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Leveraging heterogeneous spillover
in maximizing contextual bandit rewards
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Abstract
Recommender systems relying on contextual multi-armed bandits

continuously improve relevant item recommendations by taking

into account the contextual information. The objective of bandit

algorithms is to learn the best arm (e.g., best item to recommend)

for each user and thus maximize the cumulative rewards from user

engagement with the recommendations. The context that these

algorithms typically consider are the user and item attributes. How-

ever, in the context of social networks where the action of one
user can influence the actions and rewards of other users, neighbors’
actions are also a very important context, as they can have not

only predictive power but also can impact future rewards through

spillover. Moreover, influence susceptibility can vary for different

people based on their preferences and the closeness of ties to other

users which leads to heterogeneity in the spillover effects. Here, we

present a framework that allows contextual multi-armed bandits to

account for such heterogeneous spillovers when choosing the best

arm for each user. Our experiments on several semi-synthetic and

real-world datasets show that our framework leads to significantly

higher rewards than existing state-of-the-art solutions that ignore

the network information and potential spillover.

Keywords
recommender systems, multi-armed bandits, information diffusion,

social networks

1 Introduction
Contextual multi-armed bandit (CMAB) algorithms leverage user

attributes and actions to optimize personalized recommendations

over time and thus maximize rewards [1, 13, 22, 43]. Rewards can

vary based on the application where the recommendations occur,

including revenue from recommended products in e-commerce

applications and clicks on recommended user-generated content

on social media. When contextual bandit recommendations occur

in social networks, they can spread from one user to another and

overall rewards can be based on both direct recommendations and

spillover. Network spillover refers to the phenomenon where the

actions of one individual have an impact on the actions of others

leading to the spread of information, ideas, attitudes, and behaviors.

Understanding the effect of spillover is important in many fields,

including psychology [9], marketing [12], public health [33], and

economics [35].

To illustrate the motivation behind this paper, let’s consider the

following toy example: an advertisement company targets social

network users with two types of ads, ads on politics and ads on

sports. Alice is one of the targeted users and she regularly posts

about and engages with fitness-related content. Therefore, when a

sport-related ad about downloading a fitness app comes to Alice’s

news feed, Alice shares the ad link in her social media account.

Due to sharing, the ad link appears in the news feed of two of her

Figure 1: The workflow of the 𝑁𝑒𝑡𝐶𝐵 framework.

friends, namely Brian and Carla. Brian and Carla are not targeted

users but Brian is also interested in fitness and downloads the app

from the shared link while Carla is not interested in sports and does

not download it. Rewards (i.e., downloads) occur both based on the

direct recommendation (Alice’s download) and based on spillover

(Brian’s download), therefore potential spillover should be taken

into consideration when recommending items to Alice.

When different users respond differently to the sharing actions

of their network contacts, this refers to spillover heterogeneity.

For example, it was more likely for Alice to influence Brian to

download the fitness app due to their shared interest than to influ-

ence Carla. Current research on contextual bandit recommenda-

tions [1, 13, 22, 43, 45] does not take into account spillover, much

less heterogeneous spillover, to optimize rewards. Thus, in this pa-

per we set out to examine whether heterogeneous spillover can be

utilized to maximize the overall rewards during contextual bandit

recommendation in social networks.

Present work.We develop aNetworkContextual Bandit frame-

work, 𝑁𝑒𝑡𝐶𝐵, that leverages heterogeneous spillover and neighbor-

hood knowledge for recommending items that maximize rewards in

networks. As context for the bandit, we introduce a novel dynamic

feature set for each user which captures the spillover dynamics

over time and provides summary neighborhood statistics about the

success of direct recommendations and spillovers. Another novel

component of our framework is deciding when to recommend a

different arm than the optimal arm predicted by the contextual

multi-armed bandit if it leads to higher network rewards due to

spillover. Figure 1 illustrates the workflow of the 𝑁𝑒𝑡𝐶𝐵 framework.

𝑁𝑒𝑡𝐶𝐵 recommends items in rounds where each round corresponds

to a user arriving (e.g., opening a social network app). In the first

step of each round, the CMAB uses the features to predict the best

class to recommend for that user (e.g., politics, marked in blue).

Next, 𝑁𝑒𝑡𝐶𝐵 checks whether the predicted class is optimal for the

neighborhood by comparing the expected rewards due to spillover

1
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for different preference classes. If the network rewards (i.e., direct

recommendation and spillover rewards) are highest for a class dif-

ferent from the one the CMAB suggests, then 𝑁𝑒𝑡𝐶𝐵 recommends

the user that different class instead of the predicted one, going

against the CMAB recommendation. In our example, estimated net-

work rewards are higher for the alternate recommendation class,

i.e., sports, shown in orange, and the user is recommended that

class. In the final step of each round, neighbors’ recommendations

and spillover features are updated accordingly. 𝑁𝑒𝑡𝐶𝐵 can be seam-

lessly integrated with any existing contextual multi-armed bandit

algorithm.

Key idea and highlights. To summarize, this paper makes the

following contributions:

• We define a novel problem of maximizing network rewards
for contextual bandit recommendation.

• We introduce a dynamic heterogeneous spillover model

and develop a bandit framework which leverages spillover

knowledge to increase long-term rewards.

• We perform a thorough evaluation of our framework on

semi-synthetic and real-world datasets and compare it to

state-of-the-art contextual bandit algorithms.

To the best of our knowledge, this is the first work that consid-

ers the impact of both recommendations and their heterogeneous

spillover in networks when learning optimal recommendations

and calculating bandit regrets. The only research that considers

contextual bandits for networks is in the context of influence max-

imization [19, 36–38] where the goal is to find a set of influential

users who will be treated with the goal of these users spreading

information in the network. In contrast, our work assumes that

anyone could influence others [4] and we focus on the choice of

recommendations, not the choice of users. Moreover, unlike pre-

vious research on contextual bandit recommendations [10, 22, 26]

which leverages only user and item characteristics, we leverage

information about the user neighborhood.

2 Related Work
Recommendations with contextual bandits. Contextual multi-

armed bandit algorithms are widely used in recommender sys-

tems [10, 26]. LinUCB [22], Contextual Thompson Sampling (CTS) [1],

and LinEI [34] algorithms assume a linear relationship between the

expected reward of an action and its context. NeuralBandit1 [2],

NeuralUCB [45], NeuralTS [43], NeuralEI [34], and EE-Net [7] use

neural networks to remove the constraint of linearity. To lever-

age the collaborative nature among users/items, different algo-

rithms have been developed to model the dependency among item-

s/users, e.g., GOB.Lin [11], CLUB [15], DYNUCB [27], COFIBA [24],

CoLin [39], DCCB [20], CAB [14], SCLUB [23], GRC [40], ConUCB [44],

DistCLUB [25], LOCB [5], HCB/pHCB [32], Meta-Ban [6], and

GNB [28]. However, none of them consider the potential of spillover

in maximizing rewards during recommendation.

Contextual bandit for networks. The only research that con-

siders contextual bandits for networks is in the context of influence

maximization [19, 36–38]. The influence maximization problem

aims to maximize rewards in a social network by finding the most

influential users that can maximize diffusion in the network. How-

ever, influence maximization differs from our work since we focus

on the choice of recommendations to users, not on the choice of

users.

Spillover. Spillover is typically studied in the context of causal

effect estimation in non-iid settings such as social networks and

online marketplaces [16, 18, 21, 41]. Some example works in this

space include characterization of the neighborhood information

through exposure mappings [3] and machine learning [42], as well

as using machine learning to estimate heterogeneous effects [8,

42]. All these works focus on spillover to avoid biased estimates

of the treatment effect whereas our work focuses on leveraging

the heterogeneity of network spillover to maximize rewards in

recommendations.

3 Problem Description
Data model. We define an attributed network graph 𝐺 = (𝑉 , 𝐸),
consisting of a set of 𝑛 nodes 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, a set of edges
𝐸 = {𝑒𝑖 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛} where 𝑒𝑖 𝑗 denotes the edge connecting node

𝑣𝑖 ∈ 𝑉 and node 𝑣 𝑗 ∈ 𝑉 . The set of neighboring nodes of 𝑣𝑖 is

denoted with N𝑖 where N𝑖 = {𝑣 𝑗 : 𝑣 𝑗 ∈ 𝑉 , 𝑒𝑖 𝑗 ∈ 𝐸}. We define N𝑖
as the neighborhood of node 𝑣𝑖 and each node 𝑣 𝑗 ∈ N𝑖 is a neighbor
of node 𝑣𝑖 . Each node in the network has one latent preference from

a set of 𝑙 possible latent preferences (or classes),𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑙 }.
In our toy example, the latent preferences are sports and politics.

