radu, D. Schepers, et al. The ERA5 Global Reanalysis. Quarterly Journal
of the Royal Meteorological Society, 146(730):1999–2049, 2020.

J.-B. Huang, A. Singh, and N. Ahuja. Single Image Super-resolution from Transformed
Self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5197–5206, 2015.

J. S. Isaac and R. Kulkarni. Super Resolution Techniques for Medical Image Processing.
In 2015 International Conference on Technologies for Sustainable Development (ICTSD),
pages 1–6. IEEE, 2015.

C. Jacobus, P. Harrington, and Z. Lukić. Reconstructing lyα fields from low-resolution
hydrodynamical simulations with deep learning. The Astrophysical Journal, 958(1):21,
2023.

E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge university
press, 2003.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-
informed Machine Learning. Nature Reviews Physics, 3(6):422–440, 2021.

J. Kim, J. K. Lee, and K. M. Lee. Accurate Image Super-resolution Using Very Deep
Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1646–1654, 2016.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Characterizing Possible
Failure Modes in Physics-informed Neural Networks. Advances in Neural Information
Processing Systems, 34:26548–26560, 2021.

20

http://arxiv.org/abs/1412.6980


SuperBench

A. S. Krishnapriyan, A. F. Queiruga, N. B. Erichson, and M. W. Mahoney. Learning
Continuous Models for Continuous Physics. Technical Report Preprint: arXiv:2202.08494,
2022.

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,
J. Totz, Z. Wang, et al. Photo-realistic Single Image Super-resolution Using A Generative
Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4681–4690, 2017.

Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and
G. Eyink. A public turbulence database cluster and applications to study lagrangian
evolution of velocity increments in turbulence. Journal of Turbulence, (9):N31, 2008.

Z. Li, Q. Peng, B. Bhanu, Q. Zhang, and H. He. Super Resolution for Astronomical
Observations. Astrophysics and Space Science, 363(5):1–15, 2018.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations, 2021.

J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte. Swinir: Image Restoration
Using Swin Transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1833–1844, 2021.

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced Deep Residual Networks for
Single Image Super-resolution. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 136–144, 2017.

B. Liu, J. Tang, H. Huang, and X.-Y. Lu. Deep Learning Methods for Super-resolution
Reconstruction of Turbulent Flows. Physics of Fluids, 32(2):025105, 2020.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17,
2021, pages 9992–10002. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00986. URL https:
//doi.org/10.1109/ICCV48922.2021.00986.

I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

LSST Science Collaboration. LSST Science Book, Version 2.0. arXiv e-prints, art.
arXiv:0912.0201, Dec. 2009.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning Nonlinear Operators via
DeepONet based on the Universal Approximation Theorem of Operators. Nature Machine
Intelligence, 3(3):218–229, 2021a.

L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A Deep Learning Library for
Solving Differential Equations. SIAM Review, 63(1):208–228, 2021b.

21

https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://openreview.net/forum?id=Bkg6RiCqY7


Ren, Erichson, Guo, Subramanian, San, Lukić, Mahoney

A. Lugmayr, M. Danelljan, and R. Timofte. Unsupervised Learning for Real-world Super-
resolution. In 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pages 3408–3416. IEEE, 2019.

Z. Lukić, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and A. Almgren. The Lyman
α Forest in Optically Thin Hydrodynamical Simulations. Monthly Notices of the Royal
Astronomical Society, 446(4):3697–3724, 2015.

N. A. Maksimova, L. H. Garrison, D. J. Eisenstein, B. Hadzhiyska, S. Bose, and T. P.
Satterthwaite. AbacusSummit: A Massive Set of High-accuracy, High-resolution N-body
Simulations. Monthly Notices of the Royal Astronomical Society, 508(3):4017–4037, 09
2021. ISSN 0035-8711. doi: 10.1093/mnras/stab2484. URL https://doi.org/10.1093/
mnras/stab2484.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natural Images
and its application to Evaluating Segmentation Algorithms and Measuring Ecological
Statistics. In Proceedings Eighth IEEE International Conference on Computer Vision.
ICCV 2001, volume 2, pages 416–423. IEEE, 2001.

B. B. Moser, F. Raue, S. Frolov, S. Palacio, J. Hees, and A. Dengel. Hitchhiker’s Guide
to Super-Resolution: Introduction and Recent Advances. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

K. Nasrollahi and T. B. Moeslund. Super-resolution: A Comprehensive Survey. Machine
Vision and Applications, 25(6):1423–1468, 2014.

G. Négiar, M. W. Mahoney, and A. S. Krishnapriyan. Learning Differentiable Solvers for
Systems with Hard Constraints. arXiv preprint arXiv:2207.08675, 2022.

S. C. Park, M. K. Park, and M. G. Kang. Super-resolution Image Reconstruction: A Technical
Overview. IEEE Signal Processing Magazine, 20(3):21–36, 2003.

S. Pawar, O. San, A. Rasheed, and P. Vedula. Frame Invariant Neural Network Closures for
Kraichnan Turbulence. Physica A: Statistical Mechanics and its Applications, 609:128327,
2023.

K. G. Puschmann and F. Kneer. On Super-resolution in Astronomical Imaging. Astronomy
& Astrophysics, 436(1):373–378, 2005.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed Neural Networks: A Deep
Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial
Differential Equations. Journal of Computational Physics, 378:686–707, 2019.

S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey. WeatherBench:
A Benchmark Data Set for Data-driven Weather Forecasting. Journal of Advances in
Modeling Earth Systems, 12(11):e2020MS002203, 2020.

P. Ren, C. Rao, Y. Liu, Z. Ma, Q. Wang, J.-X. Wang, and H. Sun. Physr: Physics-informed
deep super-resolution for spatiotemporal data. Journal of Computational Physics, 492:
112438, 2023.

22

https://doi.org/10.1093/mnras/stab2484
https://doi.org/10.1093/mnras/stab2484


SuperBench

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution Image
Synthesis with Latent Diffusion Models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi. Image Super-resolution
via Iterative Refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

J. Satiro, K. Nasrollahi, P. L. Correia, and T. B. Moeslund. Super-resolution of Facial Images
in Forensics Scenarios. In 2015 International Conference on Image Processing Theory,
Tools and Applications (IPTA), pages 55–60. IEEE, 2015.

T. Schneider, J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Schär, and A. P.
Siebesma. Climate Goals and Computing the Future of Clouds. Nature Climate Change,
7:3–5, 2017.

