
M2BIT: A Multi-Modal Bilingual Instruction Tuning Dataset for
Visual Language Models

Anonymous ACL submission

Abstract

In this paper, we introduce the Multi-Modal001
Bilingual Instruction Tuning dataset (M2BIT),002
specifically designed to enhance the perfor-003
mance of vision language models (VLMs). Our004
M2BIT dataset is one of the largest multi-005
modal instruction tuning datasets available,006
covering 40 diverse vision-language tasks in007
both English and Chinese. It comprises 2 mil-008
lion instances, each accompanied by 400 man-009
ually written task instructions. With a care-010
fully curated annotation process, we strive to011
elevate the quality of response, thereby enrich-012
ing the user experience while minimizing the013
generation of potential hallucinations. To val-014
idate the efficacy of M2BIT, we train a VLM015
known as Ying-VLM using this dataset, delving016
into the impact of instruction tuning across di-017
verse languages and modalities. Upon compar-018
ing it with strong VLM baselines, Ying-VLM019
demonstrates superior performance on complex020
knowledge vision question answering tasks.021
Moreover, it exhibits a lower propensity for hal-022
lucination, displays greater generalization ca-023
pabilities to previously unseen video tasks, and024
better comprehends novel instructions in Chi-025
nese. We will open-source the M2BIT dataset026
and trained models to facilitate future research.027

1 Introduction028

Following the substantial success of Chat-029

GPT (OpenAI, 2022), the interest in designing a030

versatile intelligent assistant that can understand031

and interact with the multi-modal world has surged.032

The potential of transforming Large Language033

Models (LLMs) into powerful Vision Language034

Models (VLMs) has been demonstrated by further035

training on image-text pairs or implementing spe-036

cialized visual instruction tuning (Zhu et al., 2023;037

Liu et al., 2023). This enhancement allows LLMs038

to see the world, offering promising capabilities039

that could significantly assist individuals with dis-040

abilities (OpenAI, 2023).041

Dataset Tasks LAN Samples Ins. / Task

MiniGPT4 N / A En 5K N / A
LLaVA 3 En 158K N / A
MultiModalGPT 3 En 6K 5
MultiInstruct 26 En 235K 5
InstructBLIP 28 En 1.6M 9.7
M2BIT (Ours) 40 En, Zh 2M 10

Table 1: Comparison of different multi-modal instruc-
tion tuning datasets. Ins. denotes Task Instruction and
N / A means instructions are artificially generated. Our
M2BIT is one of the largest datasets, covering 40 tasks
in English and Chinese.

The quality of the visual instruction tuning 042

dataset is pivotal in the development of VLMs, 043

as indicated by findings in LLMs (Zhou et al., 044

2023). Recent research efforts in this area can 045

be broadly grouped into two categories. The first 046

stream of research strives to augment existing aca- 047

demic vision-language (V+L) datasets with manu- 048

ally written task instructions (Xu et al., 2022; Dai 049

et al., 2023). Although VLMs trained on these 050

datasets exhibit notable performance on academic 051

benchmarks, they often generate responses that are 052

excessively terse and blunt (Chen et al., 2023a). 053

This brevity, a typical characteristic of academic 054

datasets, compromises the user experience dur- 055

ing interactions. The second stream of research 056

employs image annotation tools to generate tex- 057

tual descriptions of original images, subsequently 058

leveraging models like ChatGPT/GPT-4 to create 059

dialog-style instruction tuning datasets (Zhu et al., 060

2023; Liu et al., 2023; Zhao et al., 2023a).1 How- 061

ever, a pitfall of training VLMs with these pseudo- 062

grounded dialogs is the risk of exacerbating LLMs’ 063

hallucination problem, possibly resulting in incon- 064

sistent image descriptions featuring non-existent 065

objects. Besides, current studies mainly focus on 066

English tasks, which limits the investigation of the 067

cross-lingual effects of instruction tuning. 068

1GPT-4 Vision API is unavailable at the submission time.
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In this paper, we introduce M2BIT, a Multi-069