We let X𝑖 denote the 𝑑-dimensional feature vector of node 𝑣𝑖
and 𝑧𝑖 ∈ 𝐶 refers to its latent preference type. To capture neighbor-

hood properties related to spillover, we introduce a 4𝑙-dimensional

dynamic neighborhood feature set for each node 𝑣𝑖 of the network,

denoted as XN𝑖
. This is a novel component of our framework, de-

scribed in detail in Section 4.1. Let 𝑦𝑖 ∈ {0, 1} refer to the activation
status of node 𝑣𝑖 after a recommendation where𝑦𝑖 = 1means active

node (e.g., downloading a fitness app) and 𝑦𝑖 = 0 means inactive.

The contextual bandit contains a set of armsA = {𝑐1, 𝑐2, . . . , 𝑐𝑙 }
corresponding to user preferences. We denote the predicted by the

contextual bandit preference of node 𝑣𝑖 with 𝑎𝑟𝑚𝑖 ∈ {A ∪ {∅}}
and the recommended class of node 𝑣𝑖 (which can sometimes be

different from the predicted arm) with 𝑡𝑖 ∈ {A ∪ {∅}}. 𝑎𝑟𝑚𝑖 = ∅
refers to no predictionmade and 𝑡𝑖 = ∅ refers to no recommendation

made to node 𝑣𝑖 . We provide a detailed description of the bandit

setup at the end of this section.

Node activation. Nodes in the network can be activated in two

ways, through direct recommendation by the system and through

spillover. Direct recommendation refers to the system treating with

a recommendation a particular node (𝑡𝑖 ≠ ∅) in the network. A

spillover occurs when the activation of one node impacts the acti-

vation of another node. For example, when Alice is shown a fitness

app ad that she downloads and shares with Brian, spillover occurs

when Brian also downloads the app as a consequence of Alice’s

sharing.

Recommendation types. We define two types of direct recom-

mendations based on the predicted preference class and the actual

latent preference of the nodes. The recommendation to node 𝑣𝑖 is

aligned when its recommended class, 𝑡𝑖 is the same as its latent

preference, 𝑧𝑖 . Similarly, the recommendation to node 𝑣𝑖 is mis-
aligned when its recommended class, 𝑡𝑖 is different from its latent

preference, 𝑧𝑖 . We denote the probability of activating a particular

node due to the aligned and misaligned recommendation as 𝑝𝑎 and

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Leveraging heterogeneous spillover
in maximizing contextual bandit rewards WWW ’25, April 28 - May 2, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Recommendation-dependent heterogeneity in network spillover.

𝑝𝑚 , respectively:

𝑝𝑎 ← 𝑃 (𝑦𝑖 = 1|𝑡𝑖 = 𝑧𝑖 ); 𝑝𝑚 ← 𝑃 (𝑦𝑖 = 1|𝑡𝑖 ≠ 𝑧𝑖 )
In our toy example, the activation probability of aligned recommen-

dation would correspond to the probability of Alice downloading

the fitness app when she was recommended the fitness app. Sim-

ilarly, the activation probability of misaligned recommendation

would correspond to the probability of Alice acting upon a politics

ad when she was shown such an ad.

Spillover types. For ease of exposition, we model spillover with

the widely used independent cascade model (ICM) [30], though our

work can easily be adapted to incorporate other diffusion models.

According to ICM, activated nodes have a probabilistic and indepen-

dent chance of activating an inactive neighbor via spillover. This

resembles contagious disease spread, where each social interaction

may trigger an infection.

We define an activated node due to direct recommendation as a

source node. Neighboring nodes that can get activated by the source

node are considered recipient nodes. In our example, Alice is the

source node and Brian is the recipient node. Just like direct recom-

mendations, a spillover can be aligned or misaligned dependent on

the latent preference type of nodes and the recommended class of

the source node. A spillover is considered aligned when the recom-

mended class of an activated source node is the same as that of the

latent preference type of the recipient node. Similarly, a spillover

is considered misaligned when the recommended class of a source

node is different from the latent preference type of the recipient

node.

We denote spillover probability with 𝑝𝑠𝑟 where 𝑠 ∈ {𝑎,𝑚} refers
to whether the recommendation of the source node is aligned or

misaligned and 𝑟 ∈ {𝑎,𝑚} refers to whether the spillover is aligned
or misaligned. We formulate four types of heterogeneous spillover

probabilities where 𝑣𝑖 is the source node and 𝑣 𝑗 is the recipient

node:

𝑝𝑎𝑎 ← 𝑃 (𝑦 𝑗 = 1|𝑡𝑖 = 𝑧𝑖 , 𝑡𝑖 = 𝑧 𝑗 )
𝑝𝑎𝑚 ← 𝑃 (𝑦 𝑗 = 1|𝑡𝑖 = 𝑧𝑖 , 𝑡𝑖 ≠ 𝑧 𝑗 )
𝑝𝑚𝑎 ← 𝑃 (𝑦 𝑗 = 1|𝑡𝑖 ≠ 𝑧𝑖 , 𝑡𝑖 = 𝑧 𝑗 )
𝑝𝑚𝑚 ← 𝑃 (𝑦 𝑗 = 1|𝑡𝑖 ≠ 𝑧𝑖 , 𝑡𝑖 ≠ 𝑧 𝑗 )

An example of 𝑝𝑎 , 𝑝𝑚 , 𝑝𝑎𝑎 , 𝑝𝑎𝑚 , 𝑝𝑚𝑎 , and 𝑝𝑚𝑚 is shown in Figure 2

where a toy network contains six nodes 𝑉 ∈ {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}
and two possible preferences 𝐶 ∈ {𝑃, 𝑆} (e.g., politics and sports).
Here, 𝑧1 = 𝑃 , 𝑧2 = 𝑆 , 𝑧3 = 𝑃 , 𝑧4 = 𝑆 , 𝑧5 = 𝑃 , 𝑧6 = 𝑃 . In Figure 2(a),

𝑡1 = 𝑃 and thus 𝑡1 = 𝑧1, therefore 𝑣1 gets aligned recommenda-

tion. 𝑣3 and 𝑣6 get the aligned spillover from the source node as

𝑡1 = 𝑧3 and 𝑡1 = 𝑧6, respectively, from the source node 𝑣1 that is acti-

vated due to aligned recommendation. 𝑣2 and 𝑣4 get the misaligned

spillover from the source node as 𝑡1 ≠ 𝑧2 and 𝑡1 ≠ 𝑧4, respectively,

from the source node 𝑣1 that is activated due to aligned recommen-

dation. In Figure 2(b), 𝑡1 = 𝑆 and thus 𝑡1 ≠ 𝑧1, therefore 𝑣1 gets

misaligned recommendation. 𝑣2 and 𝑣4 get the aligned spillover

from the source node as 𝑡1 = 𝑧2 and 𝑡1 = 𝑧4, respectively, from the

source node 𝑣1 that is activated due to misaligned recommenda-

tion. 𝑣3 and 𝑣6 get the misaligned spillover from the source node

as 𝑡1 ≠ 𝑧3 and 𝑡1 ≠ 𝑧6, respectively, from the source node 𝑣1 that

is activated due to misaligned recommendation. In both networks,

there is no spillover from node 𝑣1 to 𝑣5 since 𝑣5 is already activated

and spillover can happen from the currently recommended and

activated node to its inactive neighboring nodes.

We assume the heterogeneous spillover probabilities (i.e., 𝑝𝑠𝑟
where 𝑠 ∈ {𝑎,𝑚}) are known in advance. An interesting follow-up

work would be to learn them from data.