W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-
Pixel Convolutional Neural Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

D. Shu, Z. Li, and A. B. Farimani. A physics-informed diffusion model for high-fidelity flow
field reconstruction. Journal of Computational Physics, 478:111972, 2023.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

A. Subramaniam, M. L. Wong, R. D. Borker, S. Nimmagadda, and S. K. Lele. Turbulence
Enrichment Using Physics-informed Generative Adversarial Networks. arXiv preprint
arXiv:2003.01907, 2020.

Y. Tai, J. Yang, and X. Liu. Image Super-resolution via Deep Recursive Residual Network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3147–3155, 2017.

M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pflüger, and M. Niepert.
PDEBench: An Extensive Benchmark for Scientific Machine Learning. Advances in Neural
Information Processing Systems, 35:1596–1611, 2022.

J. Tian and K.-K. Ma. A Survey on Super-resolution Imaging. Signal, Image and Video
Processing, 5(3):329–342, 2011.

R. Timofte, S. Gu, J. Wu, and L. V. Gool. NTIRE 2018 Challenge on Single Image Super-
Resolution: Methods and Results. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 852–863. Computer Vision Foundation / IEEE Computer Society, 2018. doi:
10.1109/CVPRW.2018.00130. URL http://openaccess.thecvf.com/content_cvpr_
2018_workshops/w13/html/Timofte_NTIRE_2018_Challenge_CVPR_2018_paper.html.

23

http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Timofte_NTIRE_2018_Challenge_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Timofte_NTIRE_2018_Challenge_CVPR_2018_paper.html


Ren, Erichson, Guo, Subramanian, San, Lukić, Mahoney

T. Tong, G. Li, X. Liu, and Q. Gao. Image Super-resolution Using Dense Skip Connections.
In Proceedings of the IEEE International Conference on Computer Vision, pages 4799–4807,
2017.

J. Van Ouwerkerk. Image Super-resolution Survey. Image and Vision Computing, 24(10):
1039–1052, 2006.

R. Vinuesa and S. L. Brunton. Enhancing Computational Fluid Dynamics with Machine
Learning. Nature Computational Science, 2(6):358–366, 2022.

C. Wang, E. Bentivegna, W. Zhou, L. Klein, and B. Elmegreen. Physics-informed Neural
Network Super Resolution for Advection-diffusion Models. arXiv preprint arXiv:2011.02519,
2020a.

R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. Towards Physics-informed
Deep Learning for Turbulent Flow Prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1457–1466, 2020b.

X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy. ESRGAN: En-
hanced Super-resolution Generative Adversarial Networks. In Proceedings of the European
Conference on Computer Vision (ECCV) Workshops, pages 0–0, 2018.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assessment: from
Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004.

Z. Wang, J. Chen, and S. C. Hoi. Deep Learning for Image Super-resolution: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(10):3365–3387, 2020c.

Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A Temporally Coherent, Volumetric
GAN for Super-resolution Fluid Flow. ACM Trans. Graph., 37(4):95, 2018. doi: 10.1145/
3197517.3201304. URL https://doi.org/10.1145/3197517.3201304.

F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo. Learning Texture Transformer Network for
Image Super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5791–5800, 2020.

J. Yang, J. Wright, T. Huang, and Y. Ma. Image Super-resolution as Sparse Representation
of Raw Image Patches. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2008.

J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image Super-resolution via Sparse Representation.
IEEE Transactions on Image Processing, 19(11):2861–2873, 2010.

C. Yeh, C. Meng, S. Wang, A. Driscoll, E. Rozi, P. Liu, J. J. Lee, M. Burke, D. B.
Lobell, and S. Ermon. SustainBench: Benchmarks for Monitoring the Sustainable
Development Goals with Machine Learning. In J. Vanschoren and S. Yeung, ed-
itors, Proceedings of the Neural Information Processing Systems Track on Datasets

24

https://doi.org/10.1145/3197517.3201304


SuperBench

and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, vir-
tual, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/950a4152c2b4aa3ad78bdd6b366cc179-Abstract-round2.html.

J. Yu and J. S. Hesthaven. Flowfield Reconstruction Method Using Artificial Neural Network.
AIAA Journal, 57(2):482–498, 2019.

J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and T. Huang. Wide Activation for
Efficient and Accurate Image Super-resolution. arXiv preprint arXiv:1808.08718, 2018.

S. Yu, W. Hannah, L. Peng, J. Lin, M. A. Bhouri, R. Gupta, B. Lütjens, J. C. Will,
G. Behrens, J. Busecke, et al. Climsim: A large multi-scale dataset for hybrid physics-ml
climate emulation. Advances in Neural Information Processing Systems, 36, 2024.

R. Zeyde, M. Elad, and M. Protter. On Single Image Scale-Up Using Sparse-Representations.
In J. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche, M. Mazure, and L. L. Schumaker,
editors, Curves and Surfaces - 7th International Conference, Avignon, France, June 24-30,
2010, Revised Selected Papers, volume 6920 of Lecture Notes in Computer Science, pages
711–730. Springer, 2010. doi: 10.1007/978-3-642-27413-8\_47. URL https://doi.org/
10.1007/978-3-642-27413-8_47.

W. Zhang, Y. Liu, C. Dong, and Y. Qiao. RankSRGAN: Generative Adversarial Networks
with Ranker for Image Super-resolution. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3096–3105, 2019.

Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual Dense Network for Image
Super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2472–2481, 2018.

25

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/950a4152c2b4aa3ad78bdd6b366cc179-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/950a4152c2b4aa3ad78bdd6b366cc179-Abstract-round2.html
https://doi.org/10.1007/978-3-642-27413-8_47
https://doi.org/10.1007/978-3-642-27413-8_47


Ren, Erichson, Guo, Subramanian, San, Lukić, Mahoney

Appendix A. Additional Data Details

In SuperBench, we provide two perspectives to evaluate the model performance: interpolation
and extrapolation. The goal of extrapolation datasets is to measure the generalizability
of baseline models to future or domain-shifted snapshots, which is similar to the testing
processing in general computer vision (CV) tasks. Interpolation datasets aim to assess the
model performance on intermediate snapshots, either in terms of time or space. Notably, the
baseline performances shown in Experiments and Analysis (Section 5) are all extrapolation
results. The specific information regarding the design of interpolation and extrapolation data
for each dataset is presented below.

