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Abstract

Graph Transformer (GT) leveraging the powerful Transformer architecture to learn
graph-structured data. However, effectively representing graph information while
ensuring efficiency remains challenging, as our analysis reveals that graph-scale
operations still constitute the computational bottleneck in current GT designs and
limit their applications to large graphs. In this work, we tackle the GT scalability
issue by proposing HubGT, which is boosted by decoupled graph computation and
hierarchical graph representations. HubGT represents graph information with a
novel hub labeling scheme, which encompasses enriched neighborhoods for node
token generation, and fast computation for distance-based positional encoding.
Notably, the precomputation and training of HubGT achieve complexities linear
to the number of graph edges and nodes, respectively, while the training stage
completely removes graph-related computations, leading to favorable mini-batch
capability and GPU utilization. Extensive experiments demonstrate that HubGT
offers efficient computation and mini-batch capability over existing GT designs on
large-scale datasets while achieving top-tier effectiveness. Our code is available at:
https://github.com/gdmnl/HubGT.

1 Introduction

Graph Transformers (GTs) has recently emerged as a family of neural networks that introduce the
advantageous Transformer architecture [[1] to the realm of graph data learning. These models have
garnered increasing research interest for tasks such as knowledge graph retrieval, molecule analysis,
and Large Language Model alignment [2} 3| 14, |5]]. Despite their achievements, vanilla GTs are highly
limited to specific tasks because of the full-graph attention mechanism, which has computational
complexity at least quadratic to the graph size, rendering it impractical for a single graph with more
than thousands of nodes. Enhancing the scalability of GTs is thus a prominent task for enabling these
powerful models to handle a wider range of graph data at large scales.

To apply Graph Transformers to large graph data, existing studies explore various strategies to divide
and represent the graph structure into smaller batches and employ mini-batch training. One approach is
to simplify the Transformer architecture with a specialized attention module based on graph topology
[6} [7, 8], which learns on existing edge connections instead of all-pair interactions. Alternatively,
sophisticated representations are developed for inputting graph information to GT models as node
embeddings and positional encodings. These works feature graph processing techniques such
as adjacency-based spatial propagation [9, [10], polynomial spectral transformation [11} [12]], and
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Table 1: Complexity analysis on GT models. “Precomputation” and “training time” represent the complexity of
one-time processing and iterative forward-passing computation, respectively. “RAM” and “GPU memory” indicate
the sizes of overall data and variable representations during learning. Data “scale” is represented by the largest graph
node size n and edge size m used in the original papers.

Taxonomy Model Precompute Time Train Time RAM Mem. GPU Mem. Scale
Vanilla  Graphormer [2] O(n?) O(Ln?F) O(n?) O(Ln?F) 0.3K/0.6K
(FB) GRPE [18] O(n?) O(Ln?F) O(n?) O(Ln?F) 0.3K/0.6K
GraphGPS [7] O(n?3) O(LnF? + LmF) O(nF +n?) O(LnyF +m) 1.0K/3.0K
Kernel- Exphormer [19] O(dn) O(LnF? + LmF) O(nF +m) O(LnyF 4+ m) 0.2M/1.2M
based  NodeFormer [6] - O(LnF? + LmF) O(nF +m) O(LnyF +m) 2.4M/60M
(NS)  DIFFormer [8] - O(LnF? + LmF) O(nF +m) O(LnyF 4+ m) 1.6M/40M
PolyNormer [12] - O(LnF? + LmF) O(nF +m) O(LnpF 4+ m) 2.4M/0.1B
NAGphormer 01| O(LmFy) O(LnF?) O(LnF) O(Lny F?) 2.4M/60M
Hierar. PolyFormer [IT} | O(LmFy) O(LnF?) O(LnF) O(Lny F?) 0.2M/30M
chical  ANS-GT [13] O(ns?* +mdL) O(LnF? + LTLSZF + Lm)|O(nF + ns® + mdl) O(LnpF' + nps?) 20K/0.2M
(RS) GOAT [10] O(nF) O(LnF? + LmF) O(nF +m) O(Ln? + LnyF +m) |2.9M/0.1B
HSGT [14] O(n +md") O(LnF? + LmF) O(nF +md")  O(Ln} + Ln,F + Lm)|2.4M/0.1B
HubGT (ours) | O(ns® +ms) O(LnF? + Lns*F) O(nF + ns?) O(LnpF + nps?) 1.6M/0.1B

Notations: L and F' are model depth and width, respectively. d = m/n is the average degree of the graph. s is the sample size for subgraph-based methods.

hierarchical graph coarsening [[13} [14]. However, we identify two major drawbacks of existing
scalable GTs: in terms of efficacy, most models primarily concentrate on local topology, which is
highly diluted in large graphs and undermines GT expressivity in capturing global information; in
terms of efficiency, graph-scale operations still persist throughout their training iterations, and the
computational overhead substantially increases as the graphs become larger.

In this work, we specifically target the above two challenges brought by scalability. We propose
HubGT, a scalable Graph Transformer exploiting the hub labeling technique to produce rich hierar-
chical graph information with efficient computation. HubGT is inspired by the well-studied concept
of graph labeling, which identifies important hubs in the graph structure and imparts fast computation
of the shortest path distance (SPD) for node pairs [15} [16} [17]. We innovatively introduce the graph
label hierarchy to enhance GT capability by establishing global connections to influential graph hubs,
which is shown to provide a more inclusive receptive field than the conventional adjacency-based
scheme. To further represent node-pair interactions, HubGT is the pioneering work to employ SPD
as positional encoding for large-scale GTs, which is only practicable under its efficient calculation.
The expressive representations empower HubGT to capture graph knowledge beyond edges and excel
in complex graph data patterns ranging from homophily to heterophily.

Then, to address the efficiency issue, we design a three-level index for computing and storing the
graph data, where the dedicated computation process and acquired graph labels share the same
hierarchy, comprising of both local edges and global hubs. The indexing process can be fully
decoupled as precomputation with O(m) overhead from the iterative training. Then, querying SPD
on the index can be performed in only O(1) time, rendering HubGT learning as simple as training
normal Transformers under O(n) complexity without interweaving graph topology, where m and n
are the numbers of graph edges and nodes, respectively. Both precomputation and training of HubGT
achieve theoretical complexities on par with the respective state-of-the-art GTs and are significantly
faster in practice thanks to the simplicity of our graph representation based on hub labeling. We
summarize the contributions of this work as follows:

* We propose HubGT as an efficient Graph Transformer with novel hierarchical sampling based on
the hub labels, effectively embedding local and global graph topology. We also enable the powerful
SPD positional encoding on large-scale graphs.

* We design a hierarchical index dedicated to HubGT graph processing, featuring construction under
linear complexity and O(1) query overhead. The decoupled precomputation and simple training
contribute to fast and scalable mini-batch GT training.

* We conduct comprehensive experiments to evaluate the effectiveness and efficiency of HubGT
on up to million-scale graphs. HubGT achieves top-tier accuracy and demonstrates competitive
scalability, especially demonstrating the fastest inference speed.

2 Preliminaries and Related works

Graph Transformer and Positional Encoding. Consider a graph G = (V, £) with n = |V| nodes
and m = |€| edges. The graph adjacency matrix is A and average degree is d = m/n. The node



attribute matrix is X € R"*¥0 where F}, is the dimension of input attributes. A Transformer
layer [1]] first projects three representations given an input matrix H € R™* ¥

Q=HW,, K=HWg, V=HWy, 1)

where Wy € RIXFx Wy € RFXFx Wy, € RE*EV are learnable weights. For a multi-
head self-attention module with N heads, each attention head possesses its own representations

Q;,K;,V;;i=1,---, Npy, and then the output H across all heads is calculated as:
H, = softma <Q1‘K7 )V H = (] ) W @
i= max i = - N (e}
VFk "

where -||- denotes the matrix concatenation operation. The projection dimension is usually set as
Fx = Fy = F/Npy. Beside the representation H, positional encoding (PE) P in Eq. can also
incorporate graph topology into the GT attention module by encoding pair-wise information. Typical
encoding approaches include graph proximity [2} |13} 20], Laplacian eigenvectors [21} 22, 4], and
shortest path distance [18] 23} 24].

Scalable GT and Training Schemes. The majority of vanilla GTs [21} 2| 3] are typically proposed
for graph-level learning tasks on small graphs with full-batch training (FB). This is relevant to their
quadratic complexity as revealed by Table[I] For large-scale graphs, model scalability is primarily
dominated by the graph-scale terms m and n, which renders a critical bottleneck in these models as
indicated in Eq. , due to representing n nodes with O(n?F) time and memory overhead.

To mitigate the quadratic complexity and foster scalable learning, scalable GTs employ mini-batch
training, which replaces the full representation H with batches containing n; nodes and reduces
memory complexity to O(n%F) Kernel-based GTs [6,7) 18,19, [12] generate batches by neighborhood
sampling (NS) and utilize graph kernels, i.e., functions modeling node-pair relations, for attention
computation to exploit edge connections. Typically, they necessitate iterative processing of graph data
with O(LmF') complexity throughout learning. When the graph scale is large, this term becomes
dominant since the edge size m is significantly larger than the node size n. Hence, we argue that such
a design is not sufficiently scalable.