Modal Bilingual Instruction Tuning dataset, which070

leverages valuable academic benchmarks and the071

capabilities of ChatGPT for dialog style enhance-072

ment. M2BIT is meticulously constructed in three073

stages: (1) Task Selection and Manual Instruc-074

tion Writing: Our dataset consists of diverse tasks,075

including traditional image-text tasks like visual076

question answering and image captioning, as well077

as video-related tasks such as video question an-078

swering. Annotators are instructed to review the079

dataset paper thoroughly and craft 10 unique in-080

structions for each task. We further incorporate081

Chinese vision-language datasets with correspond-082

ing Chinese instructions, resulting in a compre-083

hensive compilation of 40 diverse tasks and 400084

instructions. (2) Data Format Unification: We en-085

sure that all tasks within our dataset adhere to a086

unified vision-to-text format. This format com-087

prises four fields: images, instruction, inputs and088

outputs. Additional information, such as bounding089

box details, is embedded within the images, and090

short answers are rephrased using ChatGPT while091

incorporating contextual information, where avail-092

able. (3) Quality Check: For quality control, we093

assign an extra annotator to each task to review 20094

examples from each split of every dataset. A task095

is considered complete only after the annotator has096

verified the accuracy and consistency of the images,097

instructions, inputs, and outputs for each instance.098

As demonstrated in Table 1, M2BIT is one of the099

largest multi-modal instruction tuning datasets re-100

garding the number of instructions and samples,101

covering diverse tasks in English and Chinese.102

To substantiate the effectiveness of the M2BIT103

dataset, we develop Ying-VLM, merging the ca-104

pabilities of a vision encoder, BLIP-2 (Li et al.,105

2023a), with Ziya-13B (Zhang et al., 2022), which106

is a derivative of LLaMA (Touvron et al., 2023).107

We leverage the proven methodology of incorporat-108

ing visual tokens as prefix prompts in LLMs and109

utilize a two-stage training regime. The initial stage110

aligns vision features with text embeddings via111

image captioning on LAION-400M (Schuhmann112

et al., 2021), while the second stage enhances the113

model by performing instruction tuning on M2BIT.114

Our evaluation of the instruction tuning effect115

with M2BIT is threefold. Firstly, we evaluate116

Ying-VLM on knowledgeable VQA (KVQA) tasks,117

including OK-VQA, A-OKVQA, and a held-out118

dataset, ViQuAE. These tasks, which demand119

VLM’s comprehension of image context and rea- 120

soning with the knowledge acquired by LLMs, 121

have gained wide recognition as benchmarks for 122

evaluating VLMs (Dai et al., 2023; Bai et al., 2023). 123

Secondly, we conduct a hallucination evaluation 124

on image captioning, following the methodology 125

by Li et al. (2023b). Lastly, we perform zero- 126

shot transfer evaluations on Chinese V+L tasks 127

and video-language tasks to scrutinize the cross- 128

language/modal effect of instruction tuning. The 129

experimental results highlight that Ying-VLM sur- 130

passes potent baseline VLMs in KVQA tasks, 131

is less susceptible to hallucination than models 132

trained with generated pseudo-grounded dialogs, 133

and demonstrates enhanced generalization capa- 134

bilities when confronted with unseen video and 135

cross-lingual tasks. These results underscore the 136

potential of our proposed M2BIT dataset in con- 137

structing robust VLMs and investigating instruction 138

tuning effects across languages and modalities. 139

2 M2BIT: A Multi-Modal Bilingual 140

Instruction Tuning Dataset 141

In this section, we introduce the M2BIT dataset by 142

first elaborating the task coverage (§ 2.1), followed 143

by the annotation process details (§ 2.2). In § 2.3, 144

we present the dataset format and the statistics of 145

the crafted dataset instructions. 146

2.1 Task Coverage 147

Our dataset compiles diverse tasks of vision- 148

language tasks, including: 149

Captioning This task aims to produce descrip- 150

tions of the given images according to different 151

needs. We include MS COCO (Lin et al., 2014) 152

(the Karpathy split) for generic image descriptions. 153

TextCaps (Sidorov et al., 2020) requires models 154

to capture the text presented in the image and 155

generate captions accordingly. Image-Paragraph- 156

Captioning (Krause et al., 2017) focuses on gener- 157

ating detailed descriptions for images. 158

Reasoning This task evaluates specific reason- 159

ing capabilities. We incorporate CLEVR (John- 160

son et al., 2017) and NLVR (Suhr et al., 2017) 161

for spatial reasoning, Visual Commonsense Rea- 162

soning (VCR) (Zellers et al., 2019) for com- 163

monsense reasoning, Visual MRC (Tanaka et al., 164

2021) for reading comprehensive over images, and 165

Winoground (Thrush et al., 2022) for fine-grained 166

semantics reasoning over text descriptions and im- 167

age contents. 168
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Visual Question Answering (VQA) This is the169

most widely studied multi-modal task, which re-170

quires the model to answer a given question based171

on the image correctly. Tasks include VQA172

v2 (Goyal et al., 2017b), Shapes VQA (Andreas173

et al., 2016), DocVQA (Mathew et al., 2021),174

OCR-VQA (Mishra et al., 2019), ST-VQA (Biten175

et al., 2019), Text-VQA (Singh et al., 2019), and176

GQA (Hudson and Manning, 2019).177

Knowledgeable Visual Question Answering178

(KVQA) Unlike traditional VQA tasks focusing on179

the question relevant to the content image, KVQA180

requires the model to draw upon outside knowledge181

to answer questions. We incorporate two outside182

knowledge VQA datasets: OK-VQA (Marino et al.,183

2019) and A-OK-VQA (Schwenk et al., 2022), Sci-184

enceQA (Lu et al., 2022) which contains multi-185

modal science questions, and ViQuAE (Lerner186

et al., 2022) focusing on knowledge facts of named187

entities in images.188

Classification This task involves classifying an189

image based on a given set of candidate labels.190

ImageNet (Russakovsky et al., 2015), Grounded191

Object Identification (COCO-GOI) (Lin et al.,192

2014), COCO-Text (Veit et al., 2016), Image Text193

Matching (COCO-ITM) (Lin et al., 2014), e-SNLI-194

VE (Kayser et al., 2021), Multi-modal Fact Check-195

ing (Mocheg) (Yao et al., 2022), and IQA (Duanmu196

et al., 2021) are included. Due to language model197

input length constraints, we reduce the number of198

options in some datasets with extensive candidate199

labels, such as ImageNet.200

Generation Visual conditional general requires201

models to understand the visual content and make202

a composition meeting the task demand. We have203

Visual Storytelling (VIST) (Huang et al., 2016), Vi-204

sual Dialog (VisDial) (Das et al., 2017), and multi-205

modal machine translation Multi30k (Elliott et al.,206

2016) in this category.207

Chinese Vision-Language Tasks To examine the208

effect of instruction tuning on different languages,209

we incorporate several Chinese vision-language210

tasks including FM-IQA (Gao et al., 2015) for211

VQA, COCO-CN (Li et al., 2019) and Flickr8k-212

CN (Li et al., 2016) for captioning, Chinese Food213

Net (Chen et al., 2017) for classification, and MM-214

Chat (Zheng et al., 2022) for generation.215

Video-Language Tasks Beyond the static images,216

we are interested in whether instruction tuning217

can be applied to video-language tasks. We in-218

clude the classic MSR-VTT datasets (Xu et al.,219

Number of different instructions 400
- Image Captioning 52
- Classification 113
- Visual Question Answering 95
- Knowledgeable Visual QA 40
- Reasoning 60
- Generation 40

Tokens per instruction 24.4± 9.6

Instruction edit distance among the same task 76.6± 37.2

Instruction edit distance across tasks 106.6± 39.5

Table 2: The statistics of our instructions.

2016) for video captioning, MSRVTT-QA (Xu 220

et al., 2017), ActivityNet-QA (Yu et al., 2019), 221

iVQA (Yang et al., 2021) and MSVD-QA (Xu et al., 222

2017) for video question answering, Something- 223

Something (Goyal et al., 2017a) for video action 224

classification. 225

In summary, our dataset makes a wide coverage 226

of the current existing visual-language and video- 227

language benchmarks, enabling different skill sets 228

for VLMs, from simple image captioning to com- 229

plicated reasoning based on the image even beyond 230

the visual content. 231

2.2 Annotation Process 232

To build high-quality multi-modal instruction 233

datasets, we rewrite various datasets into a vision- 234

to-text format. The annotation process includes 235

three steps: (1) writing instructions for each task, 236

(2) structuring images and texts into a unified 237

schema, and (3) checking the overall dataset quality. 238

Eight authors of this work are employed as human 239

annotators, each of whom is a graduate student 240

familiar with relevant literature. 241

Stage I: Instruction Writing To build high-quality 242

instructions, we first ask annotators to carefully 243

read the dataset paper and check the original dataset 244

with some instances to get a clear understanding 245

of the task. After that, they are required to write 246

10 diverse task instructions manually, covering the 247

key characteristics of the task. Table 2 shows the 248

statistics of the written instructions for each task 249

and Figure 2 visualizes the instruction verb distri- 250

bution. In total, we annotate 400 instructions for 251

all tasks. The average length per instruction is 24.4. 252

To evaluate the diversity of annotated instructions, 253

we employ the average edit distance to measure the 254

similarity between two strings. The average edit 255

distance within the same task is 76.6, indicating a 256

good range of instruction diversity. 257

Stage II: Data Format Unification After the in- 258

struction has been written according to the task 259
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Bounding Box

Original Image Preprocessed Data

x: 421.0
y: 57.0

width: 82.0
height: 139.0

Question
Which number birthday is probably 
being celebrated?

Answer Thirty

You are given a question related to an image and a 
short ground-truth answer and corresponding 
rationales for the correct answer. Your task is to 
give a natural and convincing response as you are 
seeing the image, providing evidence and reasoning 
path for justifying your prediction. 

Question: <question>
Rationales: <rationales>
Answer: <answer>
Rephrased Answer: 

Question

Which number birthday is probably 
being celebrated?

