LoRACoE: Improving Large Language Models via
Compostion-based LoRA Expert

Anonymous ACL submission

Abstract

The Mixture of Experts (MoE) architecture im-
proves large language models (LLMs) by uti-
lizing sparsely activated expert sub-networks
with a routing module, yet it typically demands
high training cost. Previous work introduces
parameter-efficient fine-tuning (PEFT) mod-
ules, e.g., LoRA, to achieve a lightweight MoE
for efficiency. However, they construct static
experts by manually splitting the LoORA param-
eters into fixed groups, which limits flexibil-
ity and dynamism. Furthermore, this manual
partitioning also hinders the effective utiliza-
tion of well-initialized LoRA modules. To
tackl the challenges, we first delve into the
parameter patterns in LoRA modules, reveal-
ing that there exists task-relevant parameters
that are concentrated along the rank dimension.
Based on this, we redesign the construction
of experts and propose the LORACoE (LoRA
Composition of Experts) method. Specifically,
when confronted with a task, it dynamically
builds experts based on rank-level parameter
composition, i.e., experts can flexibly com-
bine rank-level parameters in LoORA module.
Extensive experiments demonstrate that com-
pared to other LoRA-based MoE methods, our
method achieves better task performance across
a broader range of tasks.

1 Introduction

Recent advanvements show that the Mixture of
Experts (MoE) architecture (Fedus et al., 2022;
Jiang et al., 2024; Liu et al., 2024; Pio6ro et al.,
2024; Yu et al., 2024) enhances the performance
of large language models (LLMs) over traditional
dense architectures (Chen et al., 2024a). In MoE,
the model’s parameters are organized into groups
known as "experts". During each forward pass,
these experts are sparsely activated via a routing
mechanism (Fedus et al., 2022; Jiang et al., 2024),
reducing the inference cost of LLMs.

However,
during fine-tuning (Wei et al., 2021; Taori et al.,

Original LoRA LoRAMoE

Expen 1

[oRAMoF Routing

Uniform Routing|
Expert 2

!
!
!
|
!
|
!
|
|
|
““ I ® ||“
routmg } routing
weig hts | weights
1 Expert 3
!
| B a
!
!
!

,,

A]]]l

LoRACOE (Ours)
LoRACOE Routing
D/\,I rolltmg
weights
L

Figure 1: Comparison of construction in LoRA, Lo-
RAMOE, and LoRACOoE (Ours). Our method is based
on a finer-grained partitioning of LoRA parameters, in-
corporating a redesigned expert mechanism that dynam-
ically composite LoORA parameters at output, thereby
achieving improved task performance.

2023), all model parameters (or experts) still need
to be optimized, which makes the training process
inefficient (Jiang et al., 2024; Liu et al., 2024; Piéro
et al., 2024; Yu et al., 2024).

To achieve lightweight, training-efficient MoE,
recent work integrates MoE with Parameter-
Efficient Fine-Tuning (PEFT) techniques (Hu et al.,
2021; Dettmers et al., 2023; Xu et al., 2024), repre-
sented by LoRA-based MoE (Huang et al., 2023;
Zhu et al., 2023; Dou et al., 2024; Feng et al.,
2024b; Li et al., 2024). In LoRA-based MoE, only
the added low-rank adapters are updated during
fine-tuning. However, they manually partition low-
rank adapters into parameter groups based on the
rank dimension to define experts (see Figure 1).
This static construction approach fixes the number
of experts and the parameters assigned to each ex-
pert, limiting the flexibility and dynamism of the

MOoE architecture (Dou et al., 2024; Ning et al.,
2024). Furthermore, such approach also hinders
the effective utilization of well-initialized LoRA
modules (Hayou et al., 2024), thereby increasing
the training cost.

In this work, we rethink the design of experts
in LoRA-based MoE to achieve a lightweight, dy-
namic, and flexible architecture. We begin by an-
alyzing parameter importance (Molchanov et al.,
2019; Zhang et al., 2022, 2024) within LoRA mod-
ules and observe that each parameter holds varying
importance across different tasks. More precisely,
this variation occurs along the rank dimension, i.e.,
for certain tasks, parameters in some ranks are
more crucial than those in other ranks (see Section
2.2). This phenomenon inspires us to re-weight
the outputs of different ranks in the LoRA mod-
ule, allowing for better utilization of task-related
parameters.

Based on this insight, we propose (LoRA
Composition of Experts) that can provides a flexi-
ble and dynamic construction of experts. Instead
of manually partitioning parameters to construct
experts, it defines an expert as a weighted combina-
tion of ranks. To be more specific, when confronted
with a task, the route module predicts the impor-
tance weight of each rank, and an expert is build
upon the rank parameters weighted by these pre-
dictions. We state that this architectural shift from
partitioning to compositional expert construction
provides finer control over LoRA parameters, opti-
mizing their utilization for better performance.

Extensive experiments on commonsense reason-
ing and mathematical tasks, conducted across six
backbone models (Touvron et al., 2023; Zhu et al.,
2024; Yang et al., 2024) and thirteen datasets (Hu
et al., 2023; Mitra et al., 2024) demonstrate that
LoRACOE outperforms both the original LoRA
method and LoRA-based MoE approaches by sig-
nificant margins. Our contributions are summa-
rized as follows: !

1. We reveal the task-specific importance dis-
tribution across the rank dimension within
the original LORA method through parameter-
importance analysis.

2. Based on the findings, we propose a new ex-
pert construction method called LoORACoE
that shifts from static parameter partitioning
to dynamic parameter combination.

'We will release our implementations to the public.

3. We conduct extensive experiments on com-
monsense reasoning and mathematical tasks
across different six models and thirteen
datasets to demonstrate the effectiveness of
our method.