Fluid flow data. The validation and testing datasets used for evaluation are sourced
from the same domain as the training dataset, specifically the [0, 2π]2 region with a spatial
resolution of 2048× 2048. Within this context, interpolation refers to data that are sampled
from the same simulation as the training data. Extrapolation, on the other hand, involves
data obtained from simulations that are generated with different initial conditions.

Cosmology data. There are two independent pairs of low-resolution (LR) and high-
resolution (HR) simulations with 5123 and 40963 resolution elements, respectively. The
training dataset and interpolation datasets are from the same data pair, and the extrapolation
datasets are defined from the other data pair.

Weather data. The training datasets are selected from the years 2008, 2010, 2011, and 2013.
The validation datasets for interpolation and extrapolation evaluation focus on the years 2012
and 2007 (look-back test), respectively. For the testing datasets, we employ the data from
the years 2009 and 2014, 2015 for the corresponding interpolation and extrapolation tasks.

Appendix B. Baseline Models

We consider the following state-of-the-art (SOTA) super-resolution (SR) methods as baselines.

• Bicubic interpolation. Bicubic interpolation is one of the most widely used methods for
image SR due to its simplicity and ease of implementation. In addition, the capability of
bicubic interpolation to upsample spatial resolution serves as a cornerstone for many deep
learning-based SR techniques (Dong et al., 2015; Kim et al., 2016).

• SRCNN. SRCNN (Dong et al., 2015) is the first work to apply deep convolutional
neural networks (CNNs) for learning to map the patches from low-resolution (LR) to
high-resolution (HR) images. It outperforms many traditional methods and spurs further
advancements in DL-based SR frameworks.

• Sub-pixel CNN. Shi et al. (Shi et al., 2016) propose a new method for increasing the
resolution using pixel-shuffle. It enables training deep neural networks in LR latent space,
and it also achieves satisfactory reconstruction performance, which improves computational
efficiency.
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• SRGAN. Ledig et al. (Ledig et al., 2017) introduce a generative adversarial network
(GAN) with a perceptual loss function composed of an adversarial loss and a content loss
for image SR. SRGAN is a generative model-based SR method that has performed well in
reconstructing original HR images.

• EDSR. Using a deep residual network architecture that encompasses an extensive number
of residual blocks, EDSR (Lim et al., 2017) can efficiently learn the mapping between
LR and HR images as well as capture hierarchical features. EDSR has demonstrated
remarkable performance in generating high-quality SR images, and it remains a prominent
benchmark in this field.

• WDSR. Yu et al. (Yu et al., 2018) further improves the reconstruction accuracy and
computational efficiency by considering wider features before ReLU in residual blocks.
WDSR has achieved the best performance in NTIRE 2018 Challenge on single-image
super-resolution (SISR) (Timofte et al., 2018).

• FNO. FNO (Li et al., 2021) leverages the Fourier transform to obtain the integral
kernel operators, enabling efficient learning of mappings in function spaces. This approach
significantly reduces computational complexity and achieves state-of-the-art performance
in various super-resolution tasks by handling multiscale features effectively.

• SwinIR. SwinIR (Liang et al., 2021) is based on advanced Swin Transformer (Liu et al.,
2021) architecture. The Swin Transformer layers are used for local attention and cross-
window interaction. It largely reduces the number of parameters and also achieves SOTA
performance in SISR.

Appendix C. Training Details

In this section, we provide additional training details for all baseline models. Training the
models directly on the high-resolution data is challenging and infeasible due to memory
constraints even using an A100 GPU with 40GB. To this end, we randomly crop each
high-resolution snapshot into a smaller size for training. For all datasets in SuperBench, the
patch size is defined as 128× 128. The number of patches per snapshot is selected as 8. We
preprocess the data by standardizing each dataset in SuperBench, i.e., we subtract the mean
value and divide it by the standard deviation. All models are trained from scratch on Nvidia
A100 GPUs. The training code and configurations are available in our GitHub repository.

SRCNN. We use the default network design in the SRCNN paper (Dong et al., 2015). In
addition, we substitute the original Stochastic gradient Descent (SGD) optimizer with the
ADAM (Kingma and Ba, 2015) optimizer. The learning rate is set as 1×10−3 and the weight
decay is 1× 10−5. We train the SRCNN models for 200 epochs. The other hyper-parameters
and training details follow the original implementation. The batch size is set to 32 and Mean
Squared Error (MSE) is employed as the loss function.

Sub-pixel CNN. The default network architecture is applied (Shi et al., 2016). The
learning rate is set as 1×10−3 for fluid flow datasets and 1×10−4 for cosmology and weather
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datasets. The batch size is 32, and the weight decay is 1× 10−4. The training is performed
for 200 epochs with the Adam optimizer. Moreover, MSE is considered as the loss function.

SRGAN. For the Generator part of SRGAN, we employ 16 residual blocks, each with a
hidden channel dimension of 64. A 2D convolutional layer is appended after the final Tanh
layer of the default generator to map the predicted values to the normalized data space. For
the Discriminator, we use a CNN with 4 blocks based on the default network setting. We
replace the context loss with the standard MSE loss between generated data and ground
truth since a pretrained VGG (Simonyan and Zisserman, 2015) feature extractor is not
suitable for scientific data. The input and output channels are set to 2 for the cosmology
datasets and 3 for other datasets. The learning rate is configured as 2× 10−4 with a weight
decay of 1× 10−6. All the datasets are trained for 600 epochs using Adam optimizer, with a
batch size of 512 for parallel training across 4 GPUs.

EDSR. We follow the default network setting in EDSR (Lim et al., 2017), which uses 16
residual blocks with the hidden channel as 64. The learning rate is set as 1× 10−4 and the
weight decay is 1× 10−5. The batch size is defined as 64. We train the fluid flow datasets for
400 epochs and the cosmology and weather datasets for 300 epochs with the ADAM optimizer.
We also follow the default training protocol to use L1 loss as the objective function.

WDSR. We consider the WDSR-A (Yu et al., 2018) architecture for the SR tasks in
SuperBench, which considers 18 light-weight residual blocks with wide activation. The
hidden channel is defined as 32. The learning rate and the weight decay are set as 1× 10−4

and 1× 10−5, respectively. We train all the WDSR models with 300 epochs by using the
ADAM optimizer. The batch size is selected as 32 and L1 loss is also used.