Rephrased Answer
Based on the evidence in the image, it 
is most likely that the birthday being 
celebrated is the thirtieth. There is a 
birthday cake on the table with the 
numeral three and zero written in icing, 
indicating that the person is 30 years 
old as of their birthdate.

Prompt

Original Data Preprocessed Data

Identify the type of the object in the 
given image region.

(A) chair
(B) clock
(C) oven
(D) car

Answer:
(B) clock

Adding Bounding Box to Images Short Answer Rephrasing

There is a birthday cake on the 
table with the number 30 written 
in icing.

Rationales

Figure 1: (Left) On region-based tasks, bounding boxes are added to serve as a visual referring prompt. (Right)
Short answer rephrasing to improve the response quality, e.g., incorporating rationales into answers.
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Figure 2: Top 20 verbs distribution for each task type.

characteristics, we further process the images and260

corresponding text for a unified instance schema.261

For most datasets, we keep the original images and262

text, where images are converted into correspond-263

ing base64 encoded strings for easy data loading.264

We perform two modifications on potential exam-265

ples: (1) Adding Bounding Box to Images. For266

tasks designed for specific regions in the image, a267

straightforward solution is to provide the bounding268

box information in natural language for inform-269

ing the language models of the regions in inter-270

est. However, the image pre-processing techniques271

adopted by different vision encoders may resize272

the original image, and the original bounding box273

annotation thus needs further adjustments. Inspired274

by the recent observation that vision encoders such275

as CLIP (Radford et al., 2021) are sensitive to the276

visual prompt (Shtedritski et al., 2023), we directly277

tag the bounding box as a red rectangle to the im-278

age, serving as a visual referring prompting (Ope-279

nAI, 2023) for VLMs to focus on the target region.280

(2) Short Answer Rephrasing. As recent studies281

Task Description
Total #samples

Train Val Test

CAP Given an image, write a description for the image. 679,087 41,462 27,499
CLS Given an image, classify the image into pre-defined categories. 238,303 100,069 21,206
VQA Given an image, answer a question relevant to the image. 177,633 46,314 10,828

KVQA Given an image, answer the question requires outside knowledge. 39,981 11,682 5,477
REA Given an image, conduct reasoning over the images. 99,372 11,500 10,000
GEN Given an image, make compositions with certain requirements. 145,000 11,315 17,350

Chinese CAP, CLS, VQA, and GEN tasks in Chinese. 192,076 77,306 4,100
Video CAP, CLS, and VQA tasks on video-language datasets. 20,868 7,542 9,294

Total 2,005,264

Table 3: M2BIT task descriptions and statistics. We
aggregate instance counts for training, validation, and
test sets across all tasks, totaling 2M instances.

have shown that the original short and brief answers 282

in the common VQA dataset could negatively influ- 283

ence the model generation performance (Dai et al., 284

2023; Chen et al., 2023b), we propose to utilize 285

the ChatGPT (gpt-3.5-turbo-0301) (Ope- 286

nAI, 2022) model for rephrasing the original an- 287

swers, by providing origin question and answer 288

with potential extra contextual information. Con- 289

textual information includes the caption of the orig- 290

inal images, rationales for specific VQA tasks and 291

OCR tokens for the scene-related question, which 292

make the rephrased answers more engaging and in- 293

formative. Figure 1 shows these two modifications. 294

Stage III: Quality Check In this stage, we assign a 295

different annotator to each task to review 20 exam- 296

ples from each split of every dataset. During this 297

stage, we identify minor format inconsistencies be- 298

tween tasks and address them by standardizing the 299

task formats. We observe that answer rephrasing 300

greatly improves the response quality, e.g., more 301

than 95% instances we checked are perceived as 302

better than original concise answers, while Chat- 303

GPT refused to rephrase a few answers (less than 304

3% of examined instances) due to insufficient im- 305

age information. We employ simple heuristics to fil- 306

ter these failed answers and use a basic template to 307
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convert the original answer into a sentence. We find308