Alternatively, hierarchical GTs (9,111} 110,13} 14] exploit the power of GTs to learn node relations
by embedding node-level identity through the input data X. Its core design is crafting an effective
embedding scheme to comply with GT expressivity. Since the graph topology is embedded in an
permutation-invariant manner, mini-batching can be performed through random sampling (RS). The
model can enjoy better scalability if the graph processing is fully independent of GT attention. Ideally,
hierarchical GTs can process graph topology in O(m) complexity in precomputation and employ
RS during training for better scalability. Nonetheless, we note that existing models, except for
NAGphormer [9]] and PolyFormer [11]], still involve graph-level operations during training as in
Table[I] which hinders GPU utilization and causes additional overhead. A thorough analysis of the
related models can be found in Appendix [B]

3 Motivating Study

Motivation 1: Graph hierarchy beyond adjacency. The expressiveness of GTs mainly stems
from the full-graph attention formulated in Eq. (2)), which captures critical node pairs in the graph
topology to learn node representations [2} 6. However, since the mini-batch scheme replaces it
with in-batch attention, its capability is potentially hindered. To compensate the information loss,
scalable GTs usually invoke more powerful embedding and encoding techniques, enhancing the
global graph view for more candidate nodes by expanding the receptive field. In canonical mini-batch
GT models [2, 6] [7,9], the graph information is typically derived from the graph adjacency A, which
symbolizes neighborhood information £. For both kernel-based and hierarchical GT variants, their
expressiveness in distinguishing different graph structures is characterized by the substructure used
in attention tokens [24].

However, recent advances in message-passing GNNs reveal that, the adjacency alone is insufficient
for retrieving topological information in graph learning [25]. In complicated scenarios such as
heterophilous graphs, the local graph topology may be ambiguous or even misleading [26} 27, 28]].
To illustrate, Figure [I| shows the distribution of node neighbors considering their classification labels
depicted by the homophily score [29]]. A lower homophily score implies high heterophily, where less
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neighbors share the same label with the ego node. On graphs such as CHAMELEON and SQUIRREL, a
large portion of nodes exhibits zero homophily, indicating that substructures depending on graph
edges & barely include neighbors with the same label for GT to attend.

We are thence motivated to improve GT by augmenting the existing graph connections £ to an
extended edge set & containing additional node interactions beyond the neighborhood. As shown
in Figure [T} establishing more edges enhances nodes of lower scores with more homophilous
connections, effectively addressing the zero-homophily issue. Therefore, encompassing both local
connections and global knowledge is capable of forming a hierarchical structure beyond the original
graph adjacency, which benefits the model in retrieving a wide spectrum of information [[13} |10} [14].

Motivation 2: Dense PEs for large graphs. While an array of PE schemes are utilized for explicitly
integrating graph knowledge into GT learning, they are shown to possess various information aspects
and expressiveness [2, (7, [5]. In particular, shortest path distance (SPD) as a form of pairwise PE
[2]] is revealed to be at least expressive as the Weisfeiler-Lehman (WL) graph isomorphism test
[S] and empirically superior in graph classification tasks [30, [7, 31]. However, the conventional
Floyd-Warshall algorithm for calculating whole-graph SPD entails O(n?) time and O(n?) space,
which is prohibitive to large graphs.

On the other hand, scalable GTs commonly employ sparse PEs such as L-hop Adjacency
(D~'/2(A + I)D~'/?)L, which is straightforward to acquire by sparse matrix multiplication in
O(md") complexity [13} [14]. However, since nodes in large graphs are loosely connected, the
in-batch PE under mini-batch training can be too sparse to represent pairwise relationships. As
observed in Figure[2(a)] PE values are only significant between the ego node and two direct neighbors,
while diminishing to zero for more distant nodes in the same batch. The values for non-ego node
pairs are also small, rendering the bias ineffective in attending to node-pair interactions.

To this end, we attempt to apply the more effective pairwise SPD for encoding arbitrary node pairs on
large graphs. Figure [2(b)] suggests that the scheme is superior in providing rich information covering
both positive and negative relationships, even for nodes that are not directly connected. Therefore, it
is also more suitable for the extended hierarchical graph structure £ involving global connections to
distant nodes.

4 Efficient Hierarchical Labeling

In light of the limitations of existing scalable GTs on large graphs, our HubGT aims to address
these two challenges simultaneously while ensuring computational efficiency: (1) The dedicated
data structure provides expressive graph information for generating node embeddings that represent
the graph hierarchy beyond mere adjacency. (2) Node-pair SPD can be efficiently calculated based
on the hierarchy, which is then used as positional encoding. In this section, we first introduce the
concept and novel settings of our graph labeling approach. Then, we focus on designing the respective
indexing and querying algorithms, while their integration into GT learning is elaborated in Section [3]

4.1 Problem Statement

Conventional Hub Labeling: Full-graph SPD. Computing the shortest path between graph nodes
is a fundamental problem in graph analysis. Canonical hub labeling algorithms [32, 33| [34] are
proposed to efficiently answer full-graph SPD queries between arbitrary node pairs. To achieve this,
an index L(v) is constructed for each node v € V, containing a number of labels. Each label for



node v typically consists of an end node u and the corresponding shortest distance b(u, v) between
the node pair. Then, given a query involving two arbitrary nodes u, v € V, the SPD can be promptly
answered by looking up and combining relevant labels from the graph index L, thereby preventing
exhaustive traversal of the entire graph.

Our Settings: Subgraph SPD. In HubGT, we construct the graph index through a separate
precomputation phase that occurs prior to GT learning. Note that each label represents a node pair
(u, v) and the distance b(u, v). Hence, we are able to extend the graph structure to a weighted, directed
graph by regarding the labels as graph edges, i.e., G = (V, &), where £ = {(u,v) | u € L(v)}.
Appendix [A.T|provides a thorough elaboration on the theoretical properties of the extended graph
when generated by our hub labeling approach.

To facilitate node representations for GT learning, here, we consider an SPD querying problem
different from conventional full-graph queries, which allows HubGT to simultaneously perform node
token generation and SPD calculation in an end-to-end manner. The subgraph SPD problem can be
explained as follows: Given a node r, we aim to (1) sample a subgraph, i.e., a set of nodes S(r),
such that (u,7) € & or (r,u) € £ for u € S(r) solely based on the built index; (2) at the same time,
acquire SPDs b(u, v) for all node pairs u, v € S(r). Considering the iterative nature of such queries
during training, our primary design objective is to minimize querying overhead while maintaining
reasonable time and space indexing overhead.

4.2 HubGT Indexing

Under the conventional full-graph SPD problem, the representative Pruned Landmark Labeling (PLL)
algorithm [35} [36] offers an indexing strategy with efficient search space and minimal index size.
The algorithm searches labels by a pruned Breadth First Search (BFS) for each node following a
particular order. During construction, PLL tends to regard foremost nodes in search as hubs and
connecting more edges to them, while eliminating the labeling from latter nodes. Hence, a hierarchy
of nodes are intrinsically formed by labeling.

To address the specific requirements of node sampling and SPD calculation in the subgraph SPD
problem, we design the HubGT algorithm for hub labeling, which is based on the intuition of search-
and-prune from PLL. This leads to a distinct three-level hierarchy in both index construction and
querying, with the aim to strategically balance index size and query time. Our Algorithms|I]to[3]are
detailed in Appendix[A.2]

Hierarchy-1 (H-1): Local hub labeling. Unlike the SPD query on an arbitrary node pair addressed
by PLL, the query for b(u, v) in HubGT always orients an intermediary node r. In other words, u, v
are at most 2-hop neighbors in E. To leverage this relevance, we broaden the derivation of 2-hop
labeling in [35]] to these subgraph nodes, that the distance candidate orienting b, (u, v) can be acquired
by utilizing the connectivity with the local hub node r:

bV (u,v) = b(u,r) + b(r,v) — 6, (u,v), 3)

where d,.(u,v) = 2, 1, or 0 depending on the relative position between (u,r) and (v, r) in G: denote
M (v) = {w € N(r) |b(r,v)=b(w,v) =i}, i = —1,0,0r 1, where N (r) = {w|(w, r) € £} is the
neighborhood orienting r in G. The node sets M (v) of different integers i effectively characterize
the relative position of the node of interest v with respect to the intermediary node r. When
ML(uw)NML(v) # @, there is 6, (u, v) = 2; when M (u) "ML (v) # @ or ML(u)NM2(v) # @,
there is 4, (u, v) = 1; otherwise 6, (u,v) = 0.