A contextual bandit with network rewards setup.We con-

sider a stochastic 𝑙-armed contextual bandit setup with a total

number of 𝑇 rounds. In each round 𝑖 ∈ {1, 2, 3, . . . ,𝑇 }, the learn-
ing agent receives an inactive node 𝑣𝑖 ∈ 𝑉 along with a context

feature vector: {X𝑖 ,XN𝑖
}. The agent selects an action 𝑎𝑟𝑚𝑖 and

receives network rewards 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ). The action of an arm is a

direct recommendation of an item from one of the classes 𝐶 . A

reward refers to the activation of an inactive node due to direct

recommendation or spillover. An example reward model is assign-

ing a reward of 1 when a node is activated; otherwise, the reward

is 0. The network rewards 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ) is a non-negative integer

which refers to the total number of newly activated nodes due

to the selected arm’s action, including the node’s activation and

potential spillover to its neighboring nodes. We assume that the

network rewards are a function of the features that needs to be

learned: 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ) = 𝐹 (X𝑖,𝑎𝑟𝑚𝑖
,XN𝑖 ,𝑎𝑟𝑚𝑖

) + 𝜉𝑖 , where 𝜉𝑖 is zero-
mean noise. The total 𝑇 -round network rewards of the bandit are

defined as 𝑅𝑡𝑜𝑡𝑎𝑙 ←
∑𝑇
𝑖=1 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ). Similarly, we define the opti-

mal𝑇 -round network rewards as𝑅∗
𝑡𝑜𝑡𝑎𝑙

← ∑𝑇
𝑖=1 𝑅(𝑣𝑖 , 𝑎𝑟𝑚∗𝑖 ), where

𝑎𝑟𝑚∗
𝑖
is the arm with maximal expected network rewards in round

𝑖 . The T-round cumulative regret of the bandit learning can be for-

mulated as 𝑅𝑒𝑔𝑟𝑒𝑡 ← ∑𝑇
𝑖=1 (𝑅(𝑣𝑖 , 𝑎𝑟𝑚∗𝑖 ) −𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 )). We are now

ready to formally define the problem:

3
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Problem 1 (Maximizing network rewards with contextual

bandits). Given an attributed network graph 𝐺 = (𝑉 , 𝐸), a set of
attributesX associated with each node, and a set of armsA associated
with the user preferences, select a recommendation class for direct
recommendation to each inactive node 𝑣𝑖 at round 𝑖 ∈ {1, 2, 3, . . . ,𝑇 }
such that the network rewards 𝑅𝑡𝑜𝑡𝑎𝑙 are maximized.

4 Network Contextual Bandit framework
We design a contextual bandit framework that aims to select the

optimal direct recommendation for each arriving node in a network

by taking into account both the consequences of direct recommen-

dation and indirect recommendations, i.e., spillover. Our Network
Contextual Bandit framework, 𝑁𝑒𝑡𝐶𝐵, comprises two components,

considered in each round. The first component (Section 4.1) inte-

grates the use of dynamic neighborhood features in conjunction

with the static features of the inactive node to make a prediction for

the best direct recommendation. The second component (Section

4.2) leverages heterogeneous spillover and goes against the pre-

dicted direct recommendation if it achieves suboptimal expected

network rewards. The two components of 𝑁𝑒𝑡𝐶𝐵 are described

next and the pseudo-code is included in Algorithm 1.

4.1 Dynamic neighborhood features per user
Bandit online learning is characterized by the increase in the ratio

of successful recommendations to the total number of direct recom-

mendations. To improve the learning, we introduce a set of novel

dynamic features which captures the spillover dynamics over time

and provides summary neighborhood statistics about the success of

direct recommendations and spillovers. This set of features proves

to be quite powerful, as we demonstrate in the Experiments section.

Specifically, in addition to the static node features X𝑖 ∈ R𝑑 , we
consider dynamic neighborhood features XN𝑖

∈ R4𝑙 of node 𝑣𝑖 .
1) Neighborhood recommendations per class. The first 𝑙

dimensions of XN𝑖
represent the ratios of direct recommendations

to neighborsN𝑖 for each of 𝑙 arms 𝑐𝑘 ∈ A relative to the total direct

recommendations to neighbors for all arms in N𝑖 :

XN𝑖
[𝑘] =

∑
𝑣𝑗 ∈N𝒊

1[𝑡 𝑗 = 𝑐𝑘 ]∑
𝑣𝑗 ∈N𝒊

1[𝑡 𝑗 ≠ ∅]

where 𝑘 ∈ {1, 2, . . . , 𝑙} and 1[.] is an indicator function.

2) Unsuccessful neighborhood recommendations per class.
The second 𝑙 dimensions represent the ratios of unsuccessful direct

recommendations inN𝑖 , i.e., direct recommendations that fail to ac-

tivate a node, for each arm 𝑐𝑘 ∈ A relative to the total unsuccessful

direct recommendations for all arms in N𝑖 :

XN𝑖
[𝑙 + 𝑘] =

∑
𝑣𝑗 ∈N𝒊

1[𝑡 𝑗 = 𝑐𝑘 ∧ 𝑦 𝑗 = 0]∑
𝑣𝑗 ∈N𝒊

1[𝑡 𝑗 ≠ ∅ ∧ 𝑦 𝑗 = 0]

Let’s consider a case from Figure 2(a), where 𝑡2 = 𝑡5 = 𝑡6 = 𝑃 ,

𝑡3 = ∅, and 𝑡4 = 𝑆 . Therefore, XN1
[1] = 3

4
and XN1

[2] = 1

4
. If

the node 𝑣5 gets activated (𝑦5 = 1) due to direct recommendation

but all other neighboring nodes of node 𝑣1 remain inactive, then

XN1
[3] = 2

3
and XN1

[4] = 1

3
.

A spillover is successful when a recipient node gets activated

due to the activation of a source node. A spillover is considered

unsuccessful when a source node fails to activate the recipient node.

Each potential recipient node 𝑣𝑖 ∈ 𝑉 has two 𝑙-dimensional vec-

tors, i.e., S𝑖 and S𝑖 to keep count of successful and unsuccessful

spillovers per preference class, respectively. S𝑖 = ®0 and S𝑖 = ®0
indicate that node 𝑣𝑖 has received no successful or unsuccessful

spillover, respectively. S𝑖 [𝑘] ∈ {0, 1} refers to whether 𝑣𝑖 is acti-

vated with 𝑐𝑘 through spillover from a neighboring source node.

S𝑖 [𝑘] ∈ Z+ refers to the total unsuccessful spillover attempts to

activate 𝑣𝑖 with 𝑐𝑘 .

3) Neighborhood spillovers per class. The third 𝑙 dimensions

of XN𝑖
represent the ratios of spillover attempts for each arm 𝑐𝑘 ∈

A relative to the total spillover attempts inN𝑖 which can be written
as follows for 𝑘 ∈ {1, 2, . . . , 𝑙}:

XN𝑖
[2𝑙 + 𝑘] =

∑
𝑣𝑗 ∈N𝒊

(S 𝑗 [𝑘] + S 𝑗 [𝑘])∑
𝑣𝑗 ∈N𝒊

∑
𝑟 ∈{1,2,...,𝑙 } (S 𝑗 [𝑟 ] + S 𝑗 [𝑟 ])

4) Unsuccessful neighborhood spillovers per class. The
fourth 𝑙 dimensions represent the ratios of unsuccessful spillover

attempts for each arm 𝑐𝑘 ∈ A relative to the total unsuccessful

spillover attempts in N𝑖 which can be written as follows:

XN𝑖
[3𝑙 + 𝑘] =

∑
𝑣𝑗 ∈N𝒊

(S 𝑗 [𝑘])∑
𝑣𝑗 ∈N𝒊

∑
𝑟 ∈{1,2,...,𝑙 } (S 𝑗 [𝑟 ])

Let’s consider another case from Figure 2(a), where the two neigh-

boring nodes of node 𝑣3 get activated due to "P" direct recommenda-

tion and one other neighboring node gets activated due to "S" direct

recommendation. Therefore, the node 𝑣3 receives spillover with "P"

twice and "S" once. Similarly, the nodes 𝑣4 and 𝑣5 get spillover with

"P" once. The nodes 𝑣1 and 𝑣6 do not receive any spillover. There-

fore, XN1
[5] = 4

5
and XN1

[6] = 1

5
. If the node 𝑣5 gets activated

(𝑦5 = 1) due to spillover but all other neighboring nodes of node 𝑣1
remain inactive, then XN1

[7] = 3

4
and XN1

[8] = 1

4
.

The neighborhood features are dynamic and change over time

due to the arrival of new nodes and potential new activations in

each round. The aggregated features 𝑋𝑖 and 𝑋𝑁𝑖
are passed to

an off-the-shelf contextual multi-armed bandit (CMAB) algorithm,

which predicts the optimal recommendation class (𝑎𝑟𝑚𝑖 ) for direct

recommendation. The CMAB learns the parameters of the arms

with the arrival of nodes and generalizes expected network rewards

from direct recommendation and spillover.

