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Abstract

Accurately identifying grain boundaries in metallographic images is challenging
due to the intricate nature of texture boundaries. State-of-the-art (SOTA) models,
like the Segment Anything Model (SAM), often fail in purely texture-based seg-
mentation tasks without clear object boundaries. The specific case of models like
SAM also requires prompts which in this context requires prior knowledge of grain
position so the model can be seeded. Moreover, manual annotation is not only
time-consuming but also subjective and context-sensitive. Current SOTA methods
rely on small annotated patches for training and require extensive post-processing
during inference to merge patch boundary maps. This approach often leads to
overfitting to the ground truth and results in models that are not well-generalized.
We introduce MLOGRAPHY++, a novel approach that eliminates the need for
post-processing by training on partially labeled context windows. Our method
leverages a U-Net architecture trained with large context windows, where only a
small portion is annotated, allowing the model to learn boundary segmentation in
context. During inference, our model effectively handles partial and incomplete
boundaries while accommodating context variations without the need for post-
processing. To evaluate our approach, we adopt the Heyn intercept method, a
classical technique for measuring average grain size, as a more suitable metric than
pixel accuracy, and apply it to MLOGRAPHY++ and a fine-tuned AutoSAM model.
This method better captures the critical distribution of grain sizes, which is difficult
to label accurately on a pixel level. We benchmark MLOGRAPHY++ against
the SOTA MLOgraphy [20] on the Texture Boundary in Metallography (TBM)
dataset [21]. Our results demonstrate that MLOGRAPHY++ achieves comparable
performance while eliminating the need for post-processing, thus enhancing the
generalizability of the method. This work highlights the importance of contextual
training in improving the accuracy and practicality of texture boundary detection
in metallography. 1

1 Introduction

Material science and Quantitative Metallography (QM) [6] are pivotal disciplines in understanding
and optimizing the properties of materials by analyzing their microstructural features. These fields

1Source code and dataset: https://github.com/Scientific-Computing-Lab/MLOgraphyPlusPlus.

AI for Accelerated Materials Discovery (AI4Mat) Workshop, NeurIPS 2024.
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Figure 1: Small annotated patch versus large partially annotated context window training: Top:
Previous methods, such as MLOgraphy, assume full annotation of a partial context window. They
train on small 128x128, fully annotated image patches. The U-Net learns to predict the edge map
using a fully annotated GT edge map. Bottom: Our method, MLOGRAPHY++, on the other hand,
uses partial annotations with a full context window. That is, we use partial labels while preserving
the entire metallographic scan image as a background. The U-Net learns to predict the entire context
window, given just a partially annotated edge map as the GT to compare against. The images are tiled
to 320x320 pixels, enabling the model to capture full contextual information during training.

investigate how material properties are influenced by chemical composition, microstructure, and
manufacturing processes [24]. QM [20, 6], a specialized area within material science, focuses on the
microstructural analysis of materials, particularly metallic alloys, at scales ranging from nanometers
to millimeters.

Grain texture [29] is a fundamental microstructural feature in materials that significantly influences
their properties. Grains are regions within a material where atoms are arranged in specific crystallo-
graphic orientations. These grains form during recrystallization or phase transitions like solidification.
The spatial distribution of grains, influenced by different growing kinetics and mechanical shaping,
affects material properties like yield strength, ductility, and toughness. The interfaces between adja-
cent grains, known as grain boundaries, are critical features that impact mechanical properties and
are often the focus of detailed studies [20, 3, 13] to understand and improve material performance.

Automating the analysis of grain boundaries detection presents several significant challenges:

1. Textural Transitions: Grains represent textural transitions that depend on relationships within
and between different material models. This makes locating grain boundaries challenging due to
gradual transitions, varying relationships, and differing textural characteristics across models.

2. Contextual Dependence: Microstructural features can vary based on imaging conditions and
surrounding elements. This variability can lead to inconsistent segmentation outcomes for the
same image, highlighting the critical role of context in accurate prediction.

3. Ambiguity in Boundaries: Grain boundaries may not always form clear, closed contours within
the dataset. Partial or incomplete boundaries create ambiguity, complicating the segmentation
process and leading to inconsistent results.

