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Abstract

It has become increasingly common nowadays to collect observations of feature
and response pairs from different environments. As a consequence, one has to apply
learned predictors to data with a different distribution due to distribution shifts. One
principled approach is to adopt the structural causal models to describe training and
test models, following the invariance principle which says that the conditional dis-
tribution of the response given its predictors remains the same across environments.
However, this principle might be violated in practical settings when the response is
intervened. A natural question is whether it is still possible to identify other forms
of invariance to facilitate prediction in unseen environments. To shed light on this
challenging scenario, we introduce invariant matching property (IMP) which is
an explicit relation to capture interventions through an additional feature. This
leads to an alternative form of invariance that enables a unified treatment of general
interventions on the response. We analyze the asymptotic generalization errors of
our method under both the discrete and continuous environment settings, where the
continuous case is handled by relating it to the semiparametric varying coefficient
models. We present algorithms that show competitive performance compared to
existing methods over various experimental settings. (The long version of this
paper can be found at https: // arxiv. org/ abs/ 2208. 10027 .)

1 Introduction

How to make reliable prediction in unseen environments that are different from training environments
is a challenging problem, which is fundamentally different from the classical machine learning
settings [39, 49, 11]. Modeling these distribution shifts in a principled way is of great importance
in many fields including robotics, medical imaging, and environmental science. Apparently, this
problem is ill-posed without any constraints on the relationship between training and test distributions,
as the test distribution may be arbitrary. Consider the problem of predicting the response Y given
its predictors X = (X1, ..., Xd)

⊤ in unseen environments. To model distribution changes across
different environments (or training and test distributions), we follow the approach of using structural
causal models (SCMs) [33, 36] to model different data-generating mechanisms. The common
assumption is that the assignment for Y does not change across environments (or Y is not intervened),
which allow for natural formulations of the invariant conditional distribution of Y given a subset
of X [44, 50, 35, 36, 41, 20, 8]. The underlying principle is known as invariance, autonomy or
modularity [19, 1, 33, 24]. We provide a brief review of the related works that follow this principle in
Appendix A.
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In practical settings, however, the structural assignment of Y might change across environments,
namely, Y might be intervened. How to relax this assumption in a principled way is one of the
main motivations in our work. We propose to explore alternative forms of invariance, and make
an attempt in this direction by focusing on linear SCMs. Concretely, the assignment for Y allows
general interventions

Y e = (βe)⊤Xe + εeY ,

where Y can be intervened through coefficient βe and/or the noise εeY , to capture the dependence
of structural assignment across different environments.Under linear SCMs, anchor regression [43]
considers interventions on Y through a shift added to εeY , which is special case of the general
interventions on Y studied in this work. Another formulation for interventions on Y is through
hidden parents of Y that are intervened (see [43, 32, 10]), but we focus on the rarely studied setting
of direct interventions on Y and leave the settings with hidden variables for future work.

We consider a multi-environment regression setting for domain adaption: There are multiple training
data (Xe, Y e) for e ∈ E train that are generated from a training model and one test data (indexed by
etest) from a test model; we assume the training model and test model follow SCMs with the same
graph structure, but we allow βe and the mean and variance of εeY to be arbitrarily different under
the two models. To avoid the setting to be ill-posed, a key necessary condition is that Y e needs to
have at least one child in the SCMs, as prediction is not possible otherwise given that Y e may change
arbitrarily over environments. The main challenge lies in whether it is still possible to identify other
forms of invariance to facilitate prediction in the test environment. We propose an alternative form
of invariance Pe(Y |ϕe(X)) = Ph(Y |ϕh(X)) that is enabled by a family of conditional invariant
transforms Φ ∋ ϕe, ϕh. Under general interventions on Y , we provide explicit constructions of such
transforms by developing invariant matching property (IMP), a deterministic relation between an
estimator of Y and X along with an additional predictor constructed from X .

2 Background and Problem Formulation

Consider a linear acyclic SCMM over (X,Y ) (see Appendix B.1), the coefficients and noise distri-
butions may change when (X,Y ) is observed in different environments (e.g., different experiment
settings for data collection). In the following, we use interventions on the SCMM to model such
changes. Let Eall denote the set of all possible environments 1, which consists of multiple training
environments E train and one test environment {etest} such that Eall = E train ∪ {etest}. For each e ∈ Eall,
an acyclic linear SCM over (Xe, Y e) is given by

Me :

{
Xe = γeY e +BeXe + εeX (1)

Y e = (βe)⊤Xe + εeY . (2)

A variable from {X1, . . . , Xd, Y } is intervened if the parameters or noise distribution in its assign-
ment changes over different e ∈ Eall. This formulation ofMe is fairly general, and we discuss several
special cases in Appendix C.

We observe ne i.i.d. samples {(x1, y1), ..., (xne , yne)} from each training environment distribution
Pe for e ∈ E train, but in the test environment etest we only observe m i.i.d. samples {x1, ..., xm} from
Ptest. The goal is to learn a function f : X → Ŷ that works well on etest in the sense that it minimizes
the test population loss

Ltest(f) := E(X,Y )∼Ptest [l(Y, f(X))]. (3)

where l is the square loss function l(y, ŷ) = (y − ŷ)2. To make this problem tractable, we assume
that (X,Y ) under Ptest and Pe are generated according to the SCMMe but we allow for general
types of interventions.

It is well-known that if Y is not intervened, a general form of invariance principle applies, assuming
the existence of some subset S ⊆ {1, ..., d} such that Pe(Y |XS) = Ph(Y |XS) holds for any
e, h ∈ Eall. The main challenge in our setting comes from the general interventions on Y , making the
traditional invariance principle not applicable. In this work, we propose to exploit an alternative form
of invariance to tackle this problem.

1We use training (or test) environments and observable (or unseen) environments interchangeably.
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Definition 1. A function ϕ : (Eall,Rd) → Rq is called a conditional invariant transform if the
following invariance property holds for any e, h ∈ Eall

Pe(Y |ϕe(X)) = Ph(Y |ϕh(X)). (4)

Under general intervention settings, we denote this class of conditional invariant transforms as Φ, and
we provide explicit characterizations of it via the invariant matching property (IMP) (see Definition 2).
For each ϕ ∈ Φ, the invariance property (4) enables us to compute

fϕe
(x) = g ◦ ϕe(x) = EPe [Y |ϕe(x)], (5)

for any e ∈ Eall, where the function g : Rq → Ŷ is invariant across environments and is nonlinear in
general. Equivalently, this solves a relaxed version of (3) by minimizing Ltest(fϕ) over {ϕ ∈ Φ}.

3 A Motivating Example

Example 1. Consider (Y e, Xe), e ∈ E toy = {1, 2}, with Xe := (Xe
1 , X

e
2 , X

e
3)

⊤ satisfying the
following linear acyclic SCM (illustrated in Figure. 1),

Me
toy :

{
Y e = aeXe

1 +Xe
2 +Ne

Y

Xe
3 = Y e +Xe

1 +Ne
3 ,

Figure 1: Directed acyclic graph G(Me
toy).

where Xe
1 , X

e
2 , N

e
3 , and Ne

Y are independent and N (0, 1)-distributed for every e ∈ E toy. Since
(Y e, Xe) is multivariate Gaussian, the MMSE estimator of Y e given Xe is

EPe [Y |X] =X⊤ (
EPe [XX⊤]

)−1
EPe [XY ]

=
1

2
(ae − 1)Xe

1 +
1

2
Xe

2 +
1

2
Xe

3 ,

Similarly, one can compute EPe
[X3|X1, X2] = (1 + ae)Xe

1 + Xe
2 . As a result, there exists a

deterministic linear relation, which we refer to as matching,

EPe [Y |X] = λEPe [X3|X1, X2] + η⊤Xe, (6)

with coefficients λ = 1/2 and η = (−1, 0, 1/2)⊤ that are invariant with respect to the environment.
Moreover, one can verify that Pe(Y |X1, X3,E[X3|X1, X2]) is invariant since the corresponding con-
ditional mean and variance are invariant. A prediction model in (6) with invariant coefficients is often
not unique when it exists. One can show that EPe [Y |X] = −Xe

1 + 1
2X

e
2 +Xe

3 − 3
2EPe [X2|X1, X3].

However, such invariant relations do not hold for EPe [X1|X2, X3]. To further illustrate the invariant
relations, we provide simulations in Appendix D. Moreover, in Appendix E, we extend Example 1 to
allow for interventions on X1, X2, and Y through the means and/or variances of the noise variables.

4 Invariant Matching Property

In this section, we generalize the invariant relations observed in Example 1 to a class of such relations
forMe, e ∈ Eall. To handle non-Gaussian cases (beyond Example 1), we choose to adopt the linear
MMSE (or LMMSE) estimators for constructing linear invariant relations. For a target variable
Y ∈ R given a vector of predictors X ∈ Rp, the LMMSE estimator is define as

El[Y |X] := (θols)⊤(X − E[X]) + E[Y ],

where θols := Cov(X,X)−1 Cov(X,Y ) is called the population ordinary least squares (OLS)
estimator. With a slight abuse of notation, we write El,Pe [Y |X] to denote the LMMSE of Y given
X with respect to (X,Y ) ∼ Pe. To simplify presentation, we focus on (Xe, Y e) with zero means
for each e ∈ Eall, while the non-zero mean settings can be handled by introducing the constant one as
an additional predictor.
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Definition 2. For k ∈ {1, . . . , d}, R ⊆ {1, . . . , d} \ k, and S ⊆ {1, . . . , d}, we say that the tuple
(k,R, S) satisfies the invariant matching property (IMP) if, for every e ∈ Eall,

El,Pe
[Y |XS ] = λEl,Pe

[Xk |XR] + η⊤Xe, (7)

for some λ ∈ R and η ∈ Rd that do not depend on e. We denote IM := {(k,R, S) : (7) holds} for
modelM, and we call (η⊤, λ)⊤ the matching parameters.

Observe that El,Pe
[Y |XS ] is not directly applicable to the test environment due to its components

depending on e, but those components are fully captured by El,Pe
[Xk|XR]. We formally define this

class of additional features as follows.
Definition 3. For any k ∈ {1, . . . , d} and R ⊆ {1, . . . , d} \ k, we call El,Pe

[Xk |XR] a prediction
module. If a prediction module satisfies an IMP for some S ⊆ {1, . . . , d}, we call it a matched
prediction module for S.
Now we discuss the relationship between the IMP and the invariance property Pe(Y |ϕe(X)) =

Ph(Y |ϕh(X)) in (4). Define ϕ
(k,R,S)
e (Xe) := (Xe

S′ ,El,Pe
[Xk|XR])

⊤, where Xe
S′ is a row vector

for some S′ ⊆ {1, . . . , d}. In general, the invariance of the matching parameters {λ, η} does not
imply that the invariance property (4) holds for some ϕ(k,R,S)

e (Xe). In Section 6, we will characterize
a class of IMPs that each satisfies (4). It is crucial to note that we only use the IMP to identify the
transform to satisfy the invariance property. When the invariance property is in place, one can apply
the general conditional expectation fϕe

(x) = EPe [Y |ϕe(x)] as in (5), since the linear estimator from
the IMP is in general sub-optimal for the non-Gaussian cases.

It is noteworthy that since El,Pe [Xk|XR] is a linear function of Xe
R, the matching parameters are not

unique given a single environment e ∈ E train. We show that two training environments are sufficient
for the identification of the matching parameters in Appendix F.1.