4.2 Spillover maximization
The second part of the algorithm considers the optimal recom-

mendation arm, predicted by the off-the-shelf CMAB, and decides

whether to follow the prediction and recommend that arm or go

against the prediction and recommend a different arm to the node

considered in that round. To do that, it estimates the potential re-

wards from spillover for all possible arms and picks the arm that

gives the highest expected network reward. For example, NetCB

may decide to show a politics ad to Alice instead of a sports one

(even though she likes sports) if a lot of her inactive friends like pol-

itics and the expected network rewards are estimated to be higher.

Since we cannot estimate the expected network rewards without

knowing the true user preference, we first predict the preferred

arm/class for all inactive nodes in the neighborhood and treat them

as if they are the true arm (which is unknown). This allows us to
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decide which heterogeneous spillover probability applies for each

neighbor. The expected network rewards due to the direct recom-

mendation of the predicted recommendation class 𝑎𝑟𝑚𝑖 for node 𝑣𝑖
and spillover in its neighboring nodes is denoted with 𝐸 [𝑅𝑖 | 𝑎𝑟𝑚𝑖 ],
which is estimated as follows:

𝐸 [𝑅𝑖 | 𝑎𝑟𝑚𝑖 ] = 𝑝𝑎 + 𝑝𝑎 ∗
∑︁

𝑣𝑗 ∈N𝒊

(𝑝𝑎𝑎 ∗ 1[𝑎𝑟𝑚𝑖 = 𝑎𝑟𝑚 𝑗∧

𝑦 𝑗 = 0] + 𝑝𝑎𝑚 ∗ 1[𝑎𝑟𝑚𝑖 ≠ 𝑎𝑟𝑚 𝑗 ∧ 𝑦 𝑗 = 0]) (1)

The expected network rewards due to the direct recommenda-

tion of each alternate arm, 𝑎𝑟𝑚 ∈ A (𝑎𝑟𝑚 ≠ 𝑎𝑟𝑚𝑖 ) for node 𝑣𝑖
and spillover in its neighboring nodes is denoted with 𝐸 [𝑅𝑖 | 𝑎𝑟𝑚],
which is estimated as follows:

𝐸 [𝑅𝑖 | 𝑎𝑟𝑚] = 𝑝𝑚 + 𝑝𝑚 ∗
∑︁

𝑣𝑗 ∈N𝒊

(𝑝𝑚𝑎 ∗ 1[𝑎𝑟𝑚 = 𝑎𝑟𝑚 𝑗∧

𝑦 𝑗 = 0] + 𝑝𝑚𝑚 ∗ 1[𝑎𝑟𝑚 ≠ 𝑎𝑟𝑚 𝑗 ∧ 𝑦 𝑗 = 0]) (2)

We denote the alternate arm with highest expected network reward

for node 𝑣𝑖 with 𝑎𝑟𝑚𝑖 , i.e., 𝑎𝑟𝑚𝑖 = argmax

𝑎𝑟𝑚
𝐸 [𝑅𝑖 | 𝑎𝑟𝑚].

If the expected network rewards of the 𝑎𝑟𝑚𝑖 is greater than that

of the𝑎𝑟𝑚𝑖 , the𝑁𝑒𝑡𝐶𝐵 framework selects𝑎𝑟𝑚𝑖 ; otherwise, it selects

𝑎𝑟𝑚𝑖 for direct recommendation to node 𝑣𝑖 . When the alternate

arm 𝑎𝑟𝑚𝑖 is selected, the arm parameters are not updated based on

the recorded network rewards to avoid ambiguity in off-the-self

CMAB bandit learning.

It is important to note that the success of this step depends on

having good recommendation predictions for each node. To avoid

considering poor predictions in the early learning stages of the

CMAB, this step only applies after the direct activation rate (DAR)

has stabilized. The 𝐷𝐴𝑅 refers to the ratio of total activated nodes

due to direct recommendations to the total direct recommendations

made during contextual bandit learning.

4.3 Illustration of NetCB algorithm
Formally, the 𝑁𝑒𝑡𝐶𝐵 algorithm proceeds in discrete rounds 𝑖 =

1, 2, 3, . . . ,𝑇 [Line: 9] following the initialization [Line: 3 − 8]. In
each round 𝑖 , it repeats the two steps described in Sections 4.1 and

4.2.

(1) An inactive node 𝑣𝑖 arrives to receive direct recommenda-

tion. The algorithm observes the context vector X𝑖 of the

current node 𝑣𝑖 along with XN𝑖
and bandit parameters for

the set of arms, A [Line: 10].

(2) An off-the-shelf CMAB algorithm predicts an arm, 𝑎𝑟𝑚𝑖 ∈
A for direct recommendation to node 𝑣𝑖 [Line: 11].

(3) If 𝐷𝐴𝑅 is stable, estimate expected network rewards for all

arms [Line: 13-15] and find the maximum expected reward

generating arm, 𝑎𝑟𝑚𝑖 for node 𝑣𝑖 [Line: 16].

(4) If 𝐷𝐴𝑅 is not stable or the predicted arm 𝑎𝑟𝑚𝑖 is the same

as 𝑎𝑟𝑚𝑖 , recommend the predicted class, 𝑡𝑖 = 𝑎𝑟𝑚𝑖 to node

𝑣𝑖 . Node 𝑣𝑖 then receives network rewards, 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ). The
bandit parameters and neighborhood features, XN𝑖

are up-

dated. The algorithm then updates its arm-selection strat-

egy with the observation, ({X𝑖 ,XN𝑖
}, arm𝑖 , 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ))

[Line: 19-20].

Algorithm 1 Maximizing network rewards with 𝑁𝑒𝑡𝐶𝐵

1: Input: Number of rounds 𝑇 , off-the-shelf CMAB(e.g., LinUCB,

NeuralTS etc.) hyperparameters

2: Output: Direct recommendation 𝑡𝑖 for each inactive node 𝑣𝑖
arrived in each round 𝑖

3: for all 𝑎 ∈ A do
4: Initialize arm parameters

5: end for
6: for all 𝑣𝑖 ∈ 𝑉 do
7: XN𝑖

,S𝑖 ,S𝑖 ← ®0
8: end for
9: for 𝑖 ∈ {1, 2, 3, . . . ,𝑇 } do
10: An inactive node 𝑣𝑖 arrives with a set of arm contexts

{X𝑖,𝑎,XN𝑖,𝑎
}𝑎∈A

11: Predict 𝑎𝑟𝑚𝑖 for node 𝑣𝑖 using off-the-shelf CMAB

12: if 𝐷𝐴𝑅 is stable then
13: for all 𝑎𝑟𝑚 ∈ A do
14: Estimate expected network rewards of node 𝑣𝑖 for

𝑎𝑟𝑚, 𝐸 [𝑅𝑖 | 𝑎𝑟𝑚]
15: end for
16: Find 𝑎𝑟𝑚𝑖 = argmax

𝑎𝑟𝑚
𝐸 [𝑅𝑖 | 𝑎𝑟𝑚]

17: end if
18: if 𝐷𝐴𝑅 is not stable OR 𝑎𝑟𝑚𝑖 == 𝑎𝑟𝑚𝑖 then
19: 𝑡𝑖 ← 𝑎𝑟𝑚𝑖 # recommend CMAB’s prediction

20: Record 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ); update parameters for 𝑎𝑟𝑚𝑖

21: else
22: 𝑡𝑖 ← 𝑎𝑟𝑚𝑖 # go against CMAB’s prediction

23: Record 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 )
24: end if
25: for 𝑣𝑞 ∈ N𝑖 do
26: Update XN𝑞

[𝑘], XN𝑞
[𝑙 + 𝑘], S𝑞 [𝑘], and S𝑞 [𝑘] where

𝑘 ∈ {1, 2, . . . , 𝑙}
27: for 𝑣𝑟 ∈ N𝑞 do
28: Update XN𝑟

[2𝑙 + 𝑘] and XN𝑟
[3𝑙 + 𝑘] where 𝑘 ∈

{1, 2, . . . , 𝑙}
29: end for
30: end for
31: end for

(5) If the predicted arm 𝑎𝑟𝑚𝑖 is different from 𝑎𝑟𝑚𝑖 , recom-

mend the direct recommendation class, 𝑡𝑖 = 𝑎𝑟𝑚𝑖 to node 𝑣𝑖 .