We develop Algorithm [T as the first level of hierarchy. On top of the pruned BFS in typical PLL, we
also record the neighbor sets M1 (v) and M2 (v) for nodes added to labels £(u) along with their
indices and distances. Additionally, we maintain an inverse label set £'(v) such that u € £'(v) if and
only if v € £(u). Therefore, each label in £(v) or £'(v) is a quadruple (u, b(u, v), M} (u), MO (u)),
which suffices the distance query based on Eq. (3). In specific, we explicitly impose a maximum
capacity O(s) for each node label £(v) in Algorithm |} This is because at most s neighbors are
required to form the subgraph in our problem.

Hierarchy-2 (H-2): Global hub labeling. H-1 index presents the idea of utilizing the relative
position orienting a given hub r to compute the distances of 2-hop node pairs in a query. It can be
further generalized to some global hubs by indexing their labels as another level of hierarchy, which



corresponds to the bit-parallel BFS in [35]. More specifically, we select a small set of nodes with
low indices in the search order, and perform Algorithm |I| BFS without pruning. For each global
node ¢, the label (b(v,t), M} (v), M?(v)) is computed and stored for all v € V. Then, the candidate

distance of an arbitrary node pair b§2) (u, v) can be similarly computed by Eq. (3) orienting hub ¢.

Hierarchy-0 (H-0): 2-hop pair caching. Although the H-1 and H-2 query Eq. produces the
shortest distance b(u, v) when b (u,v) < b(u,v) + d-(u,v), it is possible that the actual shortest
path P(u,v) does not pass through  or its neighbors. In this case, the exact SPD calculation falls
back to the classic node labeling scheme:

b (u,v) = weﬁl(rigr%ﬁ(v) {b(u, w) + b(w,v)}, “4)

where labels £ are computed by Algorithm [1} Note that b(v, v) = 0.

We regard the 2-hop labeling scheme as the fundamental hierarchy as it guarantees answer to any
queries. However, calculation by Eq. (4)) results in a complexity of O(|£(u)| + |£(v)]), which is
still not satisfying under the repetitive querying in GT training. To further improve query speed, we
choose to cache the frequently queried 2-hop shortest distances b(u, v) and index them by the end
node as I, [u] for u < v. By employing an appropriate data structure, such as a hash map for each v,
checking the existence and acquiring Z, [u] for a given node pair can be completed in O(1).

The precomputation for building the H-0 index is in Algorithm [2| We utilize two structures L(,O) and

L(,l) to respectively record the distances acquired by Eq. and Eq. , and save the distance to
index Z, only if there exists a node r that cannot calculate the shortest distance using the H-1 index.
In this way, we effectively constrain the H-0 index size, and ensure that it only caches the cases where
H-1 may not produce the shortest distance.

4.3 HubGT Querying

After building the indices H-2, H-1, and H-0 successively, querying label neighbors S(r) and
their distances as in Section can be achieved solely on the £, L', Z without resorting to the
raw graph structure. In Algorithm 3} we showcase the sampling procedure given an ego node r
and respective sample sizes S,,+ and s;, for out- and in-connections stored in £(r) and L'(r),
respectively. The node-pair distance inside S(r) is presented as a symmetric matrix B,., and its
entry value B,.[u,v] = B, [v,u] = b(u,v). The distance query on (u, v) consecutively accesses H-0,
H-1, and H-2 indices. If the H-0 distance Z,[u] exists, it indicates the shortest distance according to
Algorithm 2] Otherwise, the distance is either achieved by the local or global hub labeling following
Eq. (3) orienting a particular intermediary node r or ¢. Notably, queries regarding the ego node S(r)
can be performed by only accessing the index of » without referring to others, which offers better
memory locality and runtime efficiency.

As analyzed in Appendix [A.T] generating subgraph structures from the constructed labels preserves
local neighbors while adding global hubs (Property [T). This is preferable than the traditional
adjacency-based neighborhood sampling for GTs, as it extends the receptive field beyond local
neighbors described by graph adjacency and highlights those distant but important hubs in the
whole graph for learning node interactions (Property 2). Meanwhile, non-hub nodes, usually the
less significant nodes under heterophily, are constrained in local substructures with more similar
neighbors (Property [3). From the efficiency aspect, it maintains the form of 1-hop sampling and
prevents the exponential multi-hop operations.

Complexity Analysis. Let the label size |£(v)| bounded by O(s), H-1 and H-2 indexing complete
the traversal of all nodes in O(ns + ms) time. The total index size is therefore bounded by O(ns).
For H-0 labeling in Algorithm 2] the computational overhead is O(nss’), where s’ is the average size
of £'. Empirically, we enforce the index size to be less than s? for every Z,. In summary, the time
and memory complexities for the three-level indexing are O(ns? 4+ ms) and O(ns?), respectively.
We highlight that the empirical label sizes observed in experiments are substantially smaller than the
theoretical bound thanks to the hierarchy that effectively reduces redundant information.

Querying one node pair distance by Algorithm can be achieved in O(1) time when bit parallel and
accessing hash map are both O(1) operations. By selecting sample sizes such that s = s;;, + Sout + 1,
the subgraph size for each query node is |S(r)| = s. In consequence, querying every node as r € V in
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Figure 3: HubGT framework with precomputation and training stages. The precomputation stage
processes the input graph and constructs the label index. During training, subgraph nodes and
SPDs are queried from the index and applied as different Transformer inputs. Querying on CPU and
training on GPU are pipelined and conducted simultaneously.

each training iteration, with each query node possessing at most s? pair-wise distance computations,
entails O(ns?) overhead.

5 HubGT Framework

Once the index is built in precomputation, it remains static in the RAM throughout GT training
iterations. To efficiently exploit the labeling structure in HubGT, in this section, we elaborate our
end-to-end design querying graph hierarchy for both graph embeddings and positional encoding to
facilitate GT learning. Figure [3]illustrates the overview of the pipeline.

5.1 Graph Information Querying

Subgraph for Node Embeddings. We leverage the subgraph hierarchy in the index, i.e., neighboring
nodes in labels £(v) and £'(v) to generate node embeddings. Since the neighborhood size is variable,
we convert it into a fixed-length token S(v) by sampling as in Algorithm The relative values of
hyperparameters s;,, and s, can be used to balance the ratio between local long-tailed nodes and
distant landmark nodes in G, respectively. The node embedding is generated by concatenating the
raw attributes X [u] of subgraph nodes u € S(v), denoted as X [S(v)].

SPD for Positional Encoding. Thanks to the efficient graph labeling, we are able to efficiently
acquire SPD inside subgraphs by performing queries on the index. For each node r, Algorithm 3]
calculates the distances B, of all node pairs inside the token S(r) under O(s?) complexity. A
learnable embedding scheme fp : N — R is then employed to map the distance of each entry in B,
to the attention bias P used in Eq. (2), that P[u,v] = f5(B,[u,v]).

Global Hubs. Section[.2]signifies a set of global nodes used for H-2 labeling. For generating node
embeddings, we further leverage these nodes as global hubs, that we consider these hubs connected to
every nodes v € V and can be similarly sampled during token generation. In HubGT training, we set
their attributes to be learnable along with model weights. This scheme actually generalizes the virtual
node utilized in [2] to a set of hubs. The learnable embeddings are able to aggregate information
from connected nodes throughout learning, which eventually offers an representation of the graph in
a higher level of hierarchy, and benefits GT for retrieving graph-level information.

5.2 Representation Learning

Since our contribution focus on the labeling process, HubGT adapts the scalable GT architecture
[2 [13] incorporating subgraph precomputation and mini-batch training, which can potentially be
enhanced by further acceleration techniques developed for the Transformer architecture.

The input subgraph embeddings are first projected as H [v] = MLPx (X [S(v)]) by an MLPx. Then,
L Transformer layers characterized by Eqs. (I)) and (2) are applied to predict the node representation
H [v] with positional encoding P. Lastly, we introduce a readout block to calculate attention within



the token S(v) to aggregate the output of each ego node before the output classifier MLP z:
exp ((H ]| H [u)) W )
> ues() &P (HB P HO )W)
®)

Z[v] = MLPy (H(L) [v] + Z auH(L>[U]), where o, =
u€S(v)

Complexity Analysis. During model training, one epoch of L-layer feature transformation on all
nodes entails O(LnF') complexity, while positional encoding is performed under O(ns?). The RAM
footprint is O(ns?) and O(nsF) for sampled tokens and features, respectively. For mini-batch
training with batch size n;, the VRAM overhead on GPU for a batch of node representations and
bias matrices is O(Ln, F) and nys2, respectively. It can be observed that the GPU memory footprint
is determined only by batch size and is independent of the graph scale, ensuring favorable scalability.

Remarkably, querying a batch of nodes by Algorithm [3] can be conducted in parallel. The SPD
query on CPU can be pipelined with GT training on GPU, so that training can be performed
seamlessly without blocked by the querying process. HubGT inputs of embedding and encoding can
be manipulated in-place on X and B,., and no graph-scale computation is required during learning
iterations. Therefore, only strides of X and batches of B,. are loaded onto GPU.