that this small portion of unsuccessful rephrased309

answers has negligible impact. Finally, the task310

dataset is deemed complete once the annotator can311

successfully load it and re-examine the accuracy312

of the instructions, inputs, and outputs for each313

instance examined.314

2.3 Dataset Format and Statistics315

The instance in our dataset consists of five fields:316

(1) Images: we represent the images with the po-317

tentially added bounding box by a base64 string.318

(2) Instruction: we randomly select an instruction319

from the task instruction pool for each instance.320

(3) Inputs: we allocate this field for providing321

task-specific inputs to the model, e.g., the ques-322

tion in the VQA tasks. For tasks such as caption-323

ing, there is no extra input so the corresponding324

field is left as an empty string. (4) Outputs: the325

required output to the specific tasks, such as the326

description of the image for captioning tasks and327

the answer to the image-related question. (5) Meta328

Data: we provide this field to preserve important329

information such as image ID for referencing the330

original dataset. With the clear distinction of these331

fields, the user of our benchmark can construct the332

training instances needed flexibly and evaluate the333

models conveniently. Table 3 gives the statistics334

aggregated by tasks, and we refer readers to Ap-335

pendix B for a visualization of our schema, detailed336

statistics, and the license of each dataset.337

3 Experiments338

In this section, we built a VLM to verify the effect339

of M2BIT. We first introduce the experimental se-340

tups (§ 3.1), then report and discuss the evaluation341

results (§ 3.2). Lastly, we conduct an analysis on342

instruction tuning and provide a case study (§ 3.3).343

3.1 Experimental Settings344

Implementation Details Inspired by the recent345

success of BLIP-2 (Li et al., 2023a), we adopt the346

vision encoder and the Q-former architecture in the347

BLIP2-OPT-2.7B (Li et al., 2023a) model to ex-348

tract relevant visual features from images. For the349

large language models, we utilize Ziya-13B (Zhang350

et al., 2022) derived from LLaMA (Touvron et al.,351

2023) with bilingual (English and Chinese) ability.352

We employ a two-staged training. Stage I Visual-353

Text Alignment: To align the visual and textual354

feature space, we utilize the instructions in the coco355

captioning and perform an initial alignment train- 356

ing on LAION 400M (Schuhmann et al., 2021). 357

We train the Q-former and the language projection, 358

resulting in a total 130M parameters to optimize 359

with AdamW (Loshchilov and Hutter, 2019). The 360

batch size is set to 256 to maximize the utilization 361

of GPU and the model is trained with 300k steps. 362

The learning rate linearly increases to a peak value 363

of 5e-5 in the first 2000 steps and follows a cosine 364

decay scheduler. The weight decay is set to 0.05. 365

Stage II Multi-modal Instruction Tuning: We 366

further perform a multi-modal instruction tuning 367

in our benchmark to activate the great potential of 368

LLMs (see Figure 7 in Appendix B for used tasks). 369

We train the model after alignment training for 3 370

epochs and with a lower learning rate of 1e-5 and 371

a warmup stage of 1000 steps. Inspired by LoRa 372

tuning (Hu et al., 2022), the weights for mapping 373

query and value vectors in the attention layer of 374

LLMs are learnable in this stage to better adapt 375

to the instruction tuning dataset. Other training 376

parameters are consistent with Stage I. All experi- 377

ments are conducted with 8 NVIDIA 80GB A100 378

GPUs. It took about 10 days for Stage I and Stage 379

II can be finished in a day. 380

Evaluation Setup We conduct three evaluations to 381

understand the instruction tuning effect comprehen- 382

sively with our M2BIT: (1) Evaluation of KVQA 383

tasks, which includes OK-VQA, A-OKVQA and a 384

held-out dataset ViQuAE. These tasks are widely 385

adopted in evaluation for VLMs (Dai et al., 2023; 386

Bai et al., 2023) as they pose a great challenge for 387

VLMs to understand the image context and perform 388

reasoning with the knowledge acquired by LLMs. 389

(2) Evaluation of object hallucination, which refers 390

to a phenomenon that the model produces image de- 391

scriptions that contain objects that are not anchored 392

with or even absent from the target image. We fol- 393

low the exact setup in Li et al. (2023b) to perform 394

hallucination analysis on 2,000 images randomly 395

sampled from the MSCOCO dataset (Lin et al., 396

2014). (3) Evaluation of cross-language/modality 397

transferability. We hold out all Chinese V+L tasks 398

and video-language tasks during the instruction 399

tuning stage, then perform a zero-shot transfer to 400

investigate whether instruction tuning is general- 401

izable across languages, i.e., English to Chinese, 402

and modalities, i.e., images to videos. In all exper- 403

iments, we use greedy decoding in inference for 404

deterministic results. 405

Metrics We adopt ROUGE-L (Lin, 2004) as an 406
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Model OK-VQA A-OKVQA ViQuAE

BLIP2-Flan-T5-XXL 9.1 15.6 9.7
MiniGPT4 23.3 21.8 24.4
InstructBLIP 7.1 5.9 7.3
Ying-VLMLLaVA 26.4 22.5 24.3
Ying-VLM 27.5 24.5 29.6

Table 4: ROUGE-L evaluation results of KVQA tasks.

Model Flickr-8k-CN FM-IQA Chinese-FoodNet

MiniGPT4 9.6 20.1 5.0
InstructBLIP 5.2 2.3 1.0
Ying-VLM (Ours) 20.5 33.3 49.8

+ trained w/ Flickr-8k-CN & FM-IQA 20.0 39.8 0.1

Table 5: Zero-shot transfer to Chinese vision-language
tasks. Our model generalizes well on unseen Chinese
captioning, VQA and classification tasks.

automatic metric to assess the consistency between407

predictions and ground-truth answers, focusing on408

evaluating the model’s conversational abilities. As409

the automatic metric may not fully capture the nu-410

ances of conversational quality, we further intro-411

duce GPT-4 as a proxy of human evaluators (§ 3.2).412

For the object hallucination, we follow Li et al.413

(2023b) to adopt CHAIRI and CHAIRS (Rohrbach414

et al., 2018). CHAIRI denotes the proportion of415

hallucinated ones in all generated objects, while416

CHAIRS describes the hallucination at the sen-417

tence level, i.e., the proportion of generated cap-418

tions that contain hallucinated objects. Appendix F419

provides a detailed definition for these two metrics.420

Baselines Recently proposed VLMs are adopted421

for comparison, including (1) BLIP-2-Flan-T5-422

XXL (Li et al., 2023a) where an instruction-tuned423

Flan-T5 (Wei et al., 2022) is connected with a424

powerful vision encoder to perform a series of425

multi-modal tasks; (2) MiniGPT-4 which aligns426

a CLIP visual encoder with a frozen Vicuna (Chi-427

ang et al., 2023) with artificially collected dialog428

dataset; (3) InstructBLIP, an instruction tuning429

enhanced VLM with Vicuna-13B with converted430

multi-model datasets and the LLaVA (Liu et al.,431

2023) dataset generated by text-only GPT-4. (4)432

Ying-VLMLLaVA, we replace the M2BIT dataset433

with the LLaVA dataset (Liu et al., 2023) for in-434

struction tuning with the same training setup, to435

isolate the effect of the base LLM.436

3.2 Experimental Results437

Evaluation of Knowledgeable VQA The results438

on the KVQA benchmarks are shown in Table 4.439

In comparison to the strongest baseline, our model440

Model Len CHAIRI(↓) CHAIRS(↓) Avg. (↓)

mPLUG-Owl∗ 98.5 30.2 76.8 53.5
LLaVA∗ 90.7 18.8 62.7 40.8
MiniGPT-4∗ 116.2 9.2 31.5 20.4
InstructBLIP∗ 7.5 2.5 3.4 3.0

Ying-VLMLLaVA 62.7 11.0 36.0 23.5
Ying-VLM 34.2 12.6 16.8 14.7

Table 6: Object hallucination evaluation with instruction
“Provide a brief description of the given image”. Len
denotes the average length of generated captions. ∗

denotes results collected from Li et al. (2023b).

achieves an improvement of 1.1 and 2.0 ROUGE-L 441

points for OK-VQA and A-OKVQA, respectively. 442

Additionally, Ying-VLM delivers the best perfor- 443

mance on the held-out ViQuAE dataset. These 444

findings indicate that instruction tuning on M2BIT 445

effectively harnesses knowledge from LLMs and 446

elevates response quality. 447

Evaluation of Object Hallucination As shown 448

in Table 6, the VLMs trained on instruction tun- 449

ing datasets generated by ChatGPT/GPT-4 exhibit 450

serious hallucination problems, as indicated by 451

the relatively high average CHAIR of LLaVA and 452

MiniGPT-4. InstructBLIP performs the best on this 453

evaluation. However, it should be noted that the 454

too-short answers provided by InstructBLIP may 455

result in a lack of politeness in responses, which 456

can harm the user experience. This was validated in 457

the later evaluation with GPT-4. When comparing 458

Ying-VLMLLaVA to Ying-VLM, it can be observed 459

that Ying-VLM achieves a much lower CHAIRS 460

score (16.8 v.s. 36.0), demonstrating that it suffers 461

significantly less from the sentence-level hallucina- 462

tion issue. These results suggest that M2BIT could 463

help VLMs to achieve a better balance between the 464

hallucination problem and response quality. 465

Cross-Language Transferability We assess mod- 466

els on three unseen Chinese vision-language tasks 467

to investigate the cross-language generalization ef- 468

fect of instruction tuning. BLIP-2 and Flan-T5 are 469

not considered here as they do not support Chinese 470

outputs.2 As illustrated in Table 5, our model per- 471

forms well on all evaluated tasks compared with 472

MiniGPT4 and InstructBLIP. While the gain can 473

be attributed to the Chinese ability of the underly- 474

ing Ziya-13B LLM, it promisingly indicates that 475

instruction tuning with English datasets can effec- 476

tively generalize to different languages. Further, we 477

perform continual training on Chinese V+L tasks. 478

2For all models, we introduce a prompt to promote Chinese
outputs. See Appendix D for details.
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Figure 3: Evaluation results using GPT-4 as an evaluator.
Our model outperforms MiniGPT-4 and InstructBLIP
with a winning rate at 55.6% and 65.5%, respectively.