5 A Decomposition of the IMP

In our toy examples, recall that the IMPs are derived by first computing EPe
[Y |XS ] and EPe

[Xk|XR]
separately and then fitting a linear relation from (EPe

[Xk|XR], XS) to EPe
[Y |XS ]. These two steps

reveal a natural decomposition of the IMP, which we term as the first and second matching properties
below.
Definition 4. We say that S ⊆ {1, . . . , d} satisfies the first matching property if, for every e ∈ Eall,

El,Pe [Y |XS ] = λY EPe [Y |XPA(Y )] + η⊤Y X
e, (8)

for some λY ∈ R and ηY ∈ Rd that do not depend on e.

First, observe that the first matching property holds for S = PA(Y ) since El,Pe
[Y |XPA(Y )] =

EPe
[Y |XPA(Y )] = (βe)⊤Xe. The first matching property concerns the set S such that the compo-

nents in El,Pe [Y |XS ] that depends on e are fully captured by the causal function EPe [Y |XPA(Y )].
However, this invariant relation is not directly useful for the prediction of Y etest

, since the causal
function can change arbitrarily with e. To this end, we identify another invariant relation fromMe

which is called the second matching property.
Definition 5. For k ∈ {1, . . . , d} and R ⊆ {1, . . . , d} \ k, we say that a tuple (k,R) satisfies the
second matching property if, for every e ∈ Eall,

El,Pe
[Xk|XR] = λXEPe

[Y |XPA(Y )] + η⊤XXe, (9)

for some λX ∈ R and ηX ∈ Rd that do not depend on e.

It is straightforward to see that, if λX ̸= 0 in the second matching property, the first and second
matching properties imply the IMP as follows,

El,Pe
[Y |XS ] =

λY

λX
El,Pe

[Xk|XR] +

(
ηY −

λY

λX
ηX

)⊤

Xe

:= λEl,Pe
[Xk|XR] + η⊤Xe.
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For prediction tasks under SCMs, the causal function often plays a central role. Our first and second
matching properties show how the LMMSE estimator El,Pe [Y |XS ] and the matched prediction
module El,Pe [Xk|XR] are connected with the causal function, respectively. Together, the two
individual connections make up the IMP (illustrated in Fig. 4 from Appendix F.2).

6 Characterization of Invariant Matching Properties

First, we consider modelMe with interventions only on Y through the coefficients βe 2(denoted
asMe,1). To distinguish the parents of Y with varying and invariant coefficients, we decompose
βe inMe into two parts αe and β. Without loss of generality, we assume that αe

j ̸= 0 if and only
if αe

j is a non-constant function of e, and we define PE = {j ∈ {1, . . . , d} : αe
j ̸= 0}. Recall that

prediction modules do not rely on the response Y but the relations between the predictors for each
environment. When Y is unobserved (or equivalently, substituting Y in (2) into (1)), the relations
between the predictors are as follows,

Xe =
(
γ (αe + β)

⊤
+B

)
Xe + γεY + εX , (10)

where γεY + εX a vector of dependent random variables when γ is not a zero vector. If αe vanishes
from (10), the distribution of Xe becomes invariant with respect to environments, but the distribution
of Y e changes arbitrarily due to the change of αe, which makes the prediction problem ill-posed.
Observe that αe is non-vanishing in (10) only if γ is not a zero vector, which brings up the following
key assumption.
Assumption 1. When Y is intervened, we assume that Y has at least one child.

The first and second matching properties enable us to characterize the tuples (k,R, S)’s that satisfy
IMPs through the characterizations of S (for the first matching property) and (k,R) (for the second
matching property) separately. In the following theorem, we show that a class of IMPs implied by the
first and second invariant matching properties satisfy the invariance property (4).
Theorem 1. For modelMe,1, the first and second matching properties hold in the following cases.

1. On the first MP: For each S ⊆ {1, . . . , d} such that PE ⊆ S, the first matching property
holds.

2. On the second MP: For each k ∈ {1, . . . , d} \ PE and R ⊆ {1, . . . , d} \ k such that
PE ⊆ R, the second matching property holds.

For any tuple (k,R, S) above such that R ⊆ S, if λX ̸= 0 in the second matching property, then
ϕe(X

e) = (Xe
S , El,Pe

[Xk|XR])
⊤ satisfies (4). Furthermore, Ltest(fϕ) is minimized by any ϕ with

S = {1, ..., d}.

It is noteworthy that Assumption 1 is a necessary condition for λX ̸= 0, and we provide a sufficient
condition for λX ̸= 0 in a concrete setting with S = {1, . . . , d} in Proposition 2 in Appendix G.
More details regarding the characterization of IMPs are provided in Appendix G, along with the
characterization of IMP with interventions on both the predictors and response.

Due to space limit, we provide our algorithms developed for both discrete and continuous environment
setting in Appendix I. To handle the continuous environment setting, we bridge our framework with
the profile likelihood estimators developed in the semiparametric literature. A note on the profile
likelihood estimation for semiparameteric varying coefficient models can be found in Appendix K.
Our algorithms are examined over various synthetic data sets under different intervention settings in
Appendix J. Finally, we analyze the asymptotic generalization errors of the proposed estimators for
both discrete and continuous environment settings in Appendix L.

2Note that, in the non-zero mean settings, this model covers the shift intervention on Y through the varying
coefficient of the predictor that is a constant one.

5



References
[1] John Aldrich. Autonomy. Oxford Economic Papers, 41(1):15–34, 1989.

[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[3] Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized
learning for domain adaptation under label shifts. In International Conference on Learning
Representations, 2018.

[4] J Andrew Bagnell. Robust supervised learning. In AAAI, pages 714–719, 2005.

[5] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Un-
supervised domain adaptation by domain invariant projection. In Proceedings of the IEEE
International Conference on Computer Vision, pages 769–776, 2013.

[6] Maurice S Bartlett. An inverse matrix adjustment arising in discriminant analysis. The Annals
of Mathematical Statistics, 22(1):107–111, 1951.

[7] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in Neural Information Processing Systems, 19, 2006.

[8] Peter Bühlmann. Invariance, causality and robustness. Statistical Science, 35(3):404–426, 2020.

[9] Yuansi Chen and Peter Bühlmann. Domain adaptation under structural causal models. Journal
of Machine Learning Research, 22:1–80, 2021.

[10] Rune Christiansen, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters. A
causal framework for distribution generalization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[11] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive survey. arXiv
preprint arXiv:1702.05374, 2017.

[12] John C Duchi and Hongseok Namkoong. Learning models with uniform performance via
distributionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

[13] Jianqing Fan and Tao Huang. Profile likelihood inferences on semiparametric varying-coefficient
partially linear models. Bernoulli, 11(6):1031–1057, 2005.

[14] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[15] Rui Gao, Xi Chen, and Anton J Kleywegt. Distributional robustness and regularization in
statistical learning. arXiv preprint arXiv:1712.06050, 2017.

[16] Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary Lipton. A unified view of label
shift estimation. Advances in Neural Information Processing Systems, 33:3290–3300, 2020.

[17] Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Bernhard
Schölkopf. Domain adaptation with conditional transferable components. In International
Conference on Machine Learning, pages 2839–2848. PMLR, 2016.

[18] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning robust
against adversarial inputs. Communications of the ACM, 61(7):56–66, 2018.

[19] Trygve Haavelmo. The probability approach in econometrics. Econometrica: Journal of the
Econometric Society, pages iii–115, 1944.

[20] Christina Heinze-Deml and Nicolai Meinshausen. Conditional variance penalties and domain
shift robustness. arXiv preprint arXiv:1710.11469, 2017.

[21] Christina Heinze-Deml and Nicolai Meinshausen. Conditional variance penalties and domain
shift robustness. Machine Learning, 110(2):303–348, 2021.

6



[22] Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
nonlinear models. Journal of Causal Inference, 6(2), 2018.

[23] Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust
optimization. Available at Optimization Online, pages 1695–1724, 2013.

[24] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press, 2015.

[25] Pritish Kamath, Akilesh Tangella, Danica Sutherland, and Nathan Srebro. Does invariant risk
minimization capture invariance? In International Conference on Artificial Intelligence and
Statistics, pages 4069–4077. PMLR, 2021.

[26] Jaeho Lee and Maxim Raginsky. Minimax statistical learning with Wasserstein distances.
Advances in Neural Information Processing Systems, 31, 2018.

[27] Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, and David Carlson. On target
shift in adversarial domain adaptation. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 616–625. PMLR, 2019.

[28] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift
with black box predictors. In International Conference on Machine Learning, pages 3122–3130.
PMLR, 2018.

[29] Yue-pok Mack and Bernard W Silverman. Weak and strong uniform consistency of kernel
regression estimates. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 61(3):
405–415, 1982.

[30] Sara Magliacane, Thijs Van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, and
Joris M Mooij. Domain adaptation by using causal inference to predict invariant conditional
distributions. Advances in Neural Information Processing Systems, 31, 2018.

[31] Nicolai Meinshausen. Causality from a distributional robustness point of view. In 2018 IEEE
Data Science Workshop (DSW), pages 6–10. IEEE, 2018.

[32] Michael Oberst, Nikolaj Thams, Jonas Peters, and David Sontag. Regularizing towards causal
invariance: Linear models with proxies. In International Conference on Machine Learning,
pages 8260–8270. PMLR, 2021.

[33] Judea Pearl. Causality. Cambridge University Press, 2009.

[34] Judea Pearl and Elias Bareinboim. External validity: From do-calculus to transportability across
populations. In Probabilistic and Causal Inference: The Works of Judea Pearl, pages 451–482.
2022.

[35] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), pages 947–1012, 2016.

[36] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: founda-
tions and learning algorithms. The MIT Press, 2017.

[37] Niklas Pfister, Peter Bühlmann, and Jonas Peters. Invariant causal prediction for sequential data.
Journal of the American Statistical Association, 114(527):1264–1276, 2019.

[38] Niklas Pfister, Evan G Williams, Jonas Peters, Ruedi Aebersold, and Peter Bühlmann. Stabilizing
variable selection and regression. The Annals of Applied Statistics, 15(3):1220–1246, 2021.

[39] Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. Mit Press, 2008.

[40] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. Advances in Neural Information Processing Systems, 31,
2018.

7



[41] Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models
for causal transfer learning. The Journal of Machine Learning Research, 19(1):1309–1342,
2018.

[42] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimiza-
tion. In International Conference on Learning Representations, volume 9, 2021.

[43] Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters. Anchor
regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 83(2):215–246, 2021.

[44] B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, and J Mooij. On causal and anticausal
learning. In 29th International Conference on Machine Learning (ICML 2012), pages 1255–
1262. International Machine Learning Society, 2012.

[45] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness
with principled adversarial training. In International Conference on Learning Representations,
2018.

[46] Amos Storkey. When training and test sets are different: characterizing learning transfer.
Dataset shift in machine learning, 30:3–28, 2009.

[47] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary environments:
Introduction to covariate shift adaptation. 2012.

[48] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain
adaptation with conditional distribution matching and generalized label shift. Advances in
Neural Information Processing Systems, 33:19276–19289, 2020.

[49] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal
of Big Data, 3(1):1–40, 2016.

[50] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation
under target and conditional shift. In International Conference on Machine Learning, pages
819–827. PMLR, 2013.