6 Experiments

6.1 Experimental Settings

Tasks and Datasets. We focus on the node classification task on 14 benchmark datasets covering
both homophily [37, 38 139] and heterophily [40, 41]. Compared to conventional graph learning
tasks used in GT studies, this task requires learning on large single graphs, which is suitable for
assessing model scalability. We follow common data processing and evaluation protocols as detailed
in Appendix [C] Evaluation is conducted on a server with 32 Intel Xeon CPUs (2.4GHz), an Nvidia
A30 GPU (24GB memory), and 512GB RAM.

Baselines. Since the scope of this work lies in the efficacy and efficiency enhancement of the
GT architecture, we primarily compare against leading scalable Graph Transformer models with
attention-based layers and mini-batch capability. Methods including Exphormer [[19], DIFFormer
[8]], and PolyNormer [[12] are considered as kernel-based approaches. NAGphormer [9], GOAT [10],
HSGT [14]], and ANS-GT [[13] stand for hierarchical GTs. Three message-passing GNNs, including
GCNIJK][42], MixHop [43], and SGFormer [44] are also included for comparison.

6.2 Performance Comparison

Table 2] presents the efficacy and efficiency evaluation results on 8 large-scale graphs, while results
on other datasets can be found in Appendix[D.2] Visualization of the experiment results are presented
in Figure[d] As an overview, HubGT demonstrates fast computation speed and favorable mini-batch
scalability throughout the learning process and is applicable to million-scale graphs. It also achieves
top-tier accuracy on 11 out of 14 datasets, demonstrating a favorable balance between effectiveness
and efficiency.

Time Efficiency. Benefiting from the decoupled architecture, HubGT is powerful in achieving
competitive learning and inference speeds with existing efficiency-oriented GTs. It consistently
showcases the fastest inference, since Section elaborates that label querying can be pipelined
in asynchronous execution, and the process is as simple as Transformer operations without the
interference of graph computation.

In comparison to other hierarchical GTs, HubGT excels with the fastest training and overall learning
time. Specifically, its precomputation is 250-1000x faster than ANS-GT, which is also relatively fast
in model training and inference. Aligned with our complexity analysis in Section[2} the overhead
of HubGT indexing is mainly relevant to the node size n and is less affected by m and F' compared
to precomputation in other methods, which ensures its efficiency on denser graphs such as REDDIT
and PENN94. Baselines models employing graph-altered learning schemes including DIFFormer,
PolyNormer, and SGFormer are empirically fast in training due to the simplified model architecture.
However, it is noticeable that their inference reply on the full-graph structure and can be only
performed on CPU without GPU computation, resulting in slower and less scalable performance.



Table 2: Effectiveness and efficiency results on large-scale graph datasets, while more evaluations are in
Appendix “Pre.” , “Epoch”, and “Infer” are precomputation, training epoch, and inference time (in
seconds), respectively. “OOM” implies that the model encounters the out-of-memory error. “TLE” means the
learning process exceeds the time limit of 24 hours before convergence. Respective results of the first and second
best performances are marked in bold and underlined fonts.

Homophilous PHYSICS OGBN-ARXIV REDDIT OGBN-MAG
Scale 34,493 /495,924 169,343/ 2, 315,598 232,965/ 114,615,892 736,389/10,792,672
Metrics Pre. Epoch Infer Acc Pre. Epoch Infer Acc Pre. Epoch Infer Acc Pre. Epoch Infer Acc
GCNIJK - 049 0.0594.67+0.02| - 029 0.02 60.03+0.32| - 1.6 0.16 88.99+0.39| - 0.96 0.10 28.65+0.03
MixHop - 1.0 0.07 95.37+0.12| - 0.79 0.05 60.38+0.08| - 1.6 0.1291.61x0.13| - 0.68 0.06 30.52+0.04
SGFormer* - 052 2.6 96.33+0.29| - 0.82 1.9 72.55+0.28| - 2.2 21 95.63x0.29| - 1.7 5.1 33.47+0.61
Exphormer 84 1.7 1.0 96.08+0.11| 32 1.8 0.46 67.87+0.18 (OOM) (OOM)
DIFFormer* - 1.7 3.8 96.10+0.11| - 0.89 4.1 55.90+8.23| - 2.4 21 94.96+0.37| - 1.7 9.7 31.13+x0.48
PolyNormer* | - 0.76 2.4 96.59+0.16) - 0.83 11 73.24+0.13| - 5.3 246 96.64+0.07| - 20 992 32.42+0.15
NAGphormer | 33 84 2.4 96.52+0.24| 18 4.4 22 67.85+0.17| 280 3.2 2.1 95.77x0.08| 89 10.3 2.2 33.23+0.06
ANS-GT |2203 63 35 96.31+0.28{16205 109 2.7 71.06+0.48 (OOM) (OOM)

GOAT 45 14 12 96.24+0.15| 1823 48 61 69.66+0.73| 628 141 104 (TLE) |2673 116 102 (TLE)
HSGT* 12 41 62 96.05£0.50| 16 475 142 68.30+0.32| 614 453 482 (TLE) |182 582 629 (TLE)
HubGT (ours)| 2.0 2.9 0.3196.38+0.25| 30 9.3 1.3 69.17+0.33| 192 21 1.6 94.39+0.06| 523 62 1.2 33.74+0.24

Heterophilous PENN94 GENIUS TWITCH-GAMER POKEC
Scale 41,554 /2,724,458 421,961/ 1,845,736 168,114 /13,595,114 1,632,803/ 44,603,928
Metrics Pre. Epoch Infer Acc Pre. Epoch Infer Acc Pre. Epoch Infer Acc Pre. Epoch Infer Acc
GCNJK - 0.35 0.04 6591+0.16) -  0.06 0.03 80.65+0.07| -  0.15 0.03 59.91+0.42] - 0.06 0.09 59.38+0.21
MixHop - 0.31 0.04 75.00£0.37| -  0.08 0.01 80.63+0.04| -  0.11 0.01 61.80+0.01| - 0.15 0.03 64.02+0.02
SGFormer* - 095 0.5577.52+0.56) - 0.72 2.4 85.010.25| - 038 3.3 65.93x0.15| - 4.4 29 73.13x0.16
Exphormer (OOM) (OOM) 42 1.3 0.4164.24+035 (OOM)
DIFFormer* - 053 0.6561.77+£3.41| - 0.77 5.5 84.52+036| - 0.61 5.1 60.81+044| - 4.6 15 73.89+0.35
PolyNormer* | - 0.58 18.4 79.87+0.06| - 0.77 28 85.64+0.52| - 1.5 89 64.72+0.65| - 4.2 67 81.03+0.08
NAGphormer | 237 6.1 2.1 74.45+0.60| 38 5.4 1.0 83.88+0.13| 16 1.9 24 61.92+0.19| 70 16.1 3.1 73.06+0.05
ANS-GT 3889 42 49 67.76+1.32|34092 37 5.0 67.76+1.32{12924 19 6.7 61.55+0.45 (OOM)

GOAT 1332 33 18 71.42+0.44|2664 28 39 80.12+2.32| 3348 37 63 61.38+0.83/3855 760 804 (TLE)
HSGT* 12 115 110 67.77+0.27| 21 98 114 84.03x0.24| 68 235 253 61.60+0.09| 551 1420 1557 (TLE)
HubGT (ours)| 7.3 3.4 0.2978.13+0.43| 125 23 2.5 89.68+0.48| 49 12 1.2 67.03+2.17|5422 99 13 76.96+0.44

* Inference of these models is performed on the CPU in a full-batch manner due to their requirement of the whole graph.

We additionally note that while some models claim to be applicable to million-scale graphs as shown
in Table[I] they exhibit excessive training time in our settings and fail to produce convergent results in
one day. Hence, we only record the efficiency evaluations in Table[2] In particular, ANS-GT demands
a high memory footprint for storing and adjusting its subgraphs, which exceeds the memory limit of
our platform for the largest graphs.

Memory Footprint. In modern computing platforms, GPU memory is usually highly constrained
and becomes the scalability bottleneck for the resource-intensive graph learning. HubGT exhibits
efficient utilization of GPU for training with larger batch sizes while avoiding the out-of-memory
issue. In comparison, drawbacks in several model designs prevent them from efficiently performing
GPU computation, which stems from the adoption of graph operations. Notably, kernel-based models
require full graph message-passing in their inference stage, which is largely prohibitive on GPUs
and can only be conducted on CPUs. HSGT faces the similar issue caused by its graph coarsening
module. We note that these solutions are less scalable and hinder the GPU utilization during training.

Prediction Efficacy. HubGT successfully achieves top or comparable accuracy on evaluated datasets
in Table [2]and Table[5] with significant accuracy improvement on several graphs such as CHAMELEON
and TWITCH-GAMER. We attribute the performance gain to the application of the label graph hierarchy
and SPD positional encoding in HubGT, which offers global information and effectively addresses
the heterophily issue of certain graphs as analyzed in Section[4.1] The label sampling scheme also
facilitates learning on hierarchy throughout queries under a controlled overhead. Since the label
graph also preserves edges in the raw graph, the performance of HubGT is usually not lower than
learning on the latter.