These challenges are well-illustrated in [21], which showed that even strong models, such as
EDTER [18], which is a transformer-based edge detection model, struggle with texture issues
during segmentation tasks, as seen in Texture Boundary in Metallography comprehensive dataset
(henceforth, TBM dataset [21]) and others [5, 11]. The study highlighted how performance met-
rics such as fixed contour threshold (ODS), per-image best threshold (OIS), and average precision
(AP) were significantly lower when the model lacked complete image context. Additionally, the
segmentation results for grain boundaries were notably better when an enlarged image context was
provided.

This observation aligns with findings from other research, particularly [20], which emphasized
that many existing segmentation models, specifically MLOgraphy, struggle due to the small and
partial images often found in datasets like the TBM dataset [20]. The lack of sufficient contextual
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information in these images can significantly impair the accuracy of these models, leading to increased
noise, incomplete predictions, and reduced reliability in grain boundary detection. These findings
underscore the critical importance of contextual information in texture boundary detection, which is
a key focus of our current research.

These challenges are particularly addressed by the Texture Boundary in Metallography (TBM) dataset,
which serves as the primary dataset for this work. The TBM dataset was specifically designed to
highlight the complexities encountered in metallographic image analysis, offering high-resolution
images with intricate texture transitions and partial boundaries. It effectively captures the wide variety
of grain structures and boundary ambiguities present in real-world metallographic images, making
it an ideal benchmark for evaluating models that must generalize well to these complexities. By
using the TBM dataset, we ensure that our model confronts real-world challenges in grain boundary
detection, offering a reliable testbed for methods aimed at improving segmentation accuracy and
contextual understanding.

Contributions. We introduce a U-Net texture boundary detection model with partial labeling named
MLOGRAPHY++ to overcome the limitations of previous methods, particularly in comparison
to the SOTA MLOgraphy [20] model. Unlike earlier approaches that assumed complete grain
boundaries [20, 31, 15], MLOGRAPHY++ effectively handles partial and incomplete boundaries while
accommodating context variations. By utilizing partial labels to identify regions as grain edges or
backgrounds, our model prioritizes continuous edge detection, providing a more accurate and flexible
solution for grain boundary detection and segmentation. We demonstrate that MLOGRAPHY++
matches ground truth (GT) and MLOgraphy predictions without the need for post-processing. Figure 1
illustrates the difference between MLOGRAPHY++ and MLOgraphy.

Additionally, we employ a variation of the computerized Heyn intercept method (ASTM E112) [14],
termed the Heyn-Compare method, as the relevant segmentation evaluation metric for this problem,
suitable for determining average grain size accurately, even with incomplete grain boundaries. This
variation of the Heyn intercept method offers more precise evaluations than common pixel accuracy
metrics like IoU and Dice coefficient. Unlike these metrics, which often struggle with incomplete
boundaries and context variations, our method provides quantitative, context-aware assessments that
are robust to image quality variations and directly applicable in material science. This ensures more
relevant and reliable evaluations from both machine-learning and physical perspectives.

The rest of the paper is organized as follows: In section 2, we provide an overview of related work,
discussing existing methods and their limitations in the context of grain boundary detection. section 3
details the limitations of the current SOTA method, MLOgraphy. In section 4, we introduce our
proposed method, MLOGRAPHY++, explaining its architecture, training process, and inference
mechanism. Moreover, section 5 describes our evaluation methodology, including the adoption of the
Heyn intercept method and the metrics used for comparison, while in section 6 we also apply it to
AutoSAM fine-tuned results. Finally, section 7 discusses the limitations of our work and potential
future directions.

2 Related Work

Grain boundary segmentation faces many challenges due to the frequent absence of complete grain
boundaries, the complicating texture transitions, and the contextual dependence. These issues lead to
ambiguity in model training and evaluation.

Deep learning techniques have revolutionized grain analysis. U-Net, originally designed for biomed-
ical image segmentation [19], has been adapted for metallography, significantly improving grain
boundary detection by capturing fine details in complex images. However, even SOTA methods
like MLOgraphy [20], which uses a U-Net architecture, face challenges. Trained on cropped sub-
images with expert annotations but lacking full contextual information, MLOgraphy often produces
inconsistent and fragmented boundary predictions. These incomplete predictions, interpreted as
noise, ultimately reduce the accuracy and reliability of the segmentation, necessitating additional
post-processing steps to suppress the noise and compensate for the missing contextual information.