Node 𝑣𝑖 then receives network rewards, 𝑅(𝑣𝑖 , 𝑎𝑟𝑚𝑖 ) [Line:
22-23].

(6) The neighborhood features are updated for each 𝑣𝑞 ∈ N𝑖
and 𝑣𝑟 ∈ N𝑞 [Line: 25-30].

The complexity of the algorithm depends on the complexity of the

chosen off-the-shelf CMAB and the average degree of the network

for updating the dynamic features in each round.

While the NetCB framework is designed to handle the arrival

of one node at a time, as per the contextual multi-armed bandit

literature, it may also be extended to accommodate batches of nodes

arriving simultaneously. In this case, the spillover activation of

a recipient node can depend on multiple source nodes trying to

activate it.
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5 Experiments
We evaluate the performance of𝑁𝑒𝑡𝐶𝐵 on both real-world and semi-

synthetic network datasets using state-of-the-art CMAB methods

showing whether 𝑁𝑒𝑡𝐶𝐵 improves these CMAB methods.

5.1 Data representation
Real-world datasets. We consider four real-world attributed net-

work datasets. BlogCatalog
1
is a network of social interactions

among bloggers on the BlogCatalog website. This dataset contains

5, 196 nodes, 343, 486 edges, 8, 189 attributes, and 6 labels. The la-

bels represent topic categories inferred through the metadata of

the blogger interests. Flickr
1
is a benchmark social network dataset

which contains 7, 575 nodes, 479, 476 edges, 12, 047 attributes, and 9

labels. Each node in this network corresponds to a user, with each

edge representing a following relationship, and the labels indicating

the interests of groups of the users. The Hateful dataset is sampled

from the Hateful Users on Twitter dataset [29] and the sample con-

tains 3, 218 nodes, 9, 620 edges, 1, 036 attributes, and 2 labels. Each

sample is classified as either "hateful" or "normal". Pubmed
1
is a

citation network where each node represents a scientific publica-

tion related to diabetes and each directed edge represents a citation.

This dataset contains 19, 717 nodes, 44, 338 edges, 500 attributes,

and 3 labels. Each publication is classified into one of the 3 labels.

The Shannon Equitability Index2 values for the Blogcatalog, Flickr,
Hateful, and Pubmed datasets are 0.9992, 0.9996, 0.6314, and 0.9651,

respectively. As such, all datasets exhibit a high degree of balance,

except for the Hateful dataset.

Semi-synthetic datasets.We generate semi-synthetic dataset

with different homophily for each real-world network dataset. Ho-

mophily is quantified by the proportion of edges connecting two

nodes with the same label compared to the total number of edges

in the network. The homophily scores in Blogcatalog, Flickr, Hate-

ful, and Pubmed network datasets are 0.40, 0.23, 0.73, and 0.80,

respectively.

To increase homophily in a network dataset, we employ a random

edge removal of edges that connect two nodes with different labels,

and where both nodes have a minimum degree of 2. By using this

method, we generate semi-synthetic Flickr and Blogcatalog datasets

with a homophily of 0.88. To decrease homophily in a network

dataset, we employ a random swapping of nodes that have different

labels within the network along with their associated attributes and

labels. We only consider pairs of nodes where swapping them leads

to an increase in the number of edges connecting two nodes with

different labels. By using this method, we generate semi-synthetic

Pubmed and Hateful datasets with a homophilic score of 0.30 and

0.58, respectively.

Static features and latent preference of a node. The static
𝑑-dimensions in feature vector X𝑖 correspond to the attributes in

the datasets. To reduce computational complexity of the bandit

algorithm, we reduce the dimension of X𝑖 to 500 with truncated

SVD [17] for all datasets. The latent preference 𝑧𝑖 of node 𝑣𝑖 in

the network corresponds to its label in the dataset where 𝑙 refers

to the total number of labels. We aggregate 𝑑-dimensional static

node features with 4𝑙 dimensional dynamic neighborhood features

1
All datasets available at https://renchi.ac.cn/datasets/

2
The Shannon Equitability Index [31] quantifies class imbalance in a dataset, with 0

being the most imbalanced and 1 being the most balanced.

and consider it as a 𝑑 + 4𝑙 dimensional feature vector for each

node in the network. The context feature vector of each arm follow

recommendation settings for classification datasets in previous

works [7, 22, 28, 43, 45].

5.2 Evaluation metrics
Bandit accuracy. The bandit accuracy, 𝐵𝑎𝑐𝑐 refers to the ratio

of total aligned direct recommendation predictions to the total

direct recommendation predictions made during contextual bandit

learning, i.e., 𝐵𝑎𝑐𝑐 =

∑
𝑣𝑖 ∈𝑉 (1[𝑎𝑟𝑚𝑖=𝑧𝑖 ])∑
𝑣𝑖 ∈𝑉 (1[𝑎𝑟𝑚𝑖≠∅])

Regrets. To evaluate regrets, we record network rewards for

node 𝑣𝑖 by counting newly activated nodes due to direct recommen-

dation and spillover at round 𝑖 . We compare them to the maximal

network rewards for node 𝑣𝑖 and report the T-round cumulative

regrets defined in Section 3. The maximal network rewards is cal-

culated through simulations.

5.3 Main algorithms and baselines
Baseline CMAB.We consider several state-of-the-art CMAB al-

gorithms, i.e., LinUCB [22], NeuralUCB [45], NeuralTS [43], and

EE-Net [7] both as subroutines in our NetCB framework, and as

baselines. We also include GNB [28] which has been shown to have

better performance than CLUB [15], DYNUCB [27], COFIBA [24],

SCLUB [23], and Meta-Ban [6]. The received reward is 1 if the

learning agent predicts the aligned direct recommendation class;

otherwise, the reward is 0. Following the literature of CMAB-based

recommendation [7, 22, 28, 43, 45] system, we only consider CMAB-

based recommendation systems.

NetCB𝐶𝑀𝐴𝐵 . This method accounts only for the first component

of our NetCB framework, utilizing dynamic neighborhood features,

but not considering going against the bandit recommendation. The

received network rewards is passed to the underlying CMAB sub-

routine of NetCB as implicit feedback which is a non-negative inte-

ger. When the underlying CMAB subroutine of NetCB framework

is LinUCB, NeuralUCB, NeralTS, EE-Net, and GNB, we denote the

methods with 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 , 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 , 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 ,

𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 , 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 , respectively.

NetCB
𝐶𝑀𝐴𝐵

. This method accounts for both components of

our NetCB framework. The received network rewards is calculated

similar to that of NetCB𝐶𝑀𝐴𝐵 . This version of NetCB does not

update parameters in the underlying CMAB subroutine for the

received reward when the selected direct recommendation class

contradicts the prediction from the first component. When the

underlying off-the-shelf CMAB subroutine of NetCB framework

is LinUCB, NeuralUCB, NeralTS, EE-Net, and GNB, we denote the

methods with 𝑁𝑒𝑡𝐶𝐵
𝐿𝑖𝑛𝑈𝐶𝐵

, 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵

, 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆

,

𝑁𝑒𝑡𝐶𝐵
𝐸𝐸𝑁𝑒𝑡

, 𝑁𝑒𝑡𝐶𝐵
𝐺𝑁𝐵

, respectively.

5.4 Experimental setup
We consider single-hop spillover where only immediate neighbors

can be activated. We consider a range of possible recommendation

and spillover probabilities and show a representative set of results

in our experiments using 𝑝𝑎 = 0.7, 𝑝𝑚 = 0.5, 𝑝𝑎𝑎 = 0.3, 𝑝𝑚𝑎 = 0.3,

𝑝𝑎𝑚 = 0.0, and 𝑝𝑚𝑚 = 0.0 for the first three experiments, and vary-

ing them for the others, as specified later. In all of our experiments,

we set 𝑝𝑚𝑚 = 0, 𝑝𝑎𝑚 = 0. We do conduct a grid search for the

exploration constant 𝛼 ∈ {0.01, 0.1, 0.3, 0.5, 1, 2, 5} of LinUCB. For
6
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Table 1: Total regrets, at the last round in real-world (white) and semi-synthetic datasets (gray) with standard deviation.