In comparison, baseline methods without hierarchical graph designs, including DIFFormer, NAG-
phormer, and HSGT, perform relatively worse especially under heterophily. This is because their
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Figure 4: Relative model compassion for average evaluation metrics (in %) across 8 datasets in
Table[2] (a) Trade-off between efficiency and effectiveness. Models on the upper right corner exhibit
better efficiency and accuracy. HubGT showcases a favorable balance for achieving top-tier accuracy
with better efficiency. (b) Detailed relative scores for respective metrics and models. Detailed
computation for the scores are explained in Appendix

models tend to rely on the raw adjacency or even promote it with higher modularity. As a consequence,
node connections retrieved by GT attention modules are restrained in the local neighborhood and
hardly produce accurate classifications. On the other hand, while PolyNormer achieves remarkable
accuracy on several graphs thanks to its strong expressivity, its performance is largely suboptimal on
small homophilous graphs as we further evaluated in Appendix

6.3 Ablation Study

Table [3|examines the respective effective-
ness of the hierarchical modules in the
HubGT network architecture, where we
separately present results on homophilous
and heterophilous datasets. It can be ob-
served that the model without SPD bias Dataset |CITESEER A |CHAMELEON A
suffers the greatest accuracy drop, since HubGT 7547 _ 43.63 _
topological information represented by po- /o Node Readout| 7221 -326| 3876  -4.87
sitional encoding is necessary for GTs to w/o Global Hubs | 71.15 -4.32| 37.08  -6.55
retrieve the relative connection between w/o SPD Bias 68.55 -6.92 36.52 711
nodes and gain performance improvement
over learning plain node-level features.

Table 3: Ablation study of HubGT model components. The
first line shows the accuracy of the complete HubGT architec-
ture. Each subsequent line indicates the performance difter-
ence when the specified module is removed.

In HubGT, the learnable global hub representation is invoked to provide adaptive graph-level context
before Transformer layers, while the attention-based node-wise readout module aims to distinguish
nodes inside subgraphs and aggregate useful representation after encoder transformation. As shown
in Table 3] both modules achieve relatively higher accuracy improvements on the heterophilous graph
CHAMELEON, which validates that the proposed designs are particularly suitable for addressing the
heterophily issue by recognizing hierarchical information.

7 Conclusion

In this work, we present HubGT, a novel PE calculation featuring the decoupled graph hierarchy
through hub labeling. Our analysis reveals that the label graph exhibits an informative hierarchy and
enhances GT attention learning on the interaction between nodes. Regarding efficiency, construction
and distance query of the label graph can be accomplished with /inear complexity and are decoupled
from iterative model training. Hence, the model benefits from scalability in computation speed and
mini-batch training. Empirical evaluation showcases the superiority of HubGT, including efficacy
under both homophily and heterophily, as well as efficient computation especially for inference on
large-scale graphs of up to millions of nodes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We accurately claim our contributions in Section|[T}
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations and potential improvements are discussed in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Preliminary and assumptions are provided in Section[d.T|and Appendix [A]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiment details and configurations are in Appendix [C]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17



Answer: [Yes]
Justification: Reproducibility instructions and scripts are available in the codebase.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment details are in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars are reported in main experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiment details are in Section [6.1]and Appendix [C]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in Appendix [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is for foundational research and we do not foresee such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Baselines and datasets are cited and referred in the codebase and discussed in
Appendix
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our model setups are in Appendix [C| Tuning scripts are in the codebase.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not require IRB approvals.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Detailed Theoretical Analysis

A.1 Label Graph Properties

In SPD calculation, the index £(v) is said to form a 2-hop cover if for an arbitrary node pair v, v € V,
there exists a node w € £(u) N L(v). A 2-hop cover ensures that any SPD queries can be acquired by
Eq. @). A straight-forward approach to build the 2-hop cover is to traverse the whole graph for each
node successively. This is, however, prohibitive due to the repetitive traversal and overlapped labels.

As briefed in Section4.2] the Pruned Landmark Labeling (PLL) algorithm searches labels by a pruned
BFS for each node in V relying on a particular order. Denoting each node by a unique index 1, - - - , n,
u < v indicates that node u precedes node v in the sequence. The labeling process performs a pruned
Breadth First Search (BFS) for each node from 1 to n, adding hubs with shorter distances into the
label set while eliminating the search from insignificant nodes. Notably, the algorithm is agnostic to
the search order. In this work, we follow [[15]] to adopt the descending order of node degrees as it
can be efficiently acquired and offers decent performance. While other orders such as betweenness
centrality are adopted for labeling [45]34], they nonetheless incur additional computational overhead.

In this part, we formally formulate the hierarchy in graph labels. By considering the nodes in labels

as edge relationship, the wholistic label set £ can be regarded as a derived graph G = v, & ) with
directed and weighted edges, namely the label graph. Its edge set depicts the elements in node labels
computed by graph labeling, that an edge (u,v) € & if and only if (v,8,) € £(u), and the edge
weight is exactly the distance in graph labels J,, = b(u,v). The in- and out-neighborhoods based
on edge directions are N, (v) = {u|(u,v) € £} and Ny (v) = {ul(v,u) € €}, respectively. For
simplicity, we assume that the original graph G is undirected, while properties for a directed G can be
acquired by separately considering two label sets L;,, and L,,,; for in- and out-edges in €.

We summarize the following three properties of the label hierarchy produced by PLL:
Property 1 For an edge (u,v) € &, there is (v,u) € & when u < v, and (u,v) € € when u > v.

Referring to Algorithm [I} when the current node is v and v < u, §, = 1 holds since u is the
direct neighbor of v. Hence, (v, 1) is added to label £(u) at this round, which is equivalent to
adding edge (u,v) to £. Similarly, (v,u) € &€ holds when v > u. For example, the edge (1,4)
in Figur is represented by the directed edge (4,1) in Figure Property |1{ implies that
N () C Ny (v) U Nyt (v), i.e., the neighborhood of the original graph is also included in the label
graph, and is further separated into two sets according to the relative order of neighboring nodes.

Property 2 For a shortest path P(u,v) in G, there is (w,v) € & for each w € P(u,v) satisfying
w > .

[35] proves that there is v € L(w) for w € P(u,v) and w > v. Therefore, considering shortest
paths starting with node v of a small index, i.e., v being a “landmark” node, then succeeding nodes
w > v in the path are connected to v in G.In Figure , the shortest path between (1, 5) passing
node 2 results in edges (2, 1) and (5, 1) in Figure[5(c)| since nodes 2 and 5 are in the path and their
indices are larger than node 1. When the order is determined by node degree, high-degree nodes

Input Graph Edge (4, 1) Edge (2, 1), (5, 1) NO Edge for (5, 6)
O WO ONIO C WS
1) © 1 5 1 5 1 5
3 5 (3 A 3 A
G—® ¢ 6) G 6) G 6) G
(a) Raw Graph (b) Propertyﬁ] () Property (d) Propel’ty

Figure 5: Examples of properties of the label graph G corresponding to the original graph G. Number
inside each node denotes its index in descending order of node degrees.
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appear in shortest paths more frequently, and consequently link to a majority of nodes, including
those long-tailed low-degree nodes in G.

Property 3 For a shortest path P (u,v) in G, if there is w € P(u,v) and w < v, then (u,v) ¢ &.

According to the property of shortest path, there is b(u, v) = b(u, w) + b(w, v). Hence, the condition
of line 8 in Algorithm[I]is not met at the v-th round when visiting w. In other words, the traversal
from v is pruned at the preceding node w. By this means, the in-neighborhood A, (v) is limited in
the local subgraph with shortest paths ending at landmarks. As shown in Figure[5(d)] the shortest path
between (5, 6) passes node 1, indicating that (5, 6) are not directly connected since their distance

can be acquired by edges (5,1) and (6,1). As a consequence, the neighborhood of node 5 in G is
constrained by nodes 1 and 2, preventing connections to more distant nodes such as 3 or 6.

In brief, Property |1| ensures that neighboring nodes in the raw graph G are still connected in G.
Properties E] and E] jointly imply that a small number of hub nodes, or landmarks, naturally emerge
when more shortest paths pass through these nodes, and reside in a large number of node labels
during the labeling process. On the contrary, for insignificant nodes with higher indices, the pruned
traversal constrains the visit to the local neighborhood and limit their label size. Thus, we reckon that
the PLL process builds a hierarchy embedded in the node labels, distinguishing global hubs while
preserving original adjacency.

A.2 Discussion on Indexing

Intuitively, to facilitate label pruning during indexing, the hierarchy needs to be built in a top-down
manner, i.e., first performing Algorithm ] without pruning (line 11) for global hubs to generate H-2;
then performing the actual Algorithm [I]to build H-1; lastly, remaining miss cases are stored to H-2.

Hierarchy-2. In our implementation, the H-2 construction is performed prior to H-1, offering an
additional condition for BFS pruning and cache saving. As demonstrated in [35]], the bit-parallel
global index design is advantageous in reducing the overall label size and facilitating a faster indexing
time. It also benefits from bit-parallel processing and fast SPD computation similar to H-1.