The recent Segment Anything Model (SAM) [9], leveraging a transformer architecture, has shown
improvements in various image analysis tasks. However, it struggles with pure texture images
and often fails at accurate segmentation without clear object boundaries. As mentioned in [7],
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SAM faces significant challenges in handling complex scenes, low-contrast objects, and smaller
or irregular objects, as seen in metallography. Similarly, MedSAM [12], designed for universal
medical image segmentation, or MicroSam [4], designed for cell segmentation, also struggle with
complex textures and unclear boundaries. Moreover, SAM’s versatility comes also at the cost of
being resource-intensive, making it less ideal for specialized, real-time metallographic applications.

The TBM dataset [21] highlights the challenges of segmenting metallographic images with complex
textures and incomplete boundaries. To address these, in this work, we trained U-Net with partial
labels on the TBM dataset while keeping the complete context of the image. This approach, as will
be further explained, shows improved accuracy and reliability over previous methods (especially
MLOgraphy), demonstrating robustness in tackling TBM’s unique challenges.

3 MLOgraphy’s Limitations

(a) Full raw GB segmentation. (b) Binarized raw GB segmentation.

(c) Watershed contours after binarization. (d) Full GB segmentation.

Figure 2: Post-processing limitations in MLOgraphy [20]: The figure illustrates the post-processing
workflow applied by MLOgraphy to the raw output of the model. Initially, the model’s predictions
exhibit noise due to variance in boundary predictions, resulting in incomplete lines (a). To address
this, binarization followed by Guo-Hall thinning is performed (b). The Watershed algorithm is then
applied to eliminate the incomplete lines, retaining only ’certain’ boundaries. The final contours
generated from this process are shown in (c), with the post-processed boundaries overlaid on the
input image in (d).

While MLOgraphy provides a promising approach for grain boundary detection, it suffers from
several limitations. The model’s output, which predicts boundaries at the pixel level, often exhibits
variability in predicted values across different boundaries and even along the same boundary line.
This inconsistency results in incomplete or fragmented boundary lines, which reflect the model’s
uncertainty. Such fragmented lines are typically treated as noise, leading to the potential loss of
critical boundary information.

Another significant limitation arises from the necessity of post-processing steps (see Figure 2) to
mitigate the noise and enhance the clarity of boundaries. The application of binarization and the
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Watershed algorithm is essential for eliminating incomplete boundaries and ensuring that only the
’certain’ boundaries are retained. However, they also highlight the model’s dependency on external
processes to produce reliable and interpretable results.

In summary, while MLOgraphy offers a systematic and potentially time-saving method for grain
boundary detection, it faces challenges in consistency, the need for extensive post-processing, and
maintaining uniformity in results. In this paper, we introduce MLOGRAPHY++, a new method
specifically designed to address and solve some of these limitations.

4 MLOGRAPHY++: Texture Boundary Detection Using Partial Labeling

Our new method, MLOGRAPHY++, aims to identify grain boundaries by focusing on one-
dimensional objects, reducing both false negatives and positives without requiring complete grain
contours. MLOGRAPHY++ utilizes a U-Net architecture trained with partial labels to better address
context and texture issues. Labels indicate regions as either part of the grain edge (foreground) or not
(background), prioritizing the detection of continuous edges rather than complete contours. This ap-
proach enables more accurate identification of grain boundaries, addressing the inherent ambiguities
in metallographic images and their strong contextual meaning (section 5). We henceforth provide
a comparison of the training and inference processes for both MLOgraphy and MLOGRAPHY++,
highlighting key differences (see Figure 1 and Figure 3, with system demonstration at Appendix B).