SwinIR. We follow the default network hyperparameters and training protocol for classical
and real-world image SR in SwinIR (Liang et al., 2021). The residual Swin Transformer
block (RSTB), Swin Transformer layer (STL), window size, channel number, and attention
head number are set as 6, 6, 8, 180, and 6, respectively. The learning rate and the weight
decay are also chosen as 1× 10−4 and 1× 10−5, respectively. The batch size is set to 32. We
use the AdamW (Loshchilov and Hutter, 2019) optimizer to train SwinIR models for 200
epochs. L1 loss is employed for training.

Physics-constrained SwinIR. We enhance the performance of the SwinIR model by
incorporating physics laws as a soft constraint into the optimization process while maintaining
other settings consistent, termed as SwinIR(Phy). The loss function is defined as:

L = Ld + λpLp (3)

where Ld represents the data loss and Lp denotes the physics loss. The penalty factor λp is
a tunable hyperparameter. We perform a grid search to determine the optimal value of λp

from the set {10, 1, 0.1, 0.01, 0.001, 0.0001}. MSE loss is employed for physics loss.
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For fluid datasets, the incompressibility condition of the flow is enforced by incorporating
the residue of the continuity equation as the physics loss, which is given by

∂u

∂x
+

∂v

∂y
= 0. (4)

We approximate the spatial derivatives in Eq. 4 using the finite difference method. Specifically,
weighted gradient-free convolution kernels are applied to the snapshots to compute these
derivatives. The size and values of the kernel depend on the desired order of accuracy of the
central difference scheme. In this SwinIR(Phy) model, we employ second-order kernels.

FNO. We perform a grid search to obtain the best hyperparameter configurations. We
consider the number of Fourier Layers L = [1, 4, 7], the number of hidden variables N =
[20, 40, 64], and the maximum cutoff frequency mode M = [3, 12, 20]. The best configuration
is found to be [L,N,M ] = [4, 64, 12]. The remaining hyper-parameter setting and network
implementation are consistent with the original implementation of FNO (Li et al., 2021).
Since FNO models require inputs and outputs with the same dimensions, we upscale the
model inputs with Bicubic interpolation. We train the model for 500 epochs using the ADAM
optimizer and a learning rate scheduler with a step size of 100, a decay rate of 0.5, and an
initial learning rate of 1× 10−3. The MSE loss is employed and the batch size is selected
as 32. However, unlike other models, which can be trained on small patches (e.g., target
resolution 1282) and still perform well when directly tested on much larger resolutions (e.g.,
target resolution 20482), the performance of FNO models significantly deteriorates under
the same testing conditions. To address this issue, we modified the FNO by incorporating
a patch-splitting and patch-merging module. Both modules allow the model to evaluate
large snapshots by processing them in evenly separated, non-overlapping patches and then
merging the predicted patches back into large snapshots for post-analysis.

Appendix D. Additional Results

In this section, we show additional results to support and complement the findings in
Experiments and Analysis (Section 5). We show example snapshots for visualizing and
comparing baseline performances under three degradation scenarios. We also conduct a
comprehensive analysis across different evaluation metrics.

D.1 Results Visualization

This section presents visualization results to demonstrate the reconstruction performance
of baseline models. Three degradation scenarios are considered. As shown in Figures 7-10,
we show the baseline performance by using bicubic down-sampling degradation. For the
fluid flow datasets, EDSR and SwinIR can recover the HR representation from LR inputs
very well by a factor of ×8, but it is challenging to achieve satisfactory results for the ×16
up-sampling task. For cosmology and weather datasets, all baseline models exhibit limitations
in effectively reconstructing the multi-scale features.

Figures 11-14 show the ×8 SR results of SwinIR under the degradation scenario of combining
uniform down-sampling and noise (5% and 10%). SwinIR can capture the fine-scale features
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(a)

(b)

Figure 7: Showcasing baseline SR methods on turbulent fluid flow data (Re = 16000) under
bicubic down-sampling. Here (a) and (b) represent the results of ×8 and ×16 up-sampling
tasks.

of the fluid flow datasets, but it shows limited reconstruction capability for cosmology and
weather data.

Figure 15-17 showcases the baseline results on the fluid and cosmology data, using LR
simulation data as inputs. The LR input data, characterized by a lack of fine-scale and
high-frequency information, poses challenges in recovering the corresponding HR counterparts.
As a result, all baseline models present limitations in this SR track.

D.2 Detailed Baseline Performance

The baseline results of all experiments are summarized in the following tables. The error
metrics include RFNE (↓%), infinity norm (IN↓), PSNR (↑dB), and SSIM (↑). In addition,
we also evaluate the performance of physics preservation on fluid flow datasets by measuring
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(a)

(b)

Figure 8: Showcasing baseline SR methods on very turbulent fluid flow data (Re = 32000)
under bicubic down-sampling. Here (a) and (b) represent the results of ×8 and ×16 up-
sampling tasks.

continuity loss, as shown in Table 13. The baseline models demonstrate superior SR
performance in terms of interpolation errors, indicating the relative ease of the interpolation
task compared to extrapolation.

Tables 4-7 reveal that SwinIR outperforms other baseline models in terms of RFNE and
SSIM metrics, except for the ×8 up-sampling task on fluid flow data (Re = 16000) and ×16
up-sampling on cosmology data. In terms of PSNR, EDSR exhibits better performance on
fluid flow datasets, while SwinIR demonstrates superiority on cosmology (×8) and weather
data. These results empirically validate the effectiveness of SwinIR in learning multi-scale
features.

Furthermore, Tables 8-9 present the ×8 SR results of SwinIR on the SuperBench dataset
under noisy scenarios with uniform down-sampling degradation. These scenarios simulate
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(a)

(b)

Figure 9: Showcasing baseline SR methods on cosmology data under bicubic down-sampling.
Here (a) and (b) represent the results of ×8 and ×16 up-sampling tasks.

real-world experimental conditions, where the existence of noise introduces difficulties in
reconstructing high-fidelity scientific data. As the noise level increases, the SR task becomes
progressively demanding.

We show the baseline performance of ×8 SR on the LR simulation scenarios in Table 10-12.
This task is much more complicated compared to the scenarios involving down-sampling
methods for degradation. LR simulation data, in comparison to common down-sampling
methods, exhibits a more significant loss of fine-scale and high-frequency features. Moreover,
the numerical errors in LR simulations play a crucial role in challenging deep learning models
when recovering HR counterparts.
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(a)

(b)

Figure 10: Showcasing baseline SR methods on weather data under bicubic down-sampling.
Here (a) and (b) represent the results of ×8 and ×16 up-sampling tasks.