Hierarchy-1. In Algorithm[I] distance calculation and set intersection can be boosted by bit-parallel
operations. M (v) can also be stored bit-wise in a word. Hence, constructing the H-1 index shares
the same overhead with PLL, while offering the extended distance information based on local
computation orienting hubs.

Hierarchy-0. Examining Property 2] it can be inferred that the intermediary node presents on the
shortest path r € P(u,v) if and only if » € L£(u) N L(v). We hence equivalently rearrange the
traversal order of 2-hop pairs u € £'(r), r € L(v) for all possible presence of shortest paths in
Algorithm 2} where £, £’ are produced by Algorithm [I} The search and Z, construction for each
node v can be performed in parallel since they are mutually independent.

A.3 Discussion on Querying

Conversely, to ensure fast query speed, Algorithm 3]is performed in a bottom-up sequence with early
termination: for each node pair, if the distance is cached in H-0, then it is the exact SPD and can be
immediately returned; otherwise, distances from H-1 and H-2 are calculated, and the smallest one is
chosen as the SPD answer. Performing the pair-wise query for all node pairs in S(r) naturally leads
to the sampled subgraph as well as the SPD matrix.

B Detailed Comparison with Existing Models

B.1 Kernel-based GTs

* GraphGPS [7] combines rich positional and structural encodings with interleaved local
message-passing and linear global attention to achieve both expressivity and linear complex-
ity in node and edge counts. However, its preprocessing stage (e.g., computing structural
encodings) incurs an O(N?3) time complexity.

* Exphormer [19]] leverages virtual nodes and expander graphs to augment the input graph
for GT training. The expander graph adds random edges and preserves certain properties of
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Algorithm 1: HubGT H-1 Indexing

Input: Graph G = (V, £), Max neighbor size s
Output: H-1 Labels £, £/
1 Sort V based on degree d(v)
2 L(v) + &, L' (v) + @forallv €V
3 forr=1tondo
4 (q(v), ML(v), M2(v)) + (00, @, D) forallv € V
5 (g(v), ML(v), MO(v)) + (1, {v}, @) forall v € N(r)
6 Queue Q «+ {(r,0)}, (q(r), ML(r), MO(r)) «+ (0,2, D)
7 while Q # @ do
8 Ol o, Q¥+ o
9 Pop the first element (v, b(v, 7)) from Q

10 Get b9 (v, 7) from Eq. @]) with existing labels
1 if b(v, ) < b9 (v,r) and |L(v)| < s then

12 L(v) « L(v) U (r,b(v,r))

13 L' (r) + L' (1)U (v,b(v, 7))

14 for all u € NV (v) such that u > r do

15 if g(u) > q(v) then

16 Push (u, b(v,r) + 1) to the end of Q
1 Q! QVU {(u,v)}, q(w) — gv) + 1
18 else if g(u) = ¢(v) then

19 Q0 QO U {(u,v)}

20 for all (u,v) € Q° do

21 | MO(u) + MOu) U ML(v)

2 for all (u,v) € Q! do

23 ML(u) +— ML(u) U ML(v)

24 | M%u) «— M2>u) U MO(v)

25 return L(v), L' (v) forallv € V

Algorithm 2: HubGT H-0 Indexing

Input: Graph labels £, £’
Output: H-0 Index 7

1 forv=1tondo > [in parallel]
2 0>[u]<—ooI [u] + —oco forallu € V

3 for all r € L(v) do

4 for all uw € £/ (r) such that u < v do

5 Get b&l)(v, u) from Eq.

6 it o (v, u) > Z8V[u] then T8 [u] « b (v, w)
7 b (v, u) + b(v,r) + b(r,u)

s it b (v,u) < Z8[u] then IV [u] + b© (v, w)
9 forallu € V such that 7\ [u] # oo do
10 it 789 [u] < Z8V[u] and |Z,,| < s? then
11 Ty < T[]

12 return I, forallv e V

Algorithm 3: HubGT Query for node r

Input: Index £, £',Z, Sample sizes s;n,, Sout
Output: Sampled subgraph nodes S(r) and SPD matrix B,
1 8(r) < {r}
2 Sample sout nodes from L£(r) into S(r)
3 Sample s;,, nodes from £'(r) into S(r)
4 for all (u,v) such thatu € S(r),v € S(r),u < vdo

5 if Z, [u] exists then

6 | b(u,v) « Zy[u]

7 else

8 Get bgﬂl)(u7 v) from Eq. l|

9 Get b{?) (u, v) from Eq. (3) for all global ¢
10 b(u,v) + min{b&l)(u,v), b§2)(u,v)}

11 Bi-[u,v] < b(u,v), Byr[v,u] + b(u,v)
12 return S(r) and B,
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the graph structure. Its GT component is mainly built upon GraphGPS, sharing the similar
computational complexity.

* NodeFormer [0] introduces a kernelized Gumbel-Softmax operator to enable linear-time
all-pair message passing for scalable graph structure learning.

* DIFFormer [8] proposes an energy-constrained diffusion framework that derives closed-
form optimal diffusivity to build a diffusion-based Transformer encoder.

* PolyNormer [12] presents a polynomial-expressive graph Transformer that learns high-
degree equivariant polynomials via a linear local-to-global attention scheme.

Overall, all kernel-based models incur per-layer training and inference costs of O(LnE? + LmF)
and memory O(nF + m), scaling linearly with both nodes and edges. Due to the lack of all-pair
attention, they also exhibit stronger inductive bias of graph information and weaker expressive power
compared to our method and hierarchical GTs, particularly on heterogeneous graphs. In contrast,
our method’s computation and memory during training and inference depend only on node features,
independent of edge count, which provides markedly better scalability on large, sparse graphs.

B.2 Hierarchical GTs

* NAGphormer [9] aggregates multi-hop neighborhood features into a fixed-length token
sequence per node (via Hop2Token), enabling true mini-batch Transformer training on large
graphs.

* PolyFormer [[11] builds a hierarchical Transformer by progressively coarsening the graph
and exchanging information between levels to capture both local and global structure.

* ANS-GT [13] uses an adversarial bandit to adaptively sample informative nodes and a
two-stage local/global attention scheme to capture long-range dependencies. its adaptive
sampling requires O(ns? 4+ Lm) preprocessing, making it costly on large graphs.

* GOAT [10] implements approximate global self-attention via low-dimensional projection
(K-Means) plus a local sampling module to support both homophilous and heterophilous
graphs. however, the projection and codebook updates add extra overhead and approximation
eITOr.

* HSGT [14] leverages multi-level graph coarsening and dedicated horizontal/vertical Trans-
former blocks to fuse information across scales. yet it demands hierarchical sampling and
historical embedding maintenance, increasing implementation complexity.

Overall, hierarchical GTs typically achieve stronger expressive capabilities than kernel-based models,
especially for capturing complex, heterogeneous relationships across multiple scales. However,
except for NAGphormer and PolyFormer, whose training and inference costs are independent of edge
count, other hierarchical GTs still incur per-layer training and inference costs of O(LnF? + LmF)
and memory O(nF + m) or even higher overhead, greatly undermines model efficiency when the
graph is large. In contrast, our method’s computation and memory during training and inference
depend only on node features, independent of edge count, offering superior scalability on large,
sparse graphs.

B.3 Non-GT GNNs

* GCNJK [42] records individual layer representations as parallel channels for the last-layer
concatenation and prediction, adding up hierarchical graph topological representations in
the spatial domain.

» MixHop [43]] concatenates multi-hop spatial propagations in each of its message-passing
layer. Such aggregation results in expanding width of representations over multiple layers.

* TFGNN [46] employs approximation of the graph spectrum by slicing, preserving topologi-
cal properties and achieving practical streamlined processing.

* S,GNN [47] integrates the spatial operator for local information and the spectral operator
for global knowledge. The utilization of iterative eigen-decomposition also entails positional
encodings to further augment the learning.
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* SGFormer [44] utilizes a single-layer global attention coupled with a simple GNN to
capture all-pair interactions in one propagation step, achieving O(N + E) complexity
without any positional encodings, pre-processing, or edge embeddings, but with limited
expressive power for complex graph structures. SGFormer offers O(N + F) efficiency but
lack the rich positional and structural encodings that give graph Transformers their superior
expressivity.

Generally, while these message-passing GNNs offer linear time complexity, different issues may
arise. For instance, GNNs using full graph topology for propagation usually entail O(mF') memory
overhead, which is less scalable. Similar to GT, this can be addressed by mini-batching with RS, but
risks hindering efficacy. Empirically, these GNNs also exhibit more training epochs than GTs before
convergence. Consequently, while the epoch time seems shorter, the total training time is on par with
GTs.

We highlight that these works are largely orthogonal to HubGT, as our focus is on advancing the
capabilities of graph Transformer models, rather than benchmarking against message-passing GNN
architectures.