8



Contents

A Related Works 10

B Definitions 10

B.1 Linear SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

C Types of Interventions on Linear SCMs 11

D Simulations on Example 1 11

E Another Toy Example 11

F Properties of the IMP 12

F.1 Identification of the Matching Parameters . . . . . . . . . . . . . . . . . . . . . . 12

F.2 An Illustration for the First, Second, and Invariant Matching Properties . . . . . . . 13

G More on the Characterization of IMPs 13

G.1 Interventions on the Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

G.2 Interventions on both Predictors and Response . . . . . . . . . . . . . . . . . . . . 13

H Proofs for the Theoretical Results in Section 6 and Section G 14

H.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

H.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

H.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

H.4 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

H.5 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I Algorithms 19

I.1 Discrete Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I.2 Continuous Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

J Experiments 22

J.1 Discrete environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

J.2 Interventions on both X and Y (continuous) . . . . . . . . . . . . . . . . . . . . . 23

J.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

K Note on Semi-parametric Varying Coefficient Models and Profile Least-Squares Estima-
tion 24

L Asymptotic Generalization Error 26

M Proofs for the Theoretical Results in Section L 26

M.1 Technical Lemmas for the Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . 26

M.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9



M.3 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

M.4 Proof of Corollary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Related Works

The invariance-based causal prediction initiated in [35] (also see [31] and [8] and references therein)
assumes that the conditional distribution of Y given a set of predictors XS ⊆ {X1, ..., Xd} is
invariant in all environments, i.e., Pe(Y |XS) = Ph(Y |XS) for environments e and h, where (X,Y )
is generated according to the joint distribution Pe := PX,Y

e . Focusing on linear SCMs, it assumes the
existence of a linear model that is invariant across environments, with an unknown noise distribution
and arbitrary dependence among predictors (see extensions to nonlinear [22] and time series [37]
settings). Following this framework, theoretical guarantees for domain adaption have been developed
in [41, 30]. More recently, a multi-environment regression method for domain adaption called
the stabilized regression [38] explicitly enforces stability (based on a weaker version of invariance
EPe

[Y |XS = xs] = EPh
[Y |XS = xs]) by introducing the stable blanket, which is a refined version

of the Markov blanket to promote generalization. The tradeoff between predictive performance on
training and test data has been studied via regularization under shift interventions [43]. Motivated
by [35], the invariant risk minimization (IRM) [2] imposes Pe(Y |ϕ(X)) = Ph(Y |ϕ(X)), where ϕ
is invariant across environments, leading to a bi-leveled optimization problem that is not practical.
Several relaxed versions of IRM have been proposed in [2], but they behave very differently from the
original IRM (see, e.g., [42, 25]). For a framework of the out-of-distribution setting from a causal
perspective with a focus on minimizing the worst-case risk, see [10] and references therein. In this
line of invariance-based work, the fundamental assumption is that interventions on the target variable
Y is not allowed.

In [9], the authors have provided a systematic treatment of domain adaption using the SCMs to enable
analysis and comparisons of domain adaption methods, which leads to the conditional invariant
residual matching (CIRM) method. The CIRM and its variants combine the domain invariant
projection (DIP)-type methods (see [5, 14] and the generalized label shift to handle target label
perturbation [27, 48]) with the idea of conditional invariance penalty (appeared in [17, 21] under
slightly different settings) that assumes the existence of conditional invariant components (CICs)
in the anticausal setting where Y causes X . Theoretical guarantees have been provided for the
prediction performance under shift interventions on Y , while numerical studies are provided for
interventions on the noise variance of Y [9]. It has also been pointed out that the general mixed-
causal-anticausal domain adaptation problem remain open. We aim to shed light on this challenging
setting by constructing explicit conditional invariant transforms.

The role of causality in facilitating domain adaptation problem is first articulated in [44], focusing on
causal and anticausal predictions. Reweighting methods have been extensively studied for covariate
shift [39, 46, 47], which assumes that only the feature distribution changes over environments while
the conditionals remain the same. The label shift, which aligned with the anticausal setting, has
attracted much attention recently [28, 3, 16]. Many other interesting domain adaptation methods
have been developed but they are less related to this work. The performance bounds using Vapnik-
Chervonenkis (VC) theory has been initiated in [7]. There are fundamental works from the robust
statistics perspective including distributional robust learning [4, 23, 45, 15, 26, 12] and adversarial
machine learning [18, 40].

B Definitions

B.1 Linear SCM

Consider a response Y ∈ R and a vector of predictors X = (X1, . . . , Xd)
⊤ ∈ X ⊆ Rd, a linear

SCM over (X,Y ) is defined by

M :

{
X = γY +BX + εX
Y = β⊤X + εY ,

where β, γ ∈ Rd, B ∈ Rd×d, εX = (εX1 , . . . , εXd
)⊤, and the noise variables {εX1 , . . . , εXd

} and
εY are jointly independent. We use G(M) to denote the directed acyclic graph induced byM, with
edges determined by the non-zero coefficients inM.
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C Types of Interventions on Linear SCMs

This formulation of the interventions onM as inMe is fairly general. From the structural perspective,
it consists of causal, anticausal, and mixed-causal-anticausal settings [44]. It should be noted that
we only adopt the linear SCM rather than the fully specified SCMs as in [34], since learning the
functional forms can be more complicated than the prediction problem we aim to solve. Regarding
the interventions types, we discuss several special cases to put it into perspective.

1. Shift interventions on X or Y : A variable Xj is intervened through a shift if the mean of the noise
variable εeX,j changes with e ∈ Eall. For the shift intervention on Y , the mean of εeY changes .

2. Interventions on the coefficients of X or Y : A variable Xj is intervened through coefficients if
the coefficients {γe

j , B
e
j·} change with e ∈ Eall. For Y , the change is on the coefficient vector βe.

3. Interventions on the noise variance of X or Y : Similar to shift interventions, a variable Xj or Y
is intervened if its noise variance changes.

D Simulations on Example 1

Let X4 := EPe
[X3|X1, X2], X5 := EPe

[X2|X1, X3], and X6 := EPe
[X1|X2, X3]. We illustrate

the linear invariant relations that correspond to X4 and X5 as provided in Example 1. Recall that
such invariant relations do not hold for X6.

Figure 2: Illustrations of invariant relations in Example 1. In (a), we illustrate the linear invariant relation (6) by
visualizing estimates of the tuple (Xe

4 , η⊤Xe,EPe [Y |X]) (corresponding to the {x, y, z} axes). Similarly, for
(b) and (c), we verify such a relation for Xe

5 and Xe
6 . The overlaps between the red dots (e = 1) and the blue

dots (e = 2) in (a) and (b) indicate the invariant linear relations. However, the red and blue dots in (c) are not
aligned, implying that no invariant relations as in (6) hold for (EPe [Y |X], Xe

6).

Regarding the estimation of the MMSE estimators and the coefficients in the linear relations, we take
the estimation procedure for Figure 2.(a) as an example in the following. For e ∈ {1, 2}, Xe

4 and
EPe [Y |X] are estimated using OLS. Then, η (denoted as η a⃝ in Figure 2.(a)) is estimated using OLS
by regressing EPe [Y |X] on (Xe

4 , X
e) using the pooled data.

E Another Toy Example

We extend Example 1 to allow for interventions on X1, X2, and Y through the means and/or variances
of the noise variables (see Fig. 3).

Figure 3: G(Me
toy) with interventions on (X1, X2).
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Example 2. Consider training modelMe
toy in Example 1 with additional shift interventions and/or

interventions on the noise variances. The results are summarized in the following.

1. Under shift interventions on Y and X1 and an intervention on the variance of X1, the two
invariant relations in Example 1 hold with additional intercept terms.

2. When Y is intervened through the variance of NY , the relations in Example 1 will not hold. In this
case, new relations can be established if EPe

[Y |X] in Example 1 is replaced by EPe
[Y |XPA(Y )] =

EPe
[Y |X1, X2].

3. When X2 is intervened through either the mean or variance, a relation as in Example 1 that is
based on EPe [X2|X1, X3] will not hold.

4. Combining the interventions above, there will be one invariant relation left,

EPe
[Y |X1, X2] = EPe

[X3|X1, X2]−Xe
1 + b, (11)

for some intercept b ∈ R. It is noteworthy that (11) will fail to hold if X3 is intervened. However,
due to the intervention on the noise variance of Y , Pe(Y |XS ,EPe [X3|X1, X2]) is not invariant
for any S ⊆ {1, 2, 3}, since VarPe(Y |XS ,EPe [X3|X1, X2]) changes with e.

F Properties of the IMP

F.1 Identification of the Matching Parameters

We rewrite (7) in a compact form as

El,Pe
[Y |XS ] = θ⊤X̃e, (12)

where
X̃e := (Xe

1 , . . . , X
e
d ,El,Pe [Xk|XR])

⊤, (13)

and θ = (η⊤, λ)⊤ denotes the matching parameter.
Proposition 1. For a tuple (k,R, S) that satisfies an IMP, the matching parameter θ can be uniquely
identified in E train if |E train| ≥ 2 and

El,Pe
[Xk|XR = x] ̸= El,Ph

[Xk|XR = x] (14)

for some e, h ∈ E train and x ∈ XR.

Proof. Let E train = {e1, . . . , en}. For a tuple (k, S,R) that satisfies the IMP, let Ŷ =
(E[Y e1 |Xe1

S ], . . . ,E[Y en |Xen
S ])⊤ and

X̃ =

(X
e1)⊤ El[X

e1
k |X

e1
R ]

...
...

(Xen)⊤ El[X
en
k |X

en
R ]

 := [X v] ,

where the rows of X̃ are independent. According to (12), we have Ŷ = X̃θ. Then, if E[X̃
⊤
X̃] is

invertible, we have

(E[X̃
⊤
X̃])−1E[X̃

⊤
Ŷ ]

= (E[X̃
⊤
X̃])−1E[X̃

⊤
X̃]θ = θ. (15)

Now, we prove the invertibility. Observe that

E[X̃
⊤
X̃] =

[
E[X⊤X] E[X⊤v]
E[v⊤X] E[v⊤v]

]
,

where E[X⊤X] =
∑n

i=1 E[X
ei(Xei)⊤] is inveritble since it is a sum of positive-definite matrices.

Then, E[X̃
⊤
X̃] is invertible if and only if

E[v⊤v]− E[v⊤X]E−1[X⊤X]E[X⊤v] ̸= 0.
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This is equivalent to
E[(v −Xβ)⊤(v −Xβ)] ̸= 0,

where β := E−1[X⊤X]E[X⊤v]. This is true since there is no b ∈ Rd such that v = Xb almost
surely by our assumption in (14). Therefore, θ is uniquely determined by (15).

F.2 An Illustration for the First, Second, and Invariant Matching Properties

Figure 4: A triangular relation consists of the first, second, and invariant matching properties.

G More on the Characterization of IMPs

G.1 Interventions on the Response

Corollary 1. For modelMe,1, the first and second matching properties hold in the following cases.

1. On the first MP: The first matching property holds for S = {1, . . . , d}.

2. On the second MP: For each k ∈ {j ∈MB(Y ) : αe
j = 0} and R = −k := {1, . . . , d} \ k,

the second matching property holds.
Proposition 2. Under Assumption 1, for each (k,R) in Corollary 1, we have λX ̸= 0 in the second
matching property if B−k,k is not in the following hyperplane,

w⊤x+ b = 0, (16)

where w ∈ R(d−1) and b ∈ R are determined by the parameters inMe,1 other than B−k,k.

The explicit expressions of w and b using the parameters in Me,1 are provided in the proof of
Proposition 2. For generic choices of the parameters, the second matching property holds with
λX ̸= 0 since Bk,−k is not necessarily on the hyperplane described in (16).