Dataset Flickr Blogcatalog Hateful Pubmed

Homophily 0.23 0.88 0.40 0.88 0.58 0.73 0.30 0.80
𝐿𝑖𝑛𝑈𝐶𝐵 [22] 11097 ± 686 11536 ± 641 8421 ± 375 9160 ± 797 1574 ± 89 1496 ± 49 10862 ± 104 10993 ± 315
𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 10012 ± 460 8721 ± 581 7040 ± 267 6026 ± 350 1520 ± 26 1423 ± 63 10817 ± 159 9186 ± 208
𝑁𝑒𝑡𝐶𝐵

𝐿𝑖𝑛𝑈𝐶𝐵
10490 ± 482 8506 ± 369 7107 ± 494 5856 ± 301 1602 ± 38 1409 ± 72 10894 ± 136 9163 ± 133

𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 [45] 11033 ± 1052 11002 ± 841 8495 ± 829 9116 ± 436 1484 ± 78 1538 ± 63 11145 ± 97 11263 ± 386
𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 12970 ± 1169 9111 ± 737 7003 ± 315 5827 ± 410 1510 ± 20 1652 ± 45 11477 ± 298 9586 ± 191
𝑁𝑒𝑡𝐶𝐵

𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵
10951 ± 806 8578 ± 532 7306 ± 592 5318 ± 488 1515 ± 39 1691 ± 66 11191 ± 171 9371 ± 390

𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 [43] 9590 ± 272 10301 ± 461 8177 ± 263 8604 ± 753 1619 ± 85 1647 ± 43 11322 ± 161 11510 ± 198
𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 9355 ± 307 9326 ± 222 7220 ± 265 5974 ± 325 1604 ± 73 1482 ± 53 11396 ± 158 10704 ± 383
𝑁𝑒𝑡𝐶𝐵

𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆
9425 ± 342 8626 ± 544 7189 ± 506 5593 ± 408 1637 ± 48 1461 ± 69 11789 ± 415 10554 ± 283

𝐸𝐸𝑁𝑒𝑡 [7] 9845 ± 414 10206 ± 477 8520 ± 567 9049 ± 557 1737 ± 372 2033 ± 98 10567 ± 183 10375 ± 315
𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 12115 ± 1931 8188 ± 495 8356 ± 183 6286 ± 486 1509 ± 47 1937 ± 122 11026 ± 200 9350 ± 146
𝑁𝑒𝑡𝐶𝐵

𝐸𝐸𝑁𝑒𝑡
11523 ± 707 8151 ± 684 6953 ± 384 6128 ± 293 1532 ± 37 1562 ± 75 11152 ± 209 9261 ± 227

𝐺𝑁𝐵 [28] 9532 ± 374 10686 ± 503 8448 ± 246 9993 ± 501 1444 ± 65 1478 ± 86 11160 ± 142 11217 ± 298
𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 9035 ± 377 8292 ± 500 6209 ± 571 5136 ± 282 1621 ± 171 1435 ± 87 11181 ± 178 10045 ± 430
𝑁𝑒𝑡𝐶𝐵

𝐺𝑁𝐵
9225 ± 294 8113 ± 366 5786 ± 234 4854 ± 120 1604 ± 104 1416 ± 94 11423 ± 166 10009 ± 119

NeuralUCB and NeuralTS, we use a grid search for the exploration

parameter 𝜈 ∈ {0.001, 0.01, 0.1, 1}, for the regularization parameter

𝜆 ∈ {0.001, 0.01, 0.1, 1} and for learning rate over {0.001, 0.01, 0.1}
with a neural network width of 100. For EE-Net [7], we follow

their default setup and do the grid search for learning rate over

{0.0001, 0.001, 0.01, 0.1} for all neural networks. For GNB [28], we

follow the default settings for classification dataset in their paper.

We choose the best parameters from all grid-searched parameters

for each dataset. To determine the stable point, we track the regres-

sion slope of direct activation rate (DAR) for the previous𝐻 rounds.

In each round, the slope is calculated with the 𝐷𝐴𝑅s of previous

𝐺 rounds. If the slope remains within a threshold, |𝜃 |, during the
previous 𝐻 rounds, we say the bandit learning, as well as 𝐷𝐴𝑅,

becomes stable, and consequently, we enable our strategy to go

against the bandit. Before the start of a bandit experiment, we set

𝑎𝑟𝑚𝑖 = ∅, 𝑡𝑖 = ∅, XN𝑖
= ®0, S𝑖 = ®0, S𝑖 = ®0, and 𝑦𝑖 = 0 for all

𝑣𝑖 ∈ 𝑉 . To determine the stable point for enabling our approach

to go against the bandit prediction, we set 𝐺 = 300, 𝐻 = 300, and

𝜃 = 0.00001. All experiments are repeated 10 times, and the average

results for all methods are reported for comparison. We employ

NVIDIA RTX 𝐴5000 GPU on Ubuntu 20.04 and Python 3.9.7 to run

these experiments.

We run five different experiments. In the first experiment, we

look at the effect of dynamic neighborhood knowledge on 𝑅𝑒𝑔𝑟𝑒𝑡 by

considering only the first step of NetCB. In the second experiment,

we look at the effect of selecting direct recommendation against

𝑁𝑒𝑡𝐶𝐵𝐶𝑀𝐴𝐵 prediction on 𝑅𝑒𝑔𝑟𝑒𝑡 by considering both steps of

NetCB. To understand the effect of dynamic neighborhood knowl-

edge on bandit accuracy, 𝐵𝑎𝑐𝑐 learning, we look at the bandit ac-

curacy over time. In the fourth experiment, we look at the effect

of activation probability due to direct recommendation on bandit

accuracy, 𝐵𝑎𝑐𝑐 with𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 . Finally, we look at the effect of

dynamic neighborhood spillover knowledge on the bandit accuracy,

𝐵𝑎𝑐𝑐 in the fifth experiment.

5.5 Experimental results
Table 1 shows a summary of the regret comparison between each

variant of 𝑁𝑒𝑡𝐶𝐵𝐶𝑀𝐴𝐵 and 𝑁𝑒𝑡𝐶𝐵
𝐶𝑀𝐴𝐵

with their corresponding

CMAB. The best results are shown in bold; ones that are not statisti-

cally significantly better are also italicized. The table shows that in

most cases (33/40), one of the NetCB variants performs better than

its baseline CMAB. In 22 of the 40 cases, one of the NetCB variants

has a lower regret that is also statistically significantly better than

CMAB. In only 2 of the 40 cases, the baseline CMAB has a better

performance that is statistically significant.

5.5.1 Effect of dynamic neighborhood knowledge on𝑅𝑒𝑔𝑟𝑒𝑡 . NetCB𝐶𝑀𝐴𝐵

shows a noticeable decrease in 𝑅𝑒𝑔𝑟𝑒𝑡 compared to its correspond-

ing CMAB baseline, for almost all 𝑁𝑒𝑡𝐶𝐵𝐶𝑀𝐴𝐵 combinations in

high-homophily datasets (19 out of 20) and for more than half of the

combinations for low-homophily datasets (12 out of 20), as indicated

in Table 1. On average 𝑁𝑒𝑡𝐶𝐵𝐶𝑀𝐴𝐵 decreases regret by 17.35% for

high-homophily datasets and by 2.47% for low-homophily datasets.

5.5.2 Effect of selecting direct recommendation against NetCB𝐶𝑀𝐴𝐵

prediction on 𝑅𝑒𝑔𝑟𝑒𝑡 . NetCB
𝐶𝑀𝐴𝐵

shows a decrease in 𝑅𝑒𝑔𝑟𝑒𝑡 com-

pared to its corresponding CMABbaseline, for 19 out of 20NetCB
𝐶𝑀𝐴𝐵

combinations in high-homophily datasets and for 10 out of 20 com-

binations for low-homophily datasets, as indicated in Table 1. On av-

erage NetCB
𝐶𝑀𝐴𝐵

decreases regret by 20.15% for high-homophily

datasets and by 3.41% for low-homophily datasets. In comparison

to NetCB𝐶𝑀𝐴𝐵 , NetCB𝐶𝑀𝐴𝐵
decreases regret by 3.52% for high-

homophily datasets and by 0.92% for low-homophily datasets.

5.5.3 Effect of dynamic neighborhood knowledge on the bandit accu-
racy, 𝐵𝑎𝑐𝑐 . The incorporation of dynamic neighborhood knowledge

helps the bandit learn faster in most cases, and thus increases the

bandit accuracy, 𝐵𝑎𝑐𝑐 in NetCB𝐶𝑀𝐴𝐵s compared to 𝐶𝑀𝐴𝐵s, par-

ticularly in the high homophilic datasets, as shown in Figure 3.