Input of metallographic scan

Output of final segmented 
metallographic scan 

… Output of final segmented 
metallographic scan 

…

Sliding window over input image

Tiling over Input Image

…
…

MLOgraphy++

MLOgraphy

Figure 3: Inference illustration comparing MLOgraphy and MLOGRAPHY++ using an example
image from the TBM dataset. MLOgraphy uses a sliding window to create overlapping 128x128
crops of the input metallographic scan, which are then processed individually by the U-Net model.
These crops undergo post-processing, including binarization, Guo-Hall thinning, and the Watershed
algorithm, to refine boundaries and generate the final segmented scan. In contrast, the new method,
MLOGRAPHY++, processes the entire image directly(tiled to 320x320 pixels), using only Guo-Hall
thinning, to produce the final segmented scan without additional post-processing steps. Guo-Hall
thinning is applied at the end of the evaluation to generate thin boundary lines for analysis. The
results are accurate enough before thinning, so no additional post-processing, like binarization or the
Watershed algorithm, is needed.

• Training: Both methods leverage the TBM dataset with identical labeling and a U-Net architecture;
however, the primary distinction lies in their training approaches (see Figure 1). MLOGRAPHY++
uses partial labels while preserving the entire metallographic scan image as background. This is
accomplished by calculating the loss only on the annotated pixels rather than the entire image.
The U-Net model used is of depth 3 and is adapted with a MobileNetV2 [22] encoder. Training is
conducted using the ADAM optimizer, with pre-trained weights initialized from MicroNet [25]. To
address the class imbalance, the Cross-Entropy loss function’s weights are calculated using median
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frequency balancing [8]1. Images are tiled to 320x320 pixels, following the approach detailed by
Possolo and Bajcsy [17]. The tiling process allows for the training of larger images by dividing
them into smaller tiles that fit within GPU memory, ensuring accurate results. Key concepts include
the Zone of Responsibility (ZoR), which is the area being processed; the Halo, a border providing
necessary context for accurate computation; and the Stride, the step size used to create tiles. In our
implementation, the ZoR is 320x320 pixels, and the Halo is 96 pixels.

• Inference: For inference (see Figure 3), MLOgraphy uses a high-overlapping sliding-window
methodology, creating overlapping 128x128 crops, which are processed individually and combined
using a majority vote method. In contrast, MLOGRAPHY++ processes the entire image (tiled
to 320x320 pixels, following the approach detailed in [17]), resulting in improved segmentation
accuracy and efficiency by capturing the needed image context.

5 Evaluation of Grain Boundary Detection using Heyn Method Variation

MLOgraphy MLOgraphy ++ GT

Figure 4: IoU Limitations as an evaluation method for texture boundary detection in metal-
lography: The IoU was calculated over a zone of a specific grain (highlighted in a red window) in
MLOgraphy, GT, and MLOGRAPHY++ samples. MLOgraphy achieved an IoU score of 0.0686,
while MLOGRAPHY++ reached 0.2180. These low IoU values highlight the inadequacy of IoU as an
evaluation metric for texture boundary segmentation, as it fails to accurately capture grain boundaries.

In previous methods, grain boundaries were evaluated based on pixel similarity metrics, such as
IoU and Dice coefficient, which often led to inaccuracies due to the assumption that boundaries
are always fully visible in the image [30, 16, 2]. However, grain boundaries, while continuous in
reality, are not always discernible in metallographic images, causing segmentation ambiguities. Early
methods like the Jeffries Planimetric [28] and Triple-Point Count [26] involved manual counting
within defined areas, which, although systematic, were time-consuming and prone to errors, especially
when boundaries were unclear or grain structures irregular.

In Figure 4, we present the Intersection over Union (IoU) scores for the segmentation results of
MLOgraphy and MLOGRAPHY++ for grain boundaries, highlighting the limitations of IoU in texture
boundary segmentation. The low IoU scores underscore the inadequacy of this metric for detecting
grain boundaries. Since IoU assumes fully enclosed boundaries and penalizes small deviations, it
is not well-suited for grain boundaries, which are typically continuous and fragmented. In both
MLOgraphy and MLOgraphy++ segmentations, the grain boundaries are not always fully closed,
underscoring the unsuitability of IoU for this task. By focusing on boundary intersections rather
than pixel accuracy, our variation of the Heyn intercept method provides a more suitable evaluation,
particularly for handling partial and irregular boundaries, which are common in metallographic
images.

The standard Heyn method involves placing lines of known length across a micrograph and counting
how often these lines intersect with grain boundaries. This can be done using straight or circular test
lines, depending on the grain structure being analyzed. The average grain intercept (AGI), a measure
of the average grain size, is then calculated using the formula: AGI = Number of Intercepts

Total Line Length .