When Y is additionally intervened through the noise variance, the proof of Theorem 1 will break
down in general (see Remark 2 in Appendix H.1). However, recall that the first matching property
holds for S = PA(Y ) by definition. In this case, we provide an example for the second matching
property in the following corollary.
Corollary 2. Under Assumption 1, if Y is intervened through the noise variance in modelMe,1, the
second matching property holds for k ∈ CH(Y ) such that k ̸∈ DE(i) for any i ∈ CH(Y ) \ k, and
R = {1, . . . , d} \DE(Y ).

The resulting IMPs no longer satisfy the invariance property (4), but we can use the IMP directly for
the prediction of Y etest

.
Remark 1. To sum up, the class of IMPs constructed under interventions on Y only through the
coefficients and shifts will in general imply the invariance property (4), but it is not the case under
interventions on Y through the noise variance.

G.2 Interventions on both Predictors and Response

To generalize the setting when only Y is intervened to the general setting when X and Y are both
intervened, an idea is to the merge the setting when only Y is intervened with the one when only X
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is intervened. The later setting has been studied in the stabilized regression framework [38]. The
following set of predictors is identified (see Definition 3.4 therein),

X int(Y ) = CHI(Y ) ∪
{
j ∈ {1, . . . , d} | ∃i ∈ CHI(Y )

such that j ∈ DE(Xi)
}
,

which contains the intervened children of Y (denoted by CHI(Y )) and the descendants of such
children. This useful notion can be defined for each Xj ∈ {X1, . . . , Xd}, denoted by X int(Xj)
for each Xj . When only X is intervened, the invariance principle Pe(Y |XS) = Ph(Y |XS) holds
for S∗ = {1, . . . , d} \X int(Y ); the Markov blanket of Y defined with respect to XS∗ is called the
stable blanket of Y in [38]. In other words, by excluding the predictors in X int(Y ), the target Y is
blocked from the interventions on X when conditioning on XS∗ . This holds when Y is additionally
intervened, as if only Y is intervened given XS∗ . In order for S∗ to include as least one child of Y as
in Assumption 1, we need the following assumption.

Assumption 2. When Y is intervened, we assume that Y has at least one child that is not intervened
and that child is not a descendent of some intervened child of Y .

Based on the observation above, we identify an important class of IMPs for the general setting in the
following Theorem.
Theorem 2. For the training modelMe without the intervention on the noise variance of Y , the first
and second matching properties hold in the following cases.

1. On the first MP: For S = {1, . . . , d} \X int(Y ), the first matching property holds.

2. On the second MP: For each k ∈ {1, . . . , d} \ {PE ∪ X int(Y )}, and R = {1, . . . , d} \
{k,X int(Xk) ∪X int(Y )}, the second matching property holds.

Furthermore, if λX ̸= 0 in the second matching property, then ϕe(X
e) = (Xe

S , El,Pe [Xk|XR])
⊤

satisfies (4).

Similar to the argument in the proof of Theorem 1, the class of ϕ’s from Theorem 2 will lead to the
same test population loss, as they depend on the same S that is fixed in this setting. Assumption 2
is necessary for λX ̸= 0, while sufficient conditions for λX ̸= 0 can be found similarly as in
Proposition 2. When Y is additionally intervened through the noise variance, the second matching
property in Theorem 2 still holds (see Remark 3 in Appendix H.4).

H Proofs for the Theoretical Results in Section 6 and Section G

By introducing an environmental random variable E ∈ Eall, we define a mixture ofMe’s, e ∈ Eall,
as follows,

M :

{
X = γ(E)Y +B(E)X + εX(E)

Y = β⊤(E)X + εY (E),

where E in a root node in G(M) and the noise variables are jointly independent given E. We do not
specify the distribution of E but assume that E does not have a degenerate distribution. Under this
formulation, the invariance property (4) is equivalent to

Y ⊥⊥ E |ϕ(E,X), (17)
and the invariant, first, and second matching properties can be equivalently written as

El[Y |XS , E = e] = λEl[Xk|XR, E = e] + η⊤X, (18)

El[Y |XS , E = e] = λY E[Y |XPA(Y ), E = e] + η⊤Y X, (19)

El[Xk|XR, E = e] = λXE[Y |XPA(Y ), E = e] + η⊤XX, (20)

for e ∈ Eall. As a special case ofM, we define a mixture ofMe,1’s as

M1 :

{
X = γY +BX + εX (21)
Y = (α(E) + β)⊤X + εY , (22)

where only Y is intervened through the coefficients.

The proofs of Theorems 1, 2 and Corollaries 1, 2 will be presented under this formulation.
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H.1 Proof of Theorem 1

For the first part, let Z(E) = α⊤(E)X denote an additional node in the acyclic graph G(M1), then
the assignment of Y in (22) becomes

Y = Z(E) + β⊤X + εY , (23)

where E is no longer a parent of Y . Note that Z(E) = E[Y |XPA(Y ), E]− β⊤X as we assume both
X and Y have zero means. Since E is a root node, observe that E and Y can be d-connected through
only two types of paths as follows,

1. E → Z(E)→ Y ,
2. E → Z(E)← Xi → · · · → Xl ← · · · ← Y ,

where i ∈ PE, and Xi → · · · → Xl ← · · · ← Y is a V-structure for some l ∈ DE(i) ∩DE(Y ).
Note that the second type of path does not exist if Assumption 1 is not satisfied or CH(i) \ Y is
empty.

We start by showing that the d-separation Y ⊥⊥ GE | {Z(E), XS} holds given PE ⊆ S. First,
the first path is immediately blocked by Z(E). Second, for any s ∈ CH(i) \ Y , the path E →
Z(E) ← Xi → Xs is blocked by {Z(E), Xi}. Thus, the second path is blocked given Z(E) and
XS . According to the Markov property of SCMs [33], the d-separation Y ⊥⊥ GE | {Z(E), XS}
implies

Y ⊥⊥ E | {Z(E), XS}. (24)
Now, we prove that the above conditional independence implies the first matching property (19).

By definition, the LMMSE estimators only rely on the (finite) first two moments of the variables.
Thus we start with the case when (X,Y )|E=e is jointly Gaussian, for each e ∈ Eall. First we have

El[Y |XS , E = e]
(a)
= E[Y |XS , E = e]

(b)
= E[Y |Z(e), XS , E = e],

where (a) follows from the Gaussian assumption on (X,Y )|E=e and (b) from the fact that Z(e) is a
function of {XS , E = e} given our assumption that PE ⊆ S. This implies that

El[Y |XS , E] = E[Y |Z(E), XS , E]
(a)
= E[Y |Z(E), XS ],

where (a) follows from the conditional independence relation (24). Using the Gaussian assumption
again, we have E[Y |Z(e), XS ] = El[Y |Z(e), XS ]. Thus putting all the pieces together, we obtain

El[Y |XS , E = e] = El[Y |Z(e), XS ] (25)

= aZ(e) + b⊤XS , (26)

where a ∈ R and b ∈ R|S| that are not functions of E. When (X,Y )|E=e is non-Gaussian, one can
replace it with Gaussian random variables with the matching first and second moments. Then the
same argument leading to (26) still holds. Then, the first matching property follows from the fact that
Z(E) = E[Y |XPA(Y ), E]− β⊤X .

Similarly, for the second part, we first show the following d-separation Xk ⊥⊥ G E | {Z(E), XR}.
Observe that Xk and E can be d-connected through two types of paths as follows,

1. E → Z(E)→ Y · · ·Xk,
2. E → Z(E)← Xi · · ·Xk,

with i ∈ {j ∈ {1, . . . , d} : αj(E) ̸= 0}, where Y · · ·Xk denotes any directed path between Y and
Xk, and similarly for Xi · · ·Xk. The two types of paths are immediately blocked by {Z(E), XR}
under our assumption that PE ⊆ R. We thus have the following when X|E=e is jointly Gaussian,

El[Xk|XR, E = e] = El[Xk|Z(e), XR, E = e]

= El[Xk|Z(e), XR]

= cZ(e) + d⊤XR (27)
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for some c ∈ R and d ∈ R|R| do not depend on E. The non-Gaussian cases can be handled in the same
way as before, and thus the second property follows again from Z(E) = E[Y |XPA(Y ), E]− β⊤X .
Observe that we have λX = c in the second matching property and Assumption 1 is a necessary
condition for λX ̸= 0.

Finally, given R ⊆ S, we have that (27) with c ̸= 0 (i.e., λX ̸= 0) provides a one-to-one mapping
between {Z(E), XS} and {El[Xk|XR, E], XS}. Therefore, the conditional independence (24) is
equivalent to

Y ⊥⊥ E
∣∣ {El[Xk|XR, E], XS}. (28)

This implies that, using our previous notation, ϕe(X
e) = (Xe

S , El,Pe
[Xk|XR])

⊤ satisfies the invari-
ance property (4), which implies3 EPe

[Y |XS ] = EPe
[Y |ϕe(X)]. Effectively, EPe

[Y |ϕe(X)] serves
as a representation of EPe

[Y |XS ] that is invariant. Note that Φ is not empty when λX ̸= 0 holds with
R ⊆ S. This implies that any ϕ ∈ Φ with S = {1, . . . , d} minimizes Ltest(fϕ), since the optimality
of ϕ ∈ Φ only relies on the corresponding S.
Remark 2. When εY is replace by εY (E), we consider the following two cases.

1. The mean of εeY is a function of e, and its variance is a constant.

2. The variance of εeY is a function of E, and its mean can be either a function of e or a constant.

For the first case, we can introduce Xd+1 := 1 that is a parent of Y with αd+1 := E[εY (E)|E].
Additionally, Xd+1 is a parent of every Xj such that εX,j has a non-zero mean. Specifically, the
coefficient of Xd+1 in the assignment of Xj will be E[εX,j ]. Thus, the problem reduces to the setting
when εeX and εeY have zero means, which has been proved in Theorem 1. For the second case,
however, the varying variance of εY (E) cannot be separated as the mean, thus E is always a parent
of Y and the path E → Y cannot be blocked by Z or any XS ⊆ {X1, . . . , Xd}, i.e., the proof of
Theorem 1 breaks down.

H.2 Proof of Proposition 2

The following lemma is a slight extension of Lemma 3.6 from [38], where we consider linear models
with dependent noise variables rather than linear SCMs considered in [38].

Lemma 1. Consider V ∈ R and X = (X1, . . . , Xp)
⊤ ∈ Rp satisfying a linear model,[

V
X

]
=

[
0 h⊤

g A

] [
V
X

]
+

[
eV
eX

]
:= Ã

[
V
X

]
+ e, (29)

where eV ∈ R, g, h, eX ∈ Rp, and A ∈ Rp×p. Assume that I − Ã is invertible, the population OLS
estimator when regressing V on X is given by

θols =
[
c− g⊤Σ̃−1

(
I − cσ2gg⊤Σ̃−1

)
v
]
h

+
(
I −A⊤) [cσ2Σ̃−1g + Σ̃−1

(
I − cσ2gg⊤Σ̃−1

)
v
]
,

where c :=
(
1 + σ2g⊤Σ̃−1g

)−1

, Σ̃ := Σ + vg⊤ + gv⊤, and

Cov(e, e) :=

[
σ2 v⊤

v Σ

]
,

with σ2 := Var(eV ), Σ := Cov(eX , eX), and v := Cov(eX , eV ).