Appendix E. Reproducibility

The code for processing the datasets, running baseline models, and evaluating model perfor-
mance is publicly available in our GitHub repository. The README file contains system
requirements, installation instructions, and running examples. Detailed training information
is provided in Appendix C.

Appendix F. Data Hosting, Licensing, Format, and Maintenance

SuperBench is a collaborative effort involving a diverse team from different institutes, in-
cluding Lawrence Berkeley National Lab (LBNL), University of California at Berkeley,
International Computer Science Institute (ICSI), and University of Tennessee, Knoxville. In
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Figure 11: Showcasing baseline SR methods on fluid flow data (Re = 16000) under uniform
down-sampling and noise. Here (a) and (b) show the results of ×8 up-sampling considering
5% and 10% noise, respectively.
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Figure 12: Showcasing baseline SR methods on fluid flow data (Re = 32000) under uniform
down-sampling and noise. Here (a) and (b) show the results of ×8 up-sampling considering
5% and 10% noise, respectively.

this section, we provide detailed information on SuperBench dataset, such as data hosting,
data licensing, data format, and maintenance plans.
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Figure 13: Showcasing baseline SR methods on cosmology data under uniform down-sampling
and noise. Here (a) and (b) show the results of ×8 up-sampling considering 5% and 10%
noise, respectively.
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Figure 14: Showcasing baseline SR methods on weather data under uniform down-sampling
and noise. Here (a) and (b) show the results of ×8 up-sampling considering 5% and 10%
noise, respectively.

F.1 Data Hosting

SuperBench is hosted on the shared file systems of the National Energy Research Scientific
Computing Center (NERSC) platform. The data is publicly available with the following
link (https://portal.nersc.gov/project/dasrepo/superbench). Users can download the dataset
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Figure 15: Showcasing baseline SR methods on turbulent fluid flow data (Re = 16000) with
LR simulation data as inputs. The results are based on ×4 up-sampling.

Figure 16: Showcasing baseline SR methods on turbulent fluid flow data (Re = 32000) with
LR simulation data as inputs. The results are based on ×4 up-sampling.

locally by either clicking on the provided link or using the wget command in the terminal.
In addition, the code used to process the dataset and run the baseline models is available
on our GitHub repository (https://github.com/erichson/SuperBench). We also provide the
pre-trained model weights via Google Drive (link).
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Figure 17: Showcasing baseline SR methods on cosmology data with LR simulation data as
inputs. The results are based on ×8 up-sampling.

Table 4: Results for fluid flow data (Re = 16000) with bicubic down-sampling.

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 8 0.12 0.25 33.18 0.91 0.12 0.19 34.68 0.92 0.00 M
FNO 8 0.06 0.16 29.74 0.94 0.06 0.16 29.69 0.94 4.75 M
SRCNN 8 0.13 0.28 32.29 0.91 0.12 0.23 33.62 0.92 0.07 M
subpixelCNN 8 0.04 0.09 44.83 0.99 0.04 0.07 46.23 0.99 0.34 M
SRGAN 8 0.13 2.83 30.26 0.95 0.14 3.24 31.16 0.96 1.70 M
EDSR 8 0.03 0.06 47.01 0.99 0.02 0.05 48.28 1.00 1.67 M
WDSR 8 0.03 0.10 51.91 0.99 0.03 0.08 53.53 0.99 1.40 M
SwinIR 8 0.02 0.27 51.88 1.00 0.02 0.26 52.95 1.00 12.05 M
SwinIR(Phy) (λp = 0.001) 8 0.02 0.28 54.55 1.00 0.02 0.25 55.70 1.00 12.05 M
Bicubic 16 0.22 0.37 27.57 0.82 0.21 0.31 29.03 0.85 0.00 M
FNO 16 0.14 0.26 22.98 0.80 0.14 0.26 22.89 0.81 4.75 M
SRCNN 16 0.23 0.43 27.08 0.83 0.23 0.36 28.50 0.85 0.07 M
subpixelCNN 16 0.08 0.15 39.30 0.93 0.08 0.12 40.53 0.95 0.67 M
SRGAN 16 0.30 2.55 23.39 0.86 0.28 2.53 25.18 0.88 1.85 M
EDSR 16 0.07 0.12 41.00 0.95 0.07 0.10 42.35 0.96 1.81 M
WDSR 16 0.08 0.19 41.37 0.94 0.07 0.15 43.01 0.95 1.62 M
SwinIR 16 0.07 0.13 41.79 0.95 0.06 0.11 43.01 0.96 12.20 M
SwinIR(Phy) (λp = 0.001) 16 0.06 0.57 44.45 0.96 0.06 0.57 45.38 0.97 12.20 M

F.2 Data Licensing

SuperBench is released under an Open Data Commons Attribution License. The fluid flow
and cosmology datasets are produced by the authors themselves. The ERA5 dataset provided
in SuperBench is available in the public domain.1 It is free to use for research purposes.

1. The corresponding data license can be accessed at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-complete?tab=overview.
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Table 5: Results for fluid flow data (Re = 32000) with bicubic down-sampling.

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 8 0.15 0.26 32.62 0.89 0.14 0.22 33.84 0.90 0.00 M
FNO 8 0.08 0.18 28.63 0.92 0.08 0.18 28.46 0.92 4.75 M
SRCNN 8 0.13 0.27 32.65 0.91 0.12 0.22 34.06 0.92 0.07 M
subpixelCNN 8 0.06 0.11 42.53 0.97 0.06 0.10 43.43 0.97 0.34 M
SRGAN 8 0.17 2.38 29.14 0.93 0.16 2.64 29.96 0.93 1.70 M
EDSR 8 0.04 0.08 45.27 0.98 0.04 0.07 46.21 0.99 1.67 M
WDSR 8 0.05 0.13 48.44 0.98 0.05 0.11 49.64 0.98 1.40 M
SwinIR 8 0.04 0.52 46.56 0.99 0.04 0.50 47.52 0.85 12.05 M
SwinIR(Phy) (λp = 0.001) 8 0.03 0.42 50.53 0.99 0.03 0.42 51.30 0.99 12.05 M
Bicubic 16 0.24 0.40 27.31 0.80 0.23 0.33 28.50 0.82 0.00 M
FNO 16 0.16 0.28 22.38 0.77 0.16 0.28 22.21 0.77 4.75 M
SRCNN 16 0.22 0.41 27.23 0.82 0.21 0.34 28.61 0.84 0.07 M
subpixelCNN 16 0.15 0.25 32.49 0.86 0.15 0.22 33.42 0.88 0.67 M
SRGAN 16 0.31 2.80 23.70 0.85 0.30 2.84 24.63 0.86 1.85 M
EDSR 16 0.09 0.14 39.72 0.93 0.09 0.13 40.67 0.94 1.81 M
WDSR 16 0.10 0.22 39.75 0.91 0.10 0.18 40.94 0.92 1.62 M
SwinIR 16 0.09 0.14 41.31 0.93 0.08 0.13 42.20 0.94 12.20 M
SwinIR(Phy) (λp = 0.001) 16 0.08 0.76 42.24 0.94 0.08 0.75 42.87 0.94 12.20 M

Table 6: Results for cosmo dataset with bicubic down-sampling.