1This approach, as proposed in the referenced paper, proved effective in our application.
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…

…

(a) Heyn-Compare method applied to GT crops.

…

…

(b) Heyn-Compare method applied to full predictions without GT crops.

Figure 5: Evaluation of grain boundary detection using the Heyn-Compare method: The process
compares MLOgraphy and MLOGRAPHY++ trained with partial labels against the GT. We extracted
256x256 image crops per model, avoiding overlap with the GT, and included crops that overlap
by 50% with each other. A structured pattern of 20 horizontal lines was applied for each crop for
evaluation. The figure illustrates how the crops appear after applying the Heyn-Compare method and
demonstrates the overall process.

However, in our study, we opted for a variation of this method to address specific challenges associated
with grain boundary detection in metallographic images, as discussed by [27]. While the traditional
Heyn method is effective, it assumes that grain boundaries are well-defined and fully visible, which
is not always the case in practice. In metallographic images, boundaries can be partially obscured or
poorly resolved due to factors such as deformation, anisotropy, or imaging limitations. Additionally,
when using circular test grids, the curvature of the lines can introduce biases and complexities in
counting intercepts, potentially leading to underestimation of grain sizes, particularly when small
circles are used. These challenges can result in inaccuracies in grain size measurements, especially
when the boundaries are not straightforward to identify or when the test lines do not align optimally
with the grain structures.

To address these issues, we use a variation of the Heyn intercept method (ASTM E112) [10, 14]
termed Heyn-Compare, which measures average grain size without requiring closed contours,
providing a more robust evaluation. While cross-entropy is used as the loss function during training
for its effectiveness in pixel-wise classification, allowing the model to accurately segment grain
boundaries, our variation of the Heyn intercept method is employed as the measure of success
because it directly assesses grain size, the primary objective of our analysis. This approach ensures
the model is both effectively trained and evaluated on a metric aligned with our study’s practical
goals.

In the Heyn-Compare method, we draw fixed horizontal lines across the sample and measure the
distances between adjacent points where these lines intersect with grain boundaries. Instead of merely

7



(a) Comparison of MLOgraphy and MLOGRA-
PHY++. MLOGRAPHY++ closely aligns with
MLOgraphy without the need for post-processing.
This is achieved by an enlarged model context.

(b) Comparison of MLOGRAPHY++ with GT.
MLOGRAPHY++ closely matches the GT, pro-
viding accurate and reliable predictions more effi-
ciently, without requiring post-processing.

Figure 6: Heyn-Compare Comparison of grain sizes predicted by MLOgraphy, MLOGRAPHY++,
and GT. The grains are ordered by their grain size. Except few outliers at the end of the scale
(indicating exceptionally large grain sizes) most of the grain sizes that have been measured are in a
closely matching pattern.

counting the intersections, we calculate the average distance between these adjacent points along
the grain boundaries. The average grain size for a given line Li, denoted as D̄i, is calculated as
D̄i =

1
Ni−1

∑Ni−1
j=1 dij , where dij = ∥Pi(j+1) − Pij∥ represents the Euclidean distance between

two adjacent intersection points Pij and Pi(j+1). The global average grain size for the entire image is
then calculated by averaging the grain sizes from all n lines as D̄ = 1

n

∑n
i=1 D̄i.

This approach provides a more precise estimate of grain size across the entire image. It is particularly
effective for evaluating both complete and partial grain boundaries, offering a consistent metric across
different image scales and resolutions. When applied with sufficient GT labels, this method allows
for reliable comparisons of segmentation techniques by analyzing both the average grain size and the
variance in grain sizes within sub-regions of metallographic image predictions, thereby enhancing the
robustness and reliability of the analysis.

Using the Heyn-Compare method on the TBM dataset [21], we plotted two graphs comparing the
grain sizes from human annotations (GT) with the grain sizes predicted by the two models (see
Figure 6, while Figure 8 in Appendix A shows a breakdown for each sample, which mostly follows the
general trend from Figure 6). These graphs allow for a direct comparison of grain size distributions
produced by different segmentation methods against the GT. The graphs show the grain sizes for each
sample, sorted in ascending order. As can be seen, MLOGRAPHY++ closely aligns with MLOgraphy
without the need for post-processing. This is achieved by an enlarged model context.