Proof. Let P = [01×d, Id×d], we continue from Equation A.7 in [38] as follows,

θols = Cov−1(X,X) Cov(X,V )

=

{
P (I − Ã)−1

[
σ2 v⊤

v Σ

] [
(I − Ã)−1

]⊤
P⊤

}−1

P (I − Ã)−1

[
σ2

v

]
+ h,

3We use the shorthand ϕe(X) for ϕe(X
e) since the expectation is with respect to Pe.
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and it has been shown that
P (I − Ã)−1 = [w,M ],

for M = (I −A− gh⊤)−1 and w = Mg. Then,

θols =
[
σ2ww⊤ + wv⊤M⊤ +Mvw⊤ +MΣM⊤]−1(

σ2w +Mv
)
+ h

:=
[
σ2ww⊤ +M Σ̃M⊤

]−1 (
σ2w +Mv

)
+ h,

where Σ̃ := Σ + vg⊤ + gv⊤ and it was computed in [38] using the Sherman-Morrison formula [6]
that [

σ2ww⊤ +M Σ̃M⊤
]−1

=(I −A− gh⊤)⊤Σ̃−1
(
I − cσ2gg⊤Σ̃−1

)
M−1,

with c :=
(
1 + σ2g⊤Σ̃−1g

)−1

. Then, some simple algebra leads to

θols = h+ cσ2(I −A− gh⊤)⊤Σ̃−1g

+ (I −A− gh⊤)⊤Σ̃−1
(
I − cσ2gg⊤Σ̃−1

)
v

=
[
c− g⊤Σ̃−1

(
I − cσ2gg⊤Σ̃−1

)
v
]
h

+
(
I −A⊤) [cσ2Σ̃−1g + Σ̃−1

(
I − cσ2gg⊤Σ̃−1

)
v
]
.

H.3 Proof of Proposition 2

For each tuple (k,R, S), k ∈ {j ∈MB(Y ) : αe
j = 0}. R = −k := {1, . . . , d} \ k, S = {1, . . . , d},

we prove that λX ̸= 0. Equivalently, we prove that El[Xk|X−k, E = e] is a non-constant function of
e.

First, recall that, when the target variables Y is unobserved, the relations between the predictors in
Me,1, are described by

X =
(
γ(β + αe)⊤ +B

)
X + γεY + εX .

Now, we rewrite the above equation in the same form as the linear model (29) as follows,[
Xk

X−k

]
=

[
0 γk(β + αe)⊤−k +Bk,−k

γ−kβk +B−k,k γ−k(β + αe)⊤−k +B−k,−k

] [
Xk

X−k

]
+ εX + γεY ,

where the top-left element of the coefficient matrix is zero, i.e., γk(βk + αe
k) + Bk,k = 0 since

αe
k = 0 (by assumption), Bk,k = 0 (due to acyclicity), and γkβk = 0 (since Xk cannot be both a

child and a parent of Y ). Now, by Lemma 1, the population OLS estimator when regressing Xk on
X−k given E = e is

θols,k(e) =
[
c− g⊤Σ̃−1

(
I − cσ2gg⊤Σ̃−1

)
v
]
h

+
(
I −A⊤) [cσ2Σ̃−1g + Σ̃−1

(
I − cσ2gg⊤Σ̃−1

)
v
]

:= ah+ (I −A⊤)b, (30)

where h = γk(β + αe)−k + B⊤
k,−k, v = γkσ

2
Y γ−k, g = βkγ−k + B−k,k, A = γ−k(β + αe)⊤−k +

B−k,−k, Σ = Cov(NX−k
, NX−k

), Σ̃ = Σ + vg⊤ + gv⊤, and c =
(
1 + σ2g⊤Σ̃−1g

)−1

. Note that

a ∈ R and b ∈ R(d−1) are not functions of e and
a = g⊤b+ c(1 + σ2g⊤Σ̃−1g) = g⊤b+ 1. (31)
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1. k ∈ CH(Y ): First, observe that βk = 0 implies g = B−k,k. By plugging h and A into (30), we
obtain

θols,k(e) = (a− γ⊤
−kb)α

e
−k + aγkβ−k

+ (I − β−kγ
⊤
−k −B⊤

−k,−k)b,

where αe
−k in the first term is non-vanishing only if

a− γ⊤
−kb = 1 + (B−k,k − γ−k)

⊤b ̸= 0,

where we use (31).

2. k ∈ PA(Y ): Observe that v = 0(d−1) and γk = 0, then

θols,k(e) = cαe + cβ + cσ2
(
I −A⊤)Σ−1g

= c(1 + σ2βkγ
⊤
−kΣ

−1γ−k

+ σ2γ⊤
−kΣ

−1B−k,k)α
e
−k + cβ

+ cσ2(I − β−kγ
⊤
−k −B⊤

−k,−k)Σ
−1g,

where the first term is not vanishing only if

1 + σ2βkγ
⊤
−kΣ

−1γ−k + σ2γ⊤
−kΣ

−1B−k,k ̸= 0.

3. k ∈ {j : ∃i ∈ CH(Xj) such that i ∈ CH(Y )}: Again, we have v = 0(d−1)×1 and γk = 0.
Additionally, we have βk = 0, then αe

−k in θols,k(e) is non-vanishing only if

1 + σ2γ⊤
−kΣ

−1B−k,k ̸= 0.

H.4 Proof of Corollary 2

First, we extract the assignments of (Xk, XR)’s from (10) with E = e, where k ∈ CH(Y ) and
k ̸∈ DE(Xi) for any i ∈ CH(Y ) \ k and R = {1, . . . , d} \DE(Y ) as follows,[

Xk

XR

]
=

[
0 γk(β + αe)⊤R +Bk,R

0|R|×1 BR,R

] [
Xk

XR

]
+

[
εX,k + γkε

e
Y

εX,R

]
,

where the zeros in the coefficient matrix are due to the fact that all the descendants of Xk are excluded
from XR since DE(Xk) ⊆ DE(Y ) and R = {1, . . . , d} \DE(Y ). Note that Xk is a child of Y
that is not a descendent of any other child of Y , thus any removed node j ∈ {1, . . . , d} \ {k,R} can
not be the parent of any remaining node i ∈ {k,R}.
Now, using Lemma 1, the population OLS estimator when regressing Xk on XR given E = e is

θols(e) = γk(β + αe)R +B⊤
k,R.

This implies
El[Xk|XR, E = e] = γk(β + αe)⊤X +Bk,·X,

where we use the fact that βj = αe
j = Bk,j = 0 for j ̸∈ R (recall that {1, . . . , d}\R does not contain

either the parents of Xk or parents of Y ). Therefore,

El[Xk|XR, E = e] = γkE[Y |XPA(Y ), E = e] +Bk,·X,

which is the second matching property.

Remark 3. Observe that θols(e) does not depend on BR,R or the covariance of εX,R, thus the second
matching property holds even if every Xj ∈ XR is intervened.
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H.5 Proof of Theorem 2

For the first part, we only need to prove that Y and E are d-connected only through the arrow E → Y
when conditioning on XS , S = {1, . . . , d} \X int(Y ). The rest is simply the proof of the first part of
Theorem 1. Since E is a root node, Y and E can only be d-connected through the two types of paths,

1. E → · · · → Y ,
2. Y → · · · → Xj ← · · · ← E,

where j ∈ DE(Y ) ∩ DE(E) , and E → · · · → Y denotes any directed path from E to Y . For
the first type of paths, since PA(Y ) ⊆ S, the only unblocked path when conditioning on XS is
E → Y . For the second type of paths that are V-structures, we have j ̸∈ S since X int(Y ) contains all
the intervened children of Y and the descendants of such children, implying that the V-structures
are always blocked when conditioning on XS . Thus, the only unblocked path between E and Y is
E → Y when conditioning on XS .

For the second part, similarly, for k ∈ {1, . . . , d} \ {PE ∪ X int(Y )} and R = {1, . . . , d} \
{k,X int(Xk) ∪ X int(Y )}, we prove that Xk is d-connected with E only through paths that con-
tain the subpath E → Y when conditioning on XR (i.e., the first type of path below). Following
the same idea as in the first part, Y and E are d-connected only through the arrow E → Y when
conditioning on XR since X int(Y ) ∩ R = ∅ and PA(Y ) ⊆ R. Then, since Xk is not intervened
(i.e., E ̸∈ PA(Xk)), the variables E and Xk can only be d-connected through two types of paths as
follows,

1. E → Y → · · · → Xk

2. E → · · · → Xi ← · · · ← Xk,

where i ∈ R and we use the fact that k ̸∈ X int(Y ) (i.e., the node k is not an intervened child of Y or
a descendant of an intervened child of Y ).

To handle the second type of paths, we will need two technical results. (I) If i ∈ R, then j ∈
R for any j ∈ PA(i) such that j ̸= k. This can be proved by contradiction. If j ̸∈ R (i.e.,
j ∈ X int(Y ) ∪X int(Xk)), then we have i ∈ X int(Y ) ∪X int(Xk) by the definition of X int(Y ) and
X int(Y ), i.e., i ̸∈ R. (II) For i ∈ R, observe that Xi can only be a child of Xk, otherwise the path
Xi ← Xj ← · · · ← Xk is blocked by Xj ∈ PA(Xi) when conditioning on XR, since i ∈ R implies
j ∈ R.

Now, we proved that the second type of paths are always blocked when conditioning on XR, by
focusing on E → · · · → Xi. For any Xi ∈ CH(Xk), the subpath E → · · · → Xi cannot
be E → Xi, since i ∈ R implies that Xi is not an intervened child of Xk. Finally, the path
E → · · · → Xl → Xi is blocked by Xl ∈ PA(Xi) when conditioning on XR, since i ∈ R implies
that l ∈ R.

I Algorithms

For each e ∈ E train, we are given the i.i.d. training data Xe ∈ Rne×d,Y e ∈ Rne , and we observe
the i.i.d. test data Xτ ∈ Rm×d and aim to predict Y τ ∈ Rm. Let X ∈ Rn×d with n :=

∑|E train|
i=1 ne

denote the pooled data of Xe’s. In this section, we present the implementation of our method starting
with the case when e is sampled from a discrete distribution with a finite support. In this setting, we
expect to have ne ≫ 1 for every e ∈ E train in general, thus it is possible to do estimation based on
the data from each single environment. The challenging setting of continuous environments will be
handled afterwards.

I.1 Discrete Environments

To implement our method, the main task is to identify the set of IMPs IM from the training data. For
each tuple (k,R, S) in Algorithm 1, we test the following null hypothesis

H0 : There exists θ ∈ Rd+1 such that (12) holds.

We propose two test procedures.
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1. Test of the Deterministic Relation: Since the IMPs are linear and deterministic (i.e., noiseless),
we test whether the residual vector R ∈ Rn of fitting an IMP on (k,R, S) is a zero vector or not
using the test statistics,

T =
1

n
R⊤R,

where R is a pooled data vector of Re’s defined below. To fit an IMP, we first estimate the two
LMMSE estimators in (7) using OLS for each environment,

L̂e,1 := (X⊤
e,SXe,S)

−1X⊤
e,SY e ,

L̂e,2 := (X⊤
e,RXe,R)

−1X⊤
e,RXe,k .

