Revising and Falsifying Sparse Autoencoder Feature
Explanations

George Ma!'* Samuel Pfrommer'* Somayeh Sojoudi’

!University of California, Berkeley

Abstract

Mechanistic interpretability research seeks to reverse-engineer large language
models (LLMs) by uncovering the internal representations of concepts within
their activations. Sparse Autoencoders (SAEs) have emerged as a valuable tool
for disentangling polysemantic neurons into more monosemantic, interpretable
features. However, recent work on automatic explanation generation for these
features has faced challenges: explanations tend to be overly broad and fail to take
polysemanticity into consideration. This work addresses these limitations by intro-
ducing a similarity-based strategy for sourcing close negative sentences that more
effectively falsify generated explanations. Additionally, we propose a structured,
component-based format for feature explanations and a tree-based, iterative expla-
nation method that refines explanations. We demonstrate that our structured format
and tree-based explainer improve explanation quality, while our similarity-based
evaluation strategy exposes biases in existing interpretability methods. We also
analyze the evolution of feature complexity and polysemanticity across LLM lay-
ers, offering new insights into information content within LLMs’ residual streams.
Code is available at https://github.com/GeorgeMLP/feature-interp.

1 Introduction

The recent rise of highly capable large language models (LLMs) has inspired a surge of mechanistic
interpretability research. One major concern of this area has involved decomposing LLM activations
into a human-interpretable form [11, 26]. This is complicated by LLM’s hypothesized use of
superposition to encode a vast range of concepts into a constrained number of multi-layer perceptron
(MLP) block neurons [3]. Namely, instead of MLP block neurons each corresponding to a clean
concept, they become polysemantic, and activate for a range of unrelated inputs [6, 3].

Sparse Autoencoders (SAEs) have enjoyed widespread use as a more refined analysis tool that
partially disentangles the polysemanticity of individual neurons [35, 3, 5, 16]. Inspired by the
linear representation hypothesis [27], SAEs consist of an autoencoder which maps activations into a
higher-dimensional latent space while minimizing both reconstruction loss and a sparsity penalty
[5]. In contrast to individual neurons, features in the latent space of an SAE are generally more
monosemantic and interpretable [5].

One area of LLM autointerpretability research attempts to explain language model features, such as
neurons and SAE latent vector indices, using external LLMs to summarize patterns in top-activating
sentences [1]. These generated explanations are often oversimplified and too broad [1, 28]. Consider
for example the “not all” neuron L13N1352 discussed in Bills et al. [1]. This neuron activates on the
token all only when immediately following not. However, a more broad explanation that the neuron
always activates on the word not scores well on high-activation sentences which do not contain a
falsifying counterexample of not in a different context. Various partial remedies to this problem
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Figure 1: A high-level overview of our experiments for automatic interpretation of SAE features. Left:
we represent explanations as a structured list of dictionaries. Center: we refine explanations using
a tree-based optimization strategy. Right: we source challenging explanation evaluation sentences
using a similarity-based scheme.

have been proposed, but they require serious compromises. For example, Bills et al. [1] generates
an explanation-dependent sentences, while Paulo et al. [28] simplifies the problem to that of binary
classification. Our work provides a method for sourcing semantically similar sentences from a fixed
dataset for the purpose of falsifying explanations.

Explanations in previous interpretability research primarily consist of brief summary statements of
patterns generated in a one-shot manner [1]. This lack of structure often obscures interesting aspects
of SAE features, such as polysemanticity and the relative strengths of different feature components.
Bills et al. [1] explored some strategies for explanation revision, but their unreleased implementation
required generating synthetic explanation-dependent sentences. We introduce two innovations in this
regard: 1) a tree-based iterative method for generating explanations, and 2) a structured representation
for feature explanations which elucidates changes in SAE feature composition over the layers of an
LLM.

Contributions. Our main contributions are listed below and summarized in Figure 1.

1. We provide a method for sourcing “close negatives” to top-activating sentences in the dataset,
and show that these more effectively falsify explanations than the random sentences used in
prior work.

2. We introduce a structured format for feature activations as a list of monosemantic explana-
tions.

3. We develop a tree-based explanation method that iteratively refines its explanations through
evaluation and feedback.

4. Through empirical analysis, we show that both the structured explanation format and the tree-
based explainer improve the quality of feature explanations. Semantically similar negatives
more effectively falsify explanations and reveal the recall bias in current interpretability
methods. We further investigate how feature complexity and polysemanticity evolve across
LLM layers.

2 Related work

Interpreting SAE activations. There has been significant recent research interest in explaining
and simulating SAE activations. The seminal work of Bills et al. [1] introduced language model



explanation generation for MLP neurons in LLMs. Namely, the authors constructed an automated
interpretability pipeline consisting of an explainer LLM which generated a short natural-language
summary of a feature given its top-activating sentences, and a simulator LLM which predicts token-
wise activations given the explanation. In Singh et al. [33], this idea is adapted to analyze text-to-scalar
functions more generally. Recent approaches explore alternative approaches of simulating and scoring
explanations by simplifying activation prediction to a classification problem [28]. Foote et al. [7]
represents SAE features as a graph by identifying tokens which cause subsequent activations.

Optimizing over strings. A wide variety of real-world engineering problems involve iteratively
optimizing over a piece of text subject to some reward signal. The LLM interpretability work of Bills
et al. [1] pursued a simple prompting strategy of asking the explainer model to revise its explanation
in light of novel activation data. In Pryzant et al. [30], the optimization problem was explored more
generally by mimicking the gradient descent with textual prompts. LLM pipelines have also shown
to benefit from a degree of automatic prompt generation and optimization [17, 18]. By using an
evolutionary search strategy, the FunSearch source code generation tool was able to discover novel
and efficient computing algorithms [32]. Finally, a recent Tree of Attacks with Pruning (TAP) search
scheme proved highly efficient for generating LLM jailbreaking strings [21] and has been successfully
adapted to other tasks such as prompt injection [29]. We use a variant of TAP for our use case due
to its simplicity and effectiveness. While an extensive comparison of various optimization schemes
would be valuable future research, TAP is sufficient for the purpose of this work: extracting insights
about SAE features in an automated way.

Abstractions within LLMs. While various efforts have been made to analyze the abstraction of
LLM concepts as a function of layer, this has been largely underexplored in an SAE context. One
early work on the abstraction of features within transformers found that deeper layers within BERT
recovered progressively more complex features in a classical NLP pipeline [36]. Another leveraged
human annotations of texts which trigger attention keys and found that deeper layers generally feature
more semanticity than early layers. In Jin et al. [15], linear probing on LLM activations at various
layers demonstrate that certain question-answering skills are localized to particular depths. Minegishi
et al. [24] finds the SAEs on deeper LLM layers are better able to disentangle the various meanings
of polysemous words.

3 Problem formulation

Section 3.1 introduces the notation and definitions used in this paper, and Section 3.2 formalizes the
problem of learning explanation-conditioned features.

3.1 Notation

We denote the discrete space of tokens by 7 and the associated continuous embedding space by
& = R", where h is the transformer hidden dimension. We denote the concatenation of vectors x
and y using square brackets: [x,y]. The all-one vector of length n is denoted by 1,,. For a vector
X = [z1,22,...,7,) and integer i € {1,...,n}, we let x_; € R"~! denote the vector produced by
dropping the ¢th element.

3.2 Feature learning

Let a feature be a function f: 7™ — R’} which maps a token sequence t € 7" to a vector of feature
expressions f(t) € R’}. The space of all features is denoted by F.

Consider a particular ground-truth feature f* € F, perhaps consisting of the activations of an SAE
latent index. We can associate f* with a dataset of associated feature expressions
d

Dy = {(ts /" (t) }iy -

Now consider the problem of learning an explanation-conditioned feature go: 7" — R’ which
reproduces the feature patterns of f* in D¢-. We let the explanations 6 fall in the space of structured
natural-language descriptions € Ty}, , and leverage a language model to simulate the predictions of
go for a particular token sequence t € 7" [1]. Precisely characterizing “natural-language” text is



challenging. However, as we ultimately use language models to search over explanations, we observe
that the constraint 6 € 77, is satisfied in practice.