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 8 0.36 0.65 30.02 0.77 0.36 0.65 30.21 0.77 0.00 M
FNO 8 0.15 0.34 29.23 0.89 0.15 0.34 28.95 0.89 4.75 M
SRCNN 8 0.36 8.68 30.27 0.79 0.36 8.24 30.09 0.78 0.06 M
subpixelCNN 8 0.16 5.72 37.39 0.95 0.16 5.47 37.31 0.95 0.30 M
SRGAN 8 0.20 8.06 35.66 0.94 0.21 7.61 35.16 0.91 1.70 M
EDSR 8 0.15 5.63 37.93 0.95 0.15 5.30 37.85 0.95 1.66 M
WDSR 8 0.16 5.80 37.58 0.95 0.16 5.45 37.51 0.95 1.38 M
SwinIR 8 0.14 5.72 38.21 0.96 0.14 5.34 38.11 0.95 12.05 M
Bicubic 16 0.58 8.86 26.12 0.55 0.59 8.54 25.93 0.55 0.00 M
FNO 16 0.40 0.57 20.38 0.56 0.41 0.58 20.04 0.55 4.75 M
SRCNN 16 0.59 10.03 25.93 0.57 0.60 9.63 25.78 0.56 0.06 M
subpixelCNN 16 0.39 7.68 29.61 0.71 0.39 7.40 29.38 0.71 0.52 M
SRGAN 16 0.38 8.80 29.69 0.72 0.40 8.38 29.27 0.70 1.85 M
EDSR 16 0.38 7.61 29.81 0.72 0.38 7.32 29.58 0.71 1.81 M
WDSR 16 0.39 7.82 29.57 0.71 0.40 7.46 29.34 0.70 1.51 M
SwinIR 16 0.37 7.61 29.89 0.72 0.38 7.28 29.65 0.72 12.19 M

F.3 Data Format

SuperBench consists of seven distinct data files: two NSKT datasets (nskt_16k and nskt_32k);
two NSKT datasets with ×4 LR simulations (nskt_16k_sim_4 and nskt_32k_sim_4); cos-
mology data (cosmo); cosmology data with ×8 LR simulations (cosmo_sim_8); and weather
data (climate). Table 14 shows the variables/channels considered in each dataset. Each data
file includes five sub-directories: one training dataset (train file), two validation datasets
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Table 7: Results for weather dataset with bicubic down-sampling.

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 8 0.18 0.64 26.48 0.83 0.18 0.64 26.52 0.83 0.00 M
FNO 8 0.13 0.47 25.33 0.79 0.13 0.46 25.37 0.79 4.75 M
SRCNN 8 0.16 0.61 27.29 0.84 0.16 0.61 27.35 0.84 0.07 M
subpixelCNN 8 0.12 0.49 30.27 0.89 0.12 0.49 30.33 0.89 0.34 M
SRGAN 8 0.18 2.71 25.31 0.82 0.18 2.70 25.60 0.83 1.70 M
EDSR 8 0.12 0.55 30.28 0.89 0.12 0.55 30.35 0.89 1.67 M
WDSR 8 0.13 0.59 29.62 0.89 0.13 0.59 29.68 0.89 1.40 M
SwinIR 8 0.11 0.48 31.21 0.90 0.11 0.48 31.28 0.90 12.05 M
Bicubic 16 0.28 0.71 22.34 0.74 0.28 0.71 22.37 0.74 0.00 M
FNO 16 0.22 0.58 18.86 0.68 0.21 0.67 18.98 0.68 4.75 M
SRCNN 16 0.25 0.64 23.20 0.75 0.25 0.63 23.26 0.75 0.07 M
subpixelCNN 16 0.20 0.55 25.87 0.81 0.19 0.55 25.92 0.81 0.67 M
SRGAN 16 0.26 2.73 22.21 0.77 0.25 2.73 22.48 0.78 1.85 M
EDSR 16 0.19 0.60 25.95 0.81 0.19 0.59 26.01 0.81 1.81 M
WDSR 16 0.21 0.66 24.99 0.79 0.21 0.65 25.05 0.80 1.62 M
SwinIR 16 0.18 0.56 26.40 0.82 0.18 0.55 26.43 0.82 12.20 M

Table 8: Results of SwinIR for SuperBench datasets with uniform down-sampling and 5%
noise.

UF Interpolation Errors Extrapolation Errors

Datasets (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Fluid flow (16k) 8 0.03 0.50 46.60 0.99 0.03 0.48 47.77 0.99 12.05 M
Fluid flow (32k) 8 0.05 0.68 44.13 0.98 0.05 0.66 44.91 0.98 12.05 M
Weather 8 0.12 2.14 30.01 0.89 0.12 2.21 30.04 0.89 12.05 M
Cosmology 8 0.19 7.77 35.66 0.93 0.19 7.37 35.60 0.93 12.05 M

Table 9: Results of SwinIR for SuperBench datasets with uniform down-sampling and 10%
noise.

UF Interpolation Errors Extrapolation Errors

Datasets (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Fluid flow (16k) 8 0.04 0.57 42.47 0.98 0.04 0.55 43.63 0.98 12.05 M
Fluid flow (32k) 8 0.06 0.79 41.31 0.96 0.06 0.76 42.04 0.97 12.05 M
Weather 8 0.13 2.16 29.11 0.87 0.13 2.22 29.15 0.88 12.05 M
Cosmology 8 0.21 7.81 35.14 0.92 0.21 7.39 35.06 0.91 12.05 M

(valid_1 and valid_2) files for validating interpolation and extrapolation performance), and
two testing datasets (test_1 and test_2) files for testing interpolation and extrapolation
performance). More details about the design of interpolation and extrapolation datasets
can be found in Appendix A. The data in each sub-directory is stored in the HDF5 (Folk
et al., 2011) binary data format. The code for loading/reading each dataset is provided in
the SuperBench repository.
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Table 10: Results for cosmology with LR simulation data as inputs.