As shown in the last row of Table 5, the scores of479

FM-IQA can be further enhanced. However, the480

model suffers from catastrophic forgetting as there481

are no classification tasks in the continual train-482

ing, resulting in poor performance on the Chinese-483

FoodNet. An in-depth investigation for this prob-484

lem could be promising (Zhai et al., 2023).485

Cross-Modality Transferability To evaluate per-486

formance on video-language tasks, we uniformly487

sample 8 frames from each video. MiniGPT4 is ex-488

cluded as it does not support video inputs. Follow-489

ing InstructBLIP (Dai et al., 2023), we concatenate490

the visual embedding extracted from the Q-former491

of each frame as a prefix embedding to the language492

model. As demonstrated in Table 7, our model493

excels in these challenging settings, significantly494

surpassing the BLIP-series baselines. It is worth495

noting that the training dataset does not include any496

videos inputs, implying that our instruction tuning497

effectively aids the model in generalizing to inputs498

with a temporal dimension. Furthermore, continual499

training on video tasks in our dataset can improve500

the ROUGE-L scores on all tasks, indicating its501

effectiveness in boosting the video understanding502

abilities of VLMs.503

GPT-4 Evaluation To further validate the quality504

of the generated response, we propose to utilize505

GPT-4 as a proxy of human evaluators (Peng et al.,506

2023; Gilardi et al., 2023). Specifically, following507

Vicuna (Chiang et al., 2023), we query GPT-4 to508

rate the performance of different models against509

our Ying-VLM. For each sample, we construct a510

prompt consisting of the original question, its corre-511

sponding reference answer, the response generated512

by our Ying-VLM, and a baseline system output.513

GPT-4 is asked to rate both responses on a scale514

of 10 based on the given question and its reference515

answer. The ratings are primarily based on the ac-516

curacy, relevance, and naturalness of the response517

to meet the requirements when humans are interact-518

Task Number  

R
O

U
G

E-
L 

Sc
or

e

10

15

20

25

30

35

0 4 8 16 27

A-OKVQA OK-VQA ViQuAE
Average

Figure 4: ROUGE-L score increases when models are
trained with more instruction tuning datasets.

ing with multi-modal agents (evaluation template 519

is provided in Appendix E). We swap the order of 520

candidate responses to mitigate potential evalua- 521

tion biases (Wang et al., 2023). Considering the 522

API cost of GPT-4, 300 examples are randomly 523

sampled from OK-VQA, A-OKVQA and ViQuAE 524

datasets as a subset for evaluation. Figure 3 shows 525

that our Ying-VLM outperforms baseline models 526

in most samples. For example, the GPT-4 evalua- 527

tor favors Ying-VLM over MiniGPT4 on 167 over 528

300 tested samples. Consistent with the previous 529

results, it indicates that VLMs tuned on M2BIT 530

can produce more accurate and engaging responses 531

on the challenging KVQA tasks. 532

3.3 Analysis 533

Effect of Task Number We investigate the influ- 534

ence of task numbers by randomly shuffling our 535

tasks and then selecting a subset to train the model 536

during the instruction tuning stage. Due to the com- 537

putational resource limitation, we set up a maxi- 538

mum of 5k examples for each task and train all the 539

models for 5k steps with a batch size of 64. We 540

select 0, 4, 8, 16 and all 27 tasks for training, and 541

report the individual ROUGE-L score and the av- 542

erage score. As illustrated in Figure 4, increasing 543

the number of tasks greatly improves the results of 544

the generalization performance. Besides, the per- 545

formance gain is not diminished as the task number 546

increases. This is promising as it indicates that we 547

can continually improve performance by introduc- 548

ing more tasks into the training. Further analysis 549

in Appendix G shows that the instruction diver- 550

sity also affects the performance, and Ying-VLM 551

performs robustly on unseen instructions. 552

Qualitative Results We conduct a case study to 553

provide a more straightforward understanding of 554

instruction-tuned models. The cases are chosen 555

from the held-out ViQuAE and ChineseFoodNet 556

datasets. As shown in Figure 5, Ying-VLM trained 557

7



Model Video Captioning Video Question Answering

MSRVTT iVQA ActivityNet-QA MSRVTT-QA MSVD-QA

BLIP-2-Flan-T5-XXL 8.8 11.1 8.9 10.3 13.2
InstructBLIP 14.3 6.3 9.3 4.0 7.0
Ying-VLM 14.2 23.5 21.9 18.3 21.4

+ trained w/ video datasets 16.1 41.3 44.8 32.0 40.5

Table 7: Zero-shot transfer to video-language tasks. We report ROUGE-L score for all tasks.

Human: Who plays at this 
stadium ?

MiniGPT4: The stadium is 
called Wembley Stadium, 
home to the English national 
football team.

InstructBLIP: Arsenal F.C.

Ying-VLM: The stadium you 
are looking at is called 
Emirates Stadium and it is the 
home of Arsenal Football 
Club. Arsenal is a 
professional football club 
based in London, England, 
and they play in the Premier 
League.

Human: On which book by this 
man, Baz luhrmann’s planned a 
film?

MiniGPT4: The image shows a 
black and white portrait of a man 
in a suit and tie, with short, curly 
hair and a serious expression.

InstructBLIP: Great Gatsby

Ying-VLM: The book on which 
Baz Luhrmann‘s planned film is 
based is called 
’The Great Gatsby‘
and was written by F. Scott 
Fitzgerald.

Human:请给图中的食物分类。
(Classify the food in the image.)
Options:                                                                                               
(A)薯条 (French fries)
(B)凉拌⻄红柿  (Tomato salad)
(C)油焖⼤虾 (Braised Shrimp in chili oil)
(D)扇⻉ (Scallop in Shell)
(E)⽣蚝 (Oysters)
(F)螃蟹 (Crab)
(G)扬州炒饭 (Yangzhou fried rice)
(H)披萨 (Pizza) 
(I)蛋挞 (Egg Tart)
(J)⾁酱意⼤利⾯ (Spaghetti with meat sauce)   

MiniGPT4: This is a bowl of fried rice with 
various ingredients including carrots, peas, 
sausage, shrimp, and eggs. 