When evaluating the performance of gy in reproducing the activations of f*, it is computationally
infeasible to evaluate over all of Dy-. We thus follow the practice of Bills et al. [1] in subsampling
Dy~ for evaluation.

We first define the subset D}’; C Dy~ of top-activating sentences as a random sample of k sentences
from the top quantile of Dy« ordered by ||f*(t;)|l. We then define a set of complementary
sentences D3 C Dy~ \ DJJ[* , chosen according to a sampling strategy ss resulting in a cardinality
= |Dy+|. These sentences are intended as “negatives” that falsify an overly-broad explanation

D3
of the top activations in D}Z [1]. We empirically compare sampling strategy choices in Section 5.1.

The dataset loss is then defined using the standard Pearson correlation coefficient metric defined in
Bills et al. [1]:

L(6) = corr([f*(til), f(tis), - ]ijezﬂ

Y
. D%
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e
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where with some abuse of notation we let Z,+ .. be the sequence of data indices selected in the
T D%

construction of D}i and D;ﬁ.

4 Method

Section 4.1 briefly summarizes the simulation method from Bills et al. [1] for completeness. In
Section 4.2, we provide details regarding our explanation generation schemes. Section 4.3 motivates
and defines our structured schema for feature explanations. Finally, Section 4.4 discusses how we
source “close counterexamples” for top-activating sentences from our dataset.

4.1 Feature simulation

Consider an explanation 6 for a feature, and recall that the associated feature simulator gg: 7™ — R?
maps a sequence of tokens to a sequence of nonnegative reals. Our simulation approach is minimally
modified from Bills et al. [1]. Namely, we provide a simulating LLM the explanation and a formatted
list of tokens t € 7", where each token is listed on a new line followed by a tab and an unknown
token. We do one inference pass per sentence and compute the expected feature expression for each
token by examining the negative log probabilities on the unknown tokens. Unfortunately, the original
implementation in Bills et al. [1] relied on OpenAl API calls returning the top-k log probabilities for
tokens in the input prompt. This has been deprecated and to the best of our knowledge is not available
in other cloud providers. We thus perform simulation locally using the gemma-2-27b-it model
with a bilevel key-value caching scheme for efficiency (Appendix A.2). For simulating structured
explanations, we perform multiple passes of the above simulation scheme, one per explanation
component. Further details are deferred to Section 4.3.

4.2 Explanation generation

We outline two different ways of generating explanations: a one-shot method from Bills et al. [1],
and a novel tree-based method inspired by Mehrotra et al. [21]. We also experiment with including
holistic activations to improve explanation quality.

One-shot explanation generation. The one-shot explainer includes a system prompt which explains
the explanation schema and the activation record format [1]. This is then followed by a series of
few-shot examples, each containing a sequence of activation records as a user chat message followed
by the associated structured explanation in the assistant response. The final message to the model
consists of top-activating records Djt for the feature of interest. Each activation record is formatted
as in }32ills et al. [1], with activations for each token normalized and rounded to be integers between 0
and 5.

2Bills et al. [1] formatted activations to be between 0 and 10. We found that some tokenizers subdivided 10
into two tokens, and we thus adjusted the range maximum to 5.



Tree-based explanation generation. We now introduce a novel explanation procedure based on the
Tree of Attacks with Pruning (TAP) jailbreaking technique [21]. We initialize with w € N root leaf
nodes generated via one-shot explanation, and iteratively perform the following steps d € N times:

1. Evaluation and feedback. Simulate the activations for each explanation and score them
against the ground-truth activations via (1). Construct a feedback message consisting
of the correlation score as well as the correct and simulated feature expressions for the
lowest-performing sentence in the training data.

2. Branching. For each leaf node, generate b child explanations via chain-of-thought reasoning,
providing the feedback message as well as entire conversation history for the ancestors of
the leaf node.

3. Pruning. Retain the w leaf nodes with the highest training dataset score for the next layer of
the tree.

The algorithm is terminated after d iterations or after a certain score threshold is met. All the
explanations produced at each layer of the tree are then scored using a validation dataset, and the
best-performing explanation is returned. The pseudocode of the tree-based explainer is shown in
Algorithm 1.

Algorithm 1 Tree-Based Explainer for SAE Feature Interpretation

Require: Training and validation records for a single SAE feature, each containing top-activating
and complementary sentences with ground-truth activations
Ensure: Natural language explanation for the target SAE feature
1: Inmitialize: Prompt the one-shot explainer (as in Bills et al. [1]) w times to generate w initial
explanations as leaf nodes
2: fori=1,2,...,ddo
> — Evaluate current leaf nodes —

3 for each leaf node explanation 6; do

4: Provide 0; and validation sentences to a simulator LLM
5: Obtain simulated activations &; from the simulator

6 Compute correlation score s; = corr(a;, af*°)

7 Construct feedback message F; including:

(a) correlation score s;
(b) simulated activations &;
(c) ground-truth activations atjrue for the lowest-performing sentence
8: end for
> — Generate improved explanations —

9: for each leaf node explanation 6; do
10: Provide F; and conversation history of ancestor nodes to the LLM
11: Use chain-of-thought prompting to generate b improved explanations
12: Add the new explanations as child nodes in the tree
13: end for

> — Evaluate and select new leaf nodes —

14: for each new leaf node explanation do
15: Simulate and score as above to obtain s;
16: end for
17: Retain the top w leaf nodes with highest validation scores
18: if highest validation score > 7 then
19: break
20: end if
21: end for

22: return The explanation with the highest validation score across all iterations

Holistic features. We introduce holistic features as a supplementary signal which indicates what
tokens causally influence SAE activations. Consider an arbitrary but particular feature f : 7" — R’}



"activates_on": string
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Figure 2: The schema for our structured explanations.

We define the associated holistic feature f T — R™ as:

5 1

Ft) = — (LTF(4) = 11 f(t-0)

Holistic features measure how much a particular token impacts the total expression of a feature
across all indices. Consider a feature which activates on the token want but only when immediately
following don't. The associated holistic feature would be positive for both tokens, as dropping either
of them from the sequence reduces the summed expression of the original feature. In our work, we
experiment with supplementing feature records with holistic activations. Some examples of holistic
activations are shown in Appendix B.

4.3 Structured explanations

Feature explanations from previous works typically are limited to short strings. For example, the
explanation for L30N2902 from Bills et al. [1] is “words related to the concept of being a significant
or integral part of something.” However, a closer examination reveals that this explanation fails to
capture activations on words relating to depth or recesses. This suggests that short, unstructured
explanations obscure the polysemantic attributes of a feature.

We address this with our structured explanation scheme, summarized in Figure 2. An explanation
consists of a list of JSON objects which we call explanation components. Each component contains
two fields: a string description of the activations and an integer attribute for the strength of the
activation between 0 and 5. We prompt our explainer LLM such that each component corresponds to
a monosemantic concept; intuitively, a feature that requires many explanation components to achieve
good performance is polysemantic.

When simulating a structured explanation, we predict activations for each component individually
using the activates_on field and the approach in Section 4.1. We then scale each component’s
activations proportionally to the strength field and combine by taking the maximum activation
across components for each token. This ensures that the simulated feature activations are invariant to
permutations of the structured explanation list.

4.4 Complementary sentence sourcing

We propose four methods for selecting complementary sentences D7 in the evaluation dataset: (1)

the random strategy, where sentences are randomly sampled from the entire dataset D - \D}r ; (2) the

similar strategy, where sentences with the highest semantic similarity to the top-activating sentences
D}Z are selected; and (3) non-activating variants of these two strategies, where only sentences with

no ground-truth feature activation (i.e., max; f*(t); = 0) are considered.

Random sentences. Following Bills et al. [1], we randomly sample an equal number of sentences to
the top-activating sentences from the entire dataset. The combined set of top-activating and randomly
selected sentences is then used to evaluate feature explanations.

Random non-activating sentences. In this strategy, we randomly sample sentences from the
dataset that have no ground-truth feature activation. This allows us to assess the ability of different
complementary sentence selection strategies in finding “close counterexamples” by analyzing their
false positive rate—defined as the proportion of positive elements in the explanation-conditioned

feature activation go(t), where t € D}%.
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Current feature explanation methods are often biased toward recall: a broad explanation can activate
on many relevant tokens while still achieving a good evaluation score [4]. By sourcing “close coun-
terexamples” to the top-activating sentences, we can better assess the precision of the explanations.