Let L̂1 ∈ Rn and L̂2 ∈ Rn denote the pooled data of L̂e,1’s and L̂e,2’s, respectively. It is
noteworthy that L̂2 only depends on X , thus L̂

τ

2 for the test data can be computed similarly using
Xτ . Next we estimate the matching parameter using OLS on the pooled data (recall that the
matching parameter cannot be identified using the data from a single environment). The OLS
estimator of the matching parameter is

θ̂ := (η̂⊤, λ̂)⊤ = ([XS , L̂2]
⊤[XS , L̂2])

−1[XS , L̂2]
⊤L̂1 .

For each e ∈ E train, we obtain the residual vector of fitting an IMP
Re = L̂e,1 − λ̂L̂e,2 −Xe,S η̂ .

2. Approximate Test of Invariant Residual Distributions: According to the invariance property (5),
we test whether the residual when regressing Y on [XS ,L2] has constant mean and variance.
Specifically, we use the t-test and F-test with corrections for multiple hypothesis testing from [35]
(see Section 2.1 Method II). The test yields a p-value.

The test statistic from the first procedure and the p-value from the second procedure quantify how
likely an IMP holds (i.e., the smaller the more likely), and thus we will refer to either one of them as
an IMP score denoted by sIMP. Let Î = {(k,R, S) : sIMP(k,R, S) < cIMP} denote the set of IMPs
identified from the training data, where cIMP is some cutoff parameter. Then, since IMPs are not
equally predictive in general, we focus on the most predictive ones by introducing the mean squared
prediction error as a prediction score spred, and we select the set of IMPs that are more predictive
Îpred = {(k,R, S) ∈ Î : spred(k,R, S) < cpred} with some cutoff parameter cpred. For the second
IMP score that is a p-value, the cutoff parameter cIMP is simply a significance level that is fixed to
0.05 in this work. For choosing the rest cutoff parameters, we follow a bootstrap procedure from [37]
with one subtle difference: We sample the same amount of bootstrap samples from each environment
rather than sampling over the pool data as in [37], since our procedure involves estimations using the
data from each environment.

Algorithm 1 Invariant Prediction using the IMP (discrete)

procedure IDENTIFY IMPS FROM THE TRAINING DATA
for k ∈ {1, . . . , d}, S ⊆ {1, . . . , d}, R ⊆ S \ k do

Compute the IMP score simp and the prediction
score spred for i = (k,R, S)

Regress Y on [XS , L̂2] to obtain fi
Identify Î and Îpred

procedure PREDICTION ON THE TESTING DATA

Ŷ
τ
= 1

|Îpred|

∑
i∈Îpred

fi(X
τ
S , L̂

τ

2)

In practice, there can be spurious IMPs that have extremely small IMP scores but have large prediction
scores, e.g., when Y is independent of XS and Xk is independent of XR. To this end, we will pre-
select (k,R, S)’s with prediction scores smaller than the median of the all the computed prediction
scores before identifying Î. If the regression function fi in Algorithm 1 is chosen to be linear, one
can use the IMP directly, i.e.,

Ŷ IMP(k,R, S) = [XS , L̂2]θ̂, (32)
which we call the discrete IMP estimator denoted by IMPd. To make use of all the IMPs selected in
Îpred, we use an averaging step for the prediction of Y τ in Algorithm 1.
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I.2 Continuous Environments

To model continuous environments, we introduce an environmental variable U that is a continuous
random variable with support U . Apparently, this is a much more challenging setting compared
with the discrete environment case, as we only have one training data sample for each u ∈ U ,
making the OLS a poor estimate of El,Pu

[Y |XS ]. Fortunately, it turns out that we can leverage the
semi-parametric varying coefficient (SVC) models [13] (see Appendix ??) to remedy this issue. In
particular, we estimate El,Pu

[Y |XS ] by fitting,

Y = M + β⊤Z +N with M = α⊤(U)W, (33)
where N is independent of U and the two vectors of predictors W ∈ Rp (for the varying coefficient)
and Z ∈ Rq (for the invariant coefficients) with p+ q = |S|. Since we assume N ⊥⊥ U , we focus on
the settings when Y is not intervened through the noise variance.
Remark 4. Our estimation procedure for the discrete environments can also be formulated under
the SVC model with a discrete random variable U , where we treat all the coefficients as varying
coefficients (i.e., β = 0), and IMPd becomes an estimate of M .

An SVC model over (Y τ ,W τ , Zτ , Nτ ) for the test data can be defined similarly, where σ2 =
E[(Nτ )2] is the population generalization error of the IMP estimator. Observe that the linear SCM
Mu in (??) can be viewed as a collection of SVC models parameterized by U = u. Thus the
estimation tasks for the linear SCMs from continuous environments can greatly benefit from the
existing theories developed for SVC models. More precisely, we employ the following estimate

̂El,Pu
[Y |XS ] = M̂ |U=u + β̂⊤Z,

where the profile least-squares estimation of β and M proposed in [13] can be found in Appendix ??.
Similarly, El,Pu

[Xk|XR] can be estimated by fitting another semi-parametric varying coefficient
model

V = MV + β⊤
V ZV +NV with MV = α⊤

V (U)W, (34)
where V denotes any Xk, and XR is divided into ZV ∈ Rr and W .

It is noteworthy that the two SVC models share the same set of predictors with varying coefficients,
which we explain below. A challenge for fitting such models is that the vector of predictors with
varying coefficients, namely W , needs to be known. For continuous environments, we focus on
discovering IMPs that can be decomposed into the first and second matching properties. Thus, since
the causal function captures the predictors with varying coefficients, the first and second matching
properties imply that the vector W is simply XPE , i.e., the parents of Y with varying coefficients in
Mu, for both models.

Based on this observation and Theorem 1, we replace the exhaustive search over (k,R, S) in
Algorithm 1 by a search over (P, k,R, S) according to the conditions in Theorem 1 with PE = P .
That is, we choose (P, k,R, S) from

P ⊆ {1, . . . , d}, k ∈ {1, . . . , d} \ P,
P ⊆ S ⊆ {1, . . . d}, P ⊆ R ⊆ S \ k,

such that W = XP , Z = XS\P , V = Xk, and ZV = XR\P .

Unlike IMPd in (32), we make use of the fact that β is invariant and propose the continuous IMP
estimator denoted by IMPc as follows

Ŷ IMP(P, k,R, S) = [W ,M̂V ]ŵ +Zβ̂, (35)
with the matching parameter w ∈ Rp+1 estimated by

ŵ = ([W ,M̂V ]
⊤[W ,M̂V ])

−1[W ,M̂V ]
⊤M̂ . (36)

The data matrices for the two models (e.g., W ∈ Rn×p) can be defined accordingly and we provide
the details in Appendix M.1. In this case, the residual vector for the first IMP score is given by

R = M − [W ,M̂V ]ŵ.

Note the the second IMP score is not applicable for continuous environments due to the small sample
size in each environment, thus we focus the first IMP score.
Remark 5. The IMPd and IMPc are similar in spirit, the IMPc relies on the first and second matching
properties for identifying W (so we can reuse Z in (35)), whereas IMPd directly tests the IMP
since the estimation process treats all the coefficients as varying coefficients (also see the proof of
Corollary 4).
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J Experiments

The prediction performance is measured by the mean residual sum of squares (RSS) on the test
environments. We compare our method with several baseline methods: Ordinary Least Squares
(OLS), stabilized regression (SR) [38], anchor regression (AR) [43]. We have also compared
with domain invariant projection (DIP) [5], conditional invariance penalty (CIP) [21], conditional
invariant residual matching (CIRM) [9], and invariant risk minimization (IRM) [2]; it turns out that
the empirical performance of these methods are not as competitive as the other baselines in our
experimental settings, thus we do not report them below.

The two IMP scores lead to two versions of our algorithm, and we refer to the first one IMP and
the second one IMPinv (as it tests the invariance of the noise mean and variance). We focus on
linear functions fi’s in Algorithm 1, namely, we use the IMP estimators. For the profile likelihood
estimation, we adopt the Epanechnikov kernel k(u) = 0.75max(1− u2, 0) with the bandwidth fixed
to be 0.1. We test DIP, CIP, CIRM, and their variants provided in [9] with the default parameters. For
the anchor regression, we use a 5-fold cross-validation procedure to select the hyper-parameter γ from
{0, 0.05, 0.1, . . . , 0.5}. The significance levels are fixed to be 0.05 for all methods. We randomly
simulate 500 data sets for each experiment, if not mentioned otherwise.

J.1 Discrete environments

First, we generate linear SCMsMe’s without interventions. For each e ∈ E train = {1, . . . , 5} or
e ∈ E test = {6, . . . , 10}, we randomly generate a linear SCM with 11 variables as follows. The
graph G(Me) is specified by a lower triangular matrix of i.i.d. Bernoulli(1/2) random variables.
The response Y is randomly selected from the 11 variables and we require that Y has a least one
parent and one child in G(Me). For each linear SCM, the non-zero coefficients are sampled from
Unif[−1.5,−0.5] ∪ [0.5, 1.5] and the noise variables are standard normal. For each training or test
environment, we simulate i.i.d. data of sample size 300.

J.1.1 Interventions on X

Since the baseline methods have been examined extensively under shift interventions, we focus on
shift interventions on X for the comparison. The general interventions on X will be considered in
Section J.3. Specifically, for each training environment, we randomly selected 4 predictors to be
intervened through shifts sampled from Unif[−2, 2]. For each test environment, the shifts are sampled
from Unif[−10, 10]. In Fig. 5, IMPinv performs similarly to SR since they share a similar idea when
only X is intervened. But our IMP method can potentially improve upon these two methods, since
there are IMPs beyond the ones that imply invariance (see an example in (??)), which is left for future
work. Due to the averaging steps of IMP, IMPinv, and SR, they have smaller variances compared with
OLS and AR (a similar result has been reported in [37]).
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Figure 5: Experiment 7.1.1
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J.1.2 Interventions on Y

We consider the response Y to be intervened through both the coefficients and shifts. We randomly
select np ∼ Unif{1, . . . , |PA(Y )|} of parents of Y to have varying coefficients. For each training
environment, we add perturbation terms sampled from Unif[−2, 2] to the original coefficients. For
each test environment, the perturbations are sampled from Unif[−10, 10]. The shift intervention
on Y is the same as the shift interventions on X in Section J.1.1. In this setting, since none of the
baseline methods allow interventions on Y through the coefficients, they cannot even improve upon
OLS. In Fig. 6, IMP performs slightly better than IMPinv, which may due to the fact that the IMP
method aims to find all possible IMPs, but the IMPinv only looks for IMPs that imply invariance.
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Figure 6: Experiment 7.1.2

J.1.3 Interventions on both X and Y

The setting of interventions on both X and Y is simply a combination of the two setting above.
We require that Y has at least one child that is not intervened when selecting the predictors to be
intervened. In this challenging setting, our method outperforms the baselines by a large margin.
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Figure 7: Experiment 7.1.3

J.2 Interventions on both X and Y (continuous)

In this more challenging setting, we only compare with OLS, since AR only considers shift inter-
ventions while the other baselines are not developed for continuous environments, and also recall
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that IMPinv is proposed for discrete environments. First, we define {U1, . . . , U800} sampled from
Unif[0, 1] and {Uτ

1 , . . . , U
τ
800} sampled from Unif[1, 2] as the training and test environments, re-

spectively. Similar to the setting of discrete environments, we randomly generate the linear SCMs
without interventions first and then add interventions to the model. Due to the high computational
complexity, we focus on graphs with 5 nodes where 2 predictors are intervened. The interventions
on the coefficients and shift interventions are defined by adding a perturbation term a sin(2πwUi),
where w is sampled from Unif[0.5, 2]. The parameter a is fixed to be 2 for the training environments
(i.e., the same range as for the discrete case) and 5 for the test environments. Since the parameter
space is much smaller than the previous experiments, we only generated 100 data sets. Overall, the
performance of our IMP algorithm is similar to that in the discrete setting.
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Figure 8: Experiment 7.2