InstructBLIP: (K) 薯条

Ying-VLM: (G) 扬州炒饭

Figure 5: Case study of model outputs: Correct answers
in green, wrong answers in red, and non-compliant an-
swers in grey. Ying-VLM accurately responds to entity-
centric questions and generalizes to unseen Chinese
food classification tasks (English translation for visual-
ization purposes only).

with M2BIT provides correct and informative re-558

sponses to entity-centric questions requiring exter-559

nal world knowledge. In contrast, MiniGPT4 pro-560

duces an incorrect answer for the stadium question561

on the left, and InstructBLIP consistently provides562

concise but less engaging answers. Ying-VLM also563

generalizes to Chinese inputs, accurately classify-564

ing the food image based on the instruction. These565

cases underscore the importance of instruction tun-566

ing dataset quality and demonstrate the effective-567

ness of the proposed M2BIT.568

4 Related Work569

Language and Multi-modal Instruction Tun-570

ing Language instruction tuning (Wei et al., 2022;571

Mishra et al., 2022) has been shown to enhance572

LLMs, enabling cross-task generalization (Long-573

pre et al., 2023; Wang et al., 2022) and improved574

alignment with human intent (Ouyang et al., 2022).575

Recent research has expanded this concept to576

multi-modal instruction tuning for VLM develop-577

ment, evolving into two streams. The first uses578

established vision-text benchmarks to create an579

instruction-tuning dataset (Xu et al., 2022; Dai580

et al., 2023), while the second employs image anno- 581

tation tools to generate a dialog-style dataset (Liu 582

et al., 2023; Zhu et al., 2023; Zhao et al., 2023a). 583

Vision Language Models The success of LLMs 584

has significantly propelled VLM development. The 585

pioneering study Flamingo (Alayrac et al., 2022) 586

and its open-source variants (Awadalla et al., 2023; 587

Laurençon et al., 2023) have showcased the ef- 588

fectiveness of consolidating LLMs with vision en- 589

coders. PaLI-X (Chen et al., 2023c) delves deeper 590

into the scaling effects of vision and language 591

components. The Q-Former from BLIP-2 (Li 592

et al., 2023a) has helped bridge the gap between 593

the visual and text modalities. InstructBLIP (Dai 594

et al., 2023) and MM-ICL (Zhao et al., 2023b) 595

further integrate instructions into the visual-text 596

alignment process for improved in-context learn- 597

ing ability (Dong et al., 2022). MiniGPT-4 (Zhu 598

et al., 2023) and LLaVA (Liu et al., 2023) use a 599

single projection layer, while mPLUG-Owl (Ye 600

et al., 2023) adopts LoRA tuning (Hu et al., 2022), 601

have shown promising results in aligning visual 602

encoders and LLMs. The recently proposed Qwen- 603

VL (Bai et al., 2023) has scaled up multi-modal 604

pre-training and LLaVA-RLHF (Sun et al., 2023) 605

explores RLHF (Ouyang et al., 2022) with LLaVA. 606

5 Conclusion 607

In this paper, we introduce M2BIT, a multi-modal 608

bilingual instruction tuning dataset consisting of 2 609

million instances and 400 task instructions across 610

40 tasks. We develop Ying-VLM as a proof-of- 611

concept model to demonstrate the effectiveness of 612

our dataset. Compared with strong baselines, quan- 613

titative and qualitative results confirm that Ying- 614

VLM outperforms KVQA tasks, exhibits reduced 615

hallucination, and demonstrates superior general- 616

ization in unseen video and Chinese tasks. We 617

anticipate that our proposed benchmark, pretrained 618

models, and experimental findings will prove valu- 619

able for future research in the multi-modal domain. 620
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Limitations621

Limitations of Dataset Collection The number of622

Chinese tasks in our M2BIT is limited, as most623

high-quality multi-modal resources are English624

only. In the future, we look forward to incorporat-625

ing more Chinese V+L tasks in our dataset and ex-626

ploring machine translation techniques to improve627

the V+L task coverage in Chinese. Besides, our628

M2BIT focuses on image-to-text and video-to-text629

tasks, while more modalities, such as audio (Kim630

et al., 2019; You et al., 2022; Mei et al., 2023), can631

be considered further.632

Limitations of Experimental Exploration In this633

paper, we curate the M2BIT dataset to provide a re-634

source for developing powerful VLMs and explore635

the cross-lingual/modality effect of multi-modal636

instruction tuning. However, there are still under-637

explored setups worth investigating. Promising av-638

enues include exploring improved methodologies639

for instruction and task selection by taking the in-640

terdependence of different tasks into consideration641

and exploring the effects of generalization across642

different languages and modalities. Furthermore,643

we only adopted the Ziya-13B LLM in our exper-644

iments due to its promising bilingual ability. Re-645

cently, many powerful foundation LLMs have been646

released, such as LLaMA-2 (Touvron et al., 2023)647

and Baichuan-2 (Baichuan, 2023). It would also648

be interesting to perform a comprehensive analysis649

regarding different model families and scales.650

Ethic Considerations651

In line with established practices in language in-652

struction tuning (Mishra et al., 2022; Longpre et al.,653

2023), our M2BIT dataset has been carefully cu-654

rated by gathering and unifying NLP datasets from655

various sources, including academic papers and656

projects, making them suitable for research pur-657

poses. The licenses for the included tasks can be658

found in Appendix B. However, it should be noted659

that there are certain tasks for which the license660

information is not publicly available. We strongly661

advise users to verify the license before using the662

dataset for non-academic purposes to avoid poten-663

tial problems, and we would emphasize this in our664

released dataset project.665
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A.1 Motivation 1145

For what purpose was the dataset created? 1146

M2BIT is created to facilitate multi-modal multilin- 1147

gual instruction tuning for large language models. 1148

A.2 License 1149

All annotated instructions are licensed under the 1150

CC-BY 4.0 license. For the licenses of original 1151

datasets, we refer users to Table 8 for more details. 1152

A.3 Maintenance Plan 1153

We commit to continually updating the dataset and 1154

rectifying any potential errors. Previous versions 1155

of the dataset can still be accessed in the Git history. 1156

Users can submit their questions and suggestions in 1157

the dataset hub, and we will promptly address their 1158

inquiries. We also encourage community contribu- 1159

tions to expand the range of datasets by submitting 1160

pull requests to the dataset repository. 1161

A.4 Composition 1162

What do the instances that comprise the dataset 1163

represent? (e.g., documents, photos, people, 1164

countries) Our data is provided in JSON format. 1165
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Each data instance consists of (1) an instruction1166

prompt, (2) a list of base64 strings representing1167

images (3) a task-specific input, such as the ques-1168

tion of the image, (4) a desired output, such as1169

the answer for the image-related question, and (5)1170

a metadata dictionary for referencing the original1171

dataset.1172

How many instances are there in total (of1173

each type, if appropriate)? The statistics of our1174

dataset can be found in Table 8.1175

Does the dataset contain all possible instances1176

or is it a sample (not necessarily random) of in-1177

stances from a larger set? We tried to transform1178

the original whole dataset into a unified schema.1179

However, due to the disk limitation and the cost of1180

paraphrasing short answers, we chose a randomly1181

sampled subset from the original dataset to perform1182

the transformation.1183

Is there a label or target associated with each in-1184

stance? Yes, the outputs field serves as the label.1185

Is any information missing from individual in-1186

stances? No.1187

Are relationships between individual instances1188

made explicit (e.g., users’ movie ratings, social1189

network links)? N/A.1190

Are there recommended data splits (e.g., train-1191

ing, development/validation, testing)? Yes. We1192

made the transformation based on the original1193

dataset split.1194

Are there any errors, sources of noise, or redun-1195

dancies in the dataset? No.1196

Is the dataset self-contained, or does it link to or1197

otherwise rely on external resources (e.g., web-1198

sites, tweets, other datasets)? Yes.1199

Does the dataset contain data that might be con-1200

sidered confidential? No.1201

Does the dataset contain data that, if viewed di-1202

rectly, might be offensive, insulting, threatening,1203

or might otherwise cause anxiety? No.1204

A.5 Uses1205

Has the dataset been used for any tasks al-1206

ready? Yes. We have used the M2BIT dataset to1207

train a vision-language model, which demonstrates1208

promising results on knowledgeable VQA tasks1209

and generalizes well to video-language tasks and1210

# List[String]: the base64 string representation of a profile photo 
of F. Scott Fitzgerald
Images: ["iVBORw0KGg...5ErkJggg=="]
# String: task instruction
Instruction: "Analyze the image and provide an appropriate 
response to the question. "
# String: task-specific inputs, e.g., a question related to the image.
Inputs: "On which book by this man, Baz luhrmann’s planned a 
film?"
# String: task outputs, e.g., the correct answer for the question.
Outputs: "Baz Luhrmann has planned a film adaptation of the 
book The Great Gatsby. "
# Dict: meta information dictionary contains original data.
Meta Data: {"kilt_id": "qw_1524", ... ,"wikipedia_id": "152171"}