2 Preliminaries and Observations

2.1 Preliminaries

Low-Rank adaptation. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) is a parameter efficient
fine-tuning technique for large pre-trained mod-
els. Traditional fine-tuning approaches update all
model parameters, which can be computationally
expensive. LoRA addresses this by inserting train-
able low-rank matrices into the FFN layers or at-
tention matrices of models to capture the necessary
updates. This approach significantly reduces the
number of trainable parameters, thereby lowering
computational and storage costs.

Concretely, given a pre-trained weight matrix
Wy € R¥™F, LoRA approximates the update to
Wy as the product of two low-rank matrices,and
the updated weights W are calculated through:

W =Wy + BA,

where B € R¥™" and A € R™*F, with r <
min(d, k). During fine-tuning, only the matrices A
and B are updated, while the original weights W)
remain frozen, making the fine-tuning process both
memory and computation-efficient.

Mixture of experts. Mixture of Experts (MoE)
(Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin
et al., 2020) utilizes a sparse parameter activation
pattern, enabling the model to scale the number of
parameters while maintaining a constant computa-
tional cost. MoE architecture divides the param-
eters of the traditional transformer Feed-Forward
Network (FFN) layer into N experts, denoted as
{E;}} |, and designs a corresponding router g. For
a given input z, the output y of the MoE layer is a
weighted sum of outputs from NV experts:

N
y=>_gi(z)Ei(x),
=1

where E;(x) is the output of expert i, and g;(x) is
the routing function’s output. The routing function
varies depending on the specific routing algorithm
design.

Parameter importance. In previous studies on
the capabilities of LLM parameters, researchers
have identified regions within the model parame-
ters that are highly task-relevant (Zhang et al., 2024;
Chen et al., 2024b). This insight motivates us to in-
vestigate similar regions within the LoRA modules.
We adopt a commonly used method from previous
work (Molchanov et al., 2019; Zhang et al., 2022)
on parameter sensitivity analysis to apply to the
LoRA modules.

The assumption in these studies is that remov-
ing a parameter (by setting its value to zero) and
evaluating its impact on the model’s loss function
can reveal its importance. Specifically, given a
dataset D and a set of model parameters 8 =
01,09, ...,04) € R, with 0; representing the j-
th parameter. During training, the objective is to
minimize the loss function L, which depends on
both the dataset D and the model parameters 6.
The importance of the j-th parameter ¢; is denoted
as 1;(#). The importance of a parameter can be
quantified by the error introduced when that param-
eter is removed, which, under the i.i.d. assumption,
can be approximated by calculating the squared
difference in loss before and after removing the
parameter:

7;(0) = |£(D, L(0)) — L(D,0]6; = 0)|. (1)

However, calculating this importance by remov-
ing each parameter and measuring the change
in loss is computationally expensive, particularly
when the model has a large number of parameters.
Therefore, following prior work (Molchanov et al.,
2019; Zhang et al., 2022), we can use the Taylor
expansion formula for £ at §; = 0:

L(D,6) = L(D,0]6; = 0)+

oL 1 0%L

2)
87]-(9] -0)+ 21007

(0 = 002+ -+

After performing the Taylor expansion, calculat-
ing the higher-order terms still remains a resource-
intensive task. Therefore, we approximate the im-
portance scores using only the first-order term of
the Taylor expansion:

oL
00;
2.2 Observation of LoRA Modules

To investigate the properties of the LoRA mod-
ule parameters, we trained LoRA using datasets

1,6) ~] 0,)

(104

Importance Score Variance
9
n

o 5 10 15 20 25 30

up_proj_rank
down_proj_rank
q_proj_rank

k_proj_rank
v_proj_rank
rank_avg

up_proj_d k_proj_d
down_proj_d v_proj_d
q_proj_d d_or_k_avg

Figure 2: Average variance of the importance of LoRA
module parameters across different dimensions. Here,
rank_avg and d_or_k_avg represent the average vari-
ance calculated in the rank dimension and the input or
output dimensions of the LoORA module, respectively.

from multiple commonsense reasoning and math-
ematical tasks. For the commonsense tasks, we
select 75k samples from the commonsense task
training set of Hu et al. (2023), which includes
eight datasets: BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-c, ARC-¢e (Clark et al.,
2018), and OBQA (Mihaylov et al., 2018). For
the mathematical tasks, we curated 75k samples
from the OrcaMath (Mitra et al., 2024) to form
our math task dataset. We add the LoRA module
to different components of the model, including
the g_proj, k_proj, v_proj of attention modules,
as well as the up_proj and down_proj of FFN
modules. The LoRA modules are then trained us-
ing the constructed training set. After training the
LoRA modules, we employ the method described
in Section 2.2 to compute the parameter importance
scores on the validation set for different tasks, ul-
timately obtaining importance scores for each pa-
rameter in relation to the tasks.

Based on the importance scores obtained from
the aforementioned experiments, we can draw the
following conclusions:

Distribution patterns of task-relevant parame-
ters. We computed the average variance of the
parameters of the LoRA module at different posi-
tions, considering both the rank dimension and the
input or output dimensions of the LoRA module.
The statistical results are illustrated in the Figure 2.
we observe that the variance along the rank dimen-
sion is larger compared to the variance along the
input or output dimensions. Compared to the in-
put or output dimensions, the distribution of LoRA

parameters in the rank dimension is more uneven.
This indicates that parameter importance tends to
be more concentrated along the rank dimension
rather than distributed along the input or output di-
mensions of the LoORA module. This phenomenon
provides insights for the subsequent design of more
effective utilization methods for LoORA parameters
in Section 3.