J.3 Robustness

In the previous experiments, we only consider shift interventions on X and interventions on Y other
than the noise variance. In this experiment, we consider an extreme case when only a child of Y
with the highest causal ordering is not intervened (i.e., Assumption 2 is satisfied), all other variables
are intervened through every parameter. Specifically, a shift intervention or an intervention on the
coefficient is defined by adding a perturbation term to the original parameter. The perturbation
term is sampled from Unif[−2, 2] for the training data, and from Unif[−5, 5] for the test data. The
intervened noise variances are sampled from Unif[0.75, 1.25] for each training environment, and
from Unif[0.5, 1.5] for each test environment. To test how sensitive our method is with respect to
Assumption 2 in this challenging setting, we gradually add interventions to the child of Y that is
not intervened, where the shifts and coefficient interventions are sampled from Unif[−2λ, 2λ] and
Unif[−5λ, 5λ] for the training and test environments, respectively. The intervened noise variances
are sample from Unif[1 − 0.25λ, 1 + 0.25λ] for training, and from Unif[1 − 0.5λ, 1 + 0.5λ] for
testing. The parameter λ ∈ [0, 1] controls the intervention strength. Due to the results in Section J.1.3,
it would not be informative to compare with the baseline methods, so we focus on our IMP method.
Note that our IMPinv is also not included since IMPs will not imply invariance in this case (see
Remark 1). Overall, as shown in Fig. 9, the median of the mean RSS is not too sensitive with respect
to mild interventions on the child that is not intervened, but the variance increases rapidly.

K Note on Semi-parametric Varying Coefficient Models and Profile
Least-Squares Estimation

First, we introduce the semi-parametric varying coefficient model following most of the notation
in [13]. Consider Y ∈ R, U ∈ U , and two vectors of predictors W = (W1, . . . ,Wp)

⊤ and
Z = (Z1, . . . , Zq)

⊤ such that Zj’s have invariant coefficients, a semi-parametric varying coefficient
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model over (U, Y,W,Z) is defined by

Y = M + β⊤Z +N, M = α⊤(U)W, (37)

where N is independent of (U,W,Z).

We briefly introduce the profile least-squares estimator of β proposed in [13]. Denote n i.i.d. samples
of (U, Y, Z,N) as U = (U1, . . . , Un)

⊤, Y = (Y1, . . . , Yn)
⊤, W = (W1, . . . ,Wn)

⊤, W i =
(Wi1, . . . ,Wip)

⊤, Z = (Z1, . . . ,Zn)
⊤, Zi = (Zi1, . . . , Ziq)

⊤, and N = (N1, . . . , Nn)
⊤. We thus

have M = (M1, . . . ,Mn)
⊤ with Mi = α⊤(Ui)W i. Let Ku = diag(Kh(U1−u), . . . ,Kh(Un−u))

for some kernel function Kh(·) = K(·/h)/h with bandwidth h, and

W̃ u =

W1
⊤ U1−u

h W1
⊤

...
...

Wn
⊤ Un−u

h Wn
⊤

 ∈ Rn×2p.

For u in a neighborhood of u0 ∈ U , assume that each function αi(u) in (37) can be approximated
locally by the first-order Taylor expansion αi(u) ≈ αi + bi(u− u0). Then the varying coefficients
α(U1), . . . , α(Un) can be estimated by solving the weighted local least squares problem

min
{ai,bi}

n∑
k=1

Y k −
q∑

j=1

βjZkj −
p∑

i=1

(ai + bi(Uk − u))Wki

2

·Kh(Uk − u), (38)

which has the solution

[â1(u), . . . , âp(u), hb̂1(u), . . . , hb̂p(u)]

= (X̃
⊤
uKuX̃u)

−1X̃
⊤
uKu(Y −Zβ),

for u ∈ {U1, . . . , Un}. Then, each variable M i can be estimated by M̂ i =
∑p

j=1 âj(u)Xij , and
thus the vector M can be estimated by

M̂(β) =
[W⊤

1 01×p]{W̃
⊤
u1
Ku1W̃ u1}−1W̃

⊤
u1
Ku1

...
[W⊤

n 01×p]{W̃
⊤
un

KunW̃ un}−1W̃
⊤
un

Kun

 (Y −Zβ)

:= A(Y −Zβ), (39)
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which depends on the unknown parameter β that will be estimated below. Substituting M̂(β) into
the vector form of (37), we obtain (I −A)Y = (I −A)Zβ+N . The profile least-squares estimator
of β is given by

β̂ = {Z⊤(I −A)⊤(I −A)Z}−1

·Z⊤(I −A)⊤(I −A)Y . (40)

Finally, by replacing β in (39) with β̂, the final form of the estimator for M is given by

M̂ = A(Y −Zβ̂). (41)

L Asymptotic Generalization Error

In this section, we provide the asymptotic generalization errors (as n,m → ∞) of the IMPc and
IMPd estimators for (k,R, S)’s that satisfy IMPs, i.e., (k,R, S) ∈ IM. Recall that σ2 = E[(Nτ )2]
is the population generalization error of the IMP estimators. Due to the estimations on both training
and test data, the asymptotic generalization error can be decompose to the error terms depend on the

training data size n and the test data size m as follows. Let cn =
{

log(1/h)
nh

}1/2

+ h2, where h is the
kernel bandwidth (see Appendix K for details).

Theorem 3. For any (k,R, S) ∈ IM, under the technical assumptions in Appendix M.1, the
asymptotic generalization error of the IMPc estimator is given by

1

m

m∑
i=1

(Ŷ τ
i − Y τ

i )2 = σ2 +Op(cn ∨ n−1/2) +Op(cm ∨m−1/2).

The following corollary considers the setting when the amount of unlabeled training and test data
grows in a higher order than the amount of labels in the training data. The generalization error due to
the estimation on the test data disappears.

Corollary 3. Given i.i.d. training data of size n with 0 < ln < n labels and test data of size m,
if max( lnn , ln

m ) → 0 as min(m,n) → ∞, under the technical assumptions in Appendix M.1, the
asymptotic generalization error of the IMPc estimator is given by

1

m

m∑
i=1

(Ŷ τ
i − Y τ

i )2 = σ2 +Op(cln ∨ l−1/2
n ).

The setting of discrete environments can be viewed as a special case of continuous environments,
where the error term cn ∨ n−1/2 due to the kernel estimation procedure is replaced by an error term
from multiple OLS estimations.
Corollary 4. For any (k,R, S) ∈ IM, under the technical assumptions in Appendix M.1, the
asymptotic generalization error of the IMPd estimator is given by

1

m

m∑
i=1

(Ŷ τ
i − Y τ

i )2 = σ2 +Op(an) +Op(am),

where an = (mine∈E train ne)
−1/2 and am = m−1/2.

This asymptotic generalization error heavily depends on the environment with the smallest sample
size, which also supports the fact that IMPd should not be employed for continuous environment
settings.

M Proofs for the Theoretical Results in Section L

M.1 Technical Lemmas for the Proof of Theorem 3

First, we present some technical assumptions and two technical lemmas from [13]. Let c′n ={
log(1/h)

nh

}1/2

and cn = c′n + h2.
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1. U has a bounded support U and has density function f(·) that is Lipschitz continuous and bounded
away from 0.

2. For each Ui, the matrix E[W⊤W |Ui] is non-singular, and the matrices E[W⊤W |Ui],(
E[W⊤W |Ui]

)−1
, and E[WZ⊤|Ui] are Lipschitz continuous.

3. α1(u), . . . , αp(u) have continuous second derivatives.

4. K(·) is a symmetric density function.

Lemma 2 ([29]). Let (U1, Y1), . . . , (Un, Yn) be i.i.d. random vectors in R2. Assume that E[|Y |s] <
∞ and supx

∫
|y|sf(u, y)dy < ∞, where f(u, y) is the density of (U, Y ). Let K be a bounded

positive function with a bounded support that satisfies a Lipschitz condition. Given that n2ε−1h→∞
for some ε < 1− s−1, then

sup
u

∣∣∣∣∣ 1n
n∑

i=1

Kh(Ui − u)Yi − E[Kh(Ui − u)Yi]

∣∣∣∣∣ = Op(c
′
n).

Lemma 3 ([13]). Under suitable assumptions,
√
n(β̂ − β)

d−→ N (0,Σ) as n → ∞, where Σ =
Var(N) · C−1 with

C = E[ZZ⊤]− E
[
E[ZW⊤|U ]E[WW⊤|U ]E[WZ⊤|U ]

]
.

In the following lemma, we provide the rates of several quantities needed for the proof of Theorem 3.

Lemma 4. Under the same assumptions as in Lemma 3,

R1 =
1

n
(M̂ −M)⊤(M̂ −M) = Op(c

2
n ∨ n−1),

R2 =
1

n
(M̂ −M)⊤[W ,M ] = Op(cn ∨ n−1/2),

R3 =
1

n
(M̂ −M)⊤Z = Op(cn ∨ n−1/2),

R4 =
1

n
(M̂ −M)⊤N = Op(cn).

Proof. First, (41) and the vector form of (37) give

M̂ −M = A(Y −Zβ̂)−M

= (A− I)M +AZ(β − β̂) +AN .

Observe that R2 ∼ R4 can be defined through

I1 =
1

n
M⊤(A⊤ − I)P ,

I2 =
1

n
(β − β̂)⊤Z⊤A⊤P ,

I3 =
1

n
N⊤A⊤P ,
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where P can be replaced by W , Z, M , or N (note that the rows of P are i.i.d.). We also have
R1 =

∑9
i=4 Ii, where

I4 =
1

n
M⊤(A⊤ − I)(A− I)M ,

I5 =
1

n
(β − β̂)⊤Z⊤A⊤AZ(β − β̂),

I6 =
1

n
N⊤A⊤AN ,

I7 =
1

n
M⊤(A⊤ − I)

{
AZ(β − β̂) +AN

}
,

I8 =
1

n
(β − β̂)⊤Z⊤A⊤

{
(A− I)M +AN

}
,

I9 =
1

n
N⊤A⊤

{
(A− I)M +AZ(β − β̂)

}
.

It can be shown that I1, I3 = Op(cn) (we use this as a shorthand for I1 = Op(cn), I3 = Op(cn),
as I1 and I3 are not equal), I2 = Op(n

−1/2), I5 = Op(n
−1), I4, I6 = Op(c

2
n), I8 = Op(cnn

−1/2),
I7, I9 = Op(c

2
n ∨ cnn

−1/2), which implies R1 = Op(c
2
n ∨ n−1), R2, R3 = Op(cn ∨ n−1/2) and

R4 = Op(cn). The techniques for proving the rates of I1 ∼ I9 are similar; observe that all the
components in I4 ∼ I9 are already computed to obtain I1 ∼ I3, thus we only provide the proof for
I1 ∼ I3 for simplicity of presentation.

Using Lemma 2, it has been shown in [13] that W̃
⊤
ui
Kui

W̃ ui
can be equivalently expressed as[

B1 B2

B3 B4

]
= nf(Ui)E[WW⊤|Ui]⊗

(
1 0
0 µ2

)
{1 +Op(cn)}, (42)

where µ2 =
∫
U u2K(u)du, and the four block matrices are B1 = S0(Ui), B2 = B3 = S1(Ui), and

B4 = S2(Ui), with respect to

Sk(Ui) =

n∑
j=1

(
Uj − Ui

h

)k

W jW
⊤
j Kh(Uj − Ui).