Figure 6: Unified data format schema of our dataset.

Chinese vision-language tasks. Please see Section 1211

4 of the main paper for details. 1212

What (other) tasks could the dataset be used 1213

for? M2BIT is a useful resource for instruction 1214

tuning studies in the multi-modal field. Future stud- 1215

ies can utilize M2BIT to investigate the influence 1216

of instruction tuning and improve the general per- 1217

formance of vision-language models. 1218

Is there a repository that links to any or all pa- 1219

pers or systems that use the dataset? No. 1220

Is there anything about the composition of the 1221

dataset or the way it was collected and prepro- 1222

cessed/cleaned/labeled that might impact future 1223

uses? The bounding boxes are added to the im- 1224

age with a red rectangle box to inform the model 1225

of regions in interest. For those models with a vi- 1226

sion encoder that is not sensitive to these visual 1227

prompts, the effect of this operation can be lim- 1228

ited. Besides, short answers in some VQA tasks 1229

are paraphrased by ChatGPT, which is designed to 1230

improve the response quality of the model while 1231

potentially impacting the language diversity of the 1232

model. 1233

B Dataset Statistics 1234

Table 8 lists the detailed statistics in our benchmark 1235

and Figure 6 illustrates the unified schema adopted 1236

in our dataset. We collect the dataset license from 1237

PaperWithCode.3 For datasets under Unknown and 1238

Custom licenses, we suggest the users check the 1239

project page or contact the dataset owner before 1240

usage. 1241

C Template for Answer Rephrasing 1242

We provide the paraphrase template in Table 9 for 1243

querying the ChatGPT to re-write the original short 1244

3https://paperswithcode.com/
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Task Dataset Used #samples LicenseTrain Val Test

Captioning
MS COCO (Lin et al., 2014) Yes 566,747 25,010 25,010 Custom

TextCaps (Sidorov et al., 2020) Yes 97,765 13,965 0 Unknown
Image-Paragraph-Captioning (Krause et al., 2017) Yes 14,575 2,487 2,489 Custom

Classification

COCO-GOI (Lin et al., 2014) Yes 30,000 2,000 0 Custom
COCO-Text (Veit et al., 2016) Yes 118,312 27,550 0 Custom

ImageNet (Russakovsky et al., 2015) Yes 30,000 50,000 0 Non-commercial
COCO-ITM (Lin et al., 2014) Yes 30,000 5,000 5,000 Custom

e-SNLI-VE (Kayser et al., 2021) Yes 20,000 14,339 14,740 Unknown
Mocheg (Yao et al., 2022) Yes 4,991 180 466 CC BY 4.0
IQA (Duanmu et al., 2021) Yes 5,000 1,000 1,000 Custom

VQA

VQA v2 (Goyal et al., 2017b) Yes 30,000 30,000 0 CC-BY 4.0
Shapes VQA (Andreas et al., 2016) Yes 13,568 1,024 1,024 Unknown

DocVQA (Mathew et al., 2021) Yes 39,463 5,349 0 Unknown
OCR-VQA (Mishra et al., 2019) Yes 11,414 4,940 0 Unknown

ST-VQA (Biten et al., 2019) Yes 26,074 0 4,070 Unknown
Text-VQA (Singh et al., 2019) Yes 27,113 0 5,734 CC BY 4.0

GQA (Hudson and Manning, 2019) Yes 30,001 5,001 0 CC BY 4.0

KVQA

OK-VQA (Marino et al., 2019) Yes 9,009 5,046 0 Unknown
A-OK-VQA (Schwenk et al., 2022) Yes 17,056 1,145 0 Unknown

ScienceQA (Lu et al., 2022) Yes 12,726 4,241 4,241 CC BY-NC-SA
ViQuAE (Lerner et al., 2022) No 1,190 1,250 1,236 CC By 4.0

Reasoning

CLEVR (Johnson et al., 2017) Yes 30,000 2,000 0 CC BY 4.0
NLVR (Suhr et al., 2017) Yes 29,372 2,000 0 Unknown
VCR (Zellers et al., 2019) Yes 25,000 5,000 5,000 Custom

VisualMRC (Tanaka et al., 2021) Yes 15,000 2,500 5,000 Unknown
Winoground (Thrush et al., 2022) No 0 0 800 Unknown

Generation
Visual Storytelling (Huang et al., 2016) Yes 5,000 4,315 4,350 Unknown

Visual Dialog (Das et al., 2017) Yes 50,000 1,000 1,000 CC By 4.0
Multi30k (Elliott et al., 2016) Yes 90,000 6,000 12,000 Non-commercial

Chinese

FM-IQA (Gao et al., 2015) No 164,735 75,206 0 Unknown
COCO-Caption CN (Li et al., 2019) No 18,341 1,000 1,000 Non-commercial

Flickr-8k-Caption CN (Li et al., 2016) No 6,000 1,000 1,000 CC By 3.0
Chinese Food Classification (Chen et al., 2017) No 0 0 1,100 Unknown

Multimodal Chat (Zheng et al., 2022) No 3,000 1,000 1,000 Unknown

Video

Action-Classification (Goyal et al., 2017a) No 2,000 2,000 2,000 Custom
iVQA (Yang et al., 2021) No 5,994 2,000 2,000 Unknown

MSVD QA (Xu et al., 2017) No 1,161 245 504 Unknown
ActivityNet QA (Yu et al., 2019) No 3,200 1,800 800 Unknown
MSRVTT QA (Xu et al., 2017) No 6,513 497 2,990 Unknown

MSRVTT Captioning (Xu et al., 2016) No 2,000 1,000 1,000 Unknown

Table 8: Detailed task descriptions and statistics of our instruction tuning tasks, including all datasets in all types of
tasks. The column “Used” indicates whether we use this dataset in the instruction tuning stage.