Task-specific parameter activation patterns.
We analyze the importance score patterns of pa-
rameters across different tasks based on the impor-
tance scores. From the parameter importance score
correlation heatmaps across tasks in Figure 3, we
observe significant positive and negative correla-
tions in parameter importance between different
tasks. For instance, in the BoolQ task, the distinct
answer patterns compared to other question types
lead to a notable divergence in parameter impor-
tance patterns relative to other commonsense tasks.
Similarly, for math-related tasks, the activation pat-
terns tend to show more negative correlations with
commonsense tasks, owing to the differences in
task nature. For other commonsense tasks with
similar answer patterns, the parameter importance
patterns exhibit a high degree of correlation, indi-
cating that the model employs similar parameter
utilization patterns when performing these tasks.

Correlation of parameter importance across
ranks. We analyzed the correlation of parameter
importance score in different LoORA ranks across
all tasks. This analysis aims to illustrate the cor-
relation in importance score patterns of different
parameters within the LoRA module as influenced
by varying inputs. As shown in the Figure 3, the
parameter importance across different ranks ex-
hibits either positive or negative correlations when
performing different tasks. This observation sug-
gests that parameters at different rank levels may
have either synergistic or conflicting relationships.
The original LoORA method, which does not apply
weightings to parameters, may lead to suboptimal
utilization of parameters.

Based on these observations, which reveal a task-
specific concentration of parameter importance at
the rank level, we can assume that the LoRA mod-
ule naturally learns a rank-level importance distri-
bution during training. This phenomenon suggests
a certain "specialized" correspondence between dif-
ferent tasks and the parameters within the LoRA
module. Therefore, given the inherent sensitivity
or “expertise” exhibited by the LoORA module’s pa-

rameters, the conventional approach of manually
dividing the LoRA parameters into expert groups
at the rank level needs to be reconsidered.

2.3 Limitations of Partition-based LoORAMoE

Given a LoRA module consists of matrices B €
R™" and A € R"*F, partition-based LORAMOoE
methods will divide B and A into NV sets of param-
eters. Therefore we acquire the result of matrices,
{B;}Y, and {A4;}¥ ,. Expert E; composes of a
pair of B; € R¥™"/N and A; € R"/N** matrices.

Ei(z) = BiAx “)

And with the pre-trained weight matrix Wy €
Rk N partition-based LoraMoE experts, de-
noted as {F;} | and a gating function g(z), the
output y of conventional partition-based methods
typically follow this approach:

N
y = Wox + Zg(m)z‘Ez’(UC))
=1

Under our observations and assumptions, this
method presents two significant drawbacks: (1) By
forcibly binding rank parameters to form experts,
the granularity of utilization controling across pa-
rameters during the learning process is reduced. (2)
The definition of experts in previous work is lim-
ited. Since experts are constructed based on rank
partitioning, the routing and weighted output of
these experts leverage only the parameters within
the ranks they control, without considering the rela-
tionships between the parameters they control and
those in other ranks. This constrains the flexibility
and effectiveness of the expert models.

3 LoRA Compositional Experts

3.1 Rank Wise Parameter Paritioning

Based on the observations from the LoRA mod-
ules trained on multiple tasks in Section 2.2, we
aim to develop a new expert design paradigm.
First, following the approach in (He, 2024), which
decomposes the FFN layer of Transformer mod-
els into vectors of dimension 1, we decompose
the A and B matrices of the LoORA module into
{A; € R™*}_ and {B; € R'}I_,. The fine-
grained partition of LoRA parameters enables us to
effectively control the model’s capabilities with
the finest granularity possible. Meanwhile this
finer-grained, non-binding partitioning allows us to
avoid the need for capability recovery, as required

up_proj_5_LoRA_B

0BQA

ARC-E

ARC-C ~0-25 ARC-C
Hella
PIQA
~ NN
Wino .. Wino

-0.75

OrcaMath . OrcaMath

-1.00
© > oS

o q@ Q_c PO =

up_proj 5 LoRA | 5

D. oo 0.

| [| I""s o BN
I |

A i

« Il .l. . o

; | | .. ~0.00

; o

: - i

S E e 2 ol R

-1.00
01234567809101112131415

k _proj_15_LoRA_B

poce Heln

[-028 i
SiQA

. -—0-50 i@

‘z,n"’c < N‘\ @,

I_proj_15_LoRA_E

0123456789101112131415

1.00 down_proj_25_LoRA_A
I BosiQ .
0.75
0BQA .
050 ARC-E

~0.25 ARC-C
-0.00 Hella

—-0.25 PlQA —-0.25

SiQA

--0.50 --0.50

o 0
-0.75 -0.75
. I OrcaMath . I
-1.00 -1.00
RS V@\“ & @* SPCRCC, Q,v s
down_proj 25 LoRA" A
1.00 1.00
| R | 1 |
HE NN ors 10 [| o075
> Myusny m
3
0.50 : .. g 0.50
0.25 s 0.25
| | s [| l. = | | |
0.00 7 0.00
| 8 | |
l -0.25 9 -0.25
" n
--0.50 1 --0.50
i ! | | 1]
—o7s 13 BE § §Em -0.75
14 |
Bl s BmE

0123456789101112131415

Figure 3: Importance score correlation heatmaps of LoRA parameters for three modules w.r.t. different tasks (top)

and w.r.t. different ranks (bottom).

in upcycling-based MoE models (Zhu et al., 2024).
Instead, we can achieve further optimization based
on an well-initialized LoRA parameters.

3.2 Composition-Based Expert Construction

According to Section 2.2, LoRA parameters ex-
hibit varying importance patterns across different
tasks, and there exists a correlation in importance
between different rank parameters. Consequently,
in previous partition-based LoRAMOE algorithms,
experts could only account for the importance
of local parameters, failing to accurately capture
the correlations among global parameters. Thus,
by incorporating rank-level parameter partitioning,
we propose LORACOE, a design pattern based on
combination-based experts. In LoRACOE, for a
given partitioned LoRA matrices {A; € R'>F}7_,
and {B; € R}, each expert outputs a lin-
ear combination G; based on the input . For Ef
experts, we obtain E sets of linear combinations.