Similarity-based sentences. Instead of randomly selecting from the entire dataset, we sample
sentences with the highest semantic similarity to the top-activating sentences. Sentence similarity is
measured using cosine similarity between sentence embeddings produced by a pre-trained Sentence
Transformer [31]. This method involves two steps:

1. Compute the embeddings of all sentences in the dataset using a pre-trained Sentence
Transformer.

2. For each SAE feature, we identify a fixed set of top-activating sentences (400 in our
experiments). We then select the sentences with the highest average cosine similarity to this
set and designate them as the complementary sentences for evaluation. These complementary
sentences are pre-computed and cached prior to experimentation.

As we demonstrate in Section 5.1, evaluating feature explanations on these semantically similar
sentences reveals a substantially higher number of false positives during the feature simulation step
(Section 4.1). Specifically, the feature simulator gy often predicts positive activations gg(t;) > 1
where the ground truth activation f*(t;) is zero. Since current auto-interpretability approaches are
heavily biased toward recall, evaluation against these similarity-based complementary sentences
offers a more reliable estimate of explanation precision, helping to expose overly broad or imprecise
feature descriptions.

Similarity-based non-activating sentences. This method follows the similarity-based strategy but
filters for sentences with no ground-truth feature activation. This ensures a fair comparison between
the false positive rates of similarity-based and random selection methods. As shown in Section 5.1,
similarity-based complementary sentences tend to yield higher false positive rates, leading to lower
correlation scores for feature explanations. This result highlights the recall bias in current feature
explanation methods and provides a more precise measure of their precision.

S Experiments

In Section 5.1, we compare various methods for sourcing complementary sentences. Section 5.2
documents our improvements to the explanation generation process. Finally, Section 5.3 analyzes the
impact of our structured explanations on the composition of SAE features as a function of layer.

Common setup. All experiments are conducted using an uncopyrighted subset of the Pile [8, 25].
We conduct experiments on a subset of 100,000 sentences and chunk them into sequences with 32
tokens. For all experiments, we use the open-source Llama 4 Scout to generate explanations [22].
Our subject language models are gemma-2-9b, 11ama-3.1-8b, and gpt-2-small. We leveraged
pretrained SAEs of comparable widths, using the 16k Gemma scope SAEs [19] and 32k Llama scope
and GPT-2 SAEs [9, 13]. We use the first 50 SAE features of each layer in our experiments.

5.1 Complementary sentence sourcing

In this section, we evaluate the four complementary sentence sourcing strategies introduced in
Section 4.4. Following the setup of Bills et al. [1], we provide the explainer LLM with 10 top-
activating sentences as the training dataset for each feature and prompt it to generate an explanation.
We then use a simulator LLM to predict feature activations on a test dataset, which consists of 10
top-activating sentences and 10 complementary sentences. Finally, we assess the quality of the
explanations by measuring (1) the false positive rate of simulated activations on the complementary
sentences and (2) the correlation between ground-truth and simulated activations. We experiment
with gemma-2-9b as our subject model.

Figure 3 shows the number of false positives per sentence of simulated feature activations on
complementary sentences using structured explanations. For a fair comparison, we highlight all
non-activating complementary sentence sources, as they contain no ground-truth activations (i.e., no



true positives or false negatives). We also plot the complementary sources without the no-activation
restriction in dashed lines; however, comparisons involving these methods are not entirely fair since
they differ in the number of true positives as well.
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Figure 3: False positives per sentence of simulated activations on complementary sentences for the
one-shot explainer (left) and the tree-based explainer (right), averaged over 50 features per layer.
“Non-activating” indicates the sentences have no ground-truth activation.

As observed in Figure 3, for both the one-shot and tree-based explainer, similarity-based complemen-
tary sentence sourcing methods result in higher false positive rates than random selection methods.
This indicates that similarity-based methods are more effective at identifying “close counterexamples”
that expose the limitations of feature explanations in terms of precision. As noted by Caden Juang et al.
[4], existing feature explanation generation methods tend to be biased toward recall. By evaluating
explanations on similarity-based complementary sentences, we achieve a more precise assessment of
their accuracy.

We show some examples of similarity-based complementary sentences and their corresponding
simulated activations in Appendix C.

5.2 Explanation generation

An overview of our explanation generation results is available in Figure 4, with the associated
tabular results in Table 1. As in Section 5.1, we use 10 top-activating sentences as the training
set for generating the explanations, with the optional inclusion of 10 additional complementary
sentences as training negatives. For the evaluation dataset, we use 10 top-activating sentences and 10
complementary sentences. We take similarity-based non-activating sentences as the complementary
set.
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Figure 4: Explanation strategy comparison. Bars denote 90% confidence intervals.

We note that tree-based generation consistently outperforms one-shot generation.



For the unstructured explanation case, we see relative improvements of 19.8% for Gemma, 21.6% for
Llama, and 16.4% for GPT-2 when using the tree explainer. In the one-shot explainer case, we also see
an improvement from structured explanations, with relative improvements of 5.8% for Gemma, 8.4%
for Llama, and 9.2% for GPT-2. When employing tree-based generation, structured explanations no
longer provide a benefit. We hypothesize that this is attributable to tree-based generation’s ability to
iteratively pack polysemantic meanings into a single explanation string.

We report negative results for both the inclusion of holistic activations and training negatives in the
explanation process. Figure 4 shows that including holistic activations and training negatives does
not improve the performance for either the one-shot or tree explainer in any of our tested language
models. Taken together, these results suggest that LLMs still struggle to generate feature explanations
which account for prior context.

5.3 Analysis of structured explanations

We analyze feature complexity and polysemanticity for eight evenly-spaced layers within each model,
including the first and final layers.

Feature complexity. We use an LLM judge to evaluate the complexity of generated structured expla-
nations from the tree explainer [38]. We provide the judge with few-shot examples of explanations
and the associated complexity score, ranging from 0 to 5. Lower complexity scores correspond to
simple token-specific features (e.g., “the word ’instruments”’) and higher complexity scores are
assigned to more abstract features (e.g., “expressions of skepticism”). Our complexity judge imple-
mentation follows the simulation approach detailed in Section 4.1 and uses the gemma-2-27b-it
model. We compute the simple average of the complexity scores across all explanation components
for a particular feature.

Feature polysemanticity. For each feature, we run the tree explainer with rule caps ranging from 1 to
5. Each generated explanation is scored against the evaluation sentences, and we record the smallest
rule cap for which 90% of the maximum score is achieved over all five settings. This intuitively
provides a measure of feature polysemanticity.

Results. Figure 5 shows the average explanation complexity and polysemanticity of structured
explanations generated by the tree explainer. We find that the Gemma 2 and Llama 3.1 models peak
in complexity at the middle layers, while GPT-2’s complexity remains relatively stable across layers.
Gemma 2 and Llama 3.1 also exhibit a similar increasing pattern in the polysemanticity figure, rising
from an average polysemanticity of 1.6 and 1.5 at the first layer, to 2.0 and 2.1 at the final layer. In
contrast, GPT-2 has consistently less polysemantic features.
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Figure 5: Lines denote mean values, and shaded regions denote 80% confidence intervals. The
horizontal axis corresponds to the analyzed layer as a proportion of the total layer count, which
varies between models. Left. The average explanation complexity for the tree explainer. Right. The
polysemanticity of structured explanations generated by the tree explainer.



6 Limitations

While our methods improve the precision and falsifiability of SAE feature explanations, several
limitations remain. First, the iterative tree-based explanation generation process is computationally
expensive, taking approximately 1.5 minutes per feature on our hardware, which presents challenges
for large-scale analysis.® Second, our approach relies primarily on top-activating records, which
may overlook certain forms of polysemanticity—particularly when important activation patterns
occur in less frequent or lower-ranked contexts. Third, as with all SAE-based interpretability
methods, the resulting feature decomposition reflects the representational structure of activations
rather than the true underlying computational mechanisms of the model. Consequently, while
improved explanations enhance the interpretability of individual features, they do not in themselves
guarantee a full understanding of model reasoning or behavior. Finally, our analyses in Section 5 focus
on layer-wise and model-size trends that provide empirical insights into representational structure, but
they should be viewed as preliminary steps toward mechanistic understanding rather than conclusive
explanations. We hope that future work will build on these results to establish stronger connections
between feature-level interpretability and higher-level model behaviors.

