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Abstract

The Mixture of Experts (MoE) architecture im-001
proves large language models (LLMs) by uti-002
lizing sparsely activated expert sub-networks003
with a routing module, yet it typically demands004
high training cost. Previous work introduces005
parameter-efficient fine-tuning (PEFT) mod-006
ules, e.g., LoRA, to achieve a lightweight MoE007
for efficiency. However, they construct static008
experts by manually splitting the LoRA param-009
eters into fixed groups, which limits flexibil-010
ity and dynamism. Furthermore, this manual011
partitioning also hinders the effective utiliza-012
tion of well-initialized LoRA modules. To013
tackl the challenges, we first delve into the014
parameter patterns in LoRA modules, reveal-015
ing that there exists task-relevant parameters016
that are concentrated along the rank dimension.017
Based on this, we redesign the construction018
of experts and propose the LoRACoE (LoRA019
Composition of Experts) method. Specifically,020
when confronted with a task, it dynamically021
builds experts based on rank-level parameter022
composition, i.e., experts can flexibly com-023
bine rank-level parameters in LoRA module.024
Extensive experiments demonstrate that com-025
pared to other LoRA-based MoE methods, our026
method achieves better task performance across027
a broader range of tasks.028

1 Introduction029

Recent advanvements show that the Mixture of030

Experts (MoE) architecture (Fedus et al., 2022;031

Jiang et al., 2024; Liu et al., 2024; Pióro et al.,032

2024; Yu et al., 2024) enhances the performance033

of large language models (LLMs) over traditional034

dense architectures (Chen et al., 2024a). In MoE,035

the model’s parameters are organized into groups036

known as "experts". During each forward pass,037

these experts are sparsely activated via a routing038

mechanism (Fedus et al., 2022; Jiang et al., 2024),039

reducing the inference cost of LLMs. However,040

during fine-tuning (Wei et al., 2021; Taori et al.,041
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Figure 1: Comparison of construction in LoRA, Lo-
RAMoE, and LoRACoE (Ours). Our method is based
on a finer-grained partitioning of LoRA parameters, in-
corporating a redesigned expert mechanism that dynam-
ically composite LoRA parameters at output, thereby
achieving improved task performance.

2023), all model parameters (or experts) still need 042

to be optimized, which makes the training process 043

inefficient (Jiang et al., 2024; Liu et al., 2024; Pióro 044

et al., 2024; Yu et al., 2024). 045

To achieve lightweight, training-efficient MoE, 046

recent work integrates MoE with Parameter- 047

Efficient Fine-Tuning (PEFT) techniques (Hu et al., 048

2021; Dettmers et al., 2023; Xu et al., 2024), repre- 049

sented by LoRA-based MoE (Huang et al., 2023; 050

Zhu et al., 2023; Dou et al., 2024; Feng et al., 051

2024b; Li et al., 2024). In LoRA-based MoE, only 052

the added low-rank adapters are updated during 053

fine-tuning. However, they manually partition low- 054

rank adapters into parameter groups based on the 055

rank dimension to define experts (see Figure 1). 056

This static construction approach fixes the number 057

of experts and the parameters assigned to each ex- 058

pert, limiting the flexibility and dynamism of the 059
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MoE architecture (Dou et al., 2024; Ning et al.,060

2024). Furthermore, such approach also hinders061

the effective utilization of well-initialized LoRA062

modules (Hayou et al., 2024), thereby increasing063

the training cost.064

In this work, we rethink the design of experts065

in LoRA-based MoE to achieve a lightweight, dy-066

namic, and flexible architecture. We begin by an-067

alyzing parameter importance (Molchanov et al.,068

2019; Zhang et al., 2022, 2024) within LoRA mod-069

ules and observe that each parameter holds varying070

importance across different tasks. More precisely,071

this variation occurs along the rank dimension, i.e.,072

for certain tasks, parameters in some ranks are073

more crucial than those in other ranks (see Section074

2.2). This phenomenon inspires us to re-weight075

the outputs of different ranks in the LoRA mod-076

ule, allowing for better utilization of task-related077

parameters.078

Based on this insight, we propose (LoRA079

Composition of Experts) that can provides a flexi-080

ble and dynamic construction of experts. Instead081

of manually partitioning parameters to construct082

experts, it defines an expert as a weighted combina-083

tion of ranks. To be more specific, when confronted084

with a task, the route module predicts the impor-085

tance weight of each rank, and an expert is build086

upon the rank parameters weighted by these pre-087

dictions. We state that this architectural shift from088

partitioning to compositional expert construction089

provides finer control over LoRA parameters, opti-090

mizing their utilization for better performance.091

Extensive experiments on commonsense reason-092

ing and mathematical tasks, conducted across six093

backbone models (Touvron et al., 2023; Zhu et al.,094

2024; Yang et al., 2024) and thirteen datasets (Hu095

et al., 2023; Mitra et al., 2024) demonstrate that096

LoRACoE outperforms both the original LoRA097

method and LoRA-based MoE approaches by sig-098

nificant margins. Our contributions are summa-099

rized as follows: 1100

1. We reveal the task-specific importance dis-101

tribution across the rank dimension within102

the original LoRA method through parameter-103

importance analysis.104

2. Based on the findings, we propose a new ex-105

pert construction method called LoRACoE106

that shifts from static parameter partitioning107

to dynamic parameter combination.108

1We will release our implementations to the public.