To implement this expert mechanism, we de-
sign a corresponding routing module W,.pue €
R¥EXT For the input to expert Ej, the corre-
sponding parameter group Wy.oyte, € R from
the routing module is used to obtain the weights
@G, as follows:

Gi(z) = Softmazr(Wioute,)

Based on the parameter set {4; € RYK}r_,
and {B; € R>1}"_, of the LoORA module and the
composition weights of rank-level parameters GG

from different experts, the LORACoE module will
output as follows:

N r
1
LoRACOE(x) = Wor + ; J; GijBjAjx

Here, x represents the input to the LoORACOE layer,
Bj and A; represent the j-th vectors in the decom-
posed LoRA B and A matrices, G;; is the weight
of the i-th expert for the j-th rank, and W), refers to
the pre-trained weights. The output of the weighted
LoRA module is then merged with the output of
the pre-trained weight as the final output of the
LoRACOE layer.

3.3 Training Procedure of LORACoE

To ensure effective initialization of the LoRA mod-
ule and a stable training process for LORACoE, we
followed a two-phase training procedure: LoRA
warm-up and joint training. First, for LORA warm-
up, we perform a training of a standard LoRA mod-
ule. This step helps achieve stable and efficient
convergence in the final model (Dua et al., 2021).
Next, we conduct joint training of both the LoRA
parameters and the routing module.

4 Experiments

4.1 Experimental Setup

Dataset. We construct a multi-task dataset based
on commonsense and mathematical reasoning

Model Method Commonsense Math Insturction Following Avg.
FT 65.07 85.69 49.52 66.76

Llama2-7b LoRA 63.26 75.42 55.75 64.81
LoRAMoE 74.01 82.94 57.79 71.58

LoRACoE 80.83 86.49 56.47 74.60

FT 74.49 83.63 61.03 73.05

Llama2-13b LoRA 68.17 82.36 61.27 70.60
LoRAMoE 79.18 87.10 62.23 76.17

LoRACoE 81.53 90.50 65.22 79.08

FT 65.08 85.78 56.95 69.27

Llama3-8b LoRA 68.11 82.69 65.34 72.05
LoRAMoE 78.89 88.98 67.38 78.42

LoRACoE 81.09 92.28 64.62 79.33

FT 53.98 76.13 37.29 55.80

Qwen2-0.5b LoRA 55.15 69.57 35.61 53.44
: LoRAMoE 57.50 72.35 31.89 53.91
LoRACoE 64.24 74.40 35.97 58.20

FT 65.15 82.79 41.72 63.22

Qwen2-1.5b LoRA 73.17 85.03 48.08 68.76
: LoRAMoE 73.81 85.98 46.64 68.81
LoRACoE 74.91 86.18 48.68 69.92

FT 86.15 93.71 61.63 80.50

Qwen2-7b LoRA 84.78 93.88 62.95 80.54
LoRAMoE 85.18 94.36 62.11 80.55

LoRACoE 85.97 94.71 64.26 81.65

Table 1: Evaluating results of different methods on commonsense, math and Instruction following tasks. The best

results are in bold.Our method is marked in blue .

tasks. For commonsense tasks, we randomly select
75k examples from the commonsense dataset in
Hu et al. (2023) as the training set for common
sense tasks. For mathematical tasks, we randomly
sample a 75k subset from Mitra et al. (2024) as
the training set for mathematical tasks. To evaluate
the effectiveness of the method, we select the test
set corresponding to the training set as the bench-
mark for commonsense tasks.While for mathemati-
cal tasks, we chose GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), AddSub (Hosseini
et al., 2014), MultiArith (Roy and Roth, 2016),
SingleEq (Koncel-Kedziorski et al., 2015). Addi-
tionally, to better test the generalization capabil-
ity of our method, we also trained our approach
on instruction-following tasks using datasets from
prior work (Dong et al., 2024).We selected IFEval
(Zhou et al., 2023) as the test set for instruction-
following tasks.

Models. As for the base models, we select
LLaMA2-7B, LLaMA2-13B (Touvron et al., 2023),
LLaMA3-8B (Dubey et al., 2024), Qwen2-0.5B,
Qwen2-1.5B and Qwen2-7B (Yang et al., 2024) to
validate the effectiveness of the method on base

model training at different parameter scales.

Baselines. For comparison methods in the peft
framework, we select LoORA (Hu et al., 2021) and
the partition-base LORAMOE describe in Section
2.2.To further substantiate the effectiveness of our
LoRACOE method, we included HydraLoRA(Tian
et al., 2024), a variant of LORAMOE, as a compara-
tive baseline. The relevant results can be found in
the Appendix9. We also perform fine-tuning of all
parameters in models for comparison.

Implement details. In our experiments, we set
the rank for LoRA, LoORAMOoE, and LoRACOoE to
16, with « set to 32. For LoORAMOE, we configured
the number of experts to 4, while for LORACOE, we
set it to 2. For the LLaMA series models, we used
a batch size of 16, and for the Qwen2 series mod-
els, we set the batch size to 32.To ensure fairness
in training, we set the number of training epochs
for all PEFT methods to 4. For the LoORACoE
method requiring two-stage training, we conduct
two epochs of initialization training followed by
two epochs of joint training. Detailed hyperparam-
eters can be found in Appendix A.To achieve better
inference and training efficiency for LoORACOoE, we

Experts #LoRA Rank CS Avg. Math Avg.
2 8 79.93 84.87
2 16 80.46 86.78
2 32 79.02 87.36
2 16 80.46 86.78
4 16 80.22 86.69
8 16 80.31 86.93
2(inference w/o router) 16 80.02 86.11

Table 2: The ablation of experts and rank on Common-
sense (CS) and Math tasks.

performed computation optimizations tailored to
the architectural characteristics of LORACOE and
the FFN layers. The detailed optimization meth-
ods and the resulting efficiency improvements are
thoroughly analyzed in the Appendix C.

4.2 Experimental Results and Discussion

Main results. The results of our main experi-
ments are in Table 1. Generally, we can observe
that in terms of the overall performance across
the three tasks, the methods with MoE architec-
ture consistently outperform the standard LoRA
approaches across different models, demonstrat-
ing the promise of the sparse architecture. Sec-
ondly, our composition-based LoRACOoE achieves
significant performance improvements over the
partition-based LORAMOoE. Specifically, it outper-
forms LoRAMOE by 3.02%, 2.91%, and 0.91% on
the Llama2-7b, Llama2-13b, and Llama3-8b mod-
els, respectively; on Qwen2 serie of models, Lo-
RACOE outperforms LoRAMOoE by 4.29%, 1.11%,
and 1.01% on the Qwen2-0.5b, Qwen2-1.5b, and
Qwen2-7b models, respectively. This highlights
the advantages of this dynamic and flexible expert
construction approach across all base model sizes,
demonstrating the robustness and scalability of our
method..

Ablation on rank number. We conduct an ab-
lation study on LoRA rank using the Llama2 7B
model on commonsense and mathematical reason-
ing tasks. The results are presented in Table 2. We
find that for mathematical tasks, performance im-
proves as the rank increases, but this trend does
not hold for commonsense tasks. Considering that
higher ranks result in greater computational over-
head, we set the rank to 16 in our main experiments.

Influence of parameter initialization in LoRA
module and routing module. To achieve a bal-
ance between performance and training efficiency
in LoRACOoE, we only train the LoORA module for
initialization while leaving other modules randomly
initialized. Here, we conduct two ablation experi-

Method CS Avg. Math Avg.
LoRA 63.25 75.42
LoRAMOE 74.01 82.94
LoRACoE

with LoRA & Router warmup ~ 80.82 86.49
with LoRA warmup 80.46 86.78

without warmup

Table 3: Ablation on initialization of LoORA module and
router module on commonsense(CS) and mathematical
reasoning tasks.

ments: (1) applying warm-up initialization to the
LoRA module and the routing module; (2) skip-
ping warm-up initialization for both the LoRA and
routing modules. The results are shown in Table 3.
Note that we did not conduct experiments with only
the routing module warmed up because the rout-
ing module cannot provide meaningful weighted
information to an untrained LoRA module.

The results show that without warm-up initial-
ization for both the LoRA and routing modules, the
training becomes unstable, and the final training
loss fails to converge, so we do not report the perfor-
mance. In contrast, when only the LoRA module is
warmed up, the performance remains stable, high-
lighting the importance of warm-up initialization
for the LoRA module.

Parameter importance characteristics of differ-
ent methods. To investigate the dynamic charac-
teristics of rank-level parameter importance across
different methods after training, we analyzed pa-
rameter importance for LoRA, LoRAMOoE, and
LoRACOE on HellaSwag (Zellers et al., 2019) and
BoolQ (Clark et al., 2019). The analysis results are
shown in the Figure 4.

First, both LORAMOoE and LoRACOE, allow pa-
rameters from different regions to exhibit varying
importance to different tasks. This means they can
utilize distinct parameters based on the task con-
fronted. In contrast, the original LoORA model does
not show a clear distinction in important parameter
regions between two different tasks.

Additionally, concerning the number of signifi-
cantly important ranks, it is evident from the graph
that LoRACOE can flexibly adjust the quantity
of important parameters compared to LoORAMoE
methods. Specifically, on the better-performing
HellaSwag task, LoORACOE achieves superior per-
formance using fewer important parameters, while
on the poorer-performing BoolQ task, LORACoE
utilize more important ranks to hold significant im-
portance when learning this task, which results in

better performance. However, LORAMOoE does not
show any significant rank utilization ratio differ-
ence between the two tasks. The above observa-
tions may interpret the significant performance gap
we observed in our experiments.

Parameter Importance Comparisoin on BoolQ

‘ ‘ ‘ | LoRAMOoE | ‘ |

LoRA importance sorted LoRAMOE importance :orled

1!

Parameter Impnrlance ('omparisoin on Hellaw&ag
LoRAMOoOE LoRACoE

'@@z '\ \'

LoRAMOoE importance sorled

e||

Figure 4: Parameter importance comparison across
LoRA, LoRAMOE, and LoRACOoE on HellaSwag and
BoolQ datasets. We sort the importance to provide a
more intuitive visual representation. This figure demon-
strates LORACOE dynamically adjusts significant param-
eters, optimizing HellaSwag performance with fewer
important ranks and adapting more for BoolQ to boost
learning.

LoRACOE importance sorlerl

LoRACOoE importance snrled

5 Related Work

5.1 Mixture of Experts for LLMs

The Mixture of Experts (MoE) architecture was
first introduced in Jacobs et al. (1991), aiming to
reduce interference between different types of sam-
ples by employing multiple expert networks, with
a gating network controlling their learning. The
sparse-activated MoE design paradigm (Shazeer
et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2022; Jiang et al., 2024) has significantly reduced
computational costs by limiting the number of ac-
tivated model parameters, thereby enabling better
scalability. To make more effective use of pre-
trained large language models (LLMs) as initializa-
tion points, a series of upcycle methods have been

proposed (Cai et al., 2024; Wei et al., 2024; Zhu
et al., 2024). By leveraging pretrained models for
initialization, these methods not only achieve better
convergence and training stability but also reduce
the computational resources required. In our work,
we adopt a similar upcycle approach. By optimiz-
ing the expert design and preserving the properties
of initialized LoRA modules, we effectively utilize
these initialization points.

5.2 PEFT-based MoE

Recent work on PEFT-based MoE combines the
effectiveness of Mixture of Experts (MoE) in multi-
task scenarios with the efficiency of PEFT, show-
casing superior performance. Due to the expert
nature of MoE, some studies (Huang et al., 2023;
Wu et al., 2024; Feng et al., 2024a; Ren et al., 2024)
have developed optimization algorithms that com-
bine LoRA modules trained on different tasks, en-
hancing the generalization capability of multiple
single-task trained LoORA modules in multi-task set-
tings. Another line of work trains LORAMOE from
scratch on mixed-task datasets (Zhu et al., 2023;
Dou et al., 2024; Ning et al., 2024; ?). However,
the expert design paradigms in the aforementioned
works rely on explicit partitioning of LoRA pa-
rameters, leading to a trade-off between the gran-
ularity of control and the difficulty of training the
routing module. In our work, we fully exploit the
advantages of pre-trained LoORA modules and finer-
grained parameter control.

6 Conclusion

In this paper, we introduce LoRACOE, an effi-
cient fine-tuning method for Mixture of Experts
(MoE). We begin by analyzing the parameter im-
portance patterns within LoORA modules, identify-
ing task-relevant parameters that concentrate along
the rank dimension. Building on this insight, we
redesign the expert construction and propose Lo-
RACOE, a method that dynamically builds experts
through rank-level parameter composition. Exper-
iments demonstrate that LORACOE achieves sig-
nificantly better performance compared to conven-
tional LoRA and LoORAMoE methods, without a
notable increase in computational resources. These
results highlight the effectiveness of our approach
and offer a new, dynamic, and flexible framework
for constructing MoE models.

Limitations

In this paper, we achieve improved performance
over LoRA and partition-based LoORAMOoE by em-
ploying a finer-grained model partitioning and a
composition-based expert design. However, our
approach has two notable limitations. First, the in-
troduction of a composition-based routing module
increases the number of trainable parameters due to
the larger output dimension compared to traditional
LoRAMOE methods. This increase in parameters
has led to diminished returns from adding more
experts in our experiments, highlighting a need
for more parameter-efficient routing methods that
maintain performance. Second, our LoORA module
initialization relies on a training-based approach,
which requires much computational resources. Ex-
ploring more effective, training-free initialization
methods for the LORA modules could further im-
prove the usability of LoORACOoE.

References

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-74309.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang,
Sunghun Kim, and Jiayi Huang. 2024. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204.

Guanjie Chen, Xinyu Zhao, Tianlong Chen, and
Yu Cheng. 2024a. Moe-rbench: Towards building
reliable language models with sparse mixture-of-
experts. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Lihu Chen, Adam Dejl, and Francesca Toni. 2024b.
Analyzing key neurons in large language models.
arXiv preprint arXiv:2406.10868.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2024. Self-play with execution feedback: Improving
instruction-following capabilities of large language
models. CoRR, abs/2406.13542.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei
Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhi-
heng Xi, Xiaoran Fan, et al. 2024. Loramoe: Allevi-
ating world knowledge forgetting in large language
models via moe-style plugin. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1932-1945.

Dheeru Dua, Shruti Bhosale, Vedanuj Goswami, James
Cross, Mike Lewis, and Angela Fan. 2021. Tricks
for training sparse translation models. arXiv preprint
arXiv:2110.08246.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han,
and Hao Wang. 2024a. Mixture-of-loras: An efficient
multitask tuning for large language models. arXiv
preprint arXiv:2403.03432.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han,
and Hao Wang. 2024b. Mixture-of-loras: An
efficient multitask tuning method for large lan-
guage models. In Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation,
LREC/COLING 2024, 20-25 May, 2024, Torino, Italy,
pages 11371-11380. ELRA and ICCL.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. The
impact of initialization on lora finetuning dynamics.
CoRR, abs/2406.08447.

Xu Owen He. 2024. Mixture of a million experts. arXiv
preprint arXiv:2407.04153.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533.

https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://doi.org/10.48550/ARXIV.2406.08447
https://doi.org/10.48550/ARXIV.2406.08447
https://doi.org/10.48550/ARXIV.2406.08447

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-
tuning of large language models. arXiv preprint
arXiv:2304.01933.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. arXiv preprint arXiv:2307.13269.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan
Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie
Tang. 2024. Mixlora: Enhancing large language
models fine-tuning with lora based mixture of experts.
CoRR, abs/2404.15159.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. arXiv
preprint arXiv:2402.14830.

10

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264-11272.

Lin Ning, Harsh Lara, Meiqi Guo, and Abhinav Rastogi.
2024. Mode: Effective multi-task parameter efficient
fine-tuning with a mixture of dyadic experts. arXiv
preprint arXiv:2408.01505.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Maciej Piéro, Kamil Ciebiera, Krystian Krél, Jan
Ludziejewski, and Sebastian Jaszczur. 2024. Moe-
mamba: Efficient selective state space models with
mixture of experts. CoRR, abs/2401.04081.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi
Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin
Chen, and Jiahuan Pei. 2024. Melora: Mini-
ensemble low-rank adapters for parameter-efficient
fine-tuning. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thai-
land, August 11-16, 2024, pages 3052-3064. Associ-
ation for Computational Linguistics.

Subhro Roy and Dan Roth. 2016.
eral arithmetic word problems.
arXiv:1608.01413.

Solving gen-
arXiv preprint

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-
Zhong Xu. 2024. Hydralora: An asymmetric lora
architecture for efficient fine-tuning. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Sys-
tems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

https://doi.org/10.48550/ARXIV.2404.15159
https://doi.org/10.48550/ARXIV.2404.15159
https://doi.org/10.48550/ARXIV.2404.15159
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.18653/V1/2024.ACL-LONG.168
https://doi.org/10.18653/V1/2024.ACL-LONG.168
https://doi.org/10.18653/V1/2024.ACL-LONG.168
https://doi.org/10.18653/V1/2024.ACL-LONG.168
https://doi.org/10.18653/V1/2024.ACL-LONG.168
http://papers.nips.cc/paper_files/paper/2024/hash/123fd8a56501194823c8e0dca00733df-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/123fd8a56501194823c8e0dca00733df-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/123fd8a56501194823c8e0dca00733df-Abstract-Conference.html

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye
Li, Weiwei Lii, Peng Cheng, Jianhao Zhang, Xi-
aoyu Zhang, Liang Zeng, et al. 2024. Skywork-
moe: A deep dive into training techniques for
mixture-of-experts language models. arXiv preprint
arXiv:2406.06563.

Xun Wu, Shaohan Huang, and Furu Wei. 2024. Mixture
of lora experts. arXiv preprint arXiv:2404.13628.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng
Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng
Zhang, and Qi Tian. 2024. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong
Wang, Huchuan Lu, and You He. 2024. Boosting
continual learning of vision-language models via
mixture-of-experts adapters. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2024, Seattle, WA, USA, June 16-22, 2024,
pages 23219-23230. IEEE.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. Platon: Pruning large transformer mod-
els with upper confidence bound of weight impor-
tance. In International conference on machine learn-
ing, pages 26809-26823. PMLR.

Zhihao Zhang, Jun Zhao, Qi Zhang, Tao Gui, and
Xuanjing Huang. 2024. Unveiling linguistic re-
gions in large language models. arXiv preprint
arXiv:2402.14700.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. CoRR, abs/2311.07911.

11

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
Llama-moe: Building mixture-of-experts from
Ilama with continual pre-training. arXiv preprint
arXiv:2406.16554.

Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi
Wang, Tianlong Chen, Lei Shu, Han Lu, Canoee
Liu, Liangchen Luo, Jindong Chen, et al. 2023.
Sira: Sparse mixture of low rank adaptation. arXiv
preprint arXiv:2311.09179.

A More Implementation Details

We conducted our experiments on eight A100
GPUs. In our setup, the rank for LoORA, LORAMOE,
and LoRACOE is set to 16, with « set to 32. The
number of experts for LORAMOE is set to 4, and
for LoORACOE, it is set to 2. For the LLaMA se-
ries models, we use a batch size of 16, and for the
Qwen2 series models, we use a batch size of 32.
For LoRA and LoRAMOE training experiments,
we set the learning rate to 3e-4 and trained for 4
epochs. For LORACOE training, we apply a staged
learning rate schedule: during the LoRA warmup,
the learning rate is set to 2e-4 for 2 epochs; for
the joint training stage, we set the learning rate
to 5e-5 over 2 epochs. For full fine-tuning, we
set a learning rate of le-5 for llama2-7b, llama2-
13b, llama3-8b, and Qwen2-7b. For Qwen2-1.5b
and Qwen2-0.5b, we set the learning rate to Se-5.
All full-parameter fine-tuning is conducted over 2
epochs.

B Ablation on expert number.

As shown in Table 2, we evaluate the impact of
varying the number of experts on model perfor-
mance and we also removed the routing module
during inference to test the role of the routing mod-
ule in the inference process. We find that the perfor-
mance on commonsense and mathematical reason-
ing tasks does not increase significantly with more
experts. Considering that increasing the number
of experts further leads to an increase in the pa-
rameters of the routing module, we select 2 as the
expert number in main experiments.When the rout-
ing mechanism is used during training but removed
during inference, the model also experiences a de-
crease in performance. However, this decline is
smaller compared to removing the routing mecha-
nism during training(original LoRA method).This
phenomenon can be explained by the observations
in Figure 44. Specifically, after introducing the
routing mechanism during training, our method en-
ables better alignment between the parameters in

https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.48550/ARXIV.2311.07911
https://doi.org/10.48550/ARXIV.2311.07911
https://doi.org/10.48550/ARXIV.2311.07911

the LoRA module and the tasks, compared to the
original LoRA method. This helps mitigate poten-
tial conflicts in parameter updates during multi-task
training.

C Computation optimization for
LoRACoE

First, to optimize the computational efficiency of
LoRACOE, we conducted a theoretical analysis of
the computational consumption of the LORACoE
method.

Method

Full Param Finetune
LoRA

LoRAMOE and Averaging
LoRACoE

Memory util(GB)
23.55
6.07
6.12
6.28

Relative ratio

100%
25.80%
25.99%
26.67%

Table 4: Memory usage of different methods based on
Qwen2-1.5B after model and optimizer initialization.

C.1 Parameter Analysis

For the original LoRA method, its parameters con-
sist of LoRA_A and LoRA_B, with a total parameter
count of r(d + k). For the LORACOE method, the
parameter count of the LoRA part is r(d + k). For
the Router module, with £/ composite experts, each
expert consists of a d x r matrix. Hence, the pa-
rameter count for the Router module is 7 - d - E.
Therefore, the total parameter count in LORACoE
isr(d+k+dE).

C.2 Computation Cost Analysis

For computation costs, under the same rank r,
the computation cost of the LoRA module in Lo-
RACOE is identical to that in the original LoRA
method. The additional computation cost arises
in the Router module, which mainly includes two
parts:

C.2.1 Vector-Matrix Multiplication

The input vector multiplies with E d x r matrices to
produce a tensor of shape (r, E). This step is equiv-
alent to performing vector-matrix multiplication
with E/ LoRA_A modules.In the main experimental
setting, £ = 2, r = 16, and considering r < d,
the first step introduces computational costs compa-
rable to the LoORA module itself. In our optimized
implementation, the F d x r matrices in the Router
and the d x r LoRA_A module are concatenated into
adxr(E+1) two dimension matrix for matrix mul-
tiplication.The output is then split in-place to obtain
the outputs of LoRA_A module and the Router mod-
ule. This approach fully utilizes GPU vector-matrix

12

Method Time(ms) Proportion
LoRA A 62.79 16.56%
LoRA B 46.96 17.19%
Outer product 49.60 19.52%
Router 39.84 20.61%
Softmax and Averaging 41.35 26.10%
Total time 240.57 100%

Table 5: Profiling for LORACoE without computation
optimization.

multiplication units (similar to the optimization
used in vLLM for Attention).This implementation
avoids introducing extra high-dimensional tensor
operations or iterative computations, effectively
controlling additional computational resource us-
age.

C.2.2 Softmax and Averaging

The output tensor of shape (r, E') undergoes a soft-
max operation along the Oth dimension (dimension
r) without reduction, followed by an averaging
operation along the 1st dimension (dimension F).
Since r < d and ¥ < d in both the LoRA matrix
and experimental settings, this step introduces only
minimal computational cost.

C.3 Performance Profiling

Based on the theoretical analysis above, we profile
the forward computation time of different modules
in LoRACOE, and the results obtained are shown
in the Table 5. It can be observed from the above
figure that the computations of the outer product
and Router modules account for 40% of the total
computation time. The computational optimiza-
tions mentioned earlier eliminate high-dimensional
outer product operations while effectively reducing
forward computation time by merging the Router
module with LoRA_A computations. The optimized
profiling results are shown at Table 6 below. Af-

Method Time(ms) Proportion
LoRA A + Router 98.38 53.70%
LoRAB 44.99 24.56%
Softmax and Averaging 39.80 21.73%
Total time 183.19 100%

Table 6: Profiling for LORACoE with computation opti-
mization.

ter optimization, the forward computation time of
the LORACoE module decreased from 240.57 ms
to 183.19 ms, representing a reduction of 23.8%
in computation time. We conducted further per-
formance comparisons during the training phase
under the same training setting, and the results

are shown in the Table 7. According to the re-

Method Training Epoch Total Training Time
LoRA 4 10,336.59 s
LoRAMOE 4 11,888.02 s
LoRACoE 4 10,828.51 s
LoRACOoE w/o optim 4 32,398.48 s

Table 7: Training Time Consumption

sults, after optimization, our algorithm achieves
training times comparable to those of the baseline
LoRA method despite increase in the number of
parameters. Overall, by integrating computational
optimizations with the LORACOoE algorithm, Lo-
RACOE not only achieves superior performance but
also becomes more cost-effective for deployment
in real-world scenarios.

D Analysis of Additional Parameters and
Performance

As shown in the table, under the setting where the
LoRA rank is 7, input dimension is d, output di-
mension is k, and the number of experts is F, using
the same LoRA rank, our method achieves better
performance compared to the LoRA and partition-
based LORAMOoE methods. However, the higher
parameter complexity of our method leads to an
inconsistency in the proportion of trainable param-
eters.

To address this, we reduce the rank number to
maintain a consistent ratio of trainable parameters,
and under this adjustment, our method still demon-
strates better performance.

E Additional Experiments on
HydralLoRA

To provide a more comprehensive comparison of
LoRACoE’s performance, we conducted exper-
iments on the Qwen2 series models using Hy-
draLoRA with the same settings as the main ex-
periments, setting HydraLoRA’s k to 3. The results
are shown in the table, where it can be observed that
LoRACOE generally exhibits better performance.

13

Model Method Lora Rank(r) Expert Number(E) Parameter Complexity Trainable parameter ratio* Math avg CS avg

LoRA 16 0 r(d+k) 0.467% 75.42 63.26
lama2-7b LoRAMOE 16 4 r(d+k+d/E) 0.583% 82.94 74.01
LoRACoE 8 2 r(d+k+dE) 0.467% 85.97 79.16
LoRACoE 16 2 r(d+k+dE) 0.933% 86.49 80.83

Table 8: Model Performance Comparison.*Trainable parameter ratio refers to the proportion of newly added
trainable parameters relative to the pre-trained parameters.

Model Method Commonsense Math Insturction Following Avg.
5055 HydraLoRA 64.72 73.11 34.96 57.60
Qwen2-0. LoRACOE 64.24 74.40 35.97 58.20
Quen2-1.5b HydraLoRA 75.13 86.04 47.36 69.51
wenz-1. LoRACoE 74.91 86.18 48.68 69.92
57, HydraloRA 85.18 94.54 64.12 81.28
Qwen2- LoRACoE 85.97 94.71 64.26 81.65

Table 9: Evaluating results of LORACoE and HydralLoRA on commonsense, math and Instruction following tasks.
The best results are in bold.

14

	Introduction
	Preliminaries and Observations
	Preliminaries
	Observation of LoRA Modules
	Limitations of Partition-based LoRAMoE

	LoRA Compositional Experts
	Rank Wise Parameter Paritioning
	Composition-Based Expert Construction
	Training Procedure of LoRACoE

	Experiments
	Experimental Setup
	Experimental Results and Discussion

	Related Work
	Mixture of Experts for LLMs
	PEFT-based MoE

	Conclusion
	More Implementation Details
	Ablation on expert number.
	Computation optimization for LoRACoE
	Parameter Analysis
	Computation Cost Analysis
	Vector-Matrix Multiplication
	Softmax and Averaging

	Performance Profiling

	Analysis of Additional Parameters and Performance
	Additional Experiments on HydraLoRA