7 Conclusion

This work addresses key challenges in the automatic interpretability of Sparse Autoencoder (SAE)
features in large language models. We introduce a method for sourcing semantically similar counterex-
amples that more effectively falsify overly broad explanations, a structured format for representing
feature activations, and a tree-based iterative explainer for refining explanations through evaluation
and feedback. Our experiments show that these approaches improve explanation precision, reveal the
recall bias in existing methods, and provide new insights into how feature complexity and polyseman-
ticity evolve across model layers. Together, these contributions offer a more rigorous and falsifiable
framework for LLM interpretability.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The body of our paper expands experimentally on the main claims made in
the abstract and the contributions section of the introduction. Our results are detailed in
Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have an explicit limitations section in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [NA]
Justification: our paper does not make theoretical claims.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all code for reproducing our experiments in the supplemental
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include all code for reproducing our experiments in the supplemental
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Methodological details regarding explanation generation, simulation, and
complexity analysis are provided in Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars and confidence intervals where appropriate (e.g. confi-
dence intervals in Figure 4 with explanations in the text).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss runtime and compute resources in Section 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and believe that our paper is in compli-
ance.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the social impact of our work in Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any data or models which have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite both the original Pile dataset and a community-sourced version which
removes all copyrighted content. We employ the latter in our experiments to avoid license
violations. We discuss licenses further in Appendix E.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research studies LLMs but we did not use LLMs to conduct the research
itself.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Explanation, simulation, and complexity analysis

This section documents the methodological details regarding our explanation, simulation, and com-
plexity analysis.

A.1 Explanation

Hyperparameters. For the one-shot explainer, we use a temperature of 1 and a top-p value of 1 for
explanation generation, with a maximum of 10 rules (i.e., components in the structured explanation).
For the tree-based explainer, we set the temperature to 1.2 and top-p to 1, with a maximum of 5 rules.
The tree is initialized with 3 root nodes, a maximum depth of 2, and a branching factor of 2, meaning
each node generates 2 candidate explanations after evaluation and feedback. The width is set to 2,
retaining the top 2 scoring explanations at each iteration and discarding the rest.

Prompts. For both the unstructured and structured explainers, the explanation prompt consists of three
components: (1) a system prompt (provided as system messages), (2) few-shot examples (provided
as user messages), and (3) their corresponding explanations (provided as assistant messages). The
system prompt for the unstructured explainer is shown in Figure 6.

We're studying neurons in a neural network. Each neuron looks for some
— particular thing in a short document. Look at the parts of the

— document the neuron activates for and summarize in a single sentence
— what the neuron is looking for. Don't list examples of words.

The activation format is token<tab>activation. Activation values range

— from O to 5. A neuron finding what it's looking for is represented by
— a non-zero activation value. The higher the activation value, the

< stronger the match.

Activation records consist of two parts: activating tokens and

— activation-causing tokens. Activating tokens are the tokens that the
— feature activates on. Activation-causing tokens are the tokens that
— cause the feature to activate on later activating tokens.

Figure 6: The system prompt for the unstructured explainer. The texts in blue are optional and only
included when using the holistic activations introduced in Section 4.2.

In Figure 6, the text highlighted in blue is included only when incorporating holistic activations,
as described in Section 4.2. Similarly, the system prompt for the structured explainer is shown in
Figure 7, where the blue text indicates content specific to holistic activations. Additionally, the purple
text in Figure 7 appears only when explicitly setting a maximum number of explanation components
for the structured explainer.
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We're studying features in a neural network. Each feature looks for
— specific patterns in text. Analyze the parts of the text where the
— feature activates and explain its behavior in a structured format.

For each feature, provide a list of rules, where each rule consists of two
< fields:

1. 'activates_on' (string): The specific tokens on which the activation

— occurs. This must be a string -- NOT a list of strings.

2. 'strength' (int): The strength of the activation, from O to 5. Only put
— a single integer here, no additional text.

Each rule should consist of a single human-interpretable concept. Do not
— try to pack completely unrelated activating tokens into the same rule.
— For example, if the feature activates on the word 'stop' and also on
— the word 'cookie', you should put them in different rules.

But sufficiently similar or conceptually related activating tokens can be

— grouped together in the same rule. For example, if the feature
— activates on the word 'car' and also on the word 'truck', you should
— put them in the same rule.

The activation format is token<tab>activation. Values range from O to 5.
— Non-zero activations indicate the feature found what it's looking for.
— Higher values indicate stronger matches.

Activation records consist of two parts: activating tokens and

< activation-causing tokens. Activating tokens are the tokens that the
— feature activates on. Activation-causing tokens are the tokens that
— cause the feature to activate on later activating tokens.

Try to keep the 'activates_on' field short. Also keep the list of rules as

— short as possible. Only add rules to the list if they are really
< necessary; i.e., only add a rule if the feature activates on it and
— 1t's not already in the list.

The strict maximum number of rules is {rule_cap}. Do not generate more

— than this number of rules. You should not try to fill up the rule cap,
— only add rules if they are actually necessary and try to keep the list
— of rules as short as possible.

Format your response as a JSON list of dictionaries with 'activates_on'
— and 'strength' fields.

Figure 7: The system prompt for the structured explainer. The texts in blue are optional and only
included when using the holistic activations introduced in Section 4.2. The texts in purple are only
included when the maximum number of rules rule_cap is explicitly set.
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RECORD START <start>

Activating tokens {tokens[0]}  unknown

<start> {tokens[1]} unknown

{tokens[0]} unknown -

{tokens[1]} unknown {tokens[n]} unknown
<end>

{éékens[i]} {activations[i]}
{tokens[i+1]} {activations[i+1]}

{tokens[n]} {activations[n]}
<end>

Activation-causing tokens
<start>

{tokens[0]} unknown
{tokens[1]} unknown

{tokens[i]}

< {holistic_activations[i]}
{tokens[i+1]}

<« {holistic_activations[i+1]}

{tokens[n]}

— {holistic_activations[n]}
<end>

RECORD END

(a) (b)

Figure 8: Formatting of records for simulation and explanation generation. Figure 8a shows the
formatting of a few-shot example record. For explanation, all few-shot examples’ activations are
fully shown. For simulation, the first ¢ tokens’ activations are masked with unknown (as in Bills
et al. [1]), where ¢ is an integer between 0 and n. The few-shot example formatting in Figure 8a,
except without any activation masking. The texts in blue are optional and only included when using
the holistic activations introduced in Section 4.2. The format for the sequence being simulated is
show in Figure 8b; all tokens are masked as unknown and the log probabilities for each score integer
0,1,...,51is used to compute the expected score.
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Next, we provide the few-shot examples along with their corresponding unstructured and structured
explanations. These records are ultimately formatted as in Figure 8 when included in the context—
however, here we highlight activations in a more human-readable way. In these examples, both regular
activations and holistic activations are highlighted, with darker background colors indicating higher
activation values. For readability, some line breaks from the original records have been omitted. The
same set of examples is used to prompt all explainers.