3. We conduct extensive experiments on com- 109

monsense reasoning and mathematical tasks 110

across different six models and thirteen 111

datasets to demonstrate the effectiveness of 112

our method. 113

2 Preliminaries and Observations 114

2.1 Preliminaries 115

Low-Rank adaptation. Low-Rank Adaptation 116

(LoRA) (Hu et al., 2021) is a parameter efficient 117

fine-tuning technique for large pre-trained mod- 118

els. Traditional fine-tuning approaches update all 119

model parameters, which can be computationally 120

expensive. LoRA addresses this by inserting train- 121

able low-rank matrices into the FFN layers or at- 122

tention matrices of models to capture the necessary 123

updates. This approach significantly reduces the 124

number of trainable parameters, thereby lowering 125

computational and storage costs. 126

Concretely, given a pre-trained weight matrix 127

W0 ∈ Rd×k, LoRA approximates the update to 128

W0 as the product of two low-rank matrices,and 129

the updated weights W are calculated through: 130

W = W0 +BA, 131

where B ∈ Rd×r and A ∈ Rr×k, with r ≪ 132

min(d, k). During fine-tuning, only the matrices A 133

and B are updated, while the original weights W0 134

remain frozen, making the fine-tuning process both 135

memory and computation-efficient. 136

Mixture of experts. Mixture of Experts (MoE) 137

(Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin 138

et al., 2020) utilizes a sparse parameter activation 139

pattern, enabling the model to scale the number of 140

parameters while maintaining a constant computa- 141

tional cost. MoE architecture divides the param- 142

eters of the traditional transformer Feed-Forward 143

Network (FFN) layer into N experts, denoted as 144

{Ei}Ni=1, and designs a corresponding router g. For 145

a given input x, the output y of the MoE layer is a 146

weighted sum of outputs from N experts: 147

y =
N∑
i=1

gi(x)Ei(x), 148

where Ei(x) is the output of expert i, and gi(x) is 149

the routing function’s output. The routing function 150

varies depending on the specific routing algorithm 151

design. 152
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Parameter importance. In previous studies on153

the capabilities of LLM parameters, researchers154

have identified regions within the model parame-155

ters that are highly task-relevant (Zhang et al., 2024;156

Chen et al., 2024b). This insight motivates us to in-157

vestigate similar regions within the LoRA modules.158

We adopt a commonly used method from previous159

work (Molchanov et al., 2019; Zhang et al., 2022)160

on parameter sensitivity analysis to apply to the161

LoRA modules.162

The assumption in these studies is that remov-163

ing a parameter (by setting its value to zero) and164

evaluating its impact on the model’s loss function165

can reveal its importance. Specifically, given a166

dataset D and a set of model parameters θ =167

[θ1, θ2, . . . , θd] ∈ Rd, with θj representing the j-168

th parameter. During training, the objective is to169

minimize the loss function L, which depends on170

both the dataset D and the model parameters θ.171

The importance of the j-th parameter θj is denoted172

as Ij(θ). The importance of a parameter can be173

quantified by the error introduced when that param-174

eter is removed, which, under the i.i.d. assumption,175

can be approximated by calculating the squared176

difference in loss before and after removing the177

parameter:178

Ij(θ) = |L(D, L(θ))− L(D, θ|θj = 0)| . (1)179

However, calculating this importance by remov-180

ing each parameter and measuring the change181

in loss is computationally expensive, particularly182

when the model has a large number of parameters.183

Therefore, following prior work (Molchanov et al.,184

2019; Zhang et al., 2022), we can use the Taylor185

expansion formula for L at θj = 0:186

L(D, θ) = L(D, θ|θj = 0)+

∂L
∂θj

(θj − 0) +
1

2!

∂2L
∂θ2j

(θj − 0)2 + · · ·
(2)187

After performing the Taylor expansion, calculat-188

ing the higher-order terms still remains a resource-189

intensive task. Therefore, we approximate the im-190

portance scores using only the first-order term of191

the Taylor expansion:192

Ij(θ) ≈
∣∣∣∣ ∂L∂θj · θj

∣∣∣∣ (3)193

2.2 Observation of LoRA Modules194

To investigate the properties of the LoRA mod-195

ule parameters, we trained LoRA using datasets196
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Figure 2: Average variance of the importance of LoRA
module parameters across different dimensions. Here,
rank_avg and d_or_k_avg represent the average vari-
ance calculated in the rank dimension and the input or
output dimensions of the LoRA module, respectively.