B.4 Scalable and Heterophilous Convolutional GNNs

The scalability issue has been extensively examined for convolutional Graph Neural Networks (GNNs)
[48. 149], featuring the decoupled processing on some of the largest graph datasets with linear or
even sub-linear complexity [50} 511152, 53]]. Graph simplification techniques including sampling
[54,155156,157] and coarsening [158, 159, 160]] are also explored for reducing the graph scale at different
hierarchy levels. Although the high-level idea of designing convolutional GNNss is helpful for GTs,
Transformer-based models are unique in respect to their graph data utilization and architectural
bottlenecks, and hence require specific techniques for addressing these issues.

Heterophily is another prominent drawback of common GNNs, which describes the scenarios that
neighboring nodes belong to different classes, and the inductive bias in these models are no longer
effective. Addressing the issue usually requires tailored management of the underlying graph
hierarchy beyond edges, typically realized by enhancing convolution operations [26} 27, |61]] or
augmenting the graph topology [28, 25]. A recent work [62] also employs the idea of hub labeling to
refine graph convolution.

B.5 Traditional Hub Labeling

We highlight that HubGT and canonical hub labeling address distinct query scenarios and design
goals, leading to different performance of index construction and SPD querying. In HubGT, we
prioritize querying with O(1) overhead and local label access, in order to prevent the excessive queries
from blocking GT training. To this end, we adopt the H-0 cache with additional precomputation
and index size for fast distance access, while leveraging the neighboring property on label graph to
construct H-1 index. Contrarily, classic hierarchical labeling approaches [35,34]] are designed for
arbitrary node-pair queries, which is not applicable to the intermediary node technique in our H-1
local labeling, and entails O(s) query time.

C Detailed Experiment Settings

Dataset Details. Table [4] displays the scales and heterophily status of graph datasets utilized in
our work. Undirected edges twice in the table. CHAMELEON and SQUIRREL are the filtered version
from [41]], while OGBN-MAG is the homogeneous variant. We employ 60/20/20 random data splitting
percentages for training, validation, and testing sets, respectively, except for OGBN-MAG, where the
original split is used. Regarding efficacy metrics, ROC AUC is used on TOLOKERS following the
original settings, and accuracy is used for the rest.

Hyperparameters. Parameters regarding the precomputation stage for graph structures are discussed
in Appendix[D.3] For subgraph sampling, we perform parameter search for relative ratio of in/out
neighbors represented by s, in rage [0, 48].

For network architectural hyperparameters, we use L = 4 Transformer layers with Ny = 8 heads
and F' = 128 hidden dimension for our HubGT model across all experiments. The dropout rates for
inputs (features and bias) and intermediate representation are 0.1 and 0.5, respectively. The AdamW
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optimizer is used with a learning rate of 10~4. The model is trained with 300 epochs with early
stopping. Since baseline GTs employ different batching strategies, it is difficult to unify the batch size
across all models. We set the batch size to the largest value in the available range without incurring
out of memory exception on our 24GB GPU, intending for a fair efficiency evaluation considering
both learning speed and space.

Evaluation Metrics. We use ROC AUC as the efficacy metric on TOLOKERS and classification
accuracy on the other datasets. For efficiency evaluation, we notice that there is limited consensus
due to the great variety in GT training schemes. Therefore, we attempt to employ a comprehensive
evaluation considering processing times of different learning phases for a fair comparison. Model
speed is represented by the average training time per epoch and the inference time on the testing set.
For models with graph precomputation, the time for this process is separately recorded.

D Additional Experiments

D.1 Empirical Observations

Visualization of Layer-wise Attention Bias. Corresponding to Figure[2] Figure[6|presents the PE
bias matrices Pu,v] = féL) (By[u,v]) of the same SPD matrix B learned by all layers L in the GT
model. The encodings are able to exhibit distinct values throughout GT layers, signifying the shift
of receptive fields for the in-batch attention to nodes in different distances: in initial layers, node
identities are highlighted; in higher layers, clusters of similar neighbors are captured.
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Figure 6: SPD PE as attention bias in different GT layers on CITESEER.

Visualization of Graph Structures. An exemplary illustration of 4 small graphs is displayed in
Figure[7] The original CHAMELEON graph is heterophilous, i.e., connected nodes frequently belong to
distinct classes. In Figure different classes are mixed in graph clusters, which pose a challenge
for GTs to perform classification based on edge connections. In contrast, nodes in the graph marked

Table 4: Statistics of graph datasets. f and N, are the numbers of input attributes and label classes,
respectively. “Train” is the portion of training set w.r.t. labeled nodes.

Heterophily Dataset |  Nodesn Edges m F N, Train
CORA 2,708 10,556 1433 7T 60%

CITESEER 3,279 9,104 3703 6 60%

PUBMED 19,717 88, 648 500 3 60%

Homophily PHYSICS 34,493 495,924 8415 5 60%
OGBN-ARXIV 169, 343 2,315,598 128 40  54%

REDDIT 232,965 114,615,892 602 41  60%

OGBN-MAG 736,389 10,792,672 128 349 8%

CHAMELEON 890 17,708 2325 5 60%

SQUIRREL 2,223 93,996 2089 5 60%

TOLOKERS 11,758 1,038,000 10 2 60%

Heterophily PENN94 41,554 2,724,458 4814 2 60%
GENIUS 421,961 1,845,736 12 2 60%

TWITCH-GAMER 168,114 13,595,114 7 2 60%

POKEC 1,632,803 30,622,564 65 2 60%
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by graph labels in Figure @ clearly form multiple densely connected clusters, exhibiting a dis-

tinct hierarchy. Certain classes can be intuitively identified from the hierarchy, which empirically
demonstrates the effectiveness of our utilization of graph labeling.

(a) CORA Raw Graph (b) corA Label Graph (c) CITESEER Raw Graph  (d) CITESEER Label Graph

(e) CHAM. Raw Graph

(f) cHAM. Label Graph

(g) SQUIRREL Raw Graph (h) SQUIRREL Label Graph

Figure 7: Visualization of the hierarchy of original and label graphs on realistic datasets. Color of each node
denotes its class.

D.2 Main Experiments on Small Graphs

Table [3] presents the main effectiveness and efficiency evaluations on 6 relatively small datasets.
Discussion on the results are in Section[6.2]

Table 5: Effectiveness and efficiency results on small-scale datasets. “Pre.” , “Epoch”, and “Infer”
are precomputation, training epoch, and inference time (in seconds), respectively. “Mem.” refers to
peak GPU memory throughout the whole learning process (GB). Respective results of the first and
second best performances on each dataset are marked in bold and underlined fonts.

. CORA CITESEER PUBMED
Homophilous
Pre. Epoch Infer Mem. Acc Pre. Epoch Infer Mem. Acc Pre. Epoch Infer Mem. Acc
DIFFormer* | - 0.11 0.13 1.2 83.37+0.50| - 0.07 0.07 1.7 74.65+0.67| - 0.37 0.35 2.7 75.77+0.40
PolyNormer* | - 0.11 0.65 1.4 80.43+1.55| - 0.21 0.86 1.6 68.70+0.95| - 0.86 6.07 2.5 75.80+0.46
NAGphormer [0.68 0.01 0.06 0.5 76.96+0.73/1.26 0.01 0.38 0.5 62.26+2.10{3.05 0.01 0.04 0.5 78.46+1.01
ANS-GT 43 2.0 1.12 2.0 85.42+0.52|59.9 11.65 4.25 11.9 73.58+0.98/529 14 3.52 1.9 89.53+0.51
GOAT 10.1 0.25 093 2.5 78.26+0.17|11.1 0.31 1.04 2.1 64.69+0.43|57.4 0.34 1.61 5.3 77.76+0.97
HSGT* 0.1 1.81 233 0.5 81.73+1.95(0.06 0.87 1.23 0.9 69.72+1.02| 5.0 3.89 4.44 24 88.86+0.46
HubGT (ours)|0.42 0.20 0.02 2.5 85.58+0.18/0.43 0.24 0.02 2.0 75.47+2.22|2.6 1.47 0.16 1.7 89.80+0.48
. CHAMELEON SQUIRREL TOLOKERS
Heterophilous
Pre. Epoch Infer Mem. Acc Pre. Epoch Infer Mem. Acc Pre. Epoch Infer Mem. ROC AUC
DIFFormer* | - 0.09 0.38 0.50 37.83+4.54| - 0.05 0.05 0.7 35.73+x1.37| - 0.16 85.8 0.88 74.88+0.59
PolyNormer* | - 0.03 0.17 1.1 40.70+£3.38| - 0.07 0.49 1.2 38.40+1.10 - 1.27 15.5 9.4 79.39+0.50
NAGphormer (0.27 0.03 0.03 0.5 33.18+4.30{0.85 0.08 0.08 0.5 32.02+3.93|1.59 0.11 0.02 0.5 79.32+0.39
ANS-GT 11.2 198 0.78 2.8 41.19+0.69(28.1 4.48 1.95 6.6 37.15+1.10/716 2.37 3.42 10.7 79.31+0.97
GOAT 1.99 034 044 04 35.02+1.15/6.66 0.37 0.58 0.6 30.78+0.91|36.1 5.49 5.87 5.0 79.46+0.57
HSGT* 0.01 0.34 0.73 0.3 32.28+2.43|0.01 0.42 0.74 0.4 34.32+0.51|2.62 7.76 8.12 17.4 79.24+0.83
HubGT (ours)|0.04 0.08 0.007 1.6 43.63+2.34/0.24 0.18 0.01 2.6 37.16+0.57| 1.4 0.99 0.02 2.2 79.86+0.47

* Inference of these models is performed on the CPU in a full-batch manner due to their requirement of the whole graph.