Example 1
Regular activations:

o javascript to provide you with affoSifiV€ online shopping experience. To enable
javascript

o and 3 and Are Negative for Claudin 4. Invasive apo
Holistic activations:

o javascript to provide you with afpoSifiV€ online shopping experience. To enable
javascript

o and 3 and Are Negative for Claudin 4. Invasive apo
Unstructured explanation: the words 'positive' and 'negative'

Structured explanation:

L
{
"activates_on": "The words 'positive' and 'megative', in upper
— and lowercase.",
"strength": 3
}5
]
Example 2

Regular activations:

o <title>Installation of Lessgltitle> <para>Install Less
o <title>CodeMirror: HTML mixed modeK/title> <meta

Holistic activations:

o <title>Installation of Less</title> <para>Install Less
o <title>CodeMirror: HTML mixed mode</title> <meta

Unstructured explanation: the HTML tag component '</' following an opening
'<title' tag

Structured explanation:

L
{
"activates_on": "The HTML tag component '</' when following an
< opening '<title' tag.",
"strength": 4
}’
]
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Example 3

Regular activations:
o third-generation/cephalosporin-resistant Escherichia coli from broilers, swine,
o NCLLS standard for susceptibility testing of yeasts?]. The Etest and
Holistic activations:
o third-generation cephalosporin-resistant Escherichia coli from broilers, swine,
o NCLLS standard for susceptibility testing of yeasts?]. The Etest and
Unstructured explanation: language related to biological resistance

Structured explanation:

L
{
"activates_on": "Words relating to susceptibility and
— resistance in the context of biological testing and
— scientific research.",
"strength": 3
} b
{
"activates_on": "Antibiotic names.",
"strength": 4
}
]
Example 4

Regular activations:
o hage migration inhibitory factor in/allergicfiliiflitis: its identification in
eosinophilsat
o prevalence of asthma and allergic disorders was assessed in 9-11 year-
Holistic activations:
o hage migration inhibitory factor in allergic rhinitis: its identification in
eosinophilsat
o prevalence of asthma and'allergic disorders was assessed in 9-11 year-
Unstructured explanation: language related to diseases, disorders and aller-
gies

Structured explanation:

L
{
"activates_on": "The word 'allergic'.",
"strength": 3
})
{
"activates_on": "Diseases and disorders, only if following the
— word 'allergic'.",
"strength": 4
}
]
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Example 5

Regular activations:

o communication system in which Av apparatus, such as aJ¥idlé8 tape recorder
(VTR
o camera view at the same time? I have a requirement to show both rear

Holistic activations:

o communication system in which Av apparatus, such as a video tape recorder
(VTR

o camera view at the same time? I have a requirement to show both rear
Unstructured explanation: language related to views, videos, and recording

Structured explanation:

[
{
"activates_on": "Words generally related to views, videos, and
— recording.",
"strength": 3
}
]

Following these few-shot examples, the explainer receives feature activation records and is prompted
to generate an explanation based on them.

For the tree explainer, each iteration involves evaluating the explanations generated at each tree node,
providing feedback, and prompting the node to refine its explanation. To achieve this, we first assess
the explanation using validation records and identify the record with the lowest score, which is then
included in the feedback prompt. Both the ground-truth activations and the activations predicted by
the simulator are provided in the feedback (Figure 9).

Subsequently, we append a suffix to the feedback, instructing the explainer to reflect on the errors in
its previous explanation and generate a revised one. For the unstructured tree explainer, the feedback
suffix is shown in Figure 10, where the purple text is included only when explicitly setting a maximum
number of rules in the structured explanations. For the structured tree explainer, the feedback suffix
is shown in Figure 11.
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Overall score (out of 1.0 max): {score}
Most incorrect record:

Activation-causing tokens (review)
<start>

{tokens[0]} unknown

{tokens[1]} unknown

{tokens[i]} {holistic_activations[i]}
{tokens[i+1]} {holistic_activations[i+1]}

{tokens[n]} {holistic_activations[n]}
<end>

Activating token errors

<start>

{tokens[0]} (predicted: {predicted_activations[0]}) (actual:

— dactivations[0]}) (error: {predicted_activations[0] - activations[0]})
{tokens[1]} (predicted: {predicted_activations[1]}) (actual:

— qactivations[1]}) (error: {predicted_activations[1] - activations[1]})

{tokens[nl} (predicted: {predicted_activations[n]}) (actual:
— {activations[n]}) (error: {predicted_activations[n] - activations[n]})
<end>

Figure 9: The feedback string for tree-based generation for both the structured and unstructured.
The text in blue is optional and is only included when using the holistic activations introduced in
Section 4.2.
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Try generating a better explanation, taking into account this feedback. Be
— creative; if you have been trying something and it isn't working, try
— something else.

Format your response as including first an improvement (in natural
— language), then the explanation.

You must make your improvement precise and specific; here are a few

— examples:

- "The neuron is activating on the word 'cat', but my explanation doesn't
— capture this. I should amend my explanation."

- "My score is much lower than previous attempts. I should undo my recent
— changes."

- "My last explanation says that 'cat' activates in any context, but this
— examples show that it doesn't activate when 'dog' appears previously
< 1in the text. I should narrow the context of my explanation."

The strict maximum number of rules is {rule_cap}. Do not generate more

< than this number of rules. You should not try to fill up the rule cap,
— only add rules if they are actually necessary and try to keep the list
— of rules as short as possible.

Structure your response as follows:

IMPROVEMENT:
NEW EXPLANATION:

Figure 10: The feedback suffix for the unstructured tree explainer. The text in purple is only included
when the maximum number of rules is explicitly set.
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Try generating a better explanation, taking into account this feedback. Be
— creative; if you have been trying something and it isn't working, try
— something else.

Format your response as including first an improvement (in natural
— language), then the explanation.

You must make your improvement precise and specific; here are a few

< examples:

- "The feature is activating on the word 'cat', but my explanation doesn't
— capture this. I should add another rule to my explanation list."

- "My score is much lower than previous attempts. I should remove the

— rules I added recently, perhaps they are too long and confusing."

- "My last rule to says that 'cat' activates in any context, but this

— examples show that it doesn't activate when 'dog' appears previously
< 1in the text. I should add this required context to the rule."

- "My rule says to activate on 'cat' with a strength of 2, but the

— examples have higher activations. I don't need to add any new rules,
— but I should increase the strength of my rule."

The strict maximum number of rules is {rule_cap}. Do not generate more

< than this number of rules. You should not try to fill up the rule cap,
— only add rules if they are actually necessary and try to keep the list
— of rules as short as possible.

Structure your response as follows:

IMPROVEMENT :
NEW EXPLANATION: [ { "activates_on": ..., "strength": ... }, ... ]

Note that the "activates_on" field is a single string, not a list of
— strings. Do not include any comment in the JSON list.

Figure 11: The feedback suffix for the structured tree explainer. The text in purple is only included
when the maximum number of rules is explicitly set.
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A.2 Simulation

For simulating feature activations, we follow the “all-at-once” method introduced in Bills et al. [1].
Unlike their original “one-at-a-time” approach—which requires one forwards pass per simulated
token—the ““all-at-once” method provides all the tokens to the model during one inference pass with
the activations marked as unknown. The topk logprobs for each unknown can be used to compute
the expected value of the associated token’s activation. A more comprehensive discussion of this
approach can be found in Bills et al. [1].

The original simulation method in Bills et al. [1] used the closed-source text-davincii-003 model.
Unfortunately, this model is deprecated, as is the associated topk logit feature for input tokens.
To our knowledge, no cloud inference provider supports to topk logit feature, meaning that our
simulation had to be carried out on local hardware.

We optimize local token simulation using a two-level key-value cache. Note that a simulation prompt
can be broadly decomposed as

system prompt & few-shot examples + explanation + simulated sentence

The first level of the cache captures the system prompt and few-shot examples, which are shared
across all explanations and simulated sentences. The second level appends the key-value store for
the explanation. We can then use this to efficiently simulate the activations for a variety of different
sentences for validation and testing.

We simulate all our explanations using the gemma-2-27b-it model loaded with four-bit quantization
[34]. We selected this model as it significantly outperformed all equally or smaller sized models
during our preliminary testing. Other models we considered included those from the Llama family
[37], Mistral and Ministral families [14], and the distilled DeepSeek family [10]. The small size and
compression of gemma-2-27b-it allows for local simulation on a single 40 GB Nvidia A100 GPU.

Prompts. The simulator prompts consist of three components. First, we provide the simulator with a
header message, as shown in Figure 12. Next, we present the same set of few-shot examples that were
shown to the explainer, formatted in the token<tab>activation format (Figure 8a). Finally, we
supply the model with an explanation and a sentence, prompting it to predict the activation values for
each token in the sentence using the message shown in Figure 13, with the sentence being simulated
formatted as in Figure 8b. The predicted activation values are then collected using the “all-at-once”
method described earlier.

We're studying neurons in a neural network. Each neuron looks for some
— particular thing in a short document. Look at summary of what the
< neuron does, and try to predict how it will fire on each token.