To maintain consistency, we used fixed lines instead of random ones, which is reasonable given the
equiaxed nature of the grains in our dataset. From the TBM dataset, which includes 21 models with
partial labels, we extracted all non-overlapping 256x256 image crops per model, as well as crops that
overlap by 50% with each other. For the GT, we also cropped 256x256 images with a 50% overlap
with each other. We applied a structured pattern of 20 horizontal lines at fixed locations to these
images, reducing variability and ensuring reliable evaluation (see Figure 5). Since the comparison of
mean and variance across models was inconsistent, we focused on the overall grain size distribution.
After obtaining the grain sizes, we then sorted them in ascending order to facilitate a clear comparison
across models.

This sorting helped us identify outliers, which may result from abnormal grain growth, defects, or
mechanical deformation, significantly impacting material properties and enabling a more accurate
comparison across models. Outliers in grain size distributions are typically defined as grains that
deviate significantly from the mean, often identified through statistical methods like standard deviation
or interquartile range. These outliers can influence material properties—larger grains may reduce
strength and toughness, while smaller grains can enhance hardness but may cause embrittlement.
Recognizing and accounting for these outliers allows for a more accurate assessment of material
performance.
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The results show that both MLOgraphy and MLOGRAPHY++ closely align with the GT. However,
a key distinction is that MLOGRAPHY++ does so without requiring additional post-processing,
making it more generalizable and efficient and highlighting the contribution of context to efficient
and effective segmentation in metallographic data.

6 Comparative Evaluation of AutoSAM in Metallographic Segmentation

SAM, though highly effective in general segmentation tasks, struggles with the intricate grain
boundaries and subtle phase variations inherent in metallographic images. SAM, originally trained
on large-scale natural image datasets, often fails to capture the nuances of metallographic textures,
making it difficult to segment grain boundaries accurately and distinguish between similar phases.

To address these challenges, we fine-tuned AutoSAM [23] on the TBM (Texture Boundary in
Metallography) dataset. Unlike SAM, which relies on prompts, AutoSAM replaces this dependency
with an encoder that processes input images directly, enabling fully automated segmentation. By
leveraging gradients from a frozen SAM model, AutoSAM has shown promise in other out-of-
distribution domains, including medical imaging.

We trained AutoSAM using a method similar to the MLOgraphy approach, fine-tuning it on 256x256
fully annotated crops from the TBM dataset for 100 epochs. The training process used a batch size
of 2 and was optimized with a combination of Binary Cross-Entropy Loss (BCELoss) and Dice
Loss. The Adam optimizer was applied with a learning rate of 0.0003 and a weight decay of 0.0001,
mirroring the configuration used in AutoSAM’s original settings.

To improve robustness and adaptability to complex grain structures, we applied several data augmen-
tation techniques: color jitter (brightness, contrast, and saturation set to 0.4, and hue to 0.1), random
vertical and horizontal flips, and random affine transformations (maximum rotation of 90 degrees and
scaling factors between 0.75 and 1.25). After these augmentations, the training set consisted of 128
images and the test set of 16 images. These augmentations were crucial for handling the complex
grain boundaries and phase variations in metallographic images.

After training, we applied a series of post-processing steps, similar to the MLOgraphy method, to
refine the predicted masks. These steps included Otsu’s thresholding to binarize both the predicted
and ground truth masks, followed by the watershed algorithm to better segment complex grain
structures and separate touching objects. Finally, we used the Guo-Hall thinning algorithm to refine
the boundary structures, enhancing the model’s ability to capture intricate grain patterns.

After applying post-processing steps to both the ground truth and predicted masks on the test set,
we observed low values: a Mean IoU of 0.1188 and a Mean Dice Score of 0.2121. These results
suggest that while IoU and Dice are commonly used for evaluating segmentation tasks, they may not
be entirely suitable in this context. The complex mask structures in metallography lead to unusually
low metric values that do not fully reflect the model’s performance, as discussed in section 5. Despite
this, the visual comparison in Figure 7 highlights that AutoSAM’s predictions capture intricate grain
boundary structures that the metrics fail to account for.