from multiple commonsense reasoning and math- 197

ematical tasks. For the commonsense tasks, we 198

select 75k samples from the commonsense task 199

training set of Hu et al. (2023), which includes 200

eight datasets: BoolQ (Clark et al., 2019), PIQA 201

(Bisk et al., 2020), SIQA (Sap et al., 2019), Hel- 202

laSwag (Zellers et al., 2019), WinoGrande (Sak- 203

aguchi et al., 2021), ARC-c, ARC-e (Clark et al., 204

2018), and OBQA (Mihaylov et al., 2018). For 205

the mathematical tasks, we curated 75k samples 206

from the OrcaMath (Mitra et al., 2024) to form 207

our math task dataset. We add the LoRA module 208

to different components of the model, including 209

the q_proj, k_proj, v_proj of attention modules, 210

as well as the up_proj and down_proj of FFN 211

modules. The LoRA modules are then trained us- 212

ing the constructed training set. After training the 213

LoRA modules, we employ the method described 214

in Section 2.2 to compute the parameter importance 215

scores on the validation set for different tasks, ul- 216

timately obtaining importance scores for each pa- 217

rameter in relation to the tasks. 218

Based on the importance scores obtained from 219

the aforementioned experiments, we can draw the 220

following conclusions: 221

Distribution patterns of task-relevant parame- 222

ters. We computed the average variance of the 223

parameters of the LoRA module at different posi- 224

tions, considering both the rank dimension and the 225

input or output dimensions of the LoRA module. 226

The statistical results are illustrated in the Figure 2. 227

we observe that the variance along the rank dimen- 228

sion is larger compared to the variance along the 229

input or output dimensions. Compared to the in- 230

put or output dimensions, the distribution of LoRA 231
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parameters in the rank dimension is more uneven.232