The activation format is token<tab>activation, activations go from O to 5,
< "unknown" indicates an unknown activation. Most activations will be O.

Figure 12: The header message for the simulator, provided as a system message.

The previous messages were just examples. Now you will be given a sequence
— of tokens and asked to predict the activations of each token.

Always output a numerical activation, even if preceding activations are
— unknown. Even if you have predicted "unknown" many times previously,
< these were mistakes. Do not repeat this mistake, and output a

— numerical value from O to 5.

Figure 13: The prompt given to the simulator after the few-shot examples. Here we use the “all-at-
once” method in Bills et al. [1] to collect all predicted activations values in a single inference pass.
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A.3 Complexity analysis

Our complexity analysis LLM judge is also locally executed and shares is architecturally similar to
our simulation strategy. Instead of a bilevel key-value cache, we simply cache the system prompt
and few-shot examples for the complexity judge once. We then reuse this cache to analyze every
explanation component individually, before aggregating the total complexity as the mean over all
components. As in the simulator, we prompt the complexity judge to provide an integer score between
0 and 5 for each component. Our model is gemma-2-27b-it with four-bit precision.

Prompts. The prompts for the complexity analyzer consist of three components. First, we provide
a header message as a system message, as shown in Figure 14. Next, we present a set of few-shot
examples demonstrating how to analyze the complexity of explanations. Each example includes an
explanation component, an assigned integer complexity score, and a brief justification for the score.
Finally, we prompt the complexity analyzer with a new explanation component and ask it to output
an integer complexity score.

We're studying features in a neural network. Each feature has an
— activation rule describing how it activates.

Given an explanation of a feature's activation rule, predict how complex
— it is.
The complexity is a number between O and 5, where O is the simplest and 5

< 1s the most complex.

The complexity is determined by the level of abstraction required to
— understand the activation rule.

Having a specific activation context is more complex than not having an
— "Any" context.

Activation rules which activate only on a list of specific tokens are
< simpler than rules which activate on tokens capturing abstract
— concepts.

Figure 14: The system prompt for the complexity analyzer model.

The few-shot examples used for complexity analysis are as follows.

Example 1
Explanation component: “the word ‘instruments’, specifically in a musical description, catalog,
or reference”
Complexity: 1

Justification: Low complexity - only activates on specific words.

Example 2
Explanation component: “present tense verbs ending in ‘ing”’
Complexity: 2

Justification: Moderate complexity - need to understand verb tenses and sp-
ecific suffix patterns.
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Example 3

Explanation component: “words related to medical conditions, in the context of movies and
filmmaking"

Complexity: 3

Justification: Higher complexity - due to need to recognize medical termi-
nology in metaphorical usage.

Example 4

Explanation component: “The word ‘risk’, in the context of medical research/studies”
Complexity: 1

Justification:  Moderate complexity since only activates on specific words
in medical context.

Example 5

Explanation component: “expressions of skepticism”
Complexity: 5

Justification: Very high complexity due to abstract nature of skepticism.

Example 6

Explanation component: "words that reflect negative judgments",
Complexity: 5

Justification: Very high complexity due to the abstract nature of negative
judgments.
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B Holistic feature examples

In this section, we compare the regular and holistic activations for example sentences from our
dataset, highlighting how holistic activations provide a clearer and more accurate characterization of
a feature. As described in Section 4.1, holistic activations measure the contribution of each token to
the feature’s activation over the entire sequence. In contrast, regular activations reflect the feature’s
value at individual tokens, which can be difficult to interpret—especially for features that tend to
activate only after a full concept has been completed, due to the causal structure of Transformer-based
language models.

B.1 The table cell separator feature

As an example, we examine the regular and holistic activations for the 1st feature at the 11th layer of
the Gemma 2 9B model, which activates on table cell separators.

* Regular activation: 0 370 -33.764969 8.111195/93.7938
* Holistic activation: 0.370433.764969|8.111195[93.7938

Based on the regular activations alone, it appears that this feature activates on numbers. However, a
closer look reveals that it actually fires on numbers that follow a table cell separator. The holistic
activations successfully capture this pattern, offering a much clearer and more accurate interpretation
of the feature’s behavior.

B.2 The mathematical operations feature

We present the regular and holistic activations on an example sentence corresponding to the 1st
feature at the 21st layer of the Gemma 2 9B model, which activates on mathematical operations.

* Regular activation: int*); void increment_array (); int main (){
increment_array(); } increment_address (int* ptr){ [
* Holistic activation: int¥); void increment_array (); int main (){

increment_array(); } ilicrement_address (int* ptr){ (*

From the regular activations on this sentence alone, it initially appears that this feature responds to
pointers. However, the holistic activations reveal that it is specifically the operation of incrementing
the pointer—not the pointer itself—that drives the feature’s activation. This illustrates how holistic
activations can more accurately capture the true behavior of a feature by considering its contribution
to the overall sequence activation.

B.3 The ‘“do something like” feature

We show the regular and holistic activations on an example sentence for the 8th feature at the 31st
layer of the Gemma 2 9B model, which activates on the phrase “do something like”.

* Regular activation: to be able to do somethingfliKg this: .xaml.cs: public partial
class MyControl : UserControl { public MyControl()

* Holistic activation: to be able to do somethingJliKg this: .xaml.cs: public partial
class MyControl : UserControl { public MyControl()

The regular activations highlight the word “like”, which alone does not clearly reflect the feature’s

behavior. However, examining the holistic activations reveals that this feature actually responds to the
entire phrase “do something like”, providing a much clearer interpretation of its activation pattern.
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C Complementary sentence examples

In this section, we present example features along with their structured explanations, top-activating
samples, random non-activating samples, and top semantically similar non-activating samples. Acti-
vation values are visually highlighted using color, with darker shades indicating stronger activation.

For top-activating samples, we highlight their ground-truth activation values to illustrate the words
and contexts that most strongly activate the feature. In contrast, for random and semantically similar
non-activating samples, we highlight their simulated feature activations to assess the accuracy and
potential errors of the generated explanations. Any positive simulated activation on these non-
activating samples are false positives. We omitted the line breaks for readability.

We expect that overly broad explanations—those biased toward recall but lacking precision [4]—will
produce more false positives on semantically similar samples, thereby revealing their inaccuracy.

C.1 The “render” and “argument” feature

This is the 2nd feature on the 1st layer of the Gemma 2 9B model.

Structured explanation

L
{
"activates_on": "Words related to rendering in programming
— contexts, like 'render'.",
"strength": 5
})
{
"activates_on": "Words related to arguments and function calls
< within code.",
"strength": 4
}:
{
"activates_on": "The word \"throws\" in a code context related
— to exception handling.",
"strength": 4
by
]

Top-activating samples

* FeRdEE partial: 'edit_icon' %><h4><%= t('avatar.profile_change') %></h4>

* I have found that styled components, when not included in the initial render

* FeRdeE h2 headline 1] =" .c0 { -webkit-letter-spacing: 0.5px; -

* fefidéESubGame is called with anfargument this.subGamelnfo like so: fenderSub
» charts=render @time_series.chart, time_series: @time_series .charts =[render

« title, @user.full_name.outer.container=render "/header", title: @user.full_name
* THead/index';import TR from '../TR/index';import { mount, shallow [render }

* namespace render { struct RenderState; };namespace scene { class PlaneNode :

* var Song = db.model('Song"); var Album = db.model('Album');I want to render
 argument in call to a functionImagine a scenario like so: var obj = { render

Random non-activating samples
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* joke, or is it serious?I'm watching two adaptations of Romeo and Juliet that take
* present invention relates to intumescent compositions based on foamed or

* 005-2013 Team XBMC * http://xbmc.org * * This Program is free software;

* cases]. To investigate the application and efficacy of video-assisted thoracoscopic
* 2,y: 1, w: 1}. Give prob of picking 1y, 1 v,1 g,and 1 w

* 3125 How many millilitres are there in 37/5 of a litre? 7400 What is 1

 License, Version 2.0 (the "License"); * you may not use this file except in

* typemoq";import { IDirectoryManager, ISettingsManager } from "managers";

* 344455566677778889999"[i]; while ((i = getchar())

. - with_baton until (baton = Baton.obtain) sleep(2) end result =/yield

Semantically similar non-activating samples

* "/components.html"/> <%def name="title()">${_("Global badges") } </%def>
 from "../js/src/components/component-list"; import { Metrics } from "../js/src
* ajavascript method on a htmlwidget (jsoneditor) in shiny? I'm trying to use

* aser-example', width: 800, height: 600, scene:|{{ create: create

 { useHistory } from 'react-router-dom'; import { Card, PageSection } from '@
* src="example_output.js"></script> <script> init = function() { var person =

* dom, args)/{ this.progress = 0.0; this.message = ""; this.dom = dom;

* call: puppeteer.launch().then(browser => { let html = ° <!DOCTYPE html>

« =3l const { color, size, ...otherProps/} = props return React.createElement('

» == "undefined"){ _yuitest_coverage =[{}; _yuitest_coverline = function(src, lin

As shown in the simulated feature activations above, the average number of false positives per
sentence is significantly higher for semantically similar non-activating samples (11.6) compared to
random non-activating samples (2.2). This discrepancy arises because the generated explanation
describing “arguments and function calls within code” is overly broad. The Sentence Transformer
effectively captures this, selecting coding-related samples that lead the simulator to generate more
false positives.