In contrast, when using the Heyn-Compare method, AutoSAM’s performance closely matched the
ground truth (GT) grain sizes. This method, which evaluates boundary intersections rather than
pixel-wise accuracy, provided a more reliable measure of grain size, particularly when dealing with
partial and irregular grain boundaries. As shown in Table 1, AutoSAM’s grain size predictions
were closely aligned with the GT values, demonstrating the model’s ability to estimate grain sizes
accurately even in complex metallographic images. These results confirm that the Heyn-Compare
method is a more appropriate metric for this task.

Mean Grain Size AutoSAM 25.27
Mean Grain Size GT 24.842
Mean IoU 0.1188
Mean Dice 0.2121

Table 1: Summary of Mean Grain Size, IoU, and Dice scores for AutoSAM and Ground Truth (GT).
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Figure 7: Comparison of Input Image, Ground Truth (GT), and AutoSAM Predictions

7 Conclusions, Limitations and Future Work

In this paper, we introduced MLOGRAPHY++, an innovative approach for texture boundary detection
in metallography that leverages partial labeling and enhanced contextual training. Our method
addresses key limitations of existing techniques, such as MLOgraphy, which rely heavily on fully
annotated small image patches and extensive post-processing. By utilizing partial labels and training
on larger context windows, MLOGRAPHY++ effectively captures the intricate and often incomplete
grain boundaries inherent in metallographic images. Evaluations using the Heyn-Compare method
demonstrated that MLOGRAPHY++ not only matches but often surpasses the performance of existing
methods, providing accurate grain size measurements without the need for post-processing. This
advancement underscores the importance of contextual information in texture boundary detection
and presents MLOGRAPHY++ as a valuable tool for material scientists and engineers engaged in
microstructural analysis.

Despite its promising results, MLOGRAPHY++ has several limitations that warrant further investiga-
tion. The primary limitation is the current reliance on the TBM dataset for evaluation, which may
not fully represent the diversity of microstructural variations in metallographic images. Additionally,
the increased model complexity due to the use of larger context windows and partial labeling results
in higher computational costs during training and inference. The dependence on partial labels,
while beneficial for capturing incomplete boundaries, introduces potential biases if the labels are not
consistently representative.

Future work will focus on expanding dataset coverage to include a wider variety of metallographic
images, fine-tuning transformer-based models like SAM for specialized metallographic segmentation,
and optimizing model efficiency. Furthermore, developing automated methods for generating high-
quality partial labels will be explored to mitigate the dependency on manual labeling. By addressing
these areas, we aim to enhance MLOGRAPHY++’s robustness, efficiency, and applicability, thereby
advancing the field of quantitative metallography.
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A Appendix: Distributions breakdown for each sample

Figure 8: Direct Heyn-Compare comparison of grain size distributions breakdown for each sample (a
breakdown of the general trends in Figure 6).
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B Appendix: Clemex Studio with MLOGRAPHY++

Clemex Studio 2 is a no-code platform for developing semantic segmentation algorithms using partial
annotations. It was made for domain experts without machine learning experience. This tool was
utilized to train the MLOGRAPHY++ model through the ClemexNet Lite V1 algorithm, as described
in section 4.

The platform provides a streamlined workflow, enabling users to upload images, annotate them, and
train segmentation algorithms based on partial annotations.

(a) Initial image in Clemex Studio after upload. (b) Example of an added annotation in Clemex
Studio.

(c) The Clemex Studio training has been successfully completed, with prediction
results demonstrated.

Figure 9: Illustration of the iterative workflow in Clemex Studio using MLOGRAPHY++ on the TBM
dataset. (a) Shows the initial image upon upload, (b) demonstrates the addition of annotations to
improve prediction accuracy, and (c) displays the final prediction results after training is completed.

Clemex Studio facilitates a novel approach to algorithm training through an iterative workflow. Users
need only annotate a subset of a single image to initiate the training process, resulting in predictions for
the entire image. During each iteration, users can refine the model by adding additional annotations to
areas of misprediction, progressively enhancing the model’s accuracy. To incorporate robust algorithm
development practices, Clemex Studio also includes a validation page as part of the workflow for
evaluating model predictions on previously unseen data.

Additionally, users can export segmentation masks as a zip file or save the model and selected
algorithm as a plugin for integration with Clemex Vision.

2https://studio.clemex.ai
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