Since the techniques for proving (42), omitted in [13], will be used repeatedly in the rest of this paper,
we provide the proof for completeness. Applying Lemma 2, it holds uniformly in u ∈ U that Sk(u)
can be expressed as

E

[(
U − u

h

)k

E[WW⊤|U ]Kh(U − u)

]
{1 +Op(c

′
n)}

=

∫
V
vkE[WW⊤|U = hv + u]K(v)f(hv + u)dv

· {1 +Op(c
′
n)} (43)

=

∫
V
vkK(v)

[
E[WW⊤|U = u] + vO(h)

]
· [f(u) + vO(h)] dv{1 +Op(c

′
n)} (44)

=

{
E[WW⊤|U = u]f(u)µk{1 +Op(cn)}, k even
O(h) +Op(c

′
n), k odd

(45)

where (43) is due to the change of variable V = (U − u)/h, (44) uses the Lipschitz continuity
assumptions on E[XXT |U ] and f(·), and (45) is by the symmetry of the kernel function K(·).
Similarly, we obtain

W̃
⊤
ui
KuiM

=

[ ∑n
j=1 W jW

⊤
j α(Uj)Kh(Uj − Ui)∑n

j=1
Uj−Ui

h W jW
⊤
j α(Uj)Kh(Uj − Ui)

]
=nf(Ui)E[WW⊤|Ui]α(Ui)⊗ (1 0)

⊤ {1 +Op(cn)}. (46)
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Recall the expression of A in (39), we have

(A− I)M

=


[W⊤

1 0]{W̃
⊤
u1
Ku1

W̃ u1
}−1W̃

⊤
u1
Ku1

M
...

[W⊤
n 0]{W̃

⊤
un

Kun
W̃ un

}−1W̃
⊤
un

Kun
M

−M

Using (42) and (46), we obtain

I1 =
1

n
M⊤(A⊤ − I)P

=
1

n

n∑
i=1

(Mi{1 +Op(cn)} −Mi)P i = Op(cn),

where P i denotes the ith row of P and the last equality is due to the law of large numbers. For I2,
similarly as above, we compute

AZ =

W1
⊤ {

E[WWT |U1]
}−1

E[WZ⊤|U1]
...

Wn
⊤ {

E[WWT |Un]
}−1

E[WZ⊤|Un]

 {1 +Op(cn)}.

Since β − β̂ = Op(n
−1/2) by Lemma 3, we obtain

I2 =
1

n
(β − β̂)⊤Z⊤A⊤P

= (β − β̂)⊤
1

n

n∑
i=1

Wi
⊤ {

E[WWT |Ui]
}−1

· E[WZ⊤|Ui]{1 +Op(cn)}P i

= Op(n
−1/2),

where, again, the last equality is due to the law of large numbers. Finally, for

AN =


[W⊤

1 0]{W̃
⊤
u1
Ku1

W̃ u1
}−1W̃

⊤
u1
Ku1

N
...

[W⊤
n 0]{W̃

⊤
un

Kun
W̃ un

}−1W̃
⊤
un

Kun
N

 ,

the same argument for (45) leads to

W̃
⊤
ui
Kui

N =nf(Ui)E[WN⊤|Ui]{1 +Op(cn)},

where E[WN⊤|Ui] = 0 since N is independent of W and Ui, and N has a zero mean. Thus, by the
law of large numbers,

I3 =
1

n
N⊤A⊤P =

1

n

n∑
i=1

Op(cn)P i = Op(cn).

Proofs of Theorem 3 and Corollaries 3 and 4

To reuse model (37) for the prediction of Y τ , the main challenge comes from M that changes with U
(while β remains invariant). First, we introduce some notation for the proofs. We define (Y ,W ,W i)
and (Z,Zi,M ,N) in the same way as in Appendix K. Similarly, we define ZV ,MV , NV , and
all the corresponding data matrices for the test data (e.g., Y τ ), and let σ2 = E[(Nτ )2]. With this
notation, the IMP (7) implies that

M = λMV + ζ⊤W := [W,MV ]w, (47)
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for some ζ ∈ Rp. Let Ŵ V := [W ,M̂V ] and Ŵ
τ

V := [W τ ,M̂
τ

V ]. Then, the OLS estimator of w
according to the above equation is given by

ŵ = (Ŵ
⊤
V Ŵ V )

−1Ŵ
⊤
V M̂ . (48)

We predict Y τ using the continuous IMP estimator

Ŷ
τ
= W̃

τ

V ŵ +Zτ β̂, (49)

where β̂, M̂ , and M̂V are provided in Appendix K.

Lemma 5. Under assumptions 1)∼ 4), it holds that

ŵ − w = Op(cn ∨ n−1/2).

Proof. Using the fact that

Ŵ V = [W ,MV ] + [0,M̂V −MV ],

we obtain

1

n
Ŵ

⊤
V Ŵ V

=
1

n
[W ,MV ]

⊤[W ,MV ] +
1

n
[W ,MV ]

⊤[0,M̂V −MV ]

+
1

n
[0,M̂V −MV ]

⊤[W ,MV ] +
1

n
[0,M̂V −MV ]

⊤

· [0,M̂V −MV ]

= E

[
(W⊤,MV )

⊤(W⊤,MV )

]
{1 +Op(cn ∨ n−1/2)},

where we use R1 and R2 from Lemma 4 and the law of large numbers. Similarly,

1

n
Ŵ

⊤
V M̂ =

1

n
[W ,MV ]

⊤M +
1

n
[W ,MV ]

⊤(M̂ −M)

+
1

n
[0,M̂V −MV ]

⊤(M̂ −M)

+
1

n
[0,M̂V −MV ]

⊤M

= E

[
(W⊤,MV )

⊤M

]
{1 +Op(cn ∨ n−1/2)}.

Note that the rate is not directly implied by Lemma 4, but it can be proved using the same techniques
demonstrated in the proof Lemma 4. Therefore, using (47),

ŵ = (Ŵ
⊤
V Ŵ V )

−1Ŵ
⊤
V M̂ = w{1 +Op(cn ∨ n−1/2)}.

M.2 Proof of Theorem 3

Using (49) and Y τ = M τ +Zτβ +N τ , we derive

Ŷ τ − Y τ

=[W τ ,M̂
τ

V ]ŵ +Zτ β̂ − [W τ ,M τ
V ]w −Zτβ −N τ

=[0,M̂
τ

V −M τ
V ](ŵ − w) + [W τ ,M τ

V ](ŵ − w)

+ [0,M̂
τ

V −M τ
V ]w +Zτ (β̂ − β)−N τ .
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Then, the generalization error is given by

1

m
(Ŷ τ − Y τ )⊤(Ŷ τ − Y τ ) =

10∑
i=1

Ji

where

J1 =
1

m
(ŵ − w)⊤[0,M̂

τ

V −M τ
V ]

⊤

[0,M̂
τ

V −M τ
V ](ŵ − w),

J2 =
1

m
(ŵ − w)⊤[Xτ ,M τ

V ]
⊤[Xτ ,M τ

V ](ŵ − w),

J3 =
1

m
w⊤[0,M̂

τ

V −M τ
V ]

⊤[0,M̂
τ

V −M τ
V ]w,

J4 =
1

m
(β̂ − β)⊤(Zτ )⊤Zτ (β̂ − β),

J5 =
1

m
(N τ )⊤N τ ,

J6 =
1

m
(ŵ − w)⊤[0,M̂

τ

V −M τ
V ]

⊤
{
[W τ ,M τ

V ]

· (ŵ − w) + [0,M̂
τ

V −M τ
V ]w +Zτ (β̂ − β)−N τ

}
,

J7 =
1

m
(ŵ − w)⊤[W τ ,M τ

V ]
⊤
{
[0,M̂

τ

V −M τ
V ]

· (ŵ − w) + [0,M̂
τ

V −M τ
V ]w +Zτ (β̂ − β)−N τ

}
,

J8 =
1

m
w⊤[0,M̂

τ

V −M τ
V ]

⊤
{
[0,M̂

τ

V −M τ
V ]

· (ŵ − w) + [W τ ,M τ
V ](ŵ − w) +Zτ (β̂ − β)−N τ

}
,

J9 =
1

m
(β̂ − β)⊤(Zτ )⊤

{
[0,M̂

τ

V −M τ
V ](ŵ − w)

+ [W τ ,M τ
V ](ŵ − w) + [0,M̂

τ

V −M τ
V ]w +N τ

}
,

J10 = − 1

m
(N τ )⊤

{
[0,M̂

τ

V −M τ
V ](ŵ − w)

+ [W τ ,M τ
V ](ŵ − w) + [0,M̂

τ

V −M τ
V ]w +Zτ (β̂ − β)

}
.

We can show the following rates of these terms through simple applications of Lemmas 3, 4, 5, along
with the law of large number and the central limit theorem. J2, J3 = Op(c

2
n ∨ n−1), J4 = Op(n

−1),
J5 = σ2 +Op(m

−1/2),

J10 = Op(cm ∨m−1/2) ·Op(cn ∨ n−1/2)

+Op(cn ∨ n−1/2) +Op(cm ∨m−1/2) +Op(n
−1/2),

and J1, J6 ∼ J9 have higher orders compared with either Op(cn ∨ n−1/2) or Op(cm ∨m−1/2) in
J10. This completes the proof of Theorem 3.

M.3 Proof of Corollary 3

We use l as the shorthand notation for ln in the proof. Since the estimation of β,M , and w are based
on the labeled data, we have β̂ − β = Op(l

−1/2) in Lemma 3 and R1, R2, R3 = Op(cl ∨ l−1/2)
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and R4 = Op(cl) in Lemma 4. In the proof of Lemma 5, the rate of Ŵ
⊤
V Ŵ V remains the same

since the estimation of MV only uses the unlabeled data but the rate of Ŵ
⊤
V M̂ now depends on

l. This observation implies ŵ − w = Op(cl ∨ l−1/2). Now, observe that J2 = Op(c
2
l ∨ l−1), J3 =

Op(cm ∨m−1/2), J4 = Op(l
−1), J5 = σ2 +Op(m

−1/2), and J10 = Op(cl ∨ l−1/2)+Op(m
−1/2).

Since max( l
n ,

l
m )→ 0 as min(n,m)→∞, we get

∑10
i=1 Ji = Op(cl ∨ l−1/2).

M.4 Proof of Corollary 4

According to the definition of the discrete IMP estimator, all the coefficients are treated as varying
coefficients (i.e., β = 0 and βV = 0), and M is estimated by performing the OLS for each
environment and then putting the estimates into one vector, thus R1 = Op(a

2
n) and R2, R4 = Op(an)

in Lemma 4, with an = (mine∈E train ne)
−1/2 by the asymptotic normality of the OLS estimators (

note that X and Z are assumed to have finite fourth moments in Lemma 3). Accordingly, we have
ŵ − ŵ = Op(an) in Lemma 5 using the law of large numbers. Setting Zτ = 0 in J1 ∼ J10, we
obtain J2, J3 = Op(a

2
n), J4 = 0, J5 = σ2 + Op(m

−1/2), J10 = Op(an) +Op(am), and the other
terms have higher orders compared with Op(an) or Op(am). Similar to Theorem 3, the asymptotic
generalization error is dominated by J10.
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