C.2 The table cell separator feature

This is the 1st feature on the 11th layer of the Gemma 2 9B model.

Structured explanation

L

{
"activates_on": "Numerical values within specific contexts
— (e.g., scientific research, financial data, or technical
< documents).",
"strength": 3

3,

{

"activates_on": "Specific HTML/data table markup",
"strength": 2
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"activates_on": "The word \"Iris-setosa\"",
"strength": 3

Top-activating samples

=\left(\begin{array} {rrrrlff} -3 &3 &2 &2 & 0 & O\

* 0&&&\ &a&&\ &&b&\ &

\ldots & x \\ x & x & a_3+x & \ldots & x \\ \vdots & \vdots&/&\dd

0.999 0.999 5.1 Iris-setosa Iris-setosa 0.994

e <path d="M14.59 8L12 10.59 9.41/8 8

e COUNT QTY UNIT OF MEASURE Belgium Natural Gas Physical 5 412,500
¢ Iris-setosa 0.996/0.996 4.6 Iris-setosa Iris-setosa

¢ 5.4 Iris-setosa Iris-setosa 0.998/0.998 4.4 Iris-

¢ 0.994 4.9 Iris-setosa Iris-setosa 0.991/0.991

Positions 40, 40 P&L Daily ($thousands) 0.5 (2.2)

Random non-activating samples

* * @name Includes per file * @description The number of files directly included
* , appearances do matter. This is not a self-interested plea aimed at urging my

* 3 By Erin Roach NASHVILLE (BP) — The president of the Association of

¢ a) be the third derivative of -11*a**4/24 - 14*a**2. Let n(s) =

o int_{0}"{\sqrt{4-x"2-y"2}} z"2\sqrt{x"2+y"2+2"

* [l0 // Search a list of files for lines that match a given regular-expression //

* Argonaute: A scaffold for the function of short regulatory RNAs. Argonaute is the

» import ( "os" "syscall" "unsafe" ) // Flags to control the terminals mode. const (
* to move freely from one point of connection to another in various networks it visits

» smoking program. This article has presented an overview of the Quit-Smoking

Semantically similar non-activating samples

* 00000;1.000000;1.000000;; 3.2000

e -0.34691048

e --0.4292854

* 0.000837 0x001B // 0.000460 0x000

0.03744*-3 0.11232 0.003 * 3 0.009

«02 1 2010-12-043 2 2010-12-01

e 0.07 times -1277 -89.39 0.85 * -0.03 -0.

e 0.2e" % 1.236 '1.24e+00' >» The total characters in the
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e ><ol> <pl></pl> <p2></p2> <p3></p3
* 01943 Width: 1005 VWidth: 0 Flags: HM LayerCount: 2 Fore

As evident from the top-activating samples, this feature primarily activates on table cell separators.
However, the explainer fails to capture this specificity, instead providing overly broad explanations
such as “numerical values” and “HTML/data table markups.” The Sentence Transformer is able to
select samples related to numbers and HTML codes, leading the simulator to produce false positives.
The average number of false positives per sentence for semantically similar non-activating samples is
18.7—significantly higher than the 2.9 observed for random non-activating samples.

C.3 The mathematical operations feature

This is the 1st feature on the 21st layer of the Gemma 2 9B model.

Structured explanation

[

{
"activates_on": "Mathematical formulas, equations, and
— operations (e.g., sum, multiplication, division,
— exponential functiomns).",
"strength": 5

}:

{
"activates_on": "Words related to lists (e.g., elements, length,
— sum)",
"strength": 4

}’

{
"activates_on": "Mathematical functions (e.g., cos, sin, log,
— exp, arithmetic operations)",
"strength": 3

}’

{
"activates_on": "Programming language constructs related to
— calculations (e.g., for loops, variables)",
"strength": 2

}

]

Top-activating samples

* mean of a list, i.e. the sum of all elements in the list diVided- its length. (You

* code i get output as 392 #include<stdio.h> #define CUBE(r) ((r)*(x)*(r

e df}{dx} =\lim_{\Delta x \to 0} \dfrac{f(x + \Delta x)I- f(x)}{\Delta

e true # let satisfies_associative_law =1+ 2+ 3)=(1 + 2) + 3;;

* M[B](c =>in (a=>k(a)inc)) def map[B](f: A =>B): M[

* the moment generating function of a random variable $X$ as: SE[e"{tX}]$? I know
* P(A \cap B) = P(B)\cdot P(Al B)=P(A)\cdot P(BIA)$, where P

* interest has compounded for a certain number of years. Note: A = P(1+1)"t
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* fis continuous at a number a if limit of f(x) as x approaches a is equal/to f(a
¢ <stdlib.h> int max(int numl, int num2) { int result; if(numl > num2

Random non-activating samples

* Free Disk Space 46GB minimum Write Review Nioh is a Japanese game designed
* of code execution with wait and notify I research using wait and notify methods

* Omaha network will be down from 8:00 pm to 12:00 midnight, Tuesday,

* multiple racial origin and (2) the race categories of (2a) American Indian and

» * Copyright (C) 2009 Conexant Systems Inc. * Authors <shu.lin@conexant.com
» All Rights Reserved. | * [# Licensed under the Apache License, Version 2.0 (the

* 464230, -668516, -909964, -1188580?

* as possible. Mouse Control Click on a puzzle square to uncover the image or

* education. Since 1975 the flow of foreign medical graduates (FMGs) into US

* 0 Cal.App.2d 615 (1960) IRA GARSON REALTY COMPANY (a Corporation),

Semantically similar non-activating samples

* I saw examples of my problem, but it seems I can't find correct loop. In any case,
* plx=x; pl.y=y; } That's my code and the error I get is

e 1:=0*[1..6]; I[[1..3]] := 1; end; f(); Where();

* to the interval [0; 1]. The mapping should be deterministic in order to get the

» would be §1 = foo $2 = barl $3 = bar2 $4 = bar3 and so on.. it would be like re

* M{a<x<b\}$ can be written $[f(x)]"b_a$. Is there an equivalent notation for $f(x)
* WhereWithVars(); quit; f:=function() if true = 1/0 then return 1; fi; return 2;

* #include <vector> #include <algorithm> using namespace std; int main()

* 2)°x, y=e"x) into a same coordinates. I typed: a = function(x){y=3"

¢ cin>>n; for(i=1;i<=10;++1) t=n¥*i; cout<<t<<end];

From the top-activating samples, we observe that this feature primarily activates on mathematical
operations such as summation, multiplication, division, and even limits. However, the generated
explanation is overly broad, encompassing concepts like “mathematical formulas,” “lists,” “functions,”
and “programming language constructs.” As a result, the Sentence Transformer, trained on top-
activating samples, effectively selects math- and coding-related sentences, leading to a higher false
positive rate. The semantically similar non-activating samples produce an average of 5.8 false
positives per sentence, compared to just 0.9 for random non-activating samples.

C.4 The definition feature

This is the 2nd feature on the 31st layer of the Gemma 2 9B model.