This indicates that parameter importance tends to233

be more concentrated along the rank dimension234

rather than distributed along the input or output di-235

mensions of the LoRA module. This phenomenon236

provides insights for the subsequent design of more237

effective utilization methods for LoRA parameters238

in Section 3.239

Task-specific parameter activation patterns.240

We analyze the importance score patterns of pa-241

rameters across different tasks based on the impor-242

tance scores. From the parameter importance score243

correlation heatmaps across tasks in Figure 3, we244

observe significant positive and negative correla-245

tions in parameter importance between different246

tasks. For instance, in the BoolQ task, the distinct247

answer patterns compared to other question types248

lead to a notable divergence in parameter impor-249

tance patterns relative to other commonsense tasks.250

Similarly, for math-related tasks, the activation pat-251

terns tend to show more negative correlations with252

commonsense tasks, owing to the differences in253

task nature. For other commonsense tasks with254

similar answer patterns, the parameter importance255

patterns exhibit a high degree of correlation, indi-256

cating that the model employs similar parameter257

utilization patterns when performing these tasks.258

Correlation of parameter importance across259

ranks. We analyzed the correlation of parameter260

importance score in different LoRA ranks across261

all tasks. This analysis aims to illustrate the cor-262

relation in importance score patterns of different263

parameters within the LoRA module as influenced264

by varying inputs. As shown in the Figure 3, the265

parameter importance across different ranks ex-266

hibits either positive or negative correlations when267

performing different tasks. This observation sug-268

gests that parameters at different rank levels may269

have either synergistic or conflicting relationships.270

The original LoRA method, which does not apply271

weightings to parameters, may lead to suboptimal272

utilization of parameters.273

Based on these observations, which reveal a task-274

specific concentration of parameter importance at275

the rank level, we can assume that the LoRA mod-276

ule naturally learns a rank-level importance distri-277

bution during training. This phenomenon suggests278

a certain "specialized" correspondence between dif-279

ferent tasks and the parameters within the LoRA280

module. Therefore, given the inherent sensitivity281

or “expertise” exhibited by the LoRA module’s pa-282

rameters, the conventional approach of manually 283

dividing the LoRA parameters into expert groups 284

at the rank level needs to be reconsidered. 285

2.3 Limitations of Partition-based LoRAMoE 286

Given a LoRA module consists of matrices B ∈ 287

Rd×r and A ∈ Rr×k, partition-based LoRAMoE 288

methods will divide B and A into N sets of param- 289

eters. Therefore we acquire the result of matrices, 290

{Bi}Ni=1 and {Ai}Ni=1. Expert Ei composes of a 291

pair of Bi ∈ Rd×r/N and Ai ∈ Rr/N×k matrices. 292

Ei(x) = BiAix (4) 293

And with the pre-trained weight matrix W0 ∈ 294

Rd×k, N partition-based LoraMoE experts, de- 295

noted as {Ei}Ni=1 and a gating function g(x), the 296

output y of conventional partition-based methods 297

typically follow this approach: 298

y = W0x+
N∑
i=1

g(x)iEi(x) (5) 299

Under our observations and assumptions, this 300

method presents two significant drawbacks: (1) By 301

forcibly binding rank parameters to form experts, 302

the granularity of utilization controling across pa- 303

rameters during the learning process is reduced. (2) 304

The definition of experts in previous work is lim- 305

ited. Since experts are constructed based on rank 306

partitioning, the routing and weighted output of 307

these experts leverage only the parameters within 308

the ranks they control, without considering the rela- 309

tionships between the parameters they control and 310

those in other ranks. This constrains the flexibility 311

and effectiveness of the expert models. 312

3 LoRA Compositional Experts 313

3.1 Rank Wise Parameter Paritioning 314

Based on the observations from the LoRA mod- 315

ules trained on multiple tasks in Section 2.2, we 316

aim to develop a new expert design paradigm. 317

First, following the approach in (He, 2024), which 318

decomposes the FFN layer of Transformer mod- 319

els into vectors of dimension 1, we decompose 320

the A and B matrices of the LoRA module into 321

{Ai ∈ R1×k}ri=1 and {Bi ∈ Rd×1}ri=1. The fine- 322

grained partition of LoRA parameters enables us to 323

effectively control the model’s capabilities with 324

the finest granularity possible. Meanwhile this 325

finer-grained, non-binding partitioning allows us to 326

avoid the need for capability recovery, as required 327
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Figure 3: Importance score correlation heatmaps of LoRA parameters for three modules w.r.t. different tasks (top)
and w.r.t. different ranks (bottom).

in upcycling-based MoE models (Zhu et al., 2024).328

Instead, we can achieve further optimization based329

on an well-initialized LoRA parameters.330

3.2 Composition-Based Expert Construction331

According to Section 2.2, LoRA parameters ex-332

hibit varying importance patterns across different333

tasks, and there exists a correlation in importance334

between different rank parameters. Consequently,335

in previous partition-based LoRAMoE algorithms,336

experts could only account for the importance337

of local parameters, failing to accurately capture338

the correlations among global parameters. Thus,339

by incorporating rank-level parameter partitioning,340

we propose LoRACoE, a design pattern based on341

combination-based experts. In LoRACoE, for a342

given partitioned LoRA matrices {Ai ∈ R1×k}ri=1343

and {Bi ∈ Rd×1}ri=1, each expert outputs a lin-344

ear combination Gi based on the input x. For E345

experts, we obtain E sets of linear combinations.346

To implement this expert mechanism, we de-347

sign a corresponding routing module Wroute ∈348

Rd×E×r. For the input to expert Ei, the corre-349

sponding parameter group Wroutei ∈ Rd×r from350

the routing module is used to obtain the weights351

Gi as follows:352

Gi(x) = Softmax(Wrouteix)353

Based on the parameter set {Ai ∈ R1×k}ri=1354

and {Bi ∈ Rd×1}ri=1 of the LoRA module and the355

composition weights of rank-level parameters G356

from different experts, the LoRACoE module will 357

output as follows: 358

LoRACoE(x) = W0x+
1

N

N∑
i=1

r∑
j=1

GijBjAjx 359

Here, x represents the input to the LoRACoE layer, 360

Bj and Aj represent the j-th vectors in the decom- 361

posed LoRA B and A matrices, Gij is the weight 362

of the i-th expert for the j-th rank, and W0 refers to 363

the pre-trained weights. The output of the weighted 364

LoRA module is then merged with the output of 365

the pre-trained weight as the final output of the 366

LoRACoE layer. 367

3.3 Training Procedure of LoRACoE 368

To ensure effective initialization of the LoRA mod- 369

ule and a stable training process for LoRACoE, we 370

followed a two-phase training procedure: LoRA 371

warm-up and joint training. First, for LoRA warm- 372

up, we perform a training of a standard LoRA mod- 373

ule. This step helps achieve stable and efficient 374

convergence in the final model (Dua et al., 2021). 375

Next, we conduct joint training of both the LoRA 376

parameters and the routing module. 377

4 Experiments 378

4.1 Experimental Setup 379

Dataset. We construct a multi-task dataset based 380

on commonsense and mathematical reasoning 381
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Model Method Commonsense Math Insturction Following Avg.

Llama2-7b
FT 65.07 85.69 49.52 66.76

LoRA 63.26 75.42 55.75 64.81
LoRAMoE 74.01 82.94 57.79 71.58
LoRACoE 80.83 86.49 56.47 74.60

Llama2-13b
FT 74.49 83.63 61.03 73.05

LoRA 68.17 82.36 61.27 70.60
LoRAMoE 79.18 87.10 62.23 76.17
LoRACoE 81.53 90.50 65.22 79.08

Llama3-8b
FT 65.08 85.78 56.95 69.27

LoRA 68.11 82.69 65.34 72.05
LoRAMoE 78.89 88.98 67.38 78.42
LoRACoE 81.09 92.28 64.62 79.33

Qwen2-0.5b
FT 53.98 76.13 37.29 55.80

LoRA 55.15 69.57 35.61 53.44
LoRAMoE 57.50 72.35 31.89 53.91
LoRACoE 64.24 74.40 35.97 58.20

Qwen2-1.5b
FT 65.15 82.79 41.72 63.22

LoRA 73.17 85.03 48.08 68.76
LoRAMoE 73.81 85.98 46.64 68.81
LoRACoE 74.91 86.18 48.68 69.92

Qwen2-7b
FT 86.15 93.71 61.63 80.50

LoRA 84.78 93.88 62.95 80.54
LoRAMoE 85.18 94.36 62.11 80.55
LoRACoE 85.97 94.71 64.26 81.65