Visualization in Figure @ The relative score for each metric is computed as the percentage
with respective to the best record in each dataset, i.e., the fastest efficiency and highest accuracy.
Unavailable entries are regarded as 0% scores. Efficiency metrics contain the following perspectives
and are computed in logarithm: “Epoch” and “Infer” are average training epoch time and inference
time, respectively. Overall “Learn” time is computed by the sum of precomputation time and total
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Table 6: Effect of different search orders for hub labeling and HubGT learning outcomes on the
homophilous CORA and the heterophilous CHAMELEON. Presented results include average index size
(i.e., the number of labels) for each node, precomputation time (in seconds), and accuracy (in %).
The best result for each column is marked in bold.

Centralit CORA CHAMELEON
Y| H1 HO Pre. Acc | H1 H0 Pre. Acc
Closeness 99 129 003 860 | 47 65 002 399
PageRank | 2.3 24 0.04 858 | 1.1 1.1 0.02 36.0
Degree 2.4 25 0.02 860 | 1.3 1.3 0.02 389

Table 7: Effect of the maximum subgraph sample size s on the label graph based on CORA and
PHYSICS. Presented results include the average degree after labeling (dg f¢er), clustering coefficients
before and after hub labeling (Chefore, Cafter), index sizes (average number of labels), and total
index file size (in MB).

Samvle Size CORA PHYSICS
P dafter Chefore Cafter H-1 H-0 Size | dafier Chefore Cafter H-1 H-0 Size
16 390 0241 0648 24 25 62| 1438 0377 0302 226 1350 118
32 390 0241 0621 24 25 62| 1438 0377 0306 40.6 2309 147
48 390 0241 0584 24 25 62| 1438 0377 0300 559 2946 170

training time. The overall efficiency in Figure fi(a)|represents overall learning time, inference speed,
and memory utilization.

D.3 Effect of Hyperparameters

Search Order. In Table[6 we present experimental results of Algorithm [I|BFS based on different
metrics such as closeness centrality and PageRank. It can be observed that, closeness centrality results
in larger average label sizes for both H-1 and H-0 indices, which is in line with the observation in [33].
Degree and closeness centrality lead to similar GT accuracy, while PageRank is less representative
for selecting useful hubs.

As noted in Appendix[A.T] the main consideration in hub selection is indexing efficiency. While other
measures may be useful, there is additional overhead for computing these scores, which makes them
less applicable to large graphs. Hence, we still recommend degree centrality, which can be efficiently
acquired.

Subgraph Size in Indexing. Table[7]presents more details with varying s when constructing labels.
We compute the average clustering coefficient C' before and after hub labeling, showing that hub
labeling can flatten the node distribution by increasing the clustering property on less clustered graphs
such as CORA. Conversely, for highly clustered graphs and larger label sizes, C'is slightly reduced, as
additional label connections make the graph denser with a more dispersed edge distribution.

For small graphs such as CORA, the average H-1 label sizes |£| 4 | £| do not vary with different upper
bounds of s, which implies that the hubs are sufficiently connected to graph nodes. On the larger
PHYSICS, increasing the small s = 24 can increase the actual label size, effectively incorporating
more remote nodes to form the subgraph. However, the increase is less significant for s > 48, which
indicates that the hubs are already sufficiently connected. As the H-0 label size |Z| is based on H-1
construction, it also exhibits less increase with larger s, as the larger H-1 is able to cover more SPD
pairs and suppress the need for H-0. For most configurations, the H-0 size is significantly smaller
than the theoretical bound O(s?), ensuring empirical space efficiency.

Subgraph Size in Querying. We then study the effectiveness of the label graph hierarchy in HubGT
featuring the subgraph generation process in Figure[8] which displays the impact of sample sizes s
and s, corresponding to Algorithm [3] Regarding the total subgraph size s, it can be observed that a
reasonably large s is essential for effectively representing graph labels and achieving stable accuracy.
In the main experiments, we uniformly adopt a constant s = 48 token size across all datasets, as it is
large enough to cover the neighborhood of most nodes while maintaining computational efficiency.
As a reference, the actual average H-1 index sizes of |£(v)| 4 |£'(v)| among all nodes are 40.6 on
PHYSICS and 47.7 on PENN94, while the average H-0 sizes |Z(v)| are 230.9 and 440.1, respectively.
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Both are significantly smaller than the theoretical bounds of 2s and s2, which validates the efficiency
of our three-level hierarchical labeling.

Within the fixed token length, the
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Alternative Transformer Architecture. Thanks to the decoupled design, HubGT is able to seam-
lessly integrate with alternative efficient Transformer architectures. To demonstrate, we implement
FlexAttention [63]] to replace the standard Transformer (MHA). The results are presented in Ta-
ble[8] Overall, FlexAttention achieves a 10-20x speedup and significant reductions in GPU memory
footprint, verifying the benefits of improving the Transformer architecture.

Table 8: Effectiveness and efficiency results for alternative architectures.

Model CORA GENIUS
Epoch Infer Mem. Acc | Epoch Infer Mem. Acc
HubGT+MHA 020  0.018 2.5 86.0 | 23.7 2.58 143  89.8
HubGT+FlexAttn | 0.14  0.013 1.8 869 | 215 2.15 1.5 89.1

D.4 Evaluation on Random Graphs

Conventionally, hub labeling is developed for realistic graphs such as road networks and social
networks, which assume properties such as sparsity and certain locality/hierarchy. The application
to random graphs is usually different and signified by considerable dispersed connections across
different local structures. In Table[9] we present a preliminary study to evaluate the effectiveness of
our HubGT labeling on different synthetic graphs with n = 1000 nodes, including BARABASI-ALBERT
and ERDOS-REYNI implemented by PyG [64], CSBM [65]], and GENCAT [66].

For BA, ER, and CSBM graphs, both H-1 and H-0 label sizes are relatively small, and there are
extreme cases where no H-1 and H-0 labels are required when the edge probability p is high and
the graph is dense. These cases imply that the H-2 computation is especially effective, and a fixed
number of global hubs are sufficient for SPD computation. In fact, for most node pairs, there is
SPD(u,v) = 1 or 2 when the raw graph is sufficiently connected, implying that it is already a 2-hop
cover. GENCAT is a graph generator closer to realistic graphs with power-law degree distribution,
where larger « indicates a “steeper” distribution with more hubs and less long-tailed nodes. In this
case, the label sizes are similar to realistic graphs, where more hubs result in smaller H-1 and larger
H-0.

Table 9: Effectiveness and efficiency results on random graphs with varying synthesis parameters.
Presented results include average index size (i.e., the number of labels) for each node and precompu-
tation time (in seconds).

Dataset | Param. H-1 H-0 Pre. | Param. H-1 H-0 Pre.
CSBM p=0.01,¢g=0.0 301 623 002]| p=01,¢q=01 0.0 0.0 0.02
ERDOS-RENYI p=0.01 1.6 2.1 0.02 p=20.1 0.0 0.0 0.02
BARABASI-ALBERT d=10 1.7 1.7 0.02 d =100 0.5 0.6 0.06
GENCAT a=3.0 306 727 0.04 a=2.0 32.8 67.3 0.03
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In summary, as noted in Properties[2]and[3] the hierarchy can naturally emerge during the hub labeling
process. For random graphs with dispersed/non-local connections, the pattern can be effectively
utilized by H-2 to compute SPD.

E Discussions

E.1 Algorithmic Generality, Limitation, and Future Direction

Dynamic Graph and Update. Hub labeling for dynamic graphs has been studied in previous works
such as [67]. In brief, it prevents full index updates and only updates the affected labels on candidate
paths. Nonetheless, we consider it a promising direction to integrate dynamic hub labeling with GT
learning to better handle graph changes.

Multi-device Computation. As HubGT employs the fully decoupled architecture, it renders the
future possibility to deploy multi-device fraining: once the precomputation is completed, data
parallelism can be employed with multiple Transformers, each handling a batch of tokens, since node
tokens are mutually independent and SPD querying is highly local in storage. One potential limitation
may be related to the large H-0 index, rendering index duplication less efficient. In this case, HubGT
is superior to previous models, especially kernel-based ones, since only node-wise inputs are required
and can be easily batched. With respect to multi-device settings for indexing computation across
distributed graph partitions, the index £ can be divided among devices in a node-wise manner, while
the index Z and attributes X need to be mirrored or synchronized throughout the computation.

E.2 Broader Impact

As our work primarily focuses on theoretical contributions to improve the scalability of graph neural
networks, we do not foresee it having a direct negative social impact.
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