NetCB𝐶𝑀𝐴𝐵 shows an increase in bandit accuracy, 𝐵𝑎𝑐𝑐 for 19 out
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Figure 3: Comparison of cumulative bandit accuracy, 𝐵𝑎𝑐𝑐 , in real-world and semi-synthetic (marked in blue) datasets.

of 20 NetCB𝐶𝑀𝐴𝐵 combinations in high-homophily datasets and

for 11 out of 20 combinations for low-homophily datasets. On av-

erage 𝑁𝑒𝑡𝐶𝐵𝐶𝑀𝐴𝐵 increases 𝐵𝑎𝑐𝑐 by 10.78% for high-homophily

datasets and by 0.56% for low-homophily datasets.

5.5.4 Effect of activation probability due to direct recommendation
on bandit accuracy, 𝐵𝑎𝑐𝑐 . To understand how 𝐵𝑎𝑐𝑐 changes with the

increase in difference between 𝑝𝑚 and 𝑝𝑎 , we run 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆

with various combinations of 𝑝𝑚 and 𝑝𝑎 , i.e., (0.5, 0.7), (0.3, 0.7),

(0.1, 0.7), in real-world datasets. We run these experiments with a

spillover setting of 𝑝𝑎𝑎 = 0.3, 𝑝𝑚𝑎 = 0.3, 𝑝𝑎𝑚 = 0.0, 𝑝𝑚𝑚 = 0.0 and

observe the cumulative average of the bandit accuracy, 𝐵𝑎𝑐𝑐 .

The 𝐵𝑎𝑐𝑐 increases in all datasets as the difference between 𝑝𝑚
and 𝑝𝑎 increases. Therefore, the bandit can better differentiate

among different types of nodes with higher difference between

𝑝𝑚 and 𝑝𝑎 . For example, when 𝑝𝑚 = 0.1 and 𝑝𝑎 = 0.7, the bandit

achieves around 20.19%, 43.40%, 77.42%, and 56.34% accuracy at

the end of experiment in Flickr, Blogcatalog, Hateful, and Pubmed

datasets, respectively. However, the bandit achieves 14.73%, 32.10%,

69.82%, and 47.06% accuracy in Flickr, Blogcatalog, Hateful, and

Pubmed datasets, respectively, when 𝑝𝑚 = 0.5 and 𝑝𝑎 = 0.7. The

𝐵𝑎𝑐𝑐 tends to decrease with the increase in the total number of

labels, 𝑙 of the datasets. For example, the Pubmed (𝑙 = 3) and Hateful

(𝑙 = 2) datasets achieve higher accuracy than Blogcatalog (𝑙 = 6)

and Flickr (𝑙 = 9) datasets at the end of the experiments. We show

the details of these results in the Appendix.

5.5.5 Effect of dynamic neighborhood spillover knowledge on the
bandit accuracy, 𝐵𝑎𝑐𝑐 . We reduce the dimensions of XN𝑖

∈ R4𝑙 in
NetCB𝐶𝑀𝐴𝐵 by removing the last 2𝑙 dimensions, which represent

past knowledge of spillovers in node 𝑣𝑖 ’s neighboring nodes. The

resulting 2𝑙 dimensional representation corresponds to past knowl-

edge of direct recommendations in node 𝑣𝑖 ’s neighboring nodes. We

refer to this particular version of NetCB𝐶𝑀𝐴𝐵 as NetCB
𝑑𝑖𝑟𝑒𝑐𝑡
𝐶𝑀𝐴𝐵

. To

understand the specific impact of dynamic neighborhood spillover

knowledge on the acceleration of bandit learning, we run each

NetCB
𝑑𝑖𝑟𝑒𝑐𝑡
𝐶𝑀𝐴𝐵

for real-world and semi-synthetic datasets and com-

pare the results with their corresponding NetCB𝐶𝑀𝐴𝐵 . We run

all these experiments by setting 𝑝𝑎 = 0.7, 𝑝𝑚 = 0.5, 𝑝𝑎𝑎 = 0.3,

𝑝𝑚𝑎 = 0.3, 𝑝𝑎𝑚 = 0.0, and 𝑝𝑚𝑚 = 0.0. In most experiments with

high homophilic networks, dynamic neighborhood spillover in-

formation has shown a positive effect on raising the cumulative

bandit accuracy, 𝐵𝑎𝑐𝑐 , e.g., 4.86% increase in 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 compared

to 𝑁𝑒𝑡𝐶𝐵𝑑𝑖𝑟𝑒𝑐𝑡
𝐺𝑁𝐵

for Pubmed (Homophily: 0.80) dataset. Neverthe-

less, the effect is diminished in the lower homophilic networks

compared to higher homophilic networks, e.g., 0.12% increase in

𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 compared to 𝑁𝑒𝑡𝐶𝐵𝑑𝑖𝑟𝑒𝑐𝑡
𝐺𝑁𝐵

for semi-synthetic Pubmed

(Homophily: 0.30) dataset.

6 Conclusion
WepresentedNetCBwhich leverages dynamic neighborhood knowl-

edge and the potential of heterogeneous spillover to maximize

network rewards in bandit online learning. Our experiments on

real-world and semi-synthetic datasets show a significant decrease

in regret when considering neighborhood context in most cases

and that it can be beneficial to make suboptimal direct recom-

mendations, in order to maximize rewards from spillover. NetCB

can be applied in practical recommendation applications in which

the recommendation given to one individual can lead to network

rewards when they share that recommendation with their social

circles, e.g., video recommendations in social networks, targeted

marketing in e-commerce, and healthcare interventions. Future

work includes deriving regret bounds for NetCB and automatically

learning the values of recommendation-dependent heterogeneous

spillover probabilities.
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A Appendix
The Appendix contains additional details about the results pre-

sented in Section 5.5.

A.1 Effect of dynamic neighborhood knowledge
on 𝑅𝑒𝑔𝑟𝑒𝑡

𝑅𝑒𝑔𝑟𝑒𝑡 in 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 , is reduced by 24.40%, 34.21%, 4.87%, and

16.43%when compared to 𝐿𝑖𝑛𝑈𝐶𝐵 in the semi-synthetic Flickr (Ho-

mophily: 0.88), semi-synthetic Blogcatalog (Homophily: 0.88), Hate-

ful (Homophily: 0.73), and Pubmed (Homophily: 0.80) datasets, re-

spectively. The datasets show respective decreases of 9.47%, 30.57%,

10.01%, and 7.00% in 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 compared to 𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 . In

comparison to 𝐸𝐸𝑁𝑒𝑡 , the datasets show decreases in 𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡

of 19.77%, 30.54%, 4.72%, and 9.88%, respectively. The datasets also

exhibit respective decreases of 22.41%, 48.60%, 2.9%, and 10.45%

in 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 compared to 𝐺𝑁𝐵. In these datasets, a reduction in

𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 is observed in Flickr, Blogcatalog, and Pubmed,

with decreases of 17.19%, 36.08%, and 14.89%, respectively, in com-

parison to 𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵.

While the Regret is decreased on average by 17.35% in higher ho-

mophilic networks, the impact of incorporating dynamic neighbor-

hood knowledge in reducing𝑅𝑒𝑔𝑟𝑒𝑡 diminishes in lower homophilic

network datasets as shown in Table 1. For instance, all NetCB𝐶𝑀𝐴𝐵s

generate higher 𝑅𝑒𝑔𝑟𝑒𝑡 compared to 𝐶𝑀𝐴𝐵s in the semi-synthetic

Pubmed (Homophily: 0.30) dataset except in 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 , which

shows 0.41% decrease in 𝑅𝑒𝑔𝑟𝑒𝑡 compared to 𝐿𝑖𝑛𝑈𝐶𝐵. However,

the 𝑅𝑒𝑔𝑟𝑒𝑡 decreases by 9.78%, 2.45%, 5.21% in 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 ,

𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 , and 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 , respectively, when compared

to their respective 𝐶𝑀𝐴𝐵 baselines for the Flickr (Homophily:

0.23) dataset. These decreases in the Blogcatalog (Homophily: 0.40)

dataset are 16.4%, 11.71%, and 26.50%, respectively. The dataset also

shows a decrease of 17.56% and 1.9% in𝑅𝑒𝑔𝑟𝑒𝑡 for𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵

and 𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 , respectively, in comparison to their correspond-

ing𝐶𝑀𝐴𝐵 baselines. The semi-synthetic Hateful (Homophily: 0.58)

dataset indicates a decrease of 3.44%, 0.94%, 13.11% in 𝑅𝑒𝑔𝑟𝑒𝑡 for

𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 ,𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 , and𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 , respectively, com-

pared to their respective 𝐶𝑀𝐴𝐵 baselines.