Table 1: Evaluating results of different methods on commonsense, math and Instruction following tasks. The best
results are in bold.Our method is marked in blue .

tasks. For commonsense tasks, we randomly select382

75k examples from the commonsense dataset in383

Hu et al. (2023) as the training set for common384

sense tasks. For mathematical tasks, we randomly385

sample a 75k subset from Mitra et al. (2024) as386

the training set for mathematical tasks. To evaluate387

the effectiveness of the method, we select the test388

set corresponding to the training set as the bench-389

mark for commonsense tasks.While for mathemati-390

cal tasks, we chose GSM8K (Cobbe et al., 2021),391

SVAMP (Patel et al., 2021), AddSub (Hosseini392

et al., 2014), MultiArith (Roy and Roth, 2016),393

SingleEq (Koncel-Kedziorski et al., 2015). Addi-394

tionally, to better test the generalization capabil-395

ity of our method, we also trained our approach396

on instruction-following tasks using datasets from397

prior work (Dong et al., 2024).We selected IFEval398

(Zhou et al., 2023) as the test set for instruction-399

following tasks.400

Models. As for the base models, we select401

LLaMA2-7B, LLaMA2-13B (Touvron et al., 2023),402

LLaMA3-8B (Dubey et al., 2024), Qwen2-0.5B,403

Qwen2-1.5B and Qwen2-7B (Yang et al., 2024) to404

validate the effectiveness of the method on base405

model training at different parameter scales. 406

Baselines. For comparison methods in the peft 407

framework, we select LoRA (Hu et al., 2021) and 408

the partition-base LoRAMoE describe in Section 409

2.2.To further substantiate the effectiveness of our 410

LoRACoE method, we included HydraLoRA(Tian 411

et al., 2024), a variant of LoRAMoE, as a compara- 412

tive baseline.The relevant results can be found in 413

the Appendix9. We also perform fine-tuning of all 414

parameters in models for comparison. 415

Implement details. In our experiments, we set 416

the rank for LoRA, LoRAMoE, and LoRACoE to 417

16, with α set to 32. For LoRAMoE, we configured 418

the number of experts to 4, while for LoRACoE, we 419

set it to 2. For the LLaMA series models, we used 420

a batch size of 16, and for the Qwen2 series mod- 421

els, we set the batch size to 32.To ensure fairness 422

in training, we set the number of training epochs 423

for all PEFT methods to 4. For the LoRACoE 424

method requiring two-stage training, we conduct 425

two epochs of initialization training followed by 426

two epochs of joint training. Detailed hyperparam- 427

eters can be found in Appendix A.To achieve better 428

inference and training efficiency for LoRACoE, we 429

6



# Experts # LoRA Rank CS Avg. Math Avg.

2 8 79.93 84.87
2 16 80.46 86.78
2 32 79.02 87.36

2 16 80.46 86.78
4 16 80.22 86.69
8 16 80.31 86.93

2(inference w/o router) 16 80.02 86.11

Table 2: The ablation of experts and rank on Common-
sense (CS) and Math tasks.

performed computation optimizations tailored to430

the architectural characteristics of LoRACoE and431

the FFN layers. The detailed optimization meth-432

ods and the resulting efficiency improvements are433

thoroughly analyzed in the Appendix C.434

4.2 Experimental Results and Discussion435

Main results. The results of our main experi-436

ments are in Table 1. Generally, we can observe437

that in terms of the overall performance across438

the three tasks, the methods with MoE architec-439

ture consistently outperform the standard LoRA440

approaches across different models, demonstrat-441

ing the promise of the sparse architecture. Sec-442

ondly, our composition-based LoRACoE achieves443

significant performance improvements over the444

partition-based LoRAMoE. Specifically, it outper-445

forms LoRAMoE by 3.02%, 2.91%, and 0.91% on446

the Llama2-7b, Llama2-13b, and Llama3-8b mod-447

els, respectively; on Qwen2 serie of models, Lo-448

RACoE outperforms LoRAMoE by 4.29%, 1.11%,449

and 1.01% on the Qwen2-0.5b, Qwen2-1.5b, and450

Qwen2-7b models, respectively. This highlights451

the advantages of this dynamic and flexible expert452

construction approach across all base model sizes,453

demonstrating the robustness and scalability of our454

method..455

Ablation on rank number. We conduct an ab-456

lation study on LoRA rank using the Llama2 7B457

model on commonsense and mathematical reason-458

ing tasks. The results are presented in Table 2. We459

find that for mathematical tasks, performance im-460

proves as the rank increases, but this trend does461

not hold for commonsense tasks. Considering that462

higher ranks result in greater computational over-463

head, we set the rank to 16 in our main experiments.464

Influence of parameter initialization in LoRA465

module and routing module. To achieve a bal-466

ance between performance and training efficiency467

in LoRACoE, we only train the LoRA module for468

initialization while leaving other modules randomly469

initialized. Here, we conduct two ablation experi-470

Method CS Avg. Math Avg.