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 8 1.01 8.60 21.28 0.33 1.01 8.58 21.33 0.34 0.00 M
FNO 8 0.63 0.70 16.38 0.34 0.62 0.70 16.46 0.35 4.75 M
SRCNN 8 0.69 9.95 24.49 0.46 0.69 10.03 24.53 0.46 0.06 M
subpixelCNN 8 0.66 9.76 24.83 0.47 0.66 9.76 24.85 0.48 0.30 M
SRGAN 8 0.64 10.01 25.08 0.49 0.65 10.00 25.10 0.50 1.70 M
EDSR 8 0.67 9.79 24.80 0.48 0.67 9.87 24.82 0.48 1.66 M
WDSR 8 0.66 9.72 24.85 0.48 0.66 9.79 24.88 0.48 1.38 M
SwinIR 8 0.66 9.73 24.91 0.48 0.66 9.83 24.93 0.48 12.05 M

Table 11: Results for fluid flow data (Re = 16000) with LR simulation data as inputs

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 4 0.30 3.26 24.17 0.75 0.31 4.01 23.85 0.74 0.00 M
FNO 4 0.28 0.52 17.91 0.64 0.29 0.52 17.86 0.63 4.75 M
SRCNN 4 0.25 3.05 25.43 0.79 0.26 3.22 25.03 0.78 0.07 M
subpixelCNN 4 0.23 2.91 26.10 0.80 0.25 3.31 25.58 0.79 0.26 M
SRGAN 4 0.25 3.21 25.52 0.81 0.26 3.70 24.97 0.79 1.55 M
EDSR 4 0.22 2.87 26.70 0.82 0.24 3.42 25.82 0.80 1.52 M
WDSR 4 0.23 2.97 26.18 0.81 0.24 3.33 25.62 0.80 1.35 M
SwinIR 4 0.22 2.78 26.63 0.82 0.24 3.32 25.61 0.80 11.90 M
SwinIR(Phy) (λp = 0.001) 4 0.23 2.80 26.24 0.81 0.25 3.27 25.32 0.79 11.90 M

Table 12: Results for fluid flow data (Re = 32000) with LR simulation data as inputs

UF Interpolation Errors Extrapolation Errors

Baselines (×) RFNE IN PSNR SSIM RFNE IN PSNR SSIM # par.

Bicubic 4 0.33 3.80 23.77 0.73 0.34 3.84 23.18 0.72 0.00 M
FNO 4 0.31 0.55 13.26 0.59 0.32 0.58 12.86 0.58 4.75 M
SRCNN 4 0.27 3.36 24.99 0.77 0.28 3.64 24.35 0.75 0.07 M
subpixelCNN 4 0.26 3.34 25.65 0.78 0.27 3.75 24.80 0.77 0.26 M
SRGAN 4 0.28 3.71 24.92 0.78 0.29 3.83 24.10 0.77 1.55 M
EDSR 4 0.25 3.29 25.88 0.79 0.27 3.71 24.77 0.77 1.52 M
WDSR 4 0.25 3.34 25.84 0.79 0.27 3.72 24.94 0.78 1.35 M
SwinIR 4 0.24 3.30 26.24 0.80 0.27 3.58 24.91 0.78 11.90 M
SwinIR(Phy) (λp = 0.001) 4 0.25 3.27 26.27 0.80 0.27 3.62 24.93 0.78 11.90 M

F.4 Maintenance Plan

SuperBench will be maintained by LBNL. Any encountered issues will be promptly addressed
and updated in the provided data and GitHub repository links. Moreover, as highlighted
in the Conclusion (Section 6), SuperBench offers an extendable framework to include new
datasets and baseline models. We encourage contributions from the SciML community and
envision SuperBench as a collaborative platform. Future versions of SuperBench dataset will
be released.
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Table 13: Results of physics errors on fluid flow data.

UF Down-sampling Noise Re = 16000 Re = 32000

Methods (×) (%) Interp. Extrap. Interp. Extrap. # par.

Bicubic 8 Bicubic 0 0.92 0.88 1.00 0.96 0.00 M
SRCNN 8 Bicubic 0 4.72 4.16 2.87 2.53 0.07 M
FNO 8 Bicubic 0 12.18 11.70 11.61 11.82 4.75 M
subpixelCNN 8 Bicubic 0 0.68 0.61 0.96 0.88 0.34 M
SRGAN 8 Bicubic 0 5502.12 5048.78 8540.48 8077.06 1.70 M
EDSR 8 Bicubic 0 0.19 0.16 0.30 0.27 1.67 M
WDSR 8 Bicubic 0 0.61 0.54 0.93 0.85 1.40 M
SwinIR 8 Bicubic 0 0.09 0.07 0.04 0.04 12.05 M
SwinIR (λp = 0.001) 8 Bicubic 0 0.02 0.02 0.02 0.02 12.05 M
Bicubic 16 Bicubic 0 0.82 0.79 0.88 0.84 0.00 M
SRCNN 16 Bicubic 0 3.31 3.04 3.50 3.22 0.07 M
FNO 16 Bicubic 0 25.57 25.55 20.33 20.21 4.75 M
subpixelCNN 16 Bicubic 0 0.70 0.64 42.85 40.11 0.67 M
SRGAN 16 Bicubic 0 21688.79 20672.48 38924.85 38117.07 1.85 M
EDSR 16 Bicubic 0 0.49 0.44 0.36 0.32 1.81 M
WDSR 16 Bicubic 0 1.79 1.66 1.45 1.32 1.62 M
SwinIR 16 Bicubic 0 0.50 0.43 0.30 0.26 12.20 M
SwinIR (λp = 0.001) 16 Bicubic 0 0.05 0.04 0.05 0.04 12.20 M
Bicubic 4 LR Simulation 0 1.99 2.01 2.51 2.54 0.00 M
SRCNN 4 LR Simulation 0 11.56 11.78 13.77 14.08 0.07 M
FNO 4 LR Simulation 0 75.15 76.20 86.06 89.85 4.75 M
subpixelCNN 4 LR Simulation 0 8.85 8.76 11.35 11.88 0.26 M
SRGAN 4 LR Simulation 0 22001.4 22155.21 16404.89 16522.42 1.55 M
EDSR 4 LR Simulation 0 4.34 4.35 4.34 4.21 1.52 M
WDSR 4 LR Simulation 0 4.66 4.78 6.11 6.22 1.35 M
SwinIR 4 LR Simulation 0 1.18 1.16 1.35 1.30 11.90 M
SwinIR (λp = 0.001) 4 LR Simulation 0 0.29 0.28 0.30 0.29 11.90 M
SwinIR 8 Noisy Uniform 5 0.14 0.12 0.14 0.12 12.05 M
SwinIR 8 Noisy Uniform 10 0.18 0.15 0.18 0.15 12.05 M

Table 14: Summary of variables in SuperBench datasets.