Structured explanation

L
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"activates_on": "The word 'define' and related concepts

— like 'defining' and 'defined'.",

"strength": 5

}’
{
"activates_on": "The concept of explicit function or
— struct declaration.",
"strength": 4
},
{
"activates_on": "The word 'Undefined'.",
"strength": 4
}

Top-activating samples

intl'; const messages =J@éfifiléMessages({ securityControlsLabel: { defaultMessage:
Should I manually create a/definition for GetEnumerator? Seems like it should
DAU/MAU using Application Insights Analytics? Assuming I have aldefinition of
Define Bessel's inequality $$ \sum_{n=1}"Nla_nl"2\leq \Ix\I"2

: Undefined index in PHP post with AJAX In my local machine, I am trying to

4) & "'Sheet1'!A2" This gives me Error: 1004, Object-defined error. I'd 1i

platform contributions (defined via org.eclipse.ui.popupMenus) in this perspective.
want to|define a metric with some labels but I don't always have them all the

) is defined as the condition of having abnormally small teeth \[[@B1]\]. According
but definition of anacronym is sketchy : http://bit.ly/hJtAg4 Richard@Home

Random non-activating samples

I've had the idea of the WWP lettering shadows for a while in my head, but just
men under the Diocese of Australia and New Zealand, ROCOR. The monastery is
are being studied as microdosemeters since they can provide sensitive volumes of
idermal surface saccharides reactive with phytohemagglutinins and pemphigus
Deviates from the original intent"? I suggested this edit yesterday: the question is
and Adaptive Reactions in People Treated for Chronic Obstructive Pulmonary

Feb. 23, 2014 (HealthDay News) — Preteens who changed schools frequently when
this file except in compliance with the License. # You may obtain a copy of the

st steste ke sfeste sk ste st st ste stk stestesokostotokostolokokosolokoskosk tokoskokoiokosololockoksolskoslelokskeslelok [ 5k AT utor */ /3%

link a jQuery UI sortable element with an array? So, basically, how can I link a

Semantically similar non-activating samples

> <01> <pl></pl> <p2></p2> <p3></p3

_list.hpp> boost::adjacency_list<boost::vecS, boost::vecS, boost::directedsS,
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* of 1 micron. Its interior mechanism rests on a heavy cast iron base that is covered
* class AB amplifier: - Rv adjusts the bias point of the two transistors so

* /mkcharacters share/texmf-dist/scripts/luaotfload/mkglyphlist share/texmf-dist

e if (is_android) { l declare_args(). - compile_suid_client = is_linux +

» Reference&#32;&#35;9&#46;44952317&#46;1507271

 Application No. 2000-159163, filed Mar.

* NppExecute plugin in notepad++. I am not able to figure out next step to

* acustomer can see, based on their customer number and order type. I was using

As shown in the top-activating sentences, this feature primarily activates on the words “define” and
“definition”. However, the generated explanation broadens this to include “concepts of explicit
function or struct declarations”, which proves overly inclusive. The similarity-based complementary
sentences contain code snippets involving declarations, leading the feature simulator to produce false
positives. On average, the semantically similar non-activating samples trigger 1.6 false positives per
sentence, significantly higher than the 0.3 observed for random non-activating samples.
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D Supplemental experimental results

D.1 Supplemental explainer comparison results

The tabular results of Figure 4 are shown in Table 1.

Table 1: The explainer comparison results in tabular form.

Model One-shot One-shot One-shot One-shot Tree Tree Tree Tree
Unstructured Structured Structured Structured Unstructured Structured Structured Structured
w/ Negatives w/ Holistic w/ Negatives w/ Holistic

Gemma29b 0.363 £ 0.032 0.384 £+ 0.032 0.366 £+ 0.033 0.370 £ 0.032 0435+ 0.030 0.431 £ 0.032 0.430 £ 0.032 0.432 £ 0.032
Llama3.18b 0.332 £ 0.033 0.360 £ 0.033 0.342 £ 0.034 0.349 £ 0.034 0404 £ 0.032  0.392 £ 0.034 0.389 £0.034 0.399 £ 0.033
GPT-2Small  0.520 4 0.033 0.568 £ 0.031 0.557 +0.032 0.526 £ 0.033 0.622 4 0.028 0.626 + 0.028 0.623 + 0.028 0.634 + 0.028

D.2 Complementary sentence sourcing correlation scores

We present the correlation scores for the four complementary sentence sourcing methods in Figure 15.
As shown in Figure 15, both the one-shot and tree explainer yield consistently lower correlation scores
when evaluated on similarity-based complementary sentences. This further highlights the recall
bias of existing feature explanation methods and demonstrates the effectiveness of similarity-based
strategies in identifying “close counterexamples.”

0.8 1 Random Random
me= Random (non-activating) 0.8 1 m==_ Random (non-activating)
® 0.7 4 Similar ® Similar
S Similar (non-activating) 8 0.7 1 Similar (non-activating)
0 2]
= 0.6 1 o
ERal ®
5 £ 05+
O 0.4 A o
0.4
0.3
T T T T T T
0 10 20 30 40 0 10 20 30 40
Layer Layer
(a) Results for the one-shot explainer. (b) Results for the tree explainer.

Figure 15: The correlation score between the simulated and ground-truth activations, averaged over
50 features per layer. “Non-activating” indicates that the sentences have no ground-truth feature
activation.

D.3 Feature complexity and polysemanticity for the one-shot explainer

Figure 16 presents the complexity and polysemanticity plots for explanations generated by the one-
shot explainer. Across all three models, we observe a general upward trend in complexity as depth
increases. Meanwhile, polysemanticity tends to peak in the middle layers, remaining lower in both
the early and final layers.

D.4 Supplemental results for the structured explanations

In Figure 17, we plot the correlation scores of structured explanations generated by the one-shot
explainer across different layers and numbers of rules (i.e., explanation components). For each rule
count ¢ from 1 to 5, we report the proportion of the maximum score achieved by explanations with up
to ¢ rules, relative to the overall maximum score across all rule counts. As shown, the correlation
score rises rapidly as more rules are included in the structured explanation, highlighting the benefit
of combining multiple monosemantic rules. This trend helps explain the superior performance of
structured over unstructured explanations for the one-shot explainer in Figure 4.

41



(]
g 3.0 = Gemma 2 9b
B 2.4+ ! Llama 3.1 8b
i E 2.5+ = GPT-2 Small
5227 ks
E X
z 2.0 A1 3 2.0 -
. A :
E; 1.8 1 = Gemma 2 9b =
< Llama 3.1 8b 5 1.5 1
1.6 1 e GPT-2 Small )
T T T T E T T T T
0 20 40 60 80 100 % 0 20 40 60 80 100
Layer (%) = Layer (%)

Figure 16: Lines denote mean values, and shaded regions denote 80% confidence intervals. The
horizontal axis corresponds to the analyzed layer as a proportion of the total layer count, which varies
between models. Left. The average explanation complexity for the one-shot explainer. Right. The
polysemanticity of structured explanations generated by the one-shot explainer.
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(a) Gemma 2 9B. (b) Llama 3.1 8B. (c) GPT-2 Small.

Figure 17: The correlation scores of structured explanations generated by the one-shot explainer
across different layers and number of rules.

We present the same analysis for the tree-based explainer in Figure 18. Here, the performance
differences between various maximum rule counts are less pronounced. This is consistent with
Figure 4, where structured explanations offer little advantage over unstructured ones when using the
tree-based explainer. We hypothesize this is because the tree-based explainer’s iterative refinement
process naturally incorporates the feature’s polysemantic behaviors into its explanations, reducing
the need for explicit structuring.

Polysemanticity Heatmap Polysemanticity Heatmap Polysemanticity Heatmap
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1 2 3 1 5 1 2 3 1 5 1 2 3 1 5
Rule Count Rule Count Rule Count
(a) Gemma 2 9B. (b) Llama 3.1 8B. (c) GPT-2 Small.

Figure 18: The correlation scores of structured explanations generated by the tree-based explainer
across different layers and number of rules.
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E Licenses
We use a subset of the Pile which eliminates potentially copyrighted content [8, 25]. The Pile itself is

MIT-licensed. GPT-2 is released under the Apache license. Llama 3.1 and Gemma 2 licenses are
permissive [23, 20].
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