LoRA 63.25 75.42
LoRAMoE 74.01 82.94

LoRACoE
with LoRA & Router warmup 80.82 86.49
with LoRA warmup 80.46 86.78
without warmup - -

Table 3: Ablation on initialization of LoRA module and
router module on commonsense(CS) and mathematical
reasoning tasks.

ments: (1) applying warm-up initialization to the 471

LoRA module and the routing module; (2) skip- 472

ping warm-up initialization for both the LoRA and 473

routing modules. The results are shown in Table 3. 474

Note that we did not conduct experiments with only 475

the routing module warmed up because the rout- 476

ing module cannot provide meaningful weighted 477

information to an untrained LoRA module. 478

The results show that without warm-up initial- 479

ization for both the LoRA and routing modules, the 480

training becomes unstable, and the final training 481

loss fails to converge, so we do not report the perfor- 482

mance. In contrast, when only the LoRA module is 483

warmed up, the performance remains stable, high- 484

lighting the importance of warm-up initialization 485

for the LoRA module. 486

Parameter importance characteristics of differ- 487

ent methods. To investigate the dynamic charac- 488

teristics of rank-level parameter importance across 489

different methods after training, we analyzed pa- 490

rameter importance for LoRA, LoRAMoE, and 491

LoRACoE on HellaSwag (Zellers et al., 2019) and 492

BoolQ (Clark et al., 2019). The analysis results are 493

shown in the Figure 4. 494

First, both LoRAMoE and LoRACoE, allow pa- 495

rameters from different regions to exhibit varying 496

importance to different tasks. This means they can 497

utilize distinct parameters based on the task con- 498

fronted. In contrast, the original LoRA model does 499

not show a clear distinction in important parameter 500

regions between two different tasks. 501

Additionally, concerning the number of signifi- 502

cantly important ranks, it is evident from the graph 503

that LoRACoE can flexibly adjust the quantity 504

of important parameters compared to LoRAMoE 505

methods. Specifically, on the better-performing 506

HellaSwag task, LoRACoE achieves superior per- 507

formance using fewer important parameters, while 508

on the poorer-performing BoolQ task, LoRACoE 509

utilize more important ranks to hold significant im- 510

portance when learning this task, which results in 511
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better performance. However, LoRAMoE does not512

show any significant rank utilization ratio differ-513

ence between the two tasks. The above observa-514

tions may interpret the significant performance gap515

we observed in our experiments.516

Figure 4: Parameter importance comparison across
LoRA, LoRAMoE, and LoRACoE on HellaSwag and
BoolQ datasets. We sort the importance to provide a
more intuitive visual representation. This figure demon-
strates LoRACoE dynamically adjusts significant param-
eters, optimizing HellaSwag performance with fewer
important ranks and adapting more for BoolQ to boost
learning.

5 Related Work517

5.1 Mixture of Experts for LLMs518

The Mixture of Experts (MoE) architecture was519

first introduced in Jacobs et al. (1991), aiming to520

reduce interference between different types of sam-521

ples by employing multiple expert networks, with522

a gating network controlling their learning. The523

sparse-activated MoE design paradigm (Shazeer524

et al., 2017; Lepikhin et al., 2020; Fedus et al.,525

2022; Jiang et al., 2024) has significantly reduced526

computational costs by limiting the number of ac-527

tivated model parameters, thereby enabling better528

scalability. To make more effective use of pre-529

trained large language models (LLMs) as initializa-530

tion points, a series of upcycle methods have been531

proposed (Cai et al., 2024; Wei et al., 2024; Zhu 532

et al., 2024). By leveraging pretrained models for 533

initialization, these methods not only achieve better 534

convergence and training stability but also reduce 535

the computational resources required. In our work, 536

we adopt a similar upcycle approach. By optimiz- 537

ing the expert design and preserving the properties 538

of initialized LoRA modules, we effectively utilize 539

these initialization points. 540

5.2 PEFT-based MoE 541

Recent work on PEFT-based MoE combines the 542

effectiveness of Mixture of Experts (MoE) in multi- 543

task scenarios with the efficiency of PEFT, show- 544

casing superior performance. Due to the expert 545

nature of MoE, some studies (Huang et al., 2023; 546

Wu et al., 2024; Feng et al., 2024a; Ren et al., 2024) 547

have developed optimization algorithms that com- 548

bine LoRA modules trained on different tasks, en- 549

hancing the generalization capability of multiple 550

single-task trained LoRA modules in multi-task set- 551

tings. Another line of work trains LoRAMoE from 552

scratch on mixed-task datasets (Zhu et al., 2023; 553

Dou et al., 2024; Ning et al., 2024; ?). However, 554

the expert design paradigms in the aforementioned 555

works rely on explicit partitioning of LoRA pa- 556

rameters, leading to a trade-off between the gran- 557

ularity of control and the difficulty of training the 558

routing module. In our work, we fully exploit the 559

advantages of pre-trained LoRA modules and finer- 560

grained parameter control. 561

6 Conclusion 562

In this paper, we introduce LoRACoE, an effi- 563

cient fine-tuning method for Mixture of Experts 564

(MoE). We begin by analyzing the parameter im- 565

portance patterns within LoRA modules, identify- 566

ing task-relevant parameters that concentrate along 567

the rank dimension. Building on this insight, we 568

redesign the expert construction and propose Lo- 569

RACoE, a method that dynamically builds experts 570

through rank-level parameter composition. Exper- 571

iments demonstrate that LoRACoE achieves sig- 572

nificantly better performance compared to conven- 573

tional LoRA and LoRAMoE methods, without a 574

notable increase in computational resources. These 575

results highlight the effectiveness of our approach 576

and offer a new, dynamic, and flexible framework 577

for constructing MoE models. 578
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Limitations579