Data name Variables/Channels (in order)

nskt_16k velocity (x), velocity (y), and vorticity
nskt_16k_sim_4 velocity (x), velocity (y), and vorticity
nskt_32k velocity (x), velocity (y), and vorticity
nskt_32k_sim_4 velocity (x), velocity (y), and vorticity
cosmo temperature and baryon density
cosmo_sim_8 temperature and baryon density
climate KE at 10m from surface, temperature at 2m from surface, and total column water vapor

Appendix G. Guidelines for Responsible Use

To ensure the responsible use of our SuperBench datasets, we propose the following guidelines:

Fair and transparent comparison. Users are encouraged to report experimental results
clearly and consistently, following standardized metrics provided in Table 2. We also suggest
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to present details about hyperparameters, training protocols, and preprocessing steps to
enable reproducibility.

Ethical principles. The datasets should only be used for research and educational purposes.
Commercial or malicious applications are discouraged. Users must respect intellectual
property rights and appropriately credit the dataset creators and contributors as detailed in
the licensing terms.

Domain context. Users are encouraged to use the domain-specific metrics included in
SuperBench, such as continuity errors and energy spectrum evaluation for fluid dynamics if
applicable. SR methods, if not properly validated, could introduce artifacts or inaccuracies
that may lead to misleading scientific conclusions.

Community contributions. SuperBench is designed to be extensible, and we welcome the
addition of new datasets or evaluation metrics. Contributors should ensure these additions
align with the existing structure and standards. Users are encouraged to share feedback and
improvements for inclusion in future updates.

Appendix H. Datasheet

H.1 Motivation

• For what purpose was the dataset created? SuperBench serves as a benchmark dataset
for evaluating spatial SR methods in scientific applications.

• Who created this dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? This dataset is a collaborative effort
involving a diverse team from different institutes, including Lawrence Berkeley National
Lab (LBNL), University of California at Berkeley, International Computer Science
Institute (ICSI), and the University of Tennessee.

• Who funded the creation of the dataset? The main funding body is the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) program. Other funding is from the
National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley
National Laboratory.

H.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Each instance contains a pair of LR input and HR output. The
inputs and outputs are snapshots of various scientific data.

• How many instances are there in total (of each type, if appropriate)? The LR and HR
pairs include 11455 instances for all these datasets in SuperBench.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? No, this dataset is a subset of larger sets.
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• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features?Each instance consists of LR downgraded data and HR simulation data.

• Is there a label or target associated with each instance? Yes, each instance includes a
target HR data.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? No.

• Are there recommended data splits (e.g., training, development/validation, testing)?
The data split has already been done in the stage of preprocessing. We use “train”,
“valid1”, “valid2”, “test1”, and “test2” to represent the training set, in-distribution
validation set, out-of-distribution validation set, in-distribution testing set, out-of-
distribution testing set. The detailed data splitting is presented in Table 1.

• Are there any errors, sources of noise, or redundancies in the dataset? No.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The weather data is from the original ERA5
dataset. The fluid and cosmology datasets are self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals non-public communications)? No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

• Does the dataset relate to people? No.

• Does the dataset identify any subpopulations (e.g., by age, gender)? No.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? No.

• Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? No.

H.3 Collection Process

• How was the data associated with each instance acquired? The fluid data associated
with each instance is acquired from Direct Numerical Simulation (DNS). The cosmology
data is simulated using the Nyx code. The weather data is subsampled from the ERA5
dataset. More detailed information can be found in Section 3.1.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? The fluid and
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cosmology data are simulated using multiple Nvidia Tesla A100 GPU nodes in Permultter,
which is a supercomputer at LBNL.

• Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Postdoc fellows and scientists from LBNL as well as a professor from the University of
Tennessee were involved in the data collection process.

• Does the dataset relate to people? No.

• Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)? We collect fluid and cosmology data from
numerical simulations. The weather data is from the original ERA5 dataset.

H.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? Yes. The inputs and outputs have been labeled
as LR and HR pairs.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? Yes. The “raw” data is saved in Perlmutter for
future use.

• Is the software used to preprocess/clean/label the instances available? Yes. The code
is saved in Perlmutter for future use.

H.5 Uses

• Has the dataset been used for any tasks already? No.

• Is there a repository that links to any or all papers or systems that use the dataset?
Yes. The repository is provided at https://github.com/erichson/SuperBench.

• What (other) tasks could the dataset be used for? It can also be used for other
image-related tasks, such as watermarking. The weather dataset is also applicable for
spatiotemporal forecasting tasks.

• Are there tasks for which the dataset should not be used? The fluid and cosmology
data are unsuitable for spatiotemporal forecasting.

H.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset
is available to the public.

• How will the dataset be distributed (e.g., tarball on website, API, GitHub) The dataset
is distributed through the shared file systems of the National Energy Research Scientific
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Computing Center (NERSC) platform. The code is distributed through the GitHub
repository.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? Yes, the data is distributed under
an Open Data Commons Attribution License.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

H.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset? LBNL will be support-
ing/hosting/maintaining the dataset.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
The owner/curator/manager of the dataset be contacted with: pren@lbl.gov (Pu Ren)
and erichson@lbl.gov (N. Benjamin Erichson).

• Is there an erratum? No. If there is any error, we will update the associated data or
code immediately and post it on our GitHub repository.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes. We will update the associated data or code using the provided data
and GitHub repository links.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? N/A.

• Will older versions of the dataset continue to be supported/hosted/maintained? Yes.

• If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? Yes. SuperBench offers an extendable framework to
include new datasets and baseline models. The researchers may consider opening an
issue on the GitHub repository and providing a link to your datasets with data details.
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