A.2 Effect of selecting direct recommendation
against NetCB𝐶𝑀𝐴𝐵 prediction on 𝑅𝑒𝑔𝑟𝑒𝑡

Our strategy to leverage spillover in the second component helps

to decrease the 𝑅𝑒𝑔𝑟𝑒𝑡𝑠 for most NetCB
𝐶𝑀𝐴𝐵

s in the datasets with

high homophily compared to their respective NetCB𝐶𝑀𝐴𝐵s as

shown in Table 1. For example, 𝑅𝑒𝑔𝑟𝑒𝑡 in 𝑁𝑒𝑡𝐶𝐵
𝐿𝑖𝑛𝑈𝐶𝐵

, is reduced

by 2.47%, 2.82%, 0.98%, and 0.25%when compared to 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵

in the semi-synthetic Flickr (Homophily: 0.88), semi-synthetic Blog-

catalog (Homophily: 0.88), Hateful (Homophily: 0.73), and Pubmed

(Homophily: 0.80) datasets, respectively. The datasets show respec-

tive decreases of 7.51%, 6.38%, 1.42%, and 1.40% in 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆

compared to 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 . In comparison to 𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 , the

datasets show decreases in 𝑁𝑒𝑡𝐶𝐵
𝐸𝐸𝑁𝑒𝑡

of 0.45%, 2.51%, 19.36%,

and 0.95%, respectively. The datasets also exhibit respective de-

creases of 2.16%, 5.49%, 1.32%, and 0.36% in 𝑁𝑒𝑡𝐶𝐵
𝐺𝑁𝐵

compared

to 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 . In these datasets, a reduction in 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵

is observed in Flickr, Blogcatalog, and Pubmed, with decreases of

5.85%, 8.74%, and 2.24%, respectively, in comparison to

𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 .

The strategy to leverage spillover also helps to decrease the

𝑅𝑒𝑔𝑟𝑒𝑡 in some lower homophilic networks, as shown in Table 1.

For example, Flickr (Homophily: 0.23) dataset shows a decrease of

15.57% and 4.89% in 𝑅𝑒𝑔𝑟𝑒𝑡 for 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵

and 𝑁𝑒𝑡𝐶𝐵
𝐸𝐸𝑁𝑒𝑡

,

respectively, in comparison to their corresponding NetCB𝐶𝑀𝐴𝐵s.

The 𝑅𝑒𝑔𝑟𝑒𝑡 decreases by 0.43%, 16.79%, 6.81% in 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆

,

𝑁𝑒𝑡𝐶𝐵
𝐸𝐸𝑁𝑒𝑡

, and 𝑁𝑒𝑡𝐶𝐵
𝐺𝑁𝐵

, respectively, when compared to

their respective NetCB𝐶𝑀𝐴𝐵 in Blogcatalog (Homophily: 0.40) dataset.

However, all NetCB
𝐶𝑀𝐴𝐵

s generate higher 𝑅𝑒𝑔𝑟𝑒𝑡 compared to

NetCB𝐶𝑀𝐴𝐵s in the semi-synthetic Pubmed (Homophily: 0.30)

dataset except in 𝑁𝑒𝑡𝐶𝐵
𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵

, which shows 2.49% decrease in

𝑅𝑒𝑔𝑟𝑒𝑡 compared to 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 . The same goes for the semi-

synthetic Hateful (Homophily: 0.58) dataset except in 𝑁𝑒𝑡𝐶𝐵
𝐺𝑁𝐵

,

which shows a 1.05% decrease in 𝑅𝑒𝑔𝑟𝑒𝑡 compared to 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 .

A.3 Effect of dynamic neighborhood knowledge
on the bandit accuracy, 𝐵𝑎𝑐𝑐

The bandit accuracy, 𝐵𝑎𝑐𝑐s in 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 , increases by 11.48%,

16.31%, 6.45%, and 7.14% when compared to 𝐿𝑖𝑛𝑈𝐶𝐵 in the semi-

synthetic Flickr (Homophily: 0.88), semi-synthetic Blogcatalog (Ho-

mophily: 0.88), Hateful (Homophily: 0.73), and Pubmed (Homophily:

0.80) datasets, respectively. The 𝐵𝑎𝑐𝑐 s of 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 increase

by 19.70%, 21.15%, 5.84%, and 12.10%, respectively, compared to

𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 in these datasets. The datasets show respective in-

creases of 5.42%, 17.55%, 4.29%, and 4.02% in 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 com-

pared to 𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 . In comparison to 𝐺𝑁𝐵, the datasets show in-

creases in 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 of 11.88%, 27.87%, 3.49%, and 6.77%, respec-

tively. In case of 𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 , the 𝐵𝑎𝑐𝑐 in the Hateful (Homophily:

0.73) dataset decreases by 0.52% compared to 𝐸𝐸𝑁𝑒𝑡 . However,

𝐵𝑎𝑐𝑐s increase by 12.93%, 16.84%, and 4.93% in the semi-synthetic

Flickr (Homophily: 0.88), semi-synthetic Blogcatalog (Homophily:

0.88), and Pubmed (Homophily: 0.80) datasets, respectively, com-

pared to 𝐸𝐸𝑁𝑒𝑡 .

The impact of dynamic neighborhood knowledge is diminished

in lower homophilic datasets compared to higher homophilic datasets

as shown in Figure 3. For example, the bandit accuracy, 𝐵𝑎𝑐𝑐 in-

creases by 1.65%, 3.84%, 0.67%, 6.32% in 𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 ,

𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 , 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 , and 𝑁𝑒𝑡𝐶𝐵𝐺𝑁𝐵 , respectively,

when compared to 𝐿𝑖𝑛𝑈𝐶𝐵, 𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵, 𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 , and 𝐺𝑁𝐵, re-

spectively, in the Flickr (Homophily: 0.23) dataset. These increases

in the Blogcatalog (Homophily: 0.40) dataset are 9.01%, 12.79%,

7.90%, and 18.74%, respectively. All NetCB𝐶𝑀𝐴𝐵s yield lower 𝐵𝑎𝑐𝑐 s

compared to their respective CMABs in the semi-synthetic Hate-

ful (Homophily: 0.58) dataset, except for 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 and

𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 , which show 1.72% and 13.54% rise relative to

𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 and 𝐸𝐸𝑁𝑒𝑡 , respectively. The 𝑁𝑒𝑡𝐶𝐵𝐸𝐸𝑁𝑒𝑡 also shows

4.88% rise relative to 𝐸𝐸𝑁𝑒𝑡 in the Blogcatalog (Homophily: 0.40)

dataset. All NetCB𝐶𝑀𝐴𝐵s generate lower 𝐵𝑎𝑐𝑐s compared to their

respective𝐶𝑀𝐴𝐵s in the semi-synthetic Pubmed (Homophily: 0.30)

datasets.
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Figure 4: Comparison of cumulative bandit accuracy, 𝐵𝑎𝑐𝑐 of 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑇𝑆 by varying activation probabilities due to direct
recommendations.

A.4 Effect of activation probability due to direct
recommendation on bandit accuracy, 𝐵𝑎𝑐𝑐

The difference in the activation probabilities for aligned and mis-

aligned direct recommendation plays a role in how well the bandit

can learn to distinguish between different types of nodes. The ban-

dit learning becomes harder with smaller difference between the

activation probabilities as shown in Figure 4. However, neighbor-

hood information helps the bandit learn to distinguish among them,

regardless of the difference in the activation probabilities. In real-

world scenarios, 𝑝𝑚 and 𝑝𝑎 are unknown and therefore it is very

important to incorporate neighborhood information.

A.5 Runtime
The runtime of these experiments depends on the choice of 𝐶𝑀𝐴𝐵

as well as the density and size of network datasets. For example,

𝑁𝑒𝑡𝐶𝐵𝐿𝑖𝑛𝑈𝐶𝐵 requires around 6, 2.5, 4, and 1 hrs to complete a

bandit experiment on Flickr, Blogcatalog, Hateful, and Pubmed

datasets, respectively. However, the datasets require around four

times more hours for 𝑁𝑒𝑡𝐶𝐵𝑁𝑒𝑢𝑟𝑎𝑙𝑈𝐶𝐵 .
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