In this paper, we achieve improved performance580

over LoRA and partition-based LoRAMoE by em-581

ploying a finer-grained model partitioning and a582

composition-based expert design. However, our583

approach has two notable limitations. First, the in-584

troduction of a composition-based routing module585

increases the number of trainable parameters due to586

the larger output dimension compared to traditional587

LoRAMoE methods. This increase in parameters588

has led to diminished returns from adding more589

experts in our experiments, highlighting a need590

for more parameter-efficient routing methods that591

maintain performance. Second, our LoRA module592

initialization relies on a training-based approach,593

which requires much computational resources. Ex-594

ploring more effective, training-free initialization595

methods for the LoRA modules could further im-596

prove the usability of LoRACoE.597
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A More Implementation Details 858

We conducted our experiments on eight A100 859

GPUs. In our setup, the rank for LoRA, LoRAMoE, 860

and LoRACoE is set to 16, with α set to 32. The 861

number of experts for LoRAMoE is set to 4, and 862

for LoRACoE, it is set to 2. For the LLaMA se- 863

ries models, we use a batch size of 16, and for the 864

Qwen2 series models, we use a batch size of 32. 865

For LoRA and LoRAMoE training experiments, 866

we set the learning rate to 3e-4 and trained for 4 867

epochs. For LoRACoE training, we apply a staged 868

learning rate schedule: during the LoRA warmup, 869

the learning rate is set to 2e-4 for 2 epochs; for 870

the joint training stage, we set the learning rate 871

to 5e-5 over 2 epochs. For full fine-tuning, we 872

set a learning rate of 1e-5 for llama2-7b, llama2- 873

13b, llama3-8b, and Qwen2-7b. For Qwen2-1.5b 874

and Qwen2-0.5b, we set the learning rate to 5e-5. 875

All full-parameter fine-tuning is conducted over 2 876

epochs. 877

B Ablation on expert number. 878

As shown in Table 2, we evaluate the impact of 879

varying the number of experts on model perfor- 880

mance and we also removed the routing module 881

during inference to test the role of the routing mod- 882

ule in the inference process. We find that the perfor- 883

mance on commonsense and mathematical reason- 884

ing tasks does not increase significantly with more 885

experts. Considering that increasing the number 886

of experts further leads to an increase in the pa- 887

rameters of the routing module, we select 2 as the 888

expert number in main experiments.When the rout- 889

ing mechanism is used during training but removed 890

during inference, the model also experiences a de- 891

crease in performance. However, this decline is 892

smaller compared to removing the routing mecha- 893

nism during training(original LoRA method).This 894

phenomenon can be explained by the observations 895

in Figure 44. Specifically, after introducing the 896

routing mechanism during training, our method en- 897

ables better alignment between the parameters in 898
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the LoRA module and the tasks, compared to the899

original LoRA method. This helps mitigate poten-900

tial conflicts in parameter updates during multi-task901

training.902

C Computation optimization for903

LoRACoE904

First, to optimize the computational efficiency of905

LoRACoE, we conducted a theoretical analysis of906

the computational consumption of the LoRACoE907

method.

Method Memory util(GB) Relative ratio
Full Param Finetune 23.55 100%
LoRA 6.07 25.80%
LoRAMoE and Averaging 6.12 25.99%
LoRACoE 6.28 26.67%

Table 4: Memory usage of different methods based on
Qwen2-1.5B after model and optimizer initialization.

908

C.1 Parameter Analysis909

For the original LoRA method, its parameters con-910

sist of LoRA_A and LoRA_B, with a total parameter911

count of r(d+ k). For the LoRACoE method, the912

parameter count of the LoRA part is r(d+ k). For913

the Router module, with E composite experts, each914

expert consists of a d × r matrix. Hence, the pa-915

rameter count for the Router module is r · d · E.916

Therefore, the total parameter count in LoRACoE917

is r(d+ k + dE).918

C.2 Computation Cost Analysis919

For computation costs, under the same rank r,920

the computation cost of the LoRA module in Lo-921

RACoE is identical to that in the original LoRA922

method. The additional computation cost arises923

in the Router module, which mainly includes two924

parts:925

C.2.1 Vector-Matrix Multiplication926

The input vector multiplies with E d×r matrices to927

produce a tensor of shape (r, E). This step is equiv-928

alent to performing vector-matrix multiplication929

with E LoRA_A modules.In the main experimental930

setting, E = 2, r = 16, and considering r ≪ d,931

the first step introduces computational costs compa-932

rable to the LoRA module itself. In our optimized933

implementation, the E d× r matrices in the Router934

and the d×r LoRA_A module are concatenated into935

a d×r(E+1) two dimension matrix for matrix mul-936

tiplication.The output is then split in-place to obtain937

the outputs of LoRA_A module and the Router mod-938

ule. This approach fully utilizes GPU vector-matrix939

Method Time(ms) Proportion
LoRA A 62.79 16.56%
LoRA B 46.96 17.19%
Outer product 49.60 19.52%
Router 39.84 20.61%
Softmax and Averaging 41.35 26.10%
Total time 240.57 100%