answers, where {Q} and {A} is filled with the ques-1245

tion and the answer need to be paraphrased, respec-1246

tively. We incorporate an example to better inform1247

the model of the paraphrasing tasks. For VQAv21248

tasks, we add an extra {Caption} field in the tem-1249

plate filled with corresponding captions from the1250

COCO dataset to provide extra context information1251

to help to rephrase. For A-OKVQA tasks, the ratio-1252

nale of each sample is adopted to enrich the final1253

answer.1254

D Prompt for Zero-Shot Chinese 1255

Vision-Language Tasks 1256

In our experiments, all VLMs are fine-tuned ex- 1257

clusively using English data. In our preliminary 1258

study, we observe that these models tend to gen- 1259

erate English responses, even when the input and 1260

instructions are written in Chinese. We introduce 1261

a simple Chinese dialogue context during the zero- 1262

shot Chinese Vision-Language Task evaluation for 1263

all models, as illustrated in Table 10, Interestingly, 1264

this minor adjustment can encourage models to 1265

produce reasonable Chinese output. We leave the 1266

analysis of instruction-tuned VLM models’ multi- 1267
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Figure 7: Tasks coverage of M2BIT. We hold out ViQuAE for evaluating the KVQA ability of VLMs and Winogound,
as it only provides a small test set. All Chinese V+L and Video-language datasets are excluded during training for
cross-lingual/modality effect investigation.

lingual capabilities for future research.1268

E Template for GPT-4 Evaluation1269

We adopt the template in Table 11 to query GPT-41270

and obtain the evaluation results with FairEval 41271

to obtain more stable results. Specifically, each1272

tested instance is a quaternion: (question,1273

reference, response1, response2),1274

where response1 and response2 are two1275

responses from our Ying-VLM and the baseline1276

model, respectively. For each instance, we1277

query GPT-4 to judge which response is of1278

better quality regarding accuracy, relevance1279

and naturalness. We populate the quaternion1280

into the evaluation template to form two query1281

prompts: T(Q=question, R=reference,1282

R1=response1, R2=response2)1283

and T(Q=question, R=reference,1284

R1=response2, R2=response1). We set1285

the temperature of GPT-4 to 1 and sample three1286

completions for each query prompt. Therefore,1287

each response will receive 6 scores, and we use1288

the average score as the final score for each1289

response. The response with the higher final1290

score is considered the better response. The1291

GPT-4 evaluation incurred a cost of $20.45 for1292

InstructBlip and $20.90 for MiniGPT-4.1293

4https://github.com/i-Eval/FairEval

F Object Hallucination Metrics 1294

For object hallucination evaluation, we adopt Cap- 1295

tion Hallucination Assessment with Image Rel- 1296

evance (CHAIR) proposed by Rohrbach et al. 1297

(2018), a metric for evaluating object hallucina- 1298

tion in image captioning tasks. Specifically, given 1299

the existing objects in the image, CHAIR calculates 1300

the proportion of objects that appear in the caption 1301

but not the image. CHAIR has two variants, i.e., 1302

CHAIRI and CHAIRS , which evaluate the halluci- 1303

nation degree at the object instance level and the 1304

sentence level, respectively. Formally, these two 1305

metrics are defined as: 1306

CHAIRI =
| { hallucinated objects } |
| { all mentioned objects } |

CHAIRS =
| { captions w/ hallucinated objects } |

| { all captions } | .

1307

Intuitively, CHAIRI denotes the proportion of 1308

hallucinated ones in all generated objects, while 1309

CHAIRS describes the hallucination at the sen- 1310

tence level, i.e., the proportion of generated cap- 1311

tions that contain hallucinated objects. We fol- 1312

low the settings adopted in Rohrbach et al. (2018), 1313

which only consider 80 objects in the MSCOCO 1314

segmentation challenge. Following (Li et al., 1315

2023b), a synonym list (Lu et al., 2018) is used 1316

for synonymous word unification in the generated 1317

captions to avoid misjudging hallucinated objects. 1318

16
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You are an AI visual assistant. Now you
are given a question related to an image and
a short ground-truth answer. Your task is
to transform the ground-truth answer into
a natural and convincing response. Make
sure the response is accurate, highly rele-
vant to the question, and consistent with the
original answer.

Question:
Which NASA space probe was launched to
this planet in 1989?
Answer:
Magellan
Transformed Answer:
NASA sent the Magellan spacecraft to
Venus in 1989, which was the first planetary
spacecraft launched from a space shuttle.

Question:
{Q}
Answer:
{A}
Transformed Answer:

Table 9: Template used to query ChatGPT for answer
paraphrasing.

<human>:
请根据我的指示，以及所给的图片，做
出相应的回答。
<bot>:
好的。
<human>:
{Instruction}
{Input}
<bot>:
好的。

Table 10: Prompt for promoting Chinese outputs.

G Effect of Instruction Diversity and1319

Robustness1320

To investigate the influence of instruction diver-1321

sity, we randomly select 1, 2, 4, and 8 instructions1322

from each dataset, resulting in varied instruction1323

diversity. The other training parameters are con-1324

sistent with those used in previous experiments on1325

task number investigation. Figure 8 shows that 1326

the performance varies with the level of diversity. 1327

Specifically, our results suggest that using four in- 1328

structions per task is sufficient for achieving decent 1329

performance. We further explore the robustness 1330

of models on unseen instructions, where models 1331

are trained on 4 randomly selected instructions and 1332

evaluated with the left 6 instructions on each task. 1333

As shown in Figure 9, the model performs stably 1334

on the unseen instructions with a moderate 0.23 1335

ROUGE-L score drop, indicating that it general- 1336

izes well on the unseen instructions. 1337
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[Question]
{Q}
[The Start of Reference Answer]
{R}
[The End of Reference Answer]
[The Start of Assistant 1’s Answer]
{R1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{R2}
[The End of Assistant 2’s Answer]

[System]
We would like to request your feedback on the performance of two AI assistants in response to
the user’s multimodal question displayed above. We provided no multimodal inputs other than
question text, but we provided a reference answer for this question. You need to evaluate the
quality of the two responses based on the question and the reference answer.
Please rate the on the follow aspects:
1. Accuracy: whether the candidate’s response is consistent with the original answer, this is
important as we do not want a misleading result;
2. Relevance: whether the candidate’s response is highly relevant to the question and image
content;
3. Naturalness: whether the candidate’s response is engaging, providing a great communication
experience for the user when interacting with the AI visual assistant.
of the two Assistants’ responses.

Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better
overall performance.
Please first provide a comprehensive explanation of your evaluation, avoiding any potential bias
and ensuring that the order in which the responses were presented does not affect your judgment.
Then, output two lines indicating the scores for Assistant 1 and 2, respectively.

Output with the following format:
Evaluation evidence: <evaluation explanation here>
The score of Assistant 1: <score>
The score of Assistant 2: <score>

Table 11: Template used to query GPT-4 for evaluating the response quality of different models.

18



Instruction Number

R
O

U
G

E-
L 

Sc
or

e

20
22
24
26
28
30
32
34
36

0 2 4 6 8

A-OKVQA OK-VQA ViQuAE
Average

Figure 8: ROUGE-L Score changes with the varied
number of instructions used for training.
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Figure 9: Ying-VLM performs stably on unseen instruc-
tions, with an average 0.23 ROUGE-L drop.
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