Table 5: Profiling for LoRACoE without computation
optimization.

multiplication units (similar to the optimization 940

used in vLLM for Attention).This implementation 941

avoids introducing extra high-dimensional tensor 942

operations or iterative computations, effectively 943

controlling additional computational resource us- 944

age. 945

C.2.2 Softmax and Averaging 946

The output tensor of shape (r, E) undergoes a soft- 947

max operation along the 0th dimension (dimension 948

r) without reduction, followed by an averaging 949

operation along the 1st dimension (dimension E). 950

Since r ≪ d and E ≪ d in both the LoRA matrix 951

and experimental settings, this step introduces only 952

minimal computational cost. 953

C.3 Performance Profiling 954

Based on the theoretical analysis above, we profile 955

the forward computation time of different modules 956

in LoRACoE, and the results obtained are shown 957

in the Table 5. It can be observed from the above 958

figure that the computations of the outer product 959

and Router modules account for 40% of the total 960

computation time. The computational optimiza- 961

tions mentioned earlier eliminate high-dimensional 962

outer product operations while effectively reducing 963

forward computation time by merging the Router 964

module with LoRA_A computations. The optimized 965

profiling results are shown at Table 6 below. Af-

Method Time(ms) Proportion
LoRA A + Router 98.38 53.70%
LoRA B 44.99 24.56%
Softmax and Averaging 39.80 21.73%
Total time 183.19 100%

Table 6: Profiling for LoRACoE with computation opti-
mization.

966
ter optimization, the forward computation time of 967

the LoRACoE module decreased from 240.57 ms 968

to 183.19 ms, representing a reduction of 23.8% 969

in computation time. We conducted further per- 970

formance comparisons during the training phase 971

under the same training setting, and the results 972
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are shown in the Table 7. According to the re-

Method Training Epoch Total Training Time

LoRA 4 10,336.59 s
LoRAMoE 4 11,888.02 s
LoRACoE 4 10,828.51 s
LoRACoE w/o optim 4 32,398.48 s

Table 7: Training Time Consumption

973
sults, after optimization, our algorithm achieves974

training times comparable to those of the baseline975

LoRA method despite increase in the number of976

parameters. Overall, by integrating computational977

optimizations with the LoRACoE algorithm, Lo-978

RACoE not only achieves superior performance but979

also becomes more cost-effective for deployment980

in real-world scenarios.981

D Analysis of Additional Parameters and982

Performance983

As shown in the table, under the setting where the984

LoRA rank is r, input dimension is d, output di-985

mension is k, and the number of experts is E, using986

the same LoRA rank, our method achieves better987

performance compared to the LoRA and partition-988

based LoRAMoE methods. However, the higher989

parameter complexity of our method leads to an990

inconsistency in the proportion of trainable param-991

eters.992

To address this, we reduce the rank number to993

maintain a consistent ratio of trainable parameters,994

and under this adjustment, our method still demon-995

strates better performance.996

E Additional Experiments on997

HydraLoRA998

To provide a more comprehensive comparison of999

LoRACoE’s performance, we conducted exper-1000

iments on the Qwen2 series models using Hy-1001

draLoRA with the same settings as the main ex-1002

periments, setting HydraLoRA’s k to 3. The results1003

are shown in the table, where it can be observed that1004

LoRACoE generally exhibits better performance.1005

1006
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Model Method Lora Rank(r) Expert Number(E) Parameter Complexity Trainable parameter ratio* Math avg CS avg

llama2-7b

LoRA 16 0 r(d+k) 0.467% 75.42 63.26
LoRAMoE 16 4 r(d+k+d/E) 0.583% 82.94 74.01
LoRACoE 8 2 r(d+k+dE) 0.467% 85.97 79.16
LoRACoE 16 2 r(d+k+dE) 0.933% 86.49 80.83

Table 8: Model Performance Comparison.*Trainable parameter ratio refers to the proportion of newly added
trainable parameters relative to the pre-trained parameters.

Model Method Commonsense Math Insturction Following Avg.

Qwen2-0.5b HydraLoRA 64.72 73.11 34.96 57.60
LoRACoE 64.24 74.40 35.97 58.20

Qwen2-1.5b HydraLoRA 75.13 86.04 47.36 69.51
LoRACoE 74.91 86.18 48.68 69.92

Qwen2-7b HydraLoRA 85.18 94.54 64.12 81.28
LoRACoE 85.97 94.71 64.26 81.65

Table 9: Evaluating results of LoRACoE and HydraLoRA on commonsense, math and Instruction following tasks.
The best results